601
|
Zhang Y, Li Z, Wang Z, Yan B, Shi A, Xu J, Guan J, Zhang L, Zhou P, Mao Y. Mechanically enhanced composite hydrogel scaffold for in situ bone repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112700. [DOI: 10.1016/j.msec.2022.112700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
|
602
|
Chen X, Yang N, Wang Y, He H, Wang J, Wan J, Jiang H, Xu B, Wang L, Yu R, Tong L, Gu L, Xiong Q, Chen C, Zhang S, Wang D. Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107400. [PMID: 34713935 DOI: 10.1002/adma.202107400] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Solar evaporation, which enables water purification without consuming fossil fuels, has been considered the most promising strategy to address global scarcity of drinkable water. However, the suboptimal structure and composition designs still result in a trade-off between photothermal conversion, water transport, and tolerance to harsh environments. Here, an ultrastable amorphous Ta2 O5 /C nanocomposite is designed with a hollow multishelled structure (HoMS) for solar evaporation. This HoMS results in highly efficient photoabsorption and photothermal conversion, as well as a decrease of the actual water evaporation enthalpy. A superfast evaporation speed of 4.02 kg m-2 h-1 is achieved. More importantly, a World Health Organization standard drinkable water can be achieved from seawater, heavy-metal- and bacteria-containing water, and even from extremely acidic/alkaline or radioactive water sources. Notably, the concentration of pseudovirus SC2-P can be decreased by 6 orders of magnitude after evaporation.
Collapse
Affiliation(s)
- Xuanbo Chen
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials Key Laboratory of Green Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials Key Laboratory of Green Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yanlei Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Hongyan He
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiangyan Wang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials Key Laboratory of Green Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials Key Laboratory of Green Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Hongyu Jiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bo Xu
- Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nano-materials and Nano-safety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
| | - Lianming Tong
- Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Gu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qihua Xiong
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nano-materials and Nano-safety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong, 510700, P. R. China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Suojiang Zhang
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials Key Laboratory of Green Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
603
|
Alikin D, Abramov A, Turygin A, Ievlev A, Pryakhina V, Karpinsky D, Hu Q, Jin L, Shur V, Tselev A, Kholkin A. Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy. SMALL METHODS 2022; 6:e2101289. [PMID: 34967150 DOI: 10.1002/smtd.202101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Monitoring the charged defect concentration at the nanoscale is of critical importance for both the fundamental science and applications of ferroelectrics. However, up-to-date, high-resolution study methods for the investigation of structural defects, such as transmission electron microscopy, X-ray tomography, etc., are expensive and demand complicated sample preparation. With an example of the lanthanum-doped bismuth ferrite ceramics, a novel method is proposed based on the switching spectroscopy piezoresponse force microscopy (SSPFM) that allows probing the electric potential from buried subsurface charged defects in the ferroelectric materials with a nanometer-scale spatial resolution. When compared with the composition-sensitive methods, such as neutron diffraction, X-ray photoelectron spectroscopy, and local time-of-flight secondary ion mass spectrometry, the SSPFM sensitivity to the variation of the electric potential from the charged defects is shown to be equivalent to less than 0.3 at% of the defect concentration. Additionally, the possibility to locally evaluate dynamics of the polarization screening caused by the charged defects is demonstrated, which is of significant interest for further understanding defect-mediated processes in ferroelectrics.
Collapse
Affiliation(s)
- Denis Alikin
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Alexander Abramov
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Anton Turygin
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Anton Ievlev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Victoria Pryakhina
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Dmitry Karpinsky
- Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk, 220072, Belarus
| | - Qingyuan Hu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li Jin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Vladimir Shur
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Alexander Tselev
- Department of Physics & CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrei Kholkin
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
- Department of Physics & CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
| |
Collapse
|
604
|
Chang R, Liu Y, Zhang Y, Zhang S, Han B, Chen F, Chen Y. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103829. [PMID: 34978158 PMCID: PMC8867149 DOI: 10.1002/advs.202103829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Biomimetic mineralization based on self-assembly has made great progress, providing bottom-up strategies for the construction of new organic-inorganic hybrid materials applied in the treatment of hard tissue defects. Herein, inspired by the cooperative effects of key components in biomineralization microenvironments, a new type of biocompatible peptide scaffold based on flexibly self-assembling low-complexity protein segments (LCPSs) containing phosphate or phosphonate groups is developed. These LCPSs can retard the transformation of amorphous calcium phosphate into hydroxyapatite (HAP), leading to merged mineralization structures. Moreover, the application of phosphonated LCPS over phosphorylated LCPS can prevent hydrolysis by phosphatases that are enriched in extracellular mineralization microenvironments. After being coated on the etched tooth enamel, these LCPSs facilitate the growth of HAP to generate new enamel layers comparable to the natural layers and mitigate the adhesion of Streptococcus mutans. In addition, they can effectively stimulate the differentiation pathways of osteoblasts. These results shed light on the potential biomedical applications of two LCPSs in hard tissue repair.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang‐Jia Liu
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yun‐Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shi‐Ying Zhang
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Bei‐Bei Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
605
|
Habib R, Azad AK, Akhlaq M, Al-Joufi FA, Shahnaz G, Mohamed HRH, Naeem M, Almalki ASA, Asghar J, Jalil A, Abdel-Daim MM. Thiolated Chitosan Microneedle Patch of Levosulpiride from Fabrication, Characterization to Bioavailability Enhancement Approach. Polymers (Basel) 2022; 14:415. [PMID: 35160403 PMCID: PMC8839939 DOI: 10.3390/polym14030415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, a first attempt has been made to deliver levosulpiride transdermally through a thiolated chitosan microneedle patch (TC-MNP). Levosulpiride is slowly and weakly absorbed from the gastrointestinal tract with an oral bioavailability of less than 25% and short half-life of about 6 h. In order to enhance its bioavailability, levosulpiride-loaded thiolated chitosan microneedle patches (LS-TC-MNPs) were fabricated. Firstly, thiolated chitosan was synthesized and characterized by nuclear magnetic resonance (1HNMR) spectroscopy, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Thiolated chitosan has been used in different drug delivery systems; herein, thiolated chitosan has been used for the transdermal delivery of LS. LS-TC-MNPs were fabricated from different concentrations of thiolated chitosan solution. Furthermore, the levosulpiride-loaded thiolated chitosan microneedle patch (LS-TC-MNP) was characterized by FTIR spectroscopic analysis, scanning electron microscopy (SEM) study, penetration ability, tensile strength, moisture content, patch thickness, and elongation test. LS-TC-MNP fabricated with 3% thiolated chitosan solution was found to have the best tensile strength, moisture content, patch thickness, elongation, drug-loading efficiency, and drug content. Thiolated chitosan is biodegradable, nontoxic and has good absorption and swelling in the skin. LS-TC-MNP-3 consists of 100 needles in 10 rows each with 10 needles. The length of each microneedle was 575 μm; they were pyramidal in shape, with sharp pointed ends and a base diameter of 200 µm. The microneedle patch (LS-TC-MNP-3) resulted in-vitro drug release of 65% up to 48 h, ex vivo permeation of 63.6%, with good skin biocompatibility and enhanced in-vivo pharmacokinetics (AUC = 986 µg/mL·h, Cmax = 24.5 µg/mL) as compared to oral LS dispersion (AUC = 3.2 µg/mL·h, Cmax = 0.5 µg/mL). Based on the above results, LS-TC-MNP-3 seems to be a promising strategy for enhancing the bioavailability of levosulpiride.
Collapse
Affiliation(s)
- Rukhshanda Habib
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
- Department of Pharmacology, University of Oxford, Mansfield Rd., Oxford OX1 3QT, UK
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Skaka 72341, Saudi Arabia;
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Abdulraheem S. A. Almalki
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21974, Saudi Arabia;
| | - Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.H.); (M.A.); (J.A.)
| | - Aamir Jalil
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
606
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
607
|
The Role of Morphometric Characteristics of Anterior Maxilla in Planning the Interventions Accompanied by Orthodontic Teeth Movement – An Overview. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The anterior maxilla or premaxilla is part of the upper jaw and the most significant content of this region, from the aspect of orthodontic therapy, are the incisor teeth. The frequency of complications during orthodontic movement of the upper incisors refers to a more detailed evaluation of the anatomical structures of the premaxilla. The aim of this study was to investigate morphological and morphometric characteristics of the anterior maxilla by cone beam computed tomography, which could be of interest for planning orthodontic teeth movement. By reviewing the available literature, we compared the values of the alveolar bone height, the distance between the alveolar crest and enamel – cement boundary, total alveolar bone width, the thickness of the buccal, and palatal plate, nasopalatine canal, and accessory canals of the anterior maxilla. The results of our study show changes in the labial and palatal aspects of the alveolar bone height during orthodontic interventions. Different results of the alveolar bone width are in correlation with gender, age, and type of orthodontic tooth movement. Distance between the nasopalatine canal and maxillary central incisors was estimated at the value from 4 to 6 mm, which is below the recommended value for maximum incisal retraction by Proffit. Research results show variations in shape, length, and diameter of the nasopalatine canal, which indicates individual varieties detected on cone beam computed tomography. Other anatomical structures and measures show an insignificant correlation with orthodontic teeth movement. According to the contradictory results of the available articles, it is required to achieve an individual approach to orthodontic interventions in the area of the anterior maxilla.
