551
|
Buckley L, Lacey M, Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics 2016; 8:13-31. [PMID: 26756355 PMCID: PMC4863877 DOI: 10.2217/epi.15.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology.
Collapse
Affiliation(s)
- Lauren Buckley
- Human Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Tulane Cancer Center & Department of Mathematics, Tulane University, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Human Genetics Program, Center for Bioinformatics & Genomics, Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
552
|
García-Recio EM, Pinto-Díez C, Pérez-Morgado MI, García-Hernández M, Fernández G, Martín ME, González VM. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e275. [PMID: 26730812 PMCID: PMC5012548 DOI: 10.1038/mtna.2015.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/19/2015] [Indexed: 02/08/2023]
Abstract
Elevated expression levels of eukaryotic initiation factor 4E (eIF4E) promote cancer development and progression. MAP kinase interacting kinases (MNKs) modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.
Collapse
Affiliation(s)
- Eva M García-Recio
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Celia Pinto-Díez
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - M Isabel Pérez-Morgado
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Marta García-Hernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Gerónimo Fernández
- Aptus Biotech SL, c/ Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - M Elena Martín
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Víctor M González
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
- Laboratory of Aptamers, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain. E-mail:
| |
Collapse
|
553
|
Booy EP, McRae EKS, Howard R, Deo SR, Ariyo EO, Dzananovic E, Meier M, Stetefeld J, McKenna SA. RNA Helicase Associated with AU-rich Element (RHAU/DHX36) Interacts with the 3'-Tail of the Long Non-coding RNA BC200 (BCYRN1). J Biol Chem 2016; 291:5355-72. [PMID: 26740632 DOI: 10.1074/jbc.m115.711499] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
RNA helicase associated with AU-rich element (RHAU) is an ATP-dependent RNA helicase that demonstrates high affinity for quadruplex structures in DNA and RNA. To elucidate the significance of these quadruplex-RHAU interactions, we have performed RNA co-immunoprecipitation screens to identify novel RNAs bound to RHAU and characterize their function. In the course of this study, we have identified the non-coding RNA BC200 (BCYRN1) as specifically enriched upon RHAU immunoprecipitation. Although BC200 does not adopt a quadruplex structure and does not bind the quadruplex-interacting motif of RHAU, it has direct affinity for RHAU in vitro. Specifically designed BC200 truncations and RNase footprinting assays demonstrate that RHAU binds to an adenosine-rich region near the 3'-end of the RNA. RHAU truncations support binding that is dependent upon a region within the C terminus and is specific to RHAU isoform 1. Tests performed to assess whether BC200 interferes with RHAU helicase activity have demonstrated the ability of BC200 to act as an acceptor of unwound quadruplexes via a cytosine-rich region near the 3'-end of the RNA. Furthermore, an interaction between BC200 and the quadruplex-containing telomerase RNA was confirmed by pull-down assays of the endogenous RNAs. This leads to the possibility that RHAU may direct BC200 to bind and exert regulatory functions at quadruplex-containing RNA or DNA sequences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jörg Stetefeld
- From the Departments of Chemistry and Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sean A McKenna
- From the Departments of Chemistry and Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
554
|
G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome. PLoS One 2016; 11:e0146174. [PMID: 26727593 PMCID: PMC4699641 DOI: 10.1371/journal.pone.0146174] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
The G-quadruplex is a non-canonical DNA structure biologically significant in DNA replication, transcription and telomere stability. To date, only G4s with all guanines originating from the same strand of DNA have been considered in the context of the human nuclear genome. Here, I discuss interstrand topological configurations of G-quadruplex DNA, consisting of guanines from both strands of genomic DNA; an algorithm is presented for predicting such structures. I have identified over 550,000 non-overlapping interstrand G-quadruplex forming sequences in the human genome—significantly more than intrastrand configurations. Functional analysis of interstrand G-quadruplex sites shows strong association with transcription initiation, the results are consistent with the XPB and XPD transcriptional helicases binding only to G-quadruplex DNA with interstrand topology. Interstrand quadruplexes are also enriched in origin of replication sites. Several topology classes of interstrand quadruplex-forming sequences are possible, and different topologies are enriched in different types of structural elements. The list of interstrand quadruplex forming sequences, and the computer program used for their prediction are available at the web address http://moment.utmb.edu/allquads.
Collapse
|
555
|
Wang W, Sui Y, Zhang L, Tan W, He X, Xie X. Recognition of an important G-quadruplex in the HIV-1 promoter with natural small molecules. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Targeting a G-quadruplex with chemical small molecules is a useful strategy for gene therapy for disease. The guanine-rich sequence d(5′-TG1G2CCTG3G4G5CG6G7G8ACTG9G10G11-3′) in the HIV-1 promoter can form a G-quadruplex structure. In this study, circular dichroism was performed to study the conformation and thermal stability of the HIV-1 G-quadruplex before and after adding small molecules. A DMS footprinting assay was used to identify which guanosine can be integrated into the G-quadruplex structure. Electrospray ionization mass spectrometry was used to evaluate the binding affinities of the small molecules with the G-quadruplex. Our results showed that G1, G2, G3, G4, G7, G8, G9, and G10 of the above oligonucleotides formed a two G-tetrad antiparallel G-quadrulex, and nitidine chloride was found to have the highest binding affinity toward the HIV-1 G-quadruplex among the eight studied small molecules. The Tm value of the G-quadruplex was enhanced from 56.6 to 63.2 °C when fourfold nitidine chloride was added. This is potentially a novel approach for anti-HIV-1 drug development.
Collapse
Affiliation(s)
- Weixuan Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yang Sui
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Zhang
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Tan
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangwei He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiangming Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
556
|
Holton NW, Larson ED. G-quadruplex DNA structures can interfere with uracil glycosylase activity in vitro. Mutagenesis 2015; 31:385-92. [PMID: 26671821 DOI: 10.1093/mutage/gev083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome sequences that contain tandem repeats of guanine can form stable four-stranded structures known as G-quadruplex, or G4 DNA. While the molecular mechanisms are not fully defined, such guanine-rich loci are prone to mutagenesis and recombination. Various repair pathways function to reduce the potential for genome instability by correcting base damage and replication errors; however, it is not yet fully defined how well these processes function at G4 DNA. One frequent form of base damage occurs from cytidine deamination, resulting in deoxyuracil and UG mismatches. In duplex and single-stranded DNA, uracil bases are recognised and excised by uracil glycosylases. Here, we tested the efficiency of uracil glycosylase activity in vitro on uracil bases located directly adjacent to guanine repeats and G4 DNA. We show that uracil excision by bacterial UDG and human hUNG2 is reduced at uracils positioned directly 5' or 3' of a guanine tetrad. Control reactions using oligonucleotides disrupted for G4 formation or reaction conditions that do not favour G4 formation resulted in full uracil excision activity. Based on these in vitro results, we suggest that folding of guanine-rich DNA into G4 DNA results in a DNA conformation that is resistant to uracil glycosylase-initiated repair and this has the potential to increase the risk of instability at guanine repeats in the genome.
Collapse
Affiliation(s)
- Nate W Holton
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790-4120, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790-4120, USA
| |
Collapse
|
557
|
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2015; 27:518-34. [PMID: 26658614 PMCID: PMC4751602 DOI: 10.1091/mbc.e15-07-0504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022] Open
Abstract
A novel posttranscriptional mechanism for regulating the neuronal protein GAP-43 is reported. The mRNA-binding protein hnRNP-Q1 represses Gap-43 mRNA translation by a mechanism involving a 5′ untranslated region G-quadruplex structure, which affects GAP-43 function, as demonstrated by a GAP-43–dependent increase in neurite length and number with hnRNP-Q1 knockdown. Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.