Collapse
|
608
|
Varukolu M, Palnati M, Nampally V, Gangadhari S, Vadluri M, Tigulla P. New Charge Transfer Complex between 4-Dimethylaminopyridine and DDQ: Synthesis, Spectroscopic Characterization, DNA Binding Analysis, and Density Functional Theory (DFT)/Time-Dependent DFT/Natural Transition Orbital Studies. ACS OMEGA 2022; 7:810-822. [PMID: 35036748 PMCID: PMC8756788 DOI: 10.1021/acsomega.1c05464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 06/01/2023]
Abstract
A combined experimental and theoretical study of the electron donor 4-dimethylaminopyridine (4-DMAP) with the electron acceptor 2, 3-dichloro-5, 6-dicyano-p-benzoquinone (DDQ) has been made in acetonitrile (ACN) and methanol (MeOH) media at room temperature. The stoichiometry proportion of the charge transfer (CT) complex was determined using Job's and photometric titration methods and found to be 1:1. The association constant (K CT), molar absorptivity (ε), and spectroscopic physical parameters were used to know the stability of the CT complex. The CT complex shows maximum stability in a high-polar solvent (ACN) compared to a less-polar solvent (MeOH). The prepared complex was characterized by Fourier transform infrared, NMR, powder X-ray diffraction, and scanning electron microscopy-energy-dispersive X-ray analysis. The nature of DNA binding ability of the complex was probed using UV-visible spectroscopy, and the binding mode of the CT complex is intercalative. The intrinsic binding constant (K b) value is 1.8 × 106 M-1. It reveals a primary indication for developing a pharmaceutical drug in the future due to its high binding affinity with the CT complex. The theoretical study was carried out by density functional theory (DFT), and the basis set is wB97XD/6-31G(d,p), with gas-phase and PCM analysis, which supports experimental results. Natural atomic charges, state dipole moments, electron density difference maps, reactivity parameters, and FMO surfaces were also evaluated. The MEP maps indicate the electrophilic nature of DDQ and the nucleophilic nature of 4-DMAP. The electronic spectrum computed using time-dependent DFT (TD-DFT) via a polarizable continuum salvation approach, PCM/TD-DFT, along with natural transition orbital analysis is fully correlated with the experimental outcomes.
Collapse
|
609
|
Hong J, Xu C, Deng B, Gao Y, Zhu X, Zhang X, Zhang Y. Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103926. [PMID: 34825527 PMCID: PMC8787404 DOI: 10.1002/advs.202103926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Indexed: 05/07/2023]
Abstract
With the development of society, energy shortage and environmental problems have become more and more outstanding. Solar energy is a clean and sustainable energy resource, potentially driving energy conversion and environmental remediation reactions. Thus, solar-driven chemistry is an attractive way to solve the two problems. Photothermal chemistry (PTC) is developed to achieve full-spectral utilization of the solar radiation and drive chemical reactions more efficiently under relatively mild conditions. In this review, the mechanisms of PTC are summarized from the aspects of thermal and non-thermal effects, and then the interaction and synergy between these two effects are sorted out. In this paper, distinguishing and quantifying these two effects is discussed to understand PTC processes better and to design PTC catalysts more methodically. However, PTC is still a little far away from practical. Herein, several key points, which must be considered when pushing ahead with the engineering application of PTC, are proposed, along with some workable suggestions on the practical application. This review provides a unique perspective on PTC, focusing on the synergistic effects and pointing out a possible direction for practical application.
Collapse
Affiliation(s)
- Jianan Hong
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Chenyu Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Bowen Deng
- Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporo060‐0814Japan
| | - Yuan Gao
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuan Zhu
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Xuhan Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Yanwei Zhang
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| |
Collapse
|
610
|
GAO X, JIA Y, CHEN Z, SANTHANAM RK, ZHANG M, HE C, CHEN H. Synthesis of hydrogels based on nanocellulose from garlic straw and regulating the release of allicin and its cytotoxicity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xudong GAO
- Tianjin University, China; General Hospital of Northern Theater Command, China
| | | | | | | | - Min ZHANG
- Tianjin University of Science and Technology, China
| | | | | |
Collapse
|
611
|
Aromatic tetra-glycidyl ether versus tetra-glycidyl amine epoxy networks: Influence of monomer structure and epoxide conversion. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
612
|
Soft tissue profile changes during treatment of patients with Class II malocclusion. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh210913048m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective. The class II malocclusion results in disbalanced
facial harmony, primarily noticeable in the profile and the lower facial
third. Aside from skeletal evaluation, orthodontic diagnosis and treatment
planning should include facial soft tissue analysis. The aim of the study
was to identify the soft tissue profile outcomes of orthodontic treatment of
Class II, division 1 malocclusion patients and to determine if these changes
are related with the different treatment protocol. Methods. The first group
was the non-extraction group (25 patients) treated first with the Herbst
appliance, and the second group was four premolars extraction group (25
patients) treated with a multibracket appliance. The patients? cephalograms
and pre- and post-treatment profile photographs were used. Results. The
improvement in the non-extraction group was evident in the decrease of the
nasomental angle, the angle representing the projection of the upper lip to
the chin, as well as the upper lip angle. In the extraction group, the
nasolabial angle showed a significant increase. Soft tissue variables showed
significant differences between the groups: the total facial angle or facial
convexity including the nose and the angle presenting the projection of the
upper lip to chin. Conclusion. The patients treated without extractions
showed a significant improvement of the convex profile and favorable soft
tissue changes in the lower third of the face.
Collapse
|
613
|
Asensio G, Benito-Garzón L, Ramírez-Jiménez RA, Guadilla Y, Gonzalez-Rubio J, Abradelo C, Parra J, Martín-López MR, Aguilar MR, Vázquez-Lasa B, Rojo L. Biomimetic Gradient Scaffolds Containing Hyaluronic Acid and Sr/Zn Folates for Osteochondral Tissue Engineering. Polymers (Basel) 2021; 14:12. [PMID: 35012034 PMCID: PMC8747647 DOI: 10.3390/polym14010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Regenerative therapies based on tissue engineering are becoming the most promising alternative for the treatment of osteoarthritis and rheumatoid arthritis. However, regeneration of full-thickness articular osteochondral defects that reproduces the complexity of native cartilage and osteochondral interface still remains challenging. Hence, in this work, we present the fabrication, physic-chemical characterization, and in vitro and in vivo evaluation of biomimetic hierarchical scaffolds that mimic both the spatial organization and composition of cartilage and the osteochondral interface. The scaffold is composed of a composite porous support obtained by cryopolymerization of poly(ethylene glycol) dimethacrylate (PEGDMA) in the presence of biodegradable poly(D,L-lactide-co-glycolide) (PLGA), bioactive tricalcium phosphate β-TCP and the bone promoting strontium folate (SrFO), with a gradient biomimetic photo-polymerized methacrylated hyaluronic acid (HAMA) based hydrogel containing the bioactive zinc folic acid derivative (ZnFO). Microscopical analysis of hierarchical scaffolds showed an open interconnected porous open microstructure and the in vitro behaviour results indicated high swelling capacity with a sustained degradation rate. In vitro release studies during 3 weeks indicated the sustained leaching of bioactive compounds, i.e., Sr2+, Zn2+ and folic acid, within a biologically active range without negative effects on human osteoblast cells (hOBs) and human articular cartilage cells (hACs) cultures. In vitro co-cultures of hOBs and hACs revealed guided cell colonization and proliferation according to the matrix microstructure and composition. In vivo rabbit-condyle experiments in a critical-sized defect model showed the ability of the biomimetic scaffold to promote the regeneration of cartilage-like tissue over the scaffold and neoformation of osteochondral tissue.
Collapse
Affiliation(s)
- Gerardo Asensio
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (G.A.); (R.A.R.-J.); (M.R.A.); (B.V.-L.)
| | - Lorena Benito-Garzón
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (G.A.); (R.A.R.-J.); (M.R.A.); (B.V.-L.)
| | - Yasmina Guadilla
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Julian Gonzalez-Rubio
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, CEU Universities, 28925 Alcorcon, Spain; (J.G.-R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, CEU Universities, 28925 Alcorcon, Spain; (J.G.-R.); (C.A.)
| | - Juan Parra
- Unidad Asociada de I+D al CSIC Unidad de Investigación Clínica y Biopatología Experimental, Complejo Asistencial de Ávila, SACYL, 05003 Avila, Spain; (J.P.); (M.R.M.-L.)
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rocío Martín-López
- Unidad Asociada de I+D al CSIC Unidad de Investigación Clínica y Biopatología Experimental, Complejo Asistencial de Ávila, SACYL, 05003 Avila, Spain; (J.P.); (M.R.M.-L.)
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (G.A.); (R.A.R.-J.); (M.R.A.); (B.V.-L.)
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (G.A.); (R.A.R.-J.); (M.R.A.); (B.V.-L.)
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (G.A.); (R.A.R.-J.); (M.R.A.); (B.V.-L.)
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| |
Collapse
|
614
|
Liu J, Tian B, Liu Y, Wan JB. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int J Mol Sci 2021; 22:13516. [PMID: 34948312 PMCID: PMC8703588 DOI: 10.3390/ijms222413516] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023] Open
Abstract
Hydrogels possess porous structures, which are widely applied in the field of materials and biomedicine. As a natural oligosaccharide, cyclodextrin (CD) has shown remarkable application prospects in the synthesis and utilization of hydrogels. CD can be incorporated into hydrogels to form chemically or physically cross-linked networks. Furthermore, the unique cavity structure of CD makes it an ideal vehicle for the delivery of active ingredients into target tissues. This review describes useful methods to prepare CD-containing hydrogels. In addition, the potential biomedical applications of CD-containing hydrogels are reviewed. The release and degradation process of CD-containing hydrogels under different conditions are discussed. Finally, the current challenges and future research directions on CD-containing hydrogels are presented.
Collapse
Affiliation(s)
- Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China;
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China;
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| |
Collapse
|
615
|
Samprasit W, Opanasopit P, Chamsai B. Alpha-mangostin and resveratrol, dual-drugs-loaded mucoadhesive thiolated chitosan-based nanoparticles for synergistic activity against colon cancer cells. J Biomed Mater Res B Appl Biomater 2021; 110:1221-1233. [PMID: 34919783 DOI: 10.1002/jbm.b.34992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 02/04/2023]
Abstract
Alpha-mangostin (M) and resveratrol (R), dual-drugs-loaded mucoadhesive thiolated chitosan-based nanoparticles (NPs) coated by Eudragit® S100 (S) were developed for colon-specific delivery and synergistic activity against colon cancer cells. The NPs were prepared by the ionotropic gelation method and coated with S. The particle size and zeta potential of NPs before and after the coating process were observed. The M and R loading efficiency, mucoadhesive properties, as well as release patterns were examined. Moreover, the activity against colon cancer cells of M, R, and NPs were studied for their synergistic activity. M and R-loaded NPs (MR-TNPs) were spherical in shape with sizes of around 540 nm and zeta potential of +39 mV. The S coating of MR-TNPs provided larger particle sizes which offered lower zeta potential. However, it created an increase in M and R loading, prevented M and R release at the upper gastrointestinal tract, and enhanced M and R reaching the colon. S dissolved at pH > 7.0 while thiolated chitosan formed the mucoadhesion, resulting in M and R remaining in the colon and allowing them to enter the colon cancer cells. The half-maximal inhibitory concentration values of NPs was dramatically decreased when M and R were dually loaded into the NPs, which indicated significantly higher activity against colon cancer cells. Moreover, M and R loading at this ratio applied synergistic efficiency. The results illustrated that NPs successfully loaded drugs and achieved synergistic efficiency. This system could be promising in facilitating targeted nanomedicines for the treatment of colon cancer.
Collapse
Affiliation(s)
- Wipada Samprasit
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Praneet Opanasopit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Benchawan Chamsai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
616
|
Ivanov AA, Kuznetsova AV, Popova OP, Danilova TI, Yanushevich OO. Modern Approaches to Acellular Therapy in Bone and Dental Regeneration. Int J Mol Sci 2021; 22:13454. [PMID: 34948251 PMCID: PMC8708083 DOI: 10.3390/ijms222413454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
An approach called cell-free therapy has rapidly developed in regenerative medicine over the past decade. Understanding the molecular mechanisms and signaling pathways involved in the internal potential of tissue repair inspires the development of new strategies aimed at controlling and enhancing these processes during regeneration. The use of stem cell mobilization, or homing for regeneration based on endogenous healing mechanisms, prompted a new concept in regenerative medicine: endogenous regenerative medicine. The application of cell-free therapeutic agents leading to the recruitment/homing of endogenous stem cells has advantages in overcoming the limitations and risks associated with cell therapy. In this review, we discuss the potential of cell-free products such as the decellularized extracellular matrix, growth factors, extracellular vesicles and miRNAs in endogenous bone and dental regeneration.
Collapse
Affiliation(s)
- Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Str., 119334 Moscow, Russia
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Tamara I. Danilova
- Laboratory of Molecular and Cellular Pathology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia; (A.V.K.); (O.P.P.); (T.I.D.)
| | - Oleg O. Yanushevich
- Department of Paradontology, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20 Delegatskaya Str., 127473 Moscow, Russia;
| |
Collapse
|
617
|
Liang X, Li X, Tang Y, Zhang X, Wei W, Liu X. Hyperbranched epoxy resin-grafted graphene oxide for efficient and all-purpose epoxy resin modification. J Colloid Interface Sci 2021; 611:105-117. [PMID: 34933189 DOI: 10.1016/j.jcis.2021.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 12/26/2022]
Abstract
Despite great efforts have been made on epoxy resins modification, development of additives that can be used to efficiently and universally modify epoxy composites remains a challenging task. Herein, graphene oxide (GO) sheets were covalently linked with hyperbranched epoxy resin (HBPEE-epoxy) to form HBPEE-epoxy functionalized GO (HPE-GO), which was then incorporated into epoxy resin (EP) matrix to achieve efficient and all-purpose enhancement of the properties of EPs. Compared with unmodified GO sheets, the functionalized HPE-GO sheets were better dispersed and exhibited better interfacial compatibility with the epoxy matrix, and consequently, the mechanical and thermal properties of HPE-GO/EP composites improved significantly compared to unmodified GO/EP composites. The tensile strength, flexural strength, impact strength, and fracture toughness (KIC) of EP composites containing 0.5 wt% HPE-GO increased by 65.0%, 36.2%, 259.1%, and 178.9%, respectively, compared with those for the neat EP. The storage modulus (E'), glass transition temperature (Tg), and thermal stability (T5%) also showed modest improvements. Furthermore, the HPE-GO/EP composites exhibited optimal thermal conductivities and thermal expansion properties, while maintaining higher volume resistivities compared with GO/EP composites. The results of this study support that HPE-GO is a promising, all-purpose modifier for EPs.