Collapse
Affiliation(s)
- Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
558
|
Sharma T, Bansal R, Haokip DT, Goel I, Muthuswami R. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region. Sci Rep 2015; 5:17910. [PMID: 26648259 PMCID: PMC4673416 DOI: 10.1038/srep17910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.
Collapse
Affiliation(s)
| | - Ritu Bansal
- School of Life Sciences, JNU, New Delhi 110067
| | | | - Isha Goel
- School of Life Sciences, JNU, New Delhi 110067
| | | |
Collapse
|
559
|
The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet 2015; 62:431-42. [PMID: 26650613 DOI: 10.1007/s00294-015-0548-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 01/13/2023]
Abstract
The structure of a chromosomal DNA molecule may influence the way in which it is replicated and inherited. For decades plastid DNA (ptDNA) was believed to be circular, with breakage invoked to explain linear forms found upon extraction from the cell. Recent evidence indicates that ptDNA in vivo consists of linear molecules with discrete termini, although these ends were not characterized. We report the sequences of two terminal regions, End1 and End2, for maize (Zea mays L.) ptDNA. We describe structural features of these terminal regions and similarities found in other plant ptDNAs. The terminal sequences are within inverted repeat regions (leading to four genomic isomers) and adjacent to origins of replication. Conceptually, stem-loop structures may be formed following melting of the double-stranded DNA ends. Exonuclease digestion indicates that the ends in maize are unobstructed, but tobacco (Nicotiana tabacum L.) ends may have a 5'-protein. If the terminal structure of ptDNA molecules influences the retention of ptDNA, the unprotected molecular ends in mature leaves of maize may be more susceptible to degradation in vivo than the protected ends in tobacco. The terminal sequences and cumulative GC skew profiles are nearly identical for maize, wheat (Triticum aestivum L.) and rice (Oryza sativa L.), with less similarity among other plants. The linear structure is now confirmed for maize ptDNA and inferred for other plants and suggests a virus-like recombination-dependent replication mechanism for ptDNA. Plastid transformation vectors containing the terminal sequences may increase the chances of success in generating transplastomic cereals.
Collapse
|
560
|
Malina A, Cameron CJF, Robert F, Blanchette M, Dostie J, Pelletier J. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 2015; 6:10124. [PMID: 26644285 PMCID: PMC4686818 DOI: 10.1038/ncomms10124] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/05/2015] [Indexed: 01/18/2023] Open
Abstract
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification.
Collapse
Affiliation(s)
- Abba Malina
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Christopher J. F. Cameron
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
561
|
Stefanovic S, DeMarco BA, Underwood A, Williams KR, Bassell GJ, Mihailescu MR. Fragile X mental retardation protein interactions with a G quadruplex structure in the 3'-untranslated region of NR2B mRNA. MOLECULAR BIOSYSTEMS 2015; 11:3222-30. [PMID: 26412477 PMCID: PMC4643373 DOI: 10.1039/c5mb00423c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fragile X syndrome, the most common cause of inherited intellectual disability, is caused by a trinucleotide CGG expansion in the 5'-untranslated region of the FMR1 gene, which leads to the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, an RNA-binding protein that regulates the translation of specific mRNAs, has been shown to bind a subset of its mRNA targets by recognizing G quadruplex structures. It has been suggested that FMRP controls the local protein synthesis of several protein components of the post synaptic density (PSD) in response to specific cellular needs. We have previously shown that the interactions between FMRP and mRNAs of the PSD scaffold proteins PSD-95 and Shank1 are mediated via stable G-quadruplex structures formed within the 3'-untranslated regions of these mRNAs. In this study we used biophysical methods to show that a comparable G quadruplex structure forms in the 3'-untranslated region of the glutamate receptor subunit NR2B mRNA encoding for a subunit of N-methyl-d-aspartate (NMDA) receptors that is recognized specifically by FMRP, suggesting a common theme for FMRP recognition of its dendritic mRNA targets.
Collapse
Affiliation(s)
- Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Brett A DeMarco
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Ayana Underwood
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
562
|
Identification of RNA Oligonucleotides Binding to Several Proteins from Potential G-Quadruplex Forming Regions in Transcribed Pre-mRNA. Molecules 2015; 20:20832-40. [PMID: 26610452 PMCID: PMC6332122 DOI: 10.3390/molecules201119733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes (G4s) are noncanonical DNA/RNA structures formed by guanine-rich sequences. Recently, G4s have been found not only in aptamers but also in the genomic DNA and transcribed RNA. In this study, we identified new RNA oligonucleotides working as aptamers by focusing on G4-forming RNAs located within the pre-mRNA. We showed that the G4 in the 5′ UTR and first intron of VEGFA bound to the protein encoded in VEGFA gene, VEGF165, with high affinity. Moreover, G4-forming RNAs located within the PDGFA and the PDGFB introns bound to PDGF-AA and PDGF-BB, respectively, indicating that G4 in the pre-mRNA could be an aptamer. It had been reported that the putative G4-forming RNA sequences are located in some parts of most genes, thus our strategy for aptamer identification could be applicable to other proteins. It has been reported that some G4-forming RNAs in 5′ UTRs are involved in translation control; however, G4-forming excised intronic RNA function has not been revealed previously. Therefore, these findings could not only contribute to the identification of RNA aptamers but also provide new insights into the biological functioning of G4-forming RNAs located within intronic RNA sequences.
Collapse
|
563
|
Functional Hallmarks of a Catalytic DNA that Makes Lariat RNA. Chemistry 2015; 22:3720-8. [DOI: 10.1002/chem.201503238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 12/25/2022]
|
564
|
Zizza P, Cingolani C, Artuso S, Salvati E, Rizzo A, D'Angelo C, Porru M, Pagano B, Amato J, Randazzo A, Novellino E, Stoppacciaro A, Gilson E, Stassi G, Leonetti C, Biroccio A. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance. Nucleic Acids Res 2015; 44:1579-90. [PMID: 26511095 PMCID: PMC4770210 DOI: 10.1093/nar/gkv1122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/14/2015] [Indexed: 11/14/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression.In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk.
Collapse
Affiliation(s)
- Pasquale Zizza
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Chiara Cingolani
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Simona Artuso
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Erica Salvati
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Angela Rizzo
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Carmen D'Angelo
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Manuela Porru
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples 'Federico II', via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonella Stoppacciaro
- Dipartimento di Medicina Clinica e Molecolare, Università 'La Sapienza', piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Eric Gilson
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, University of Nice, 06107 Nice, France
| | - Giorgio Stassi
- Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, 06202 Nice cedex 3, France
| | - Carlo Leonetti
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Annamaria Biroccio
- Area of Translational Research, Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
565
|
Coppieters F, Todeschini AL, Fujimaki T, Baert A, De Bruyne M, Van Cauwenbergh C, Verdin H, Bauwens M, Ongenaert M, Kondo M, Meire F, Murakami A, Veitia RA, Leroy BP, De Baere E. Hidden Genetic Variation in LCA9-Associated Congenital Blindness Explained by 5'UTR Mutations and Copy-Number Variations of NMNAT1. Hum Mutat 2015; 36:1188-96. [PMID: 26316326 PMCID: PMC5054839 DOI: 10.1002/humu.22899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
Leber congenital amaurosis (LCA) is a severe autosomal‐recessive retinal dystrophy leading to congenital blindness. A recently identified LCA gene is NMNAT1, located in the LCA9 locus. Although most mutations in blindness genes are coding variations, there is accumulating evidence for hidden noncoding defects or structural variations (SVs). The starting point of this study was an LCA9‐associated consanguineous family in which no coding mutations were found in the LCA9 region. Exploring the untranslated regions of NMNAT1 revealed a novel homozygous 5′UTR variant, c.‐70A>T. Moreover, an adjacent 5′UTR variant, c.‐69C>T, was identified in a second consanguineous family displaying a similar phenotype. Both 5′UTR variants resulted in decreased NMNAT1 mRNA abundance in patients’ lymphocytes, and caused decreased luciferase activity in human retinal pigment epithelial RPE‐1 cells. Second, we unraveled pseudohomozygosity of a coding NMNAT1 mutation in two unrelated LCA patients by the identification of two distinct heterozygous partial NMNAT1 deletions. Molecular characterization of the breakpoint junctions revealed a complex Alu‐rich genomic architecture. Our study uncovered hidden genetic variation in NMNAT1‐associated LCA and emphasized a shift from coding to noncoding regulatory mutations and repeat‐mediated SVs in the molecular pathogenesis of heterogeneous recessive disorders such as hereditary blindness.