Collapse
Affiliation(s)
- Xue Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China.
| | - Yong Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiyu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, PR China.
| |
Collapse
|
618
|
Chu PY, Hsieh CH, Chen CY, Wu MH. Improvement of Background Solution for Optically Induced Dielectrophoresis-Based Cell Manipulation in a Microfluidic System. Front Bioeng Biotechnol 2021; 9:759205. [PMID: 34881232 PMCID: PMC8645848 DOI: 10.3389/fbioe.2021.759205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Optically induced dielectrophoresis (ODEP) is effective for cell manipulation. However, its utilization has been limited by the requirement of solution with low conductivity. This issue has been ignored in ODEP-relevant studies. To address this issue, this study aims to investigate to what extent the cell viability and performance of ODEP-based cell manipulation are affected by low conductivity conditions. Additionally, this study aims to modify sucrose solutions to reduce the impacts caused by low-conductivity solutions. Results revealed the use of sucrose solution in ODEP operation could significantly reduce the viability of the manipulated cells by 9.1 and 38.5% after 2- and 4-h incubation, respectively. Prolonged operation time (e.g., 4 h) in sucrose solution could lead to significantly inferior performance of cell manipulation, including 47.2% reduction of ODEP manipulation velocity and 44.4% loss of the cells manipulatable by ODEP. The key finding of this study is that the use of bovine serum albumin (BSA)-supplemented sucrose solution (conductivity: 25–50 μS cm−1) might significantly increase the cell viability by 10.9–14.8% compared with that in sucrose solution after 4 h incubation. Moreover, the ODEP manipulation velocity of cells in the BSA-supplemented sucrose solution (conductivity: 25 μS cm−1) was comparable to that in sucrose solution during 4-h incubation. More importantly, compared with sucrose solution, the use of BSA-supplemented sucrose solution (conductivity: 25–50 μS cm−1) contributed high percentage (80.4–93.5%) of the cells manipulatable by ODEP during 4-h incubation. Overall, this study has provided some fundamental information relevant to the improvement of background solutions for ODEP-based cell manipulation.
Collapse
Affiliation(s)
- Po-Yu Chu
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.,Collage of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chih-Yu Chen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan
| | - Min-Hsien Wu
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.,Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
619
|
The Reliability of Two- and Three-Dimensional Cephalometric Measurements: A CBCT Study. Diagnostics (Basel) 2021; 11:diagnostics11122292. [PMID: 34943528 PMCID: PMC8700671 DOI: 10.3390/diagnostics11122292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Cephalometry is a standard diagnostic tool in orthodontic and orthognathic surgery fields. However, built-in magnification from the cephalometric machine produces double images from left- and right-side craniofacial structures on the film, which poses difficulty for accurate cephalometric tracing and measurements. The cone-beam computed tomography (CBCT) images not only allow three-dimensional (3D) analysis, but also enable the extraction of two-dimensional (2D) images without magnification. To evaluate the most reliable cephalometric analysis method, we extracted 2D lateral cephalometric images with and without magnification from twenty full-cranium CBCT datasets; images were extracted with magnification to mimic traditional lateral cephalograms. Cephalometric tracings were performed on the two types of extracted 2D lateral cephalograms and on the reconstructed 3D full cranium images by two examiners. The intra- and inter-examiner intraclass correlation coefficients (ICC) were compared between linear and angular parameters, as well as between CBCT datasets of adults and children. Our results showed that overall, tracing on 2D cephalometric images without magnification increased intra- and inter-examiner reliability, while 3D tracing reduced inter-examiner reliability. Angular parameters and children's images had the lowest inter- and intra-examiner ICCs compared with adult samples and linear parameters. In summary, using lateral cephalograms extracted from CBCT without magnification for tracing/analysis increased reliability. Special attention is needed when analyzing young patients' images and measuring angular parameters.
Collapse
|
620
|
Chen J, Mo Q, Sheng R, Zhu A, Ling C, Luo Y, Zhang A, Chen Z, Yao Q, Cai Z, Zhang W. The application of human periodontal ligament stem cells and biomimetic silk scaffold for in situ tendon regeneration. Stem Cell Res Ther 2021; 12:596. [PMID: 34863301 PMCID: PMC8642874 DOI: 10.1186/s13287-021-02661-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND With the development of tissue engineering, enhanced tendon regeneration could be achieved by exploiting suitable cell types and biomaterials. The accessibility, robust cell amplification ability, superior tendon differentiation potential, and immunomodulatory effects of human periodontal ligament stem cells (hPDLSCs) indicate their potential as ideal seed cells for tendon tissue engineering. Nevertheless, there are currently no reports of using PDLSCs as seed cells. Previous studies have confirmed the potential of silk scaffold for tendon tissue engineering. However, the biomimetic silk scaffold with tendon extracellular matrix (ECM)-like structure has not been systematically studied for in situ tendon regeneration. Therefore, this study aims to evaluate the effects of hPDLSCs and biomimetic silk scaffold on in situ tendon regeneration. METHODS Human PDLSCs were isolated from extracted wisdom teeth. The differentiation potential of hPDLSCs towards osteo-, chondro-, and adipo-lineage was examined by cultured in different inducing media. Aligned and random silk scaffolds were fabricated by the controlled directional freezing technique. Scaffolds were characterized including surface structure, water contact angle, swelling ratio, degradation speed and mechanical properties. The biocompatibility of silk scaffolds was evaluated by live/dead staining, SEM observation, cell proliferation determination and immunofluorescent staining of deposited collagen type I. Subsequently, hPDLSCs were seeded on the aligned silk scaffold and transplanted into the ruptured rat Achilles tendon. Scaffolds without cells served as control groups. After 4 weeks, histology evaluation was carried out and macrophage polarization was examined to check the repair effects and immunomodulatory effects. RESULTS Human PDLSCs were successfully isolated, and their multi-differentiation potential was confirmed. Compared with random scaffold, aligned silk scaffold had more elongated and aligned pores and promoted the proliferation and ordered arrangement of hPDLSCs. After implantation into rat Achilles tendon defect, hPDLSCs seeded aligned silk scaffold enhanced tendon repair with more tendon-like tissue formation after 4 weeks, as compared to the scaffold-only groups. Higher expression of CD206 and lower expression of iNOS, IL-1β and TNF-α were found in the hPDLSCs seeded aligned silk scaffold group, which revealed its modulation effect of macrophage polarization from M1 to M2 phenotype. CONCLUSIONS In summary, this study demonstrates the efficacy of hPDLSCs as seed cells and aligned silk scaffold as a tendon-mimetic scaffold for enhanced tendon tissue engineering, which may have broad implications for future tendon tissue engineering and regenerative medicine researches.
Collapse
Affiliation(s)
- Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yifan Luo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Aini Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qingqiang Yao
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Zhuoying Cai
- Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China.
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
621
|
Zafarmand SS, Karimi-Haghighi S, Salehi MS, Hooshmandi E, Owjfard M, Bayat M, Karimlou S, Pandamooz S, Dianatpour M, Borhani-Haghighi A. Aspirin impacts on stem cells: Implications for therapeutic targets. Tissue Cell 2021; 74:101707. [PMID: 34883315 DOI: 10.1016/j.tice.2021.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
Despite the regenerative potential of stem cell therapy in pre-clinical investigations, clinical translation of cell-based therapy has not been completely clarified. In recent years, the importance of lifestyle, patient comorbidities, and prescribed medication has attracted more attention in the efficacy of cell therapy. As a nonsteroidal anti-inflammatory drug, aspirin is one of the most prevalent prescribed medications in the clinic for various disorders. Hence, aspirin treatment might affect the efficacy of stem cell therapy. In this regard, the current review focused on the impacts of aspirin on the viability, proliferation, differentiation, and immunomodulatory properties of stem cells in vitro as well as in experimental animal models.
Collapse
Affiliation(s)
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Karimlou
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
622
|
Li Y, Chen N, Li Z, Shao H, Sun X, Liu F, Liu X, Guo Q, Qu L. Reborn Three-Dimensional Graphene with Ultrahigh Volumetric Desalination Capacity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105853. [PMID: 34561904 DOI: 10.1002/adma.202105853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The constructing of 3D materials with optimal performance is urgently needed to meet the growing demand of advanced materials in the high-tech sector. A distinctive 3D graphene (3DG) is designed based on a repeated rebirth strategy to obtain a better body and performance after each round of rebirth, as if it is Phoenix Nirvana. The properties of reborn graphene, namely 3DG after Nirvana (NvG), has been dramatically upgraded compared to 3DG, including high density (3.36 times) together with high porosity, as well as better electrical conductivity (1.41 times), mechanical strength (32.4 times), and ultrafast infiltration behavior. These advantages of NvG make it a strong intrinsic motivation for application in capacitive deionization (CDI). Using NvG directly as the CDI electrode, it has an extremely high volumetric capacity of 220 F cm-3 at 1 A cm-3 and a maximum salt absorption capacity of 8.02~9.2 mg cm-3 (8.9-10.2 times), while the power consumption for adsorption of the same mass of salt is less than a quarter of 3DG. The "Phoenix Nirvana"-like strategy of manufacturing 3D structures will undoubtedly become the new engine to kick-start the development of innovative carbon materials through an overall performance upgrade.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zengling Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Huibo Shao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaotong Sun
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Feng Liu
- State Key Laboratory of Nonlinear Mechanics Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoting Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qiang Guo
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
623
|
Zhao J, Wang J, Bi R, Yang M, Wan J, Jiang H, Gu L, Wang D. General Synthesis of Multiple-Cores@Multiple-Shells Hollow Composites and Their Application to Lithium-Ion Batteries. Angew Chem Int Ed Engl 2021; 60:25719-25722. [PMID: 34761498 DOI: 10.1002/anie.202110982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/11/2022]
Abstract
Rational nanostructure design has proved fruitful in addressing the bottlenecks of diverse fields. Especially hollow multi-shelled structures (HoMS) have stood out due to their temporal-spatial ordering mass transfer and buffering effect. Localizing multiple cores in a HoMS is highly desired, which could endow it with more fascinating properties. However, such a structure has been barely reported due to the highly challenging fabrication. Here, we develop a controllable synthesis strategy to realize such a structure, which is applicable for diverse cores and shells. Additionally, cores and shells could be tuned to be homogeneous or heterogeneous, with the core and shell number well controlled. In situ TEM analysis verifies that the inner shell confines the expansion orientation of cores, while the outer shell maintains a stable interface. In addition to energy storage, such structure is also promising for multi-drug co-delivery and sequential responsive release as well as tandem catalysis applications.