Collapse
Affiliation(s)
| | | | - Takuro Fujimaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Annelot Baert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | | | | | - Hannah Verdin
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Maté Ongenaert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie, Japan
| | - Françoise Meire
- Department of Ophthalmology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Reiner A Veitia
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
| | - Bart P Leroy
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
566
|
Ogihara K, Savory N, Abe K, Yoshida W, Asahi M, Kamohara S, Ikebukuro K. DNA aptamers against the Cry j 2 allergen of Japanese cedar pollen for biosensing applications. Biosens Bioelectron 2015; 63:159-165. [PMID: 25083924 DOI: 10.1016/j.bios.2014.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022]
Abstract
Sensing pollen allergens is required to prevent allergic disorders such as pollinosis. Aptamers, which bind to specific molecules, offer great potential as useful tools for detecting pollen allergens as measures against allergic disorders. Here, we report the identification of DNA aptamers binding to Cry j 2, one of the major allergens in Japanese cedar pollen, and the histochemical sensing of Cry j 2 in ruptured Japanese cedar pollen. DNA aptamers were selected by systematic evolution of ligands by exponential enrichment (SELEX) using nitrocellulose membranes. Through four rounds of SELEX, we identified aptamers binding to Cry j 2. The aptamers generated staining in ruptured Japanese cedar pollen on glass slides without extraction, similar to anti-Cry j 2 antibodies. The staining was compatible with starch localization, in which Cry j 2 is present. An aptamer, CJ2-06, which had high and specific binding ability to Cry j 2 (K(d)=24 nM), detected an amount of Cry j 2 equivalent to that in several tens of micrograms of pollen. Cry j 2 contained in house dust was detected in a spike test. The aptamers identified in this study can be powerful tools for allergen recognition in the practical biosensing of Cry j 2, leading to preventive measures against allergic disorders caused by Japanese cedar pollen.
Collapse
Affiliation(s)
- Kazumasa Ogihara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; DHC Corporation, 2-8-21 Minami-azabu, Minato-ku, Tokyo 106-0047, Japan
| | - Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koichi Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
| | - Masahiko Asahi
- DHC Corporation, 2-8-21 Minami-azabu, Minato-ku, Tokyo 106-0047, Japan
| | - Seika Kamohara
- DHC Corporation, 2-8-21 Minami-azabu, Minato-ku, Tokyo 106-0047, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
567
|
Goto GH, Zencir S, Hirano Y, Ogi H, Ivessa A, Sugimoto K. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication. PLoS Genet 2015; 11:e1005283. [PMID: 26263073 PMCID: PMC4532487 DOI: 10.1371/journal.pgen.1005283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB) induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage. Telomere length is maintained primarily through equilibrium between telomerase-mediated lengthening and the loss of telomeric sequence through the end-replication problem. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomerase recruitment in a dosage-dependent manner. In this paper we provide evidence suggesting an alternative Rap1-dependent telomere shortening mechanism in which binding of multiple Rap1 proteins mediates DNA break induction during DNA replication. This process does not involve recombination events; therefore, it is distinct from loop-mediated telomere trimming.
Collapse
Affiliation(s)
- Greicy H. Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Sevil Zencir
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Hiroo Ogi
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
568
|
Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 2015; 33:877-81. [PMID: 26192317 DOI: 10.1038/nbt.3295] [Citation(s) in RCA: 861] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Abstract
G-quadruplexes (G4s) are nucleic acid secondary structures that form within guanine-rich DNA or RNA sequences. G4 formation can affect chromatin architecture and gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. Here we present a high-resolution sequencing-based method to detect G4s in the human genome. We identified 716,310 distinct G4 structures, 451,646 of which were not predicted by computational methods. These included previously uncharacterized noncanonical long loop and bulged structures. We observed a high G4 density in functional regions, such as 5' untranslated regions and splicing sites, as well as in genes previously not predicted to contain these structures (such as BRCA2). G4 formation was significantly associated with oncogenes, tumor suppressors and somatic copy number alterations related to cancer development. The G4s identified in this study may therefore represent promising targets for cancer intervention.
Collapse
Affiliation(s)
| | - Giovanni Marsico
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Jonathan M Boutell
- Illumina Cambridge Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, UK
| | - Marco Di Antonio
- 1] Department of Chemistry, University of Cambridge, Cambridge, UK. [2] Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Geoffrey P Smith
- Illumina Cambridge Ltd., Chesterford Research Park, Little Chesterford, Saffron Walden, UK
| | - Shankar Balasubramanian
- 1] Department of Chemistry, University of Cambridge, Cambridge, UK. [2] Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK. [3] School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
569
|
Phosphoproteomic Analysis of KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic Replication. PLoS Pathog 2015; 11:e1004993. [PMID: 26133373 PMCID: PMC4489790 DOI: 10.1371/journal.ppat.1004993] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022] Open
Abstract
Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) is an oncogenic virus which has adapted unique mechanisms to modulate the cellular microenvironment of its human host. The pathogenesis of KSHV is intimately linked to its manipulation of cellular signaling pathways, including the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. We have previously shown that KSHV ORF45 contributes to the sustained activation of both ERK and p90 ribosomal S6 kinase (RSK, a major functional mediator of ERK/MAPK signaling) during KSHV lytic replication. ORF45-activated RSK is required for optimal KSHV lytic gene expression and progeny virion production, though the underlying mechanisms downstream of this activation are still unclear. We hypothesized that the activation of RSK by ORF45 causes differential phosphorylation of cellular and viral substrates, affecting biological processes essential for efficient KSHV lytic replication. Accordingly, we observed widespread and significant differences in protein phosphorylation upon induction of lytic replication. Mass-spectrometry-based phosphoproteomic screening identified putative substrates of ORF45-activated RSK in KSHV-infected cells. Bioinformatic analyses revealed that nuclear proteins, including several transcriptional regulators, were overrepresented among these candidates. We validated the ORF45/RSK-dependent phosphorylation of several putative substrates by employing KSHV BAC mutagenesis, kinase inhibitor treatments, and/or CRISPR-mediated knockout of RSK in KSHV-infected cells. Furthermore, we assessed the consequences of knocking out these substrates on ORF45/RSK-dependent regulation of gene expression and KSHV progeny virion production. Finally, we show data to support that ORF45 regulates the translational efficiency of a subset of viral/cellular genes with complex secondary structure in their 5’ UTR. Altogether, these data shed light on the mechanisms by which KSHV ORF45 manipulates components of the host cell machinery via modulation of RSK activity. Thus, this study has important implications for the pathobiology of KSHV and other diseases in which RSK activity is dysregulated. Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human tumor virus which hijacks the host signaling pathways in order to maintain persistent infection. We previously discovered that the KSHV protein ORF45 binds to and activates the cellular kinase RSK (p90 ribosomal S6 kinase), and that this activation is vital for optimal KSHV gene expression and virion production. Here, we performed a phosphoproteomic analysis of KSHV-infected cells to further characterize the specific substrates of ORF45-activated RSK. Bioinformatic analyses provided insights into the functional roles of these substrates. We verified the ORF45/RSK-dependent phosphorylation of a subset of these substrates by various means. Finally, we used genome editing to knock out RSK, as well as several cellular substrates identified by our screening, and characterized the consequent effect(s) on regulation of gene expression and virion production. Thus, this work further elucidates one of the key signaling nodes modulated by KSHV, and implicates ORF45-mediated activation of RSK in the regulation of viral and host gene expression during KSHV lytic replication.