Collapse
Affiliation(s)
- Jilu Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 10049, P. R. China
| | - Jiangyan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 10049, P. R. China
| | - Ruyi Bi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Mei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 10049, P. R. China
| | - Hongyu Jiang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 10049, P. R. China
| |
Collapse
|
624
|
Lv J, Hu D, Ma W. UV
–thermal‐cured cycloaliphatic epoxy composites with enhanced mechanical properties via Ca
2+
‐modified nanocrystalline cellulose. POLYM INT 2021. [DOI: 10.1002/pi.6267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Lv
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| | - Dechao Hu
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| | - Wenshi Ma
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| |
Collapse
|
625
|
Zhao J, Wang J, Bi R, Yang M, Wan J, Jiang H, Gu L, Wang D. General Synthesis of Multiple‐Cores@Multiple‐Shells Hollow Composites and Their Application to Lithium‐Ion Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jilu Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P. R. China
| | - Jiangyan Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P. R. China
| | - Ruyi Bi
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
| | - Mei Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P. R. China
| | - Hongyu Jiang
- Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lin Gu
- Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P. R. China
| |
Collapse
|
626
|
Li Y, Chang H, Wang Z, Shen Q, Liu X, Xue J, Jia H. A 3D C@TiO 2 multishell nanoframe for simultaneous photothermal catalytic hydrogen generation and organic pollutant degradation. J Colloid Interface Sci 2021; 609:535-546. [PMID: 34802758 DOI: 10.1016/j.jcis.2021.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 01/25/2023]
Abstract
Rapid heat loss and fast charge carrier recombination constitute two crucial issues that hinder the development of efficient solar energy utilization and conversion over the semiconductor in a photothermal catalytic system. Inspired by energy production from waste water, we designed an advanced 3D C@TiO2 multishell nanoframe (MNF) photocatalyst. Its unique structural features of heat confinement and vibrant photocarrier kinetics lead to excellent photo-thermal conversion for synchronous superior photocatalytic H2 evolution (503 μmol g-1h-1) and 98.2% RhB removal without the use of any co-catalyst and sacrificial reagent under simulated sunlight irradiation (AM 1.5G). Mechanism exploration reveals that the difference between the inner and outer gas pressure formed inside C@TiO2 precursor facilitates the selective cleavage of outer TiO2 layers at selected temperatures during calcination. Synergistic effects between residual carbon core and multi-shelled TiO2 framework endow C@TiO2 MNF with excellent heat confinement and vibrant photocarrier kinetics. Such MNF photo-thermocatalyst concept provides a novel strategy for effective utilization of solar energy, and this work may open a novel avenue towards advanced nanostructures for efficient waste-to-energy conversion.
Collapse
Affiliation(s)
- Yong Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Huan Chang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Zhifei Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Qianqian Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Jinbo Xue
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Husheng Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China.
| |
Collapse
|
627
|
Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. MATERIALS 2021; 14:ma14226994. [PMID: 34832390 PMCID: PMC8625127 DOI: 10.3390/ma14226994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in materials science and nanotechnology has led to the development of advanced materials with multifunctional properties. Dental medicine has benefited from the design of such materials and coatings in providing patients with tailored implants and improved materials for restorative and functional use. Such materials and coatings allow for better acceptance by the host body, promote successful implantation and determine a reduced inflammatory response after contact with the materials. Since numerous dental pathologies are influenced by the presence and activity of some pathogenic microorganisms, novel materials are needed to overcome this challenge as well. This paper aimed to reveal and discuss the most recent and innovative progress made in the field of materials surface modification in terms of microbial attachment inhibition and biofilm formation, with a direct impact on dental medicine.
Collapse
|
628
|
Al-Saud LM. Comparative evaluation of Rheological characteristics of Giomers and other Nano-flowable resin composites in vitro. Biomater Investig Dent 2021; 8:170-179. [PMID: 34778794 PMCID: PMC8583922 DOI: 10.1080/26415275.2021.1996239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective The purpose of this research was to determine the viscoelastic properties of a group of commercially available nano-flowable resin composites; and to explore the relation between these properties and the materials’ composition (with/without fluoride), filler size description (nano-filled, nanohybrid and submicron-filled) and filler loading (by volume). Methods Rheological measurements were performed using a rheometer. A Dynamic frequency sweep test was conducted to evaluate the complex viscosity, storage and loss moduli, loss tangent, and complex shear modulus at an angular frequency (ω) of 0.1–100 rad/s. Comparative evaluations of the nano flowable resin composites on rheological properties was performed, and statistically analyzed using one-way ANOVA. Results The results indicated that all the tested materials exhibited shear-thinning flow behaviour. As the shear rate increased, the complex viscosity of the nano-flowable composites decreased. The nanohybrid filled flowable resin composites exhibited the highest complex viscosity, while the nano-filled flowable resin composites exhibited the lowest value. The submicron-filled materials exhibited the lowest complex shear moduli and loss tangent values. Conclusions: The findings from the current study provided comprehensive evaluation of the rheological properties of different nano-flowable composites. The observed differences in rheological properties among the tested materials were independent of their fluoride content or filler size. Furthermore, no relationship was found between the complex viscosity of the tested nano-flowable resin composites and their filler volume.
Collapse
Affiliation(s)
- Loulwa M Al-Saud
- Division of Operative Dentistry, Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
629
|
The development of hollow multishelled structure: from the innovation of synthetic method to the discovery of new characteristics. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1097-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
630
|
Activated Carbon Fiber Cloth/Biomimetic Apatite: A Dual Drug Delivery System. Int J Mol Sci 2021; 22:ijms222212247. [PMID: 34830128 PMCID: PMC8624510 DOI: 10.3390/ijms222212247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
A biomaterial that is both bioactive and capable of controlled drug release is highly attractive for bone regeneration. In previous works, we demonstrated the possibility of combining activated carbon fiber cloth (ACC) and biomimetic apatite (such as calcium-deficient hydroxyapatite (CDA)) to develop an efficient material for bone regeneration. The aim to use the adsorption properties of an activated carbon/biomimetic apatite composite to synthetize a biomaterial to be used as a controlled drug release system after implantation. The adsorption and desorption of tetracycline and aspirin were first investigated in the ACC and CDA components and then on ACC/CDA composite. The results showed that drug adsorption and release are dependent on the adsorbent material and the drug polarity/hydrophilicity, leading to two distinct modes of drug adsorption and release. Consequently, a double adsorption approach was successfully performed, leading to a multifunctional and innovative ACC-aspirin/CDA-tetracycline implantable biomaterial. In a second step, in vitro tests emphasized a better affinity of the drug (tetracycline or aspirin)-loaded ACC/CDA materials towards human primary osteoblast viability and proliferation. Then, in vivo experiments on a large cortical bone defect in rats was carried out to test biocompatibility and bone regeneration ability. Data clearly highlighted a significant acceleration of bone reconstruction in the presence of the ACC/CDA patch. The ability of the aspirin-loaded ACC/CDA material to release the drug in situ for improving bone healing was also underlined, as a proof of concept. This work highlights the possibility of bone patches with controlled (multi)drug release features being used for bone tissue repair.