Collapse
|
570
|
Chen HL, Hsiao WH, Lee HC, Wu SC, Cheng JW. Selection and Characterization of DNA Aptamers Targeting All Four Serotypes of Dengue Viruses. PLoS One 2015; 10:e0131240. [PMID: 26110785 PMCID: PMC4482433 DOI: 10.1371/journal.pone.0131240] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
Dengue viruses (DENVs) are members of Flaviviridae family, which are associated with human disease. The envelope (E) protein plays an important role in viral infection. However, there is no effective antibody for clinical treatment due to antibody dependent enhancement of infection. In this study, using Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we demonstrated the first aptamer (S15) that can bind to DENV-2 envelop protein domain III (ED3) with a high binding affinity. S15 was found to form a parallel quadruplex based on Quadfinder prediction, gel mobility assay and circular dichroism studies. Both the quadruplex structure and the sequence on 5’-end were necessary for the binding activity of S15. NMR titration experiments indicated that S15 bound to a highly conserved loop between βA and βB strands of ED3. Moreover, S15 can neutralize the infections by all four serotypes of DENVs. Our result provides a new opportunity in the development of DNA aptamers against DENVs in the future.
Collapse
Affiliation(s)
- Heng-Li Chen
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Hsin Hsiao
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsiang-Chi Lee
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
- * E-mail:
| |
Collapse
|
571
|
Garant JM, Luce MJ, Scott MS, Perreault JP. G4RNA: an RNA G-quadruplex database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015. [PMID: 26200754 PMCID: PMC5630937 DOI: 10.1093/database/bav059] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
G-quadruplexes (G4) are tetrahelical structures formed from planar arrangement of guanines in nucleic acids. A simple, regular motif was originally proposed to describe G4-forming sequences. More recently, however, formation of G4 was discovered to depend, at least in part, on the contextual backdrop of neighboring sequences. Prediction of G4 folding is thus becoming more challenging as G4 outlier structures, not described by the originally proposed motif, are increasingly reported. Recent observations thus call for a comprehensive tool, capable of consolidating the expanding information on tested G4s, in order to conduct systematic comparative analyses of G4-promoting sequences. The G4RNA Database we propose was designed to help meet the need for easily-retrievable data on known RNA G4s. A user-friendly, flexible query system allows for data retrieval on experimentally tested sequences, from many separate genes, to assess G4-folding potential. Query output sorts data according to sequence position, G4 likelihood, experimental outcomes and associated bibliographical references. G4RNA also provides an ideal foundation to collect and store additional sequence and experimental data, considering the growing interest G4s currently generate. Database URL:scottgroup.med.usherbrooke.ca/G4RNA
Collapse
Affiliation(s)
- Jean-Michel Garant
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Mikael J Luce
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Michelle S Scott
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
572
|
O'Day E, Le MTN, Imai S, Tan SM, Kirchner R, Arthanari H, Hofmann O, Wagner G, Lieberman J. An RNA-binding Protein, Lin28, Recognizes and Remodels G-quartets in the MicroRNAs (miRNAs) and mRNAs It Regulates. J Biol Chem 2015; 290:17909-17922. [PMID: 26045559 DOI: 10.1074/jbc.m115.665521] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 01/01/2023] Open
Abstract
Lin28 is an evolutionarily conserved RNA-binding protein that inhibits processing of pre-let-7 microRNAs (miRNAs) and regulates translation of mRNAs that control developmental timing, pluripotency, metabolism, and tumorigenesis. The RNA features that mediate Lin28 binding to the terminal loops of let-7 pre-miRNAs and to Lin28-responsive elements (LREs) in mRNAs are not well defined. Here we show that Lin28 target datasets are enriched for RNA sequences predicted to contain stable planar structures of 4 guanines known as G-quartets (G4s). The imino NMR spectra of pre-let-7 loops and LREs contain resonances characteristic of G4 hydrogen bonds. These sequences bind to a G4-binding fluorescent dye, N-methyl-mesoporphyrin IX (NMM). Mutations and truncations in the RNA sequence that prevent G4 formation also prevent Lin28 binding. The addition of Lin28 to a pre-let-7 loop or an LRE reduces G4 resonance intensity and NMM binding, suggesting that Lin28 may function to remodel G4s. Further, we show that NMM inhibits Lin28 binding. Incubation of a human embryonal carcinoma cell line with NMM reduces its stem cell traits. In particular it increases mature let-7 levels, decreases OCT4, HMGA1, CCNB1, CDK4, and Lin28A protein, decreases sphere formation, and inhibits colony formation. Our results suggest a previously unknown structural feature of Lin28 targets and a new strategy for manipulating Lin28 function.
Collapse
Affiliation(s)
- Elizabeth O'Day
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Minh T N Le
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Shunsuke Imai
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Shen Mynn Tan
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Rory Kirchner
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Haribabu Arthanari
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Oliver Hofmann
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Gerhard Wagner
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.
| | - Judy Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, Massachusetts 02115.
| |
Collapse
|
573
|
Sherstyuk VV, Shevchenko AI, Zakian SM. Mapping of Replication Origins in the X Inactivation Center of Vole Microtus levis Reveals Extended Replication Initiation Zone. PLoS One 2015; 10:e0128497. [PMID: 26038842 PMCID: PMC4454516 DOI: 10.1371/journal.pone.0128497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/27/2015] [Indexed: 11/29/2022] Open
Abstract
DNA replication initiates at specific positions termed replication origins. Genome-wide studies of human replication origins have shown that origins are organized into replication initiation zones. However, only few replication initiation zones have been described so far. Moreover, few origins were mapped in other mammalian species besides human and mouse. Here we analyzed pattern of short nascent strands in the X inactivation center (XIC) of vole Microtus levis in fibroblasts, trophoblast stem cells, and extraembryonic endoderm stem cells and confirmed origins locations by ChIP approach. We found that replication could be initiated in a significant part of XIC. We also analyzed state of XIC chromatin in these cell types. We compared origin localization in the mouse and vole XIC. Interestingly, origins associated with gene promoters are conserved in these species. The data obtained allow us to suggest that the X inactivation center of M. levis is one extended replication initiation zone.
Collapse
Affiliation(s)
- Vladimir V. Sherstyuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Alexander I. Shevchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- State Research Institute of Circulation Pathology, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
574
|
Castillo G, Spinella K, Poturnayová A, Šnejdárková M, Mosiello L, Hianik T. Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
575
|
Abstract
There has recently been a huge increase in interest in the formation of stable G-quadruplex structures in mRNAs and their functional significance. In neurons, local translation of mRNA is essential for normal neuronal behaviour. It has been discovered that local translation of specific mRNAs encoding some of the best known synaptic proteins is dependent on the presence of a G-quadruplex. The recognition of G-quadruplexes in mRNAs, their transport as repressed complexes and the control of their translation at their subcellular destinations involves a diversity of proteins, including those associated with disease pathologies. This is an exciting field, with rapid improvements to our knowledge and understanding. Here, we discuss some of the recent work on how G-quadruplexes mediate local translation in neurons.
Collapse
|
576
|
Williams JD, Fleetwood S, Berroyer A, Kim N, Larson ED. Sites of instability in the human TCF3 (E2A) gene adopt G-quadruplex DNA structures in vitro. Front Genet 2015; 6:177. [PMID: 26029241 PMCID: PMC4426816 DOI: 10.3389/fgene.2015.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/25/2015] [Indexed: 01/23/2023] Open
Abstract
The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination.
Collapse
Affiliation(s)
| | - Sara Fleetwood
- School of Biological Sciences, Illinois State University Normal, IL, USA
| | - Alexandra Berroyer
- School of Biological Sciences, Illinois State University Normal, IL, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University Normal, IL, USA
| |
Collapse
|
577
|
Lim KW, Jenjaroenpun P, Low ZJ, Khong ZJ, Ng YS, Kuznetsov VA, Phan AT. Duplex stem-loop-containing quadruplex motifs in the human genome: a combined genomic and structural study. Nucleic Acids Res 2015; 43:5630-46. [PMID: 25958397 PMCID: PMC4477648 DOI: 10.1093/nar/gkv355] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
Duplex stem-loops and four-stranded G-quadruplexes have been implicated in (patho)biological processes. Overlap of stem-loop- and quadruplex-forming sequences could give rise to quadruplex-duplex hybrids (QDH), which combine features of both structural forms and could exhibit unique properties. Here, we present a combined genomic and structural study of stem-loop-containing quadruplex sequences (SLQS) in the human genome. Based on a maximum loop length of 20 nt, our survey identified 80 307 SLQS, embedded within 60 172 unique clusters. Our analysis suggested that these should cover close to half of total SLQS in the entire genome. Among these, 48 508 SLQS were strand-specifically located in genic/promoter regions, with the majority of genes displaying a low number of SLQS. Notably, genes containing abundant SLQS clusters were strongly associated with brain tissues. Enrichment analysis of SLQS-positive genes and mapping of SLQS onto transcriptional/mutagenesis hotspots and cancer-associated genes, provided a statistical framework supporting the biological involvements of SLQS. In vitro formation of diverse QDH by selective SLQS hits were successfully verified by nuclear magnetic resonance spectroscopy. Folding topologies of two SLQS were elucidated in detail. We also demonstrated that sequence changes at mutation/single-nucleotide polymorphism loci could affect the structural conformations adopted by SLQS. Thus, our predicted SLQS offer novel insights into the potential involvement of QDH in diverse (patho)biological processes and could represent novel regulatory signals.
Collapse
Affiliation(s)
- Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Piroon Jenjaroenpun
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, 138671, Singapore
| | - Zhen Jie Low
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Zi Jian Khong
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yi Siang Ng
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | | | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
578
|
Piazza A, Adrian M, Samazan F, Heddi B, Hamon F, Serero A, Lopes J, Teulade-Fichou MP, Phan AT, Nicolas A. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J 2015; 34:1718-34. [PMID: 25956747 DOI: 10.15252/embj.201490702] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/31/2015] [Indexed: 11/09/2022] Open
Abstract
G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids, with various biological roles. However, structural features dictating their formation and/or function in vivo are unknown. In S. cerevisiae, the pathological persistency of G4 within the CEB1 minisatellite induces its rearrangement during leading-strand replication. We now show that several other G4-forming sequences remain stable. Extensive mutagenesis of the CEB25 minisatellite motif reveals that only variants with very short (≤ 4 nt) G4 loops preferentially containing pyrimidine bases trigger genomic instability. Parallel biophysical analyses demonstrate that shortening loop length does not change the monomorphic G4 structure of CEB25 variants but drastically increases its thermal stability, in correlation with the in vivo instability. Finally, bioinformatics analyses reveal that the threat for genomic stability posed by G4 bearing short pyrimidine loops is conserved in C. elegans and humans. This work provides a framework explanation for the heterogeneous instability behavior of G4-forming sequences in vivo, highlights the importance of structure thermal stability, and questions the prevailing assumption that G4 structures with short or longer loops are as likely to form in vivo.
Collapse
Affiliation(s)
- Aurèle Piazza
- Institut Curie, Centre de Recherche, UMR3244 CNRS Université Pierre et Marie Curie, Paris Cedex 05, France
| | - Michael Adrian
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Frédéric Samazan
- Institut Curie, Centre de Recherche, UMR3244 CNRS Université Pierre et Marie Curie, Paris Cedex 05, France
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Florian Hamon
- Institut Curie, Centre de Recherche, UMR 176 CNRS Université Paris-Sud, Orsay, France
| | - Alexandre Serero
- Institut Curie, Centre de Recherche, UMR3244 CNRS Université Pierre et Marie Curie, Paris Cedex 05, France
| | - Judith Lopes
- Institut Curie, Centre de Recherche, UMR3244 CNRS Université Pierre et Marie Curie, Paris Cedex 05, France
| | | | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alain Nicolas
- Institut Curie, Centre de Recherche, UMR3244 CNRS Université Pierre et Marie Curie, Paris Cedex 05, France
| |
Collapse
|
579
|
Zheng S, Vuong BQ, Vaidyanathan B, Lin JY, Huang FT, Chaudhuri J. Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA. Cell 2015; 161:762-73. [PMID: 25957684 PMCID: PMC4426339 DOI: 10.1016/j.cell.2015.03.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/31/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022]
Abstract
Transcription through immunoglobulin switch (S) regions is essential for class switch recombination (CSR), but no molecular function of the transcripts has been described. Likewise, recruitment of activation-induced cytidine deaminase (AID) to S regions is critical for CSR; however, the underlying mechanism has not been fully elucidated. Here, we demonstrate that intronic switch RNA acts in trans to target AID to S region DNA. AID binds directly to switch RNA through G-quadruplexes formed by the RNA molecules. Disruption of this interaction by mutation of a key residue in the putative RNA-binding domain of AID impairs recruitment of AID to S region DNA, thereby abolishing CSR. Additionally, inhibition of RNA lariat processing leads to loss of AID localization to S regions and compromises CSR; both defects can be rescued by exogenous expression of switch transcripts in a sequence-specific manner. These studies uncover an RNA-mediated mechanism of targeting AID to DNA.
Collapse
Affiliation(s)
- Simin Zheng
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Bao Q Vuong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Biology, City College of New York, New York, NY 10031, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Jia-Yu Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
580
|
Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer. J Mol Med (Berl) 2015; 93:619-31. [PMID: 25940316 DOI: 10.1007/s00109-015-1280-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The ever-increasing threat of multi-drug resistant bacterial infections has spurred renewed interest in alternative approaches to classical antibiotic therapy. In contrast to other mammals, humans do not express the galactose-α-1,3-galactosyl-β-1,4-N-acetyl-glucosamine (α-Gal) epitope. As a result of exposure of humans to α-Gal in the environment, a large proportion of circulating antibodies are specific for the trisaccharide. In this study, we examine whether these anti-Gal antibodies can be recruited and redirected to exert anti-bacterial activity. We show that a specific DNA aptamer conjugated to an α-Gal epitope at its 5' end, herein termed an alphamer, can bind to group A Streptococcus (GAS) bacteria by recognition of a conserved region of the surface-anchored M protein. The anti-GAS alphamer was shown to recruit anti-Gal antibodies to the streptococcal surface in an α-Gal-specific manner, elicit uptake and killing of the bacteria by human phagocytes, and slow growth of invasive GAS in human whole blood. These studies provide a first in vitro proof of concept that alphamers have the potential to redirect pre-existing antibodies to bacteria in a specific manner and trigger an immediate antibacterial immune response. Further validation of this novel therapeutic approach of applying α-Gal technology in in vivo models of bacterial infection is warranted. KEY MESSAGES . α-Gal-tagged aptamers lead to GAS opsonization with anti-Gal antibodies. . α-Gal-tagged aptamers confer phagocytosis and killing of GAS cells by human phagocytes. . α-Gal-tagged aptamers reduces replication of GAS in human blood. . α-Gal-tagged aptamers may have the potential to be used as novel passive immunization drugs.