Collapse
|
631
|
Wong PC, Wang RY, Lu LS, Wang WR, Jang JSC, Wu JL, Su TY, Chang LH. Two-Step Approach Using Degradable Magnesium to Inhibit Surface Biofilm and Subsequently Kill Planktonic Bacteria. Biomedicines 2021; 9:biomedicines9111677. [PMID: 34829908 PMCID: PMC8615932 DOI: 10.3390/biomedicines9111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial infection remains a great risk in medical implantation surgery. In this paper, we found that degradable metals may be a feasible alternative option of antibacterial implantation materials. It is known that the spalling mechanism of magnesium (Mg) during degradation leads to Mg ions-induced alkaline environment, which is harmful to planktonic bacteria. In this study, we showed that alkaline pH environment is almost harmless to those adhesive bacteria protected in well-formed biofilms. Moreover, experimental results demonstrated that the biofilm formed in the place where Mg spalls are destroyed, releasing the covered bacteria to be planktonic in the alkaline environment. As a result, the colonization of biofilms continues to shrink during the degradation of Mg. It implies that if degradable metal is employed as implantation material, even if bacterial infection occurs, it may be possibly cured without second surgery.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ren-Yi Wang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (R.-Y.W.); (L.-S.L.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (R.-Y.W.); (L.-S.L.)
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jason Shian-Ching Jang
- Department of Mechanical Engineering, National Central University, Taoyuan 32001, Taiwan
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Jia-Lin Wu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11600, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Tai-Yuan Su
- Department Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| | - Ling-Hua Chang
- Department Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan
- Correspondence: (J.S.-C.J.); (J.-L.W.); (T.-Y.S.); (L.-H.C.)
| |
Collapse
|
632
|
Li H, Chong B, Xu B, Wells N, Yan X, Yang G. Nanoconfinement-Induced Conversion of Water Chemical Adsorption Properties in Nanoporous Photocatalysts to Improve Photocatalytic Hydrogen Evolution. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- He Li
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Ben Chong
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Baorong Xu
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Nathan Wells
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xiaoqing Yan
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
633
|
Mboyi CD, Poinsot D, Roger J, Fajerwerg K, Kahn ML, Hierso JC. The Hydrogen-Storage Challenge: Nanoparticles for Metal-Catalyzed Ammonia Borane Dehydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102759. [PMID: 34411437 DOI: 10.1002/smll.202102759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Dihydrogen is one of the sustainable energy vectors envisioned for the future. However, the rapidly reversible and secure storage of large quantities of hydrogen is still a technological and scientific challenge. In this context, this review proposes a recent state-of-the-art on H2 production capacities from the dehydrogenation reaction of ammonia borane (and selected related amine-boranes) as a safer solid source of H2 by hydrolysis (or solvolysis), catalyzed by nanoparticle-based systems. The review groups the results according to the transition metals constituting the catalyst with a mention to their current cost and availability. This includes the noble metals Rh, Pd, Pt, Ru, Ag, as well as cheaper Co, Ni, Cu, and Fe. For each element, the monometallic and polymetallic structures are presented and the performances are described in terms of turnover frequency and recyclability. The structure-property links are highlighted whenever possible. It appears from all these works that the mastery of the preparation of catalysts remains a crucial point both in terms of process, and control and understanding of the electronic structures of the elaborated nanomaterials. A particular effort of the scientific community remains to be made in this multidisciplinary field with major societal stakes.
Collapse
Affiliation(s)
- Clève D Mboyi
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Didier Poinsot
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Katia Fajerwerg
- Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, INPT, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, INPT, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| |
Collapse
|
634
|
Singh YP, Dasgupta S, Bhaskar R, Agrawal AK. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties. Biomed Mater 2021; 16. [PMID: 34624878 DOI: 10.1088/1748-605x/ac2e17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022]
Abstract
This study was aimed at fabricating monetite nanoparticles impregnated gelatin-based composite scaffold to improve the chemical, mechanical and osteogenic properties. Scaffolds were fabricated using a freeze-drying technique of the slurry containing a varying proportion of gelatin and monetite. The lyophilized scaffolds were cross-linked with 0.25 wt% glutaraldehyde solution to obtain a three-dimensional (3D) interconnected porous microstructure with improved mechanical strength and stability in a physiological environment. The fabricated scaffolds possessed >80% porosity having 3D interconnected pore size distribution varying between 65 and 270 μm as evident from field emission scanning electron microscopy analysis. The average pore size of the prepared scaffold decreased with monetite addition as reflected in values of 210 μm for pure gelatin GM0scaffold and 118 μm registered by GM20scaffold. On increase in monetite content up to 20 wt% of total polymer concentration, compressive strength of the prepared scaffolds was increased from 0.92 MPa in pure gelatin-based GM0to 2.43 MPa in GM20. Up to 20 wt% of monetite reinforced composite scaffolds exhibited higher bioactivity as compared to that observed in pure gelatin-based GM0scaffold. Simulated body fluid (SBF) study and alizarin red assays confirmed higher bio-mineralization ability of GM20as compared to that exhibited by GM0. Human preosteoblast cells (MG-63) revealed higher degree of filopodia and lamellipodia extensions and excellent spreading behavior to anchor with GM20matrix as compared to that onto GM0and GM10. MTT assay and alkaline phosphatase staining study indicated that MG-63 cells found a more conducive environment to proliferate and subsequently differentiate into osteoblast lineage when exposed to GM20scaffolds rather than to GM0and GM10. This study revealed that up to 20 wt% monetite addition in gelatin could improve the performance of prepared scaffolds and serve as an efficient candidate to repair and regenerate bone tissues at musculoskeletal defect sites.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | | |
Collapse
|
635
|
Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances. ENERGIES 2021. [DOI: 10.3390/en14217003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Boron-based materials have been widely studied for hydrogen storage applications. Examples of these compounds are borohydrides and boranes. However, all of these present some disadvantages that have hindered their potential application as hydrogen storage materials in the solid-state. Thus, different strategies have been developed to improve the dehydrogenation properties of these materials. The purpose of this review is to provide an overview of recent advances (for the period 2015–2021) in the destabilization strategies that have been considered for selected boron-based compounds. With this aim, we selected seven of the most investigated boron-based compounds for hydrogen storage applications: lithium borohydride, sodium borohydride, magnesium borohydride, calcium borohydride, ammonia borane, hydrazine borane and hydrazine bisborane. The destabilization strategies include the use of additives, the chemical modification and the nanosizing of these compounds. These approaches were analyzed for each one of the selected boron-based compounds and these are discussed in the present review.
Collapse
|
636
|
Han X, Chang S, Zhang M, Bian X, Li C, Li D. Advances of Hydrogel-Based Bioprinting for Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:746564. [PMID: 34660559 PMCID: PMC8511323 DOI: 10.3389/fbioe.2021.746564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bioprinting has gained immense attention and achieved the revolutionized progress for application in the multifunctional tissue regeneration. On account of the precise structural fabrication and mimicking complexity, hydrogel-based bio-inks are widely adopted for cartilage tissue engineering. Although more and more researchers have reported a number of literatures in this field, many challenges that should be addressed for the development of three-dimensional (3D) bioprinting constructs still exist. Herein, this review is mainly focused on the introduction of various natural polymers and synthetic polymers in hydrogel-based bioprinted scaffolds, which are systematically discussed via emphasizing on the fabrication condition, mechanical property, biocompatibility, biodegradability, and biological performance for cartilage tissue repair. Further, this review describes the opportunities and challenges of this 3D bioprinting technique to construct complex bio-inks with adjustable mechanical and biological integrity, and meanwhile, the current possible solutions are also conducted for providing some suggestive ideas on developing more advanced bioprinting products from the bench to the clinic.
Collapse
Affiliation(s)
- Xue Han
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Shuai Chang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | | | - Xiangbing Bian
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlin Li
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Dawei Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
637
|
The Application of Chitosan Nanostructures in Stomatology. Molecules 2021; 26:molecules26206315. [PMID: 34684896 PMCID: PMC8541323 DOI: 10.3390/molecules26206315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) is a natural polymer with a positive charge, a deacetylated derivative of chitin. Chitosan nanostructures (nano-CS) have received increasing interest due to their potential applications and remarkable properties. They offer advantages in stomatology due to their excellent biocompatibility, their antibacterial properties, and their biodegradability. Nano-CSs can be applied as drug carriers for soft tissue diseases, bone tissue engineering and dental hard tissue remineralization; furthermore, they have been used in endodontics due to their antibacterial properties; and, finally, nano-CS can improve the adhesion and mechanical properties of dental-restorative materials due to their physical blend and chemical combinations. In this review, recent developments in the application of nano-CS for stomatology are summarized, with an emphasis on nano-CS’s performance characteristics in different application fields. Moreover, the challenges posed by and the future trends in its application are assessed.