Collapse
|
581
|
Kwok CK, Balasubramanian S. Targeted Detection of G-Quadruplexes in Cellular RNAs. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
582
|
Kwok CK, Balasubramanian S. Targeted Detection of G-Quadruplexes in Cellular RNAs. Angew Chem Int Ed Engl 2015; 54:6751-4. [PMID: 25907625 PMCID: PMC4510783 DOI: 10.1002/anie.201500891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Indexed: 02/03/2023]
Abstract
The G-quadruplex (G4) is a non-canonical nucleic acid structure which regulates important cellular processes. RNA G4s have recently been shown to exist in human cells and be biologically significant. Described herein is a new approach to detect and map RNA G4s in cellular transcripts. This method exploits the specific control of RNA G4-cation and RNA G4-ligand interactions during reverse transcription, by using a selective reverse transcriptase to monitor RNA G4-mediated reverse transcriptase stalling (RTS) events. Importantly, a ligation-amplification strategy is coupled with RTS, and enables detection and mapping of G4s in important, low-abundance cellular RNAs. Strong evidence is provided for G4 formation in full-length cellular human telomerase RNA, offering important insights into its cellular function.
Collapse
Affiliation(s)
- Chun Kit Kwok
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW (UK)
| | - Shankar Balasubramanian
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW (UK).
| |
Collapse
|
583
|
Woo HM, Lee JM, Yim S, Jeong YJ. Isolation of single-stranded DNA aptamers that distinguish influenza virus hemagglutinin subtype H1 from H5. PLoS One 2015; 10:e0125060. [PMID: 25901739 PMCID: PMC4406500 DOI: 10.1371/journal.pone.0125060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 12/31/2022] Open
Abstract
Surface protein hemagglutinin (HA) mediates the binding of influenza virus to host cell receptors containing sialic acid, facilitating the entry of the virus into host cells. Therefore, the HA protein is regarded as a suitable target for the development of influenza virus detection devices. In this study, we isolated single-stranded DNA (ssDNA) aptamers binding to the HA1 subunit of subtype H1 (H1-HA1), but not to the HA1 subunit of subtype H5 (H5-HA1), using a counter-systematic evolution of ligands by exponential enrichment (counter-SELEX) procedure. Enzyme-linked immunosorbent assay and surface plasmon resonance studies showed that the selected aptamers bind tightly to H1-HA1 with dissociation constants in the nanomolar range. Western blot analysis demonstrated that the aptamers were binding to H1-HA1 in a concentration-dependent manner, yet were not binding to H5-HA1. Interestingly, the selected aptamers contained G-rich sequences in the central random nucleotides region. Further biophysical analysis showed that the G-rich sequences formed a G-quadruplex structure, which is a distinctive structure compared to the starting ssDNA library. Using flow cytometry analysis, we found that the aptamers did not bind to the receptor-binding site of H1-HA1. These results indicate that the selected aptamers that distinguish H1-HA1 from H5-HA1 can be developed as unique probes for the detection of the H1 subtype of influenza virus.
Collapse
Affiliation(s)
- Hye-Min Woo
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136–702, Republic of Korea
| | - Jin-Moo Lee
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136–702, Republic of Korea
| | - Sanggyu Yim
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136–702, Republic of Korea
| | - Yong-Joo Jeong
- Department of Bio and Nanochemistry, Kookmin University, Seoul 136–702, Republic of Korea
- * E-mail:
| |
Collapse
|
584
|
Kwok CK, Ding Y, Shahid S, Assmann SM, Bevilacqua PC. A stable RNA G-quadruplex within the 5'-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem J 2015; 467:91-102. [PMID: 25793418 DOI: 10.1042/bj20141063] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Guanine quadruplex structures (GQSs) play important roles in the regulation of gene expression and cellular processes. Recent studies provide strong evidence for the formation and function of DNA and RNA GQSs in human cells. However, whether GQSs form and are functional in plants remains essentially unexplored. On the basis of circular dichroism (CD)-detected titration, UV-detected melting, in-line probing (ILP) and reporter gene assay studies, we report the first example of a plant RNA GQS that inhibits translation. This GQS is located within the 5'-UTR of the ATAXIA TELANGIECTASIA-MUTATED AND RAD3-RELATED (ATR) mRNA of Arabidopsis thaliana (mouse-ear cress). We show that this GQS is highly stable and is thermodynamically favoured over a competing hairpin structure in the 5'-UTR at physiological K⁺ and Mg²⁺ concentrations. Results from ILP reveal the secondary structure of the RNA and support formation of the GQS in vitro in the context of the complete 5'-UTR. Transient reporter gene assays performed in living plants reveal that the GQS inhibits translation but not transcription, implicating this GQS as a translational repressor in vivo. Our results provide the first complete demonstration of the formation and function of a regulatory RNA GQS in plants and open new avenues to explore potential functional roles of GQS in the plant kingdom.
Collapse
Affiliation(s)
- Chun Kit Kwok
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yiliang Ding
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Saima Shahid
- †Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Sarah M Assmann
- †Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Philip C Bevilacqua
- *Department of Chemistry, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
585
|
Jalali S, Kapoor S, Sivadas A, Bhartiya D, Scaria V. Computational approaches towards understanding human long non-coding RNA biology. Bioinformatics 2015; 31:2241-51. [DOI: 10.1093/bioinformatics/btv148] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
|
586
|
Vanschoenbeek K, Vanbrabant J, Hosseinkhani B, Vermeeren V, Michiels L. Aptamers targeting different functional groups of 17β-estradiol. J Steroid Biochem Mol Biol 2015; 147:10-6. [PMID: 25465478 DOI: 10.1016/j.jsbmb.2014.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/16/2022]
Abstract
Aptamers, short synthetic ssDNA or RNA molecules with a specific three-dimensional structure, are promising recognition elements in biosensor technology. In vitro generation of aptamers with high sensitivity and specificity toward a broad range of analytes has been achieved using the systematic evolution of ligands by exponential enrichment (SELEX) process. This iterative pathway of aptamer generation consists of sequential positive and counterselection steps. The present research aimed to select two sets of ssDNA aptamers which both are able to bind to different functional groups on the cyclopentanoperhydrophenanthrene ring of 17β-estradiol (E2). By repetitively switching between positive selection steps using E2 as target molecule and counterselection steps with nortestosterone as countermolecule, aptamers were successfully selected against the hydroxylated aromatic A ring of E2. Additionally, an aptamer which binds the upper segments of the B, C and D ring of the cyclopentanoperhydrophenanthrene ring of E2 was generated after repetitively swapping between positive selection steps with E2 as target molecule and counterselection steps with dexamethasone as countermolecule. Epitope specificity of the aptamers was demonstrated by evaluating their binding responses toward a number of steroid hormones structurally related to E2. The selected aptamers with affinities for different functional groups of E2 can potentially be applied to develop a cross-reactive aptasensor. This aptasensor introduces a promising tool for the future of in-field real-time monitoring of a wide range of steroid hormones.
Collapse
Affiliation(s)
| | - Jeroen Vanbrabant
- Hasselt University, BIOMED, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | | | | | - Luc Michiels
- Hasselt University, BIOMED, Martelarenlaan 42, 3500 Hasselt, Belgium.
| |
Collapse
|
587
|
Qin M, Chen Z, Luo Q, Wen Y, Zhang N, Jiang H, Yang H. Two-quartet G-quadruplexes formed by DNA sequences containing four contiguous GG runs. J Phys Chem B 2015; 119:3706-13. [PMID: 25689673 DOI: 10.1021/jp512914t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The DNA sequence containing four contiguous GG runs (G2NxG2NyG2NzG2, G2 sequence) has the potential to form a two-quartet G-quadruplex. However, the prevalence, structure, and function of G2 sequences have not been well-studied. Here, bioinformatics analysis reveals the abundance of G2 sequences in the human genome and their enrichment in promoter regions. The density of G2 sequences in the genome and promoters is much higher than that of the G3 sequence (G3NxG3NyG3NzG3). Experiments show that the conformations and thermal stabilities of the two-quartet G-quadruplexes of G2 sequences are highly sensitive to the length and composition of the loops. Among the two-quartet G-quadruplexes, the parallel G-quadruplex with a loop length of 1 and the antiparallel G-quadruplex with a loop length of 3 show high thermal stabilities. Additionally, the stable parallel G-quadruplexes are stacked into intermolecular higher-order structures. This work determines the prevalence of G2 sequences in the human genome and demonstrates that the G-quadruplex structures for certain loop lengths and compositions may be stable in vivo. Thus, more attention should be paid to the structure and function of the two-quartet G-quadruplex.