Collapse
|
638
|
Strain-Mediated Magneto-Electric Effects in Coaxial Nanofibers of Y/W-Type Hexagonal Ferrites and Ferroelectrics. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanofibers of Y- or W-type hexagonal ferrites and core–shell fibers of hexagonal ferrites and ferroelectric lead zirconate titanate (PZT) or barium titanate (BTO) were synthesized by electrospinning. The fibers were found to be free of impurity phases, and the core–shell structure was confirmed by electron and scanning probe microscopy. The values of magnetization of pure hexagonal ferrite fibers compared well with bulk ferrite values. The coaxial fibers showed good ferroelectric polarization, with a maximum value of 0.85 μC/cm2 and 2.44 μC/cm2 for fibers with BTO core–Co2W shell and PZT core–Ni2Y shell structures, respectively. The magnetization, however, was much smaller than that for bulk hexaferrites. Magneto-electric (ME) coupling strength was characterized by measuring the ME voltage coefficient (MEVC) for magnetic field-assembled films of coaxial fibers. Among the fibers with Y-type, films with Zn2Y showed a higher MEVC than films with Ni2Y, and fibers with Co2W had a higher MEVC than that of those with Zn2W. The highest MEVC of 20.3 mV/cm Oe was measured for Co2W–PZT fibers. A very large ME response was measured in all of the films, even in the absence of an external magnetic bias field. The fibers studied here have the potential for use in magnetic sensors and high-frequency device applications.
Collapse
|
639
|
In silico and multi-spectroscopic analyses on the interaction of 5-amino-8-hydroxyquinoline and bovine serum albumin as a potential anticancer agent. Sci Rep 2021; 11:20187. [PMID: 34642420 PMCID: PMC8511024 DOI: 10.1038/s41598-021-99690-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
5-Amino-8-hydroxyquinoline (5A8HQ), an amino derivative of 8-hydroxyquinoline, has become a potential anticancer candidate because of its promising proteasome inhibitory activity to overcome and yet synergize bortezomib for fighting cancers. Therefore, in this study, its physicochemical properties and interaction activities with serum protein have extensively been elucidated by both in vitro and in silico approaches to fulfill the pharmacokinetic and pharmacodynamic gaps. 5A8HQ exhibited the drug-likeness properties, where oral administration seems to be a route of choice owing to its high-water solubility and intestinal absorptivity. Multi-spectroscopic investigations suggested that 5A8HQ tended to associate with bovine serum albumin (BSA), a representative of serum protein, via the ground-state complexation. It apparently bound in a protein cleft between subdomains IIA and IIIA of BSA as suggested by the molecular docking and molecular dynamics simulations. The binding was mainly driven by hydrogen bonding and electrostatic interactions with a moderate binding constant at 104 M−1, conforming with the predicted free fraction in serum at 0.484. Therefore, 5A8HQ seems to display a good bioavailability in plasma to reach target sites and exerts its potent pharmacological activity. Likewise, serum albumin is a good candidate to be reservoir and transporter of 5A8HQ in the circulatory system.
Collapse
|
640
|
Xu W, Chen Y, Zhang B, Xu W, Niu J, Liu Y. Supramolecular Assembly of β-Cyclodextrin-Modified Polymer by Electrospinning with Sustained Antibacterial Activity. Biomacromolecules 2021; 22:4434-4445. [PMID: 34495641 DOI: 10.1021/acs.biomac.1c01007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supramolecular assembly loading drug as biomedical materials is a research hotspot. Herein, we reported a supramolecular electrospun assembly constructed via the hydrophobic and hydrogen bonding interaction. The obtained results showed that the assembly by supramolecular electrospinning not only increased the interactions of multiple antibacterial active species including antibiotics, cationic polymers, and silver to form a flexible membrane with good mechanical strength but also indicated the dual effects of rapid doxycycline and polyethyleneimine release as well as a sustained Ag release. Interestingly, the assembly showed not only good degradability but also a high bacteriostatic efficacy toward Escherichia coli (E. coli) up to 99.9%. More importantly, the in vivo wound healing assay indicated that the assembly could promote the healing of uninfected, E. coli-infected, and even methicillin-resistant staphylococcus aureus-infected wounds. The current research provides a novel approach to construct a supramolecular assembly by electrospinning mechanically induced strong noncovalent interaction.
Collapse
Affiliation(s)
- Wenshi Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wenwen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
641
|
Jašek O, Toman J, Šnírer M, Jurmanová J, Kudrle V, Michalička J, Všianský D, Pavliňák D. Microwave plasma-based high temperature dehydrogenation of hydrocarbons and alcohols as a single route to highly efficient gas phase synthesis of freestanding graphene. NANOTECHNOLOGY 2021; 32:505608. [PMID: 34496359 DOI: 10.1088/1361-6528/ac24c3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Understanding underlying processes behind the simple and easily scalable graphene synthesis methods enables their large-scale deployment in the emerging energy storage and printable device applications. Microwave plasma decomposition of organic precursors forms a high-temperature environment, above 3000 K, where the process of catalyst-free dehydrogenation and consequent formation of C2molecules leads to nucleation and growth of high-quality few-layer graphene (FLG). In this work, we show experimental evidence that a high-temperature environment with a gas mixture of H2and acetylene, C2H2, leads to a transition from amorphous to highly crystalline material proving the suggested dehydrogenation mechanism. The overall conversion efficiency of carbon to FLG reached up to 47%, three times as much as for methane or ethanol, and increased with increasing microwave power (i.e. with the size of the high-temperature zone) and hydrocarbon flow rate. The yield decreased with decreasing C:H ratio while the best quality FLG (low D/G-0.5 and high 2D/G-1.5 Raman band ratio) was achieved for C:H ratio of 1:3. The structures contained less than 1 at% of oxygen. No additional hydrogen was necessary for the synthesis of FLG from higher alcohols having the same stoichiometry, 1-propanol and isopropanol, but the yield was lower, 15%, and dependent on the atom arrangement of the precursor. The prepared FLG nanopowder was analyzed by scanning electron microscopy, Raman, x-ray photoelectron spectroscopy, and thermogravimetry. Microwave plasma was monitored by optical emission spectroscopy.
Collapse
Affiliation(s)
- Ondřej Jašek
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Jozef Toman
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Miroslav Šnírer
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Jana Jurmanová
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Vít Kudrle
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Jan Michalička
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Dalibor Všianský
- Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - David Pavliňák
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| |
Collapse
|
642
|
Chi J, Sun L, Cai L, Fan L, Shao C, Shang L, Zhao Y. Chinese herb microneedle patch for wound healing. Bioact Mater 2021; 6:3507-3514. [PMID: 33817424 PMCID: PMC7988348 DOI: 10.1016/j.bioactmat.2021.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Traditional Chinese medicine and Chinese herbs have a demonstrated value for disease therapy and sub-health improvement. Attempts in this area tend to develop new forms to make their applications more convenient and wider. Here, we propose a novel Chinese herb microneedle (CHMN) patch by integrating the herbal extracts, Premna microphylla and Centella asiatica, with microstructure of microneedle for wound healing. Such path is composed of sap extracted from the herbal leaves via traditional kneading method and solidified by plant ash derived from the brine induced process of tofu in a well-designed mold. Because the leaves of the Premna microphylla are rich in pectin and various amino acids, the CHMN could be imparted with medicinal efficacy of heat clearing, detoxicating, detumescence and hemostatic. Besides, with the excellent pharmaceutical activity of Asiatic acid extracted from Centella asiatica, the CHMN is potential in promoting relevant growth factor genes expression in fibroblasts and showing excellent performance in anti-oxidant, anti-inflammatory and anti-bacterial activity. Taking advantages of these pure herbal compositions, we have demonstrated that the derived CHMN was with dramatical achievement in anti-bacteria, inhibiting inflammatory, collagen deposition, angiogenesis and tissue reconstruction during the wound closure. These results indicate that the integration of traditional Chinese herbs with progressive technologies will facilitate the development and promotion of traditional Chinese medicine in modern society.
Collapse
Affiliation(s)
- Junjie Chi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Lingyu Sun
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lu Fan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Changmin Shao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Zhongshan-Xuhui Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
643
|
Liu Y, Proksch R, Wong CY, Ziatdinov M, Kalinin SV. Disentangling Ferroelectric Wall Dynamics and Identification of Pinning Mechanisms via Deep Learning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103680. [PMID: 34510569 DOI: 10.1002/adma.202103680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Field-induced domain-wall dynamics in ferroelectric materials underpins multiple applications ranging from actuators to information technology devices and necessitates a quantitative description of the associated mechanisms including giant electromechanical couplings, controlled nonlinearities, or low coercive voltages. While the advances in dynamic piezoresponse force microscopy measurements over the last two decades have rendered visualization of polarization dynamics relatively straightforward, the associated insights into the local mechanisms have been elusive. This work explores the domain dynamics in model polycrystalline materials using a workflow combining deep-learning-based segmentation of the domain structures with nonlinear dimensionality reduction using multilayer rotationally invariant autoencoders (rVAE). The former allows unambiguous identification and classification of the ferroelectric and ferroelastic domain walls. The rVAE discovers the latent representations of the domain wall geometries and their dynamics, thus providing insight into the intrinsic mechanisms of polarization switching, that can further be compared to simple physical models. The rVAE disentangles the factors affecting the pinning efficiency of ferroelectric walls, offering insights into the correlation of ferroelastic wall distribution and ferroelectric wall pinning.
Collapse
Affiliation(s)
- Yongtao Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Roger Proksch
- Asylum Research, An Oxford Instruments Company, Santa Barbara, CA, 93117, USA
| | - Chun Yin Wong
- The Bredesen Center, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
644
|
Yao Q, Liu Y, Pan Y, Li Y, Xu L, Zhong Y, Wang W, Zuo J, Yu H, Lv Z, Chen H, Zhang L, Wang B, Yao H, Meng Y. Long-term induction of endogenous BMPs growth factor from antibacterial dual network hydrogels for fast large bone defect repair. J Colloid Interface Sci 2021; 607:1500-1515. [PMID: 34583048 DOI: 10.1016/j.jcis.2021.09.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Osteoinductive, osteoconductive, and antibacterial properties of bone repair materials play important roles in regulating the successful bone regeneration. In the present work, we developed pH-sensitive gelatin methacryloyl (GelMA)-oxidized sodium alginate (OSA) hydrogels for dual-release of gentamicin sulfate (GS) and phenamil (Phe) to enhance the antibacterial activity and to promote large bone defect repair. Controlled release of GS was achieved through physical blending with GelMA-OSA solution before photo-polymeriaztion, while Phe was encapsulated into mesoporous silicate nanoparticles (MSN) within the hydrogels. In vitro antibacterial studies against Staphylococcus aureus and Escherichia coli indicated the broad-spectrum antibacterial property. Moreover, in vitro cell tests verified the synergistically enhanced osteogenic differentiation ability. Furthermore, in vivo studies revealed that the hydrogels significantly increased new bone formation in a critical-sized mouse cranial bone defect model. In summary, the novel dual-network hydrogels with both antibacterial and osteoinductive properties showed promising potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Qingqing Yao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yu Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yining Pan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yijia Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Liming Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yiming Zhong
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China; Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China
| | - Wei Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Jiayi Zuo
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Hao Yu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Ziru Lv
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Lishu Zhang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China; Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China.
| | - Hongyan Yao
- Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China.
| | - Yongchun Meng
- Ningbo Eye Hospital, 599 Beimingcheng Road, Yinzhou District, Ningbo 315000, Zhejiang Province, China; Central Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong 264100, China.
| |
Collapse
|
645
|
Wang C, Dong L, Wang Y, Jiang Z, Zhang J, Yang G. Bioinformatics Analysis Identified miR-584-5p and Key miRNA-mRNA Networks Involved in the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Front Genet 2021; 12:750827. [PMID: 34646313 PMCID: PMC8503254 DOI: 10.3389/fgene.2021.750827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human periodontal ligament cells (PDLCs) play an important role in periodontal tissue stabilization and function. In the process of osteogenic differentiation of PDLSCs, the regulation of molecular signal pathways are complicated. In this study, the sequencing results of three datasets on GEO were used to comprehensively analyze the miRNA-mRNA network during the osteogenic differentiation of PDLSCs. Using the GSE99958 and GSE159507, a total of 114 common differentially expressed genes (DEGs) were identified, including 62 up-regulated genes and 52 down-regulated genes. GO enrichment analysis was performed. The up-regulated 10 hub genes and down-regulated 10 hub genes were screened out by protein-protein interaction network (PPI) analysis and STRING in Cytoscape. Similarly, differentially expressed miRNAs (DEMs) were selected by limma package from GSE159508. Then, using the miRwalk website, we further selected 11 miRNAs from 16 DEMs that may have a negative regulatory relationship with hub genes. In vitro RT-PCR verification revealed that nine DEMs and 18 hub genes showed the same trend as the RNA-seq results during the osteogenic differentiation of PDLSCs. Finally, using miR-584-5p inhibitor and mimics, it was found that miR-584-5p negatively regulates the osteogenic differentiation of PDLSCs in vitro. In summary, the present results found several potential osteogenic-related genes and identified candidate miRNA-mRNA networks for the further study of osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoli Yang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
646
|
Chen C, Sun N, Jiang C, Liu Y, Sun J. Accurate transfer of bimaxillary orthognathic surgical plans using computer-aided intraoperative navigation. Korean J Orthod 2021; 51:321-328. [PMID: 34556586 PMCID: PMC8461385 DOI: 10.4041/kjod.2021.51.5.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Objective To examine the accuracy of computer-aided intraoperative navigation (Ci-Navi) in bimaxillary orthognathic surgery by comparing preoperative planning and postoperative outcome. Methods The study comprised 45 patients with congenital dentomaxillofacial deformities who were scheduled to undergo bimaxillary orthognathic surgery. Virtual bimaxillary orthognathic surgery was simulated using Mimics software. Intraoperatively, a Le Fort I osteotomy of the maxilla was performed using osteotomy guide plates. After the Le Fort I osteotomy and bilateral sagittal split ramus osteotomy of the mandible, the mobilized maxilla and the distal mandibular segment were fixed using an occlusal splint, forming the maxillomandibular complex (MMC). Realtime Ci-Navi was used to lead the MMC in the designated direction. Osteoplasty of the inferior border of the mandible was performed using Ci-Navi when facial symmetry and skeletal harmony were of concern. Linear and angular distinctions between preoperative planning and postoperative outcomes were calculated. Results The mean linear difference was 0.79 mm (maxilla: 0.62 mm, mandible: 0.88 mm) and the overall mean angular difference was 1.20°. The observed difference in the upper incisor point to the Frankfort horizontal plane, midfacial sagittal plane, and coronal plane was < 1 mm in 40 cases. Conclusions This study demonstrates the role of Ci-Navi in the accurate positioning of bone segments during bimaxillary orthognathic surgery. Ci-Navi was found to be a reliable method for the accurate transfer of the surgical plan during an operation.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ningning Sun
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanshan Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Sun
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
647
|
Chen H, Liang J, Li L, Zheng B, Feng Z, Xu Z, Luo Y, Liu Q, Shi X, Liu Y, Gao S, Asiri AM, Wang Y, Kong Q, Sun X. Ti 2O 3 Nanoparticles with Ti 3+ Sites toward Efficient NH 3 Electrosynthesis under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41715-41722. [PMID: 34459203 DOI: 10.1021/acsami.1c11872] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) enabled by introducing Ti3+ defect sites into TiO2 through a doping strategy has recently attracted widespread attention. However, the amount of Ti3+ ions is limited due to the low concentration of dopants. Herein, we propose Ti2O3 nanoparticles as a pure Ti3+ system that performs efficiently toward NH3 electrosynthesis under ambient conditions. This work has suggested that Ti3+ ions, as the main catalytically active sites, significantly increase the NRR activity. In an acidic electrolyte, Ti2O3 achieves extraordinary performance with a high NH3 yield and a Faradaic efficiency of 26.01 μg h-1 mg-1 cat. and 9.16%, respectively, which are superior to most titanium-based NRR catalysts recently reported. Significantly, it also demonstrates a stable NH3 yield in five consecutive cycles. Theoretical calculations uncovered that the enhanced electrocatalytic activity of Ti2O3 originated from Ti3+ active sites and significantly lowered the overpotential of the potential-determining step.
Collapse
Affiliation(s)
- Haijun Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Li Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Baozhan Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Zhesheng Feng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zhaoquan Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yonglan Luo
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuyan Gao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
648
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
649
|
Synthesis and Antibacterial Activity of Metal-Containing Ultraviolet-Cured Wood Floor Coatings