Collapse
Affiliation(s)
- Mingyan Qin
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
588
|
Foulk MS, Urban JM, Casella C, Gerbi SA. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res 2015; 25:725-35. [PMID: 25695952 PMCID: PMC4417120 DOI: 10.1101/gr.183848.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/18/2015] [Indexed: 01/02/2023]
Abstract
Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - John M Urban
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Cinzia Casella
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Susan A Gerbi
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| |
Collapse
|
589
|
Abstract
DNA can form several secondary structures besides the classic double helix: one that has received much attention in recent years is the G-quadruplex (G4). This is a stable four-stranded structure formed by the stacking of quartets of guanine bases. Recent work has convincingly shown that G4s can form in vivo as well as in vitro and can affect both replication and transcription of DNA. They also play important roles at G-rich telomeres. Now, a spate of exciting reports has begun to reveal roles for G4 structures in virulence processes in several important microbial pathogens of humans. Interestingly, these come from a range of kingdoms—bacteria and protozoa as well as viruses—and all facilitate immune evasion in different ways. In particular, roles for G4s have been posited in the antigenic variation systems of bacteria and protozoa, as well as in the silencing of at least two major human viruses, human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV). Although antigenic variation and the silencing of latent viruses are quite distinct from one another, both are routes to immune evasion and the maintenance of chronic infections. Thus, highly disparate pathogens can use G4 motifs to control DNA/RNA dynamics in ways that are relevant to common virulence phenotypes. This review explores the evidence for G4 biology in such processes across a range of important human pathogens.
Collapse
|
590
|
Mirihana Arachchilage G, Dassanayake AC, Basu S. A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. ACTA ACUST UNITED AC 2015; 22:262-72. [PMID: 25641166 DOI: 10.1016/j.chembiol.2014.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/11/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are an important set of oligonucleotide sequences with a biogenesis that involves Dicer-mediated cleavage as a critical step. Dicer cleaves the precursor miRNA (pre-miRNA) stem-loop structure to produce the mature miRNA. Using bioinformatics analysis, we discovered the presence of putative G-quadruplex (GQ)-forming sequences in about 16% of pre-miRNAs. We report the existence of a GQ as an alternative to the canonical stem-loop structure in the clinically important human pre-miRNA 92b. GQ formation led to unwinding of the stem-loop structure imparting resistance to Dicer-mediated cleavage both in vitro and in vivo. A potential K(+) ion-dependent equilibrium between GQ and the stem-loop structure has the ability to regulate the Dicer-mediated maturation of pre-miRNA 92b, which consequently affects target gene silencing. These findings unravel a new mechanism of regulation in pre-miRNA maturation, albeit at the RNA structure level.
Collapse
Affiliation(s)
| | - Arosha C Dassanayake
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
591
|
Xie X, Renvoisé A, Granzhan A, Teulade-Fichou MP. Aggregating distyrylpyridinium dye as a bimodal structural probe for G-quadruplex DNA. NEW J CHEM 2015. [DOI: 10.1039/c5nj01325a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A coumarin-substituted distyrylpyridinium dye BCVP is proposed as a universal colorimetric and fluorescent probe for the detection of G-quadruplex DNA structures.
Collapse
Affiliation(s)
- Xiao Xie
- CNRS UMR9187/INSERM U1196 “Chemistry, Modelling and Imaging for Biology”
- Centre de Recherche
- Institut Curie
- 91405 Orsay
- France
| | - Aurélie Renvoisé
- AP-HP
- Hôpital Pitié–Salpêtrière
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux
- Bactériologie-Hygiène
- Paris
| | - Anton Granzhan
- CNRS UMR9187/INSERM U1196 “Chemistry, Modelling and Imaging for Biology”
- Centre de Recherche
- Institut Curie
- 91405 Orsay
- France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187/INSERM U1196 “Chemistry, Modelling and Imaging for Biology”
- Centre de Recherche
- Institut Curie
- 91405 Orsay
- France
| |
Collapse
|
592
|
Yano M, Kato Y. Using hidden Markov models to investigate G-quadruplex motifs in genomic sequences. BMC Genomics 2014; 15 Suppl 9:S15. [PMID: 25521044 PMCID: PMC4290599 DOI: 10.1186/1471-2164-15-s9-s15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND G-quadruplexes are four-stranded structures formed in guanine-rich nucleotide sequences. Several functional roles of DNA G-quadruplexes have so far been investigated, where their putative functional roles during DNA replication and transcription have been suggested. A necessary condition for G-quadruplex formation is the presence of four regions of tandem guanines called G-runs and three nucleotide subsequences called loops that connect G-runs. A simple computational way to detect potential G-quadruplex regions in a given genomic sequence is pattern matching with regular expression. Although many putative G-quadruplex motifs can be found in most genomes by the regular expression-based approach, the majority of these sequences are unlikely to form G-quadruplexes because they are unstable as compared with canonical double helix structures. RESULTS Here we present elaborate computational models for representing DNA G-quadruplex motifs using hidden Markov models (HMMs). Use of HMMs enables us to evaluate G-quadruplex motifs quantitatively by a probabilistic measure. In addition, the parameters of HMMs can be trained by using experimentally verified data. Computational experiments in discriminating between positive and negative G-quadruplex sequences as well as reducing putative G-quadruplexes in the human genome were carried out, indicating that HMM-based models can discern bona fide G-quadruplex structures well and one of them has the possibility of reducing false positive G-quadruplexes predicted by existing regular expression-based methods. Furthermore, our results show that one of our models can be specialized to detect G-quadruplex sequences whose functional roles are expected to be involved in DNA transcription. CONCLUSIONS The HMM-based method along with the conventional pattern matching approach can contribute to reducing costly and laborious wet-lab experiments to perform functional analysis on a given set of potential G-quadruplexes of interest. The C++ and Perl programs are available at http://tcs.cira.kyoto-u.ac.jp/~ykato/program/g4hmm/.
Collapse
|
593
|
Andorf CM, Kopylov M, Dobbs D, Koch KE, Stroupe ME, Lawrence CJ, Bass HW. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation. J Genet Genomics 2014; 41:627-47. [DOI: 10.1016/j.jgg.2014.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023]
|
594
|
Stevens AJ, Stuffrein-Roberts S, Cree SL, Gibb A, Miller AL, Doudney K, Aitchison A, Eccles MR, Joyce PR, Filichev VV, Kennedy MA. G-quadruplex structures and CpG methylation cause drop-out of the maternal allele in polymerase chain reaction amplification of the imprinted MEST gene promoter. PLoS One 2014; 9:e113955. [PMID: 25437198 PMCID: PMC4249981 DOI: 10.1371/journal.pone.0113955] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/31/2014] [Indexed: 12/03/2022] Open
Abstract
We observed apparent non-Mendelian behaviour of alleles when genotyping a region in a CpG island at the 5′ end of the maternally imprinted human MEST isoform. This region contains three single nucleotide polymorphisms (SNPs) in total linkage disequilibrium, such that only two haplotypes occur in the human population. Only one haplotype was detectable in each subject, never both, despite the use of multiple primers and several genotyping methods. We observed that this region contains motifs capable of forming several G-quadruplex structures. Circular dichroism spectroscopy and native polyacrylamide gel electrophoresis confirmed that at least three G-quadruplexes form in vitro in the presence of potassium ions, and one of these structures has a Tm of greater than 99°C in polymerase chain reaction (PCR) buffer. We demonstrate that it is the methylated maternal allele that is always lost during PCR amplification, and that formation of G-quadruplexes and presence of methylated cytosines both contributed to this phenomenon. This observed parent-of-origin specific allelic drop-out has important implications for analysis of imprinted genes in research and diagnostic settings.
Collapse
Affiliation(s)
- Aaron J. Stevens
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | | | - Simone L. Cree
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Andrew Gibb
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Allison L. Miller
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Kit Doudney
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Alan Aitchison
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Michael R. Eccles
- Department of Pathology, University of Otago, Dunedin School of Medicine, Dunedin, New Zealand
| | - Peter R. Joyce
- Department of Psychological Medicine, University of Otago, Christchurch 8140, New Zealand
| | | | - Martin A. Kennedy
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
- * E-mail:
| |
Collapse
|
595
|
Kenny PJ, Zhou H, Kim M, Skariah G, Khetani RS, Drnevich J, Arcila ML, Kosik KS, Ceman S. MOV10 and FMRP regulate AGO2 association with microRNA recognition elements. Cell Rep 2014; 9:1729-1741. [PMID: 25464849 DOI: 10.1016/j.celrep.2014.10.054] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 10/09/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022] Open
Abstract
The fragile X mental retardation protein FMRP regulates translation of its bound mRNAs through incompletely defined mechanisms. FMRP has been linked to the microRNA pathway, and we show here that it associates with the RNA helicase MOV10, also associated with the microRNA pathway. FMRP associates with MOV10 directly and in an RNA-dependent manner and facilitates MOV10's association with RNAs in brain and cells, suggesting a cooperative interaction. We identified the RNAs recognized by MOV10 using RNA immunoprecipitation and iCLIP. Examination of the fate of MOV10 on RNAs revealed a dual function for MOV10 in regulating translation: it facilitates microRNA-mediated translation of some RNAs, but it also increases expression of other RNAs by preventing AGO2 function. The latter subset was also bound by FMRP in close proximity to the MOV10 binding site, suggesting that FMRP prevents MOV10-mediated microRNA suppression. We have identified a mechanism for FMRP-mediated translational regulation through its association with MOV10.
Collapse
Affiliation(s)
- Phillip J Kenny
- Cell and Developmental Biology, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Hongjun Zhou
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Miri Kim
- College of Medicine, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA; Neuroscience Program, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Geena Skariah
- Neuroscience Program, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Radhika S Khetani
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA
| | - Mary Luz Arcila
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stephanie Ceman
- Cell and Developmental Biology, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA; College of Medicine, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA; Neuroscience Program, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
596
|
Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur J Med Chem 2014; 97:538-51. [PMID: 25466923 DOI: 10.1016/j.ejmech.2014.11.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 01/25/2023]
Abstract
G-Quadruplex nucleic acids or G-quadruplexes (G4s) are four-stranded DNA or RNA secondary structures that are formed in guanine-rich sequences. They are widely distributed in functional regions of the human genome, such as telomeres, ribosomal DNA (rDNA), transcription start sites, promoter regions and untranslated regions of mRNA, suggesting that G-quadruplex structures may play a pivotal role in the control of a variety of cellular processes. G-Quadruplexes are viewed as valid therapeutic targets in human cancer diseases. Small molecules, from naturally occurring to synthetic, are exploited to specifically target G-quadruplexes and have proven to be a new class of anticancer agents. Notably, alkaloids are an important source of G-quadruplex ligands and have significant bioactivities in anticancer therapy. In this review, the authors provide a brief, up-to-date summary of heterocyclic alkaloids and their derivatives targeting G-quadruplexes.
Collapse
|
597
|
Métifiot M, Amrane S, Litvak S, Andreola ML. G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res 2014; 42:12352-66. [PMID: 25332402 PMCID: PMC4227801 DOI: 10.1093/nar/gku999] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300,000 sequences that can potentially form G4s. Likewise, the presence of putative G4-sequences has been reported in various viruses genomes [e.g., Human immunodeficiency virus (HIV-1), Epstein-Barr virus (EBV), papillomavirus (HPV)]. Many studies have focused on telomeric G4s and how their dynamics are regulated to enable telomere synthesis. Moreover, a role for G4s has been proposed in cellular and viral replication, recombination and gene expression control. In parallel, DNA aptamers that form G4s have been described as inhibitors and diagnostic tools to detect viruses [e.g., hepatitis A virus (HAV), EBV, cauliflower mosaic virus (CaMV), severe acute respiratory syndrome virus (SARS), simian virus 40 (SV40)]. Here, special emphasis will be given to the possible role of these structures in a virus life cycle as well as the use of G4-forming oligonucleotides as potential antiviral agents and innovative tools.
Collapse
Affiliation(s)
- Mathieu Métifiot
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Samir Amrane
- INSERM, U869, IECB, ARNA laboratory, Université de Bordeaux, 2 Rue Robert Escarpit 33600 Pessac, France
| | - Simon Litvak
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Line Andreola
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
598
|
NADAI MATTEO, CIMINO-REALE GRAZIELLA, SATTIN GIOVANNA, DORIA FILIPPO, BUTOVSKAYA ELENA, ZAFFARONI NADIA, FRECCERO MAURO, PALUMBO MANLIO, RICHTER SARAN, FOLINI MARCO. Assessment of gene promoter G-quadruplex binding and modulation by a naphthalene diimide derivative in tumor cells. Int J Oncol 2014; 46:369-80. [DOI: 10.3892/ijo.2014.2723] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/03/2014] [Indexed: 11/05/2022] Open
|
599
|
Abe H, Gemmell NJ. Abundance, arrangement, and function of sequence motifs in the chicken promoters. BMC Genomics 2014; 15:900. [PMID: 25318583 PMCID: PMC4203960 DOI: 10.1186/1471-2164-15-900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/08/2014] [Indexed: 01/01/2023] Open
Abstract
Background Eukaryotic promoters are regions containing various sequence motifs necessary to control gene transcription. Much evidence has emerged showing that structural and/or contextual changes in regulatory elements can critically affect cis-regulatory activity. As sequence motifs can be key factors in maintaining complex promoter architectures, one effective approach to further understand the evolution of promoter regions in vertebrates is to compare the abundance and distribution patterns of sequence motifs in these regions between divergent species. When compared with mammals, the chicken (Gallus gallus) has a very different genome composition and sufficient genomic information to make it a good model for the exploration of promoter structure and evolution. Results More than 10% of chicken genes contained short tandem repeat (STR) in the region 2 kb upstream of promoters, but the total number of STRs observed in chicken is approximately half of that detected in human promoters. In terms of the STR motif frequencies, chicken promoter regions were more similar to other avian and mammalian promoters than these were to the entire chicken genome. Unlike other STRs, nearly half of the trinucleotide repeats found in promoters partly or entirely overlapped with CpG islands, indicating potential association with nucleosome positions. Moreover, the chicken promoters are abundant with sequence motifs such as poly-A, poly-G and G-quadruplexes, especially in the core region, that are otherwise rare in the genome. Most of sequence motifs showed strong functional enrichment for particular gene ontology (GO) categories, indicating roles in regulation of transcription and gene expression, as well as immune response and cognition. Conclusions Chicken promoter regions share some, but not all, of the structural features observed in mammalian promoters. The findings presented here provide empirical evidence suggesting that the frequencies and locations of STR motifs have been conserved through promoter evolution in a lineage-specific manner. Correlation analysis between GO categories and sequence motifs suggests motif-specific constraints acting on gene function. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-900) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideaki Abe
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
600
|
Dhayan H, Baydoun AR, Kukol A. G-quadruplex formation of FXYD1 pre-mRNA indicates the possibility of regulating expression of its protein product. Arch Biochem Biophys 2014; 560:52-8. [DOI: 10.1016/j.abb.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
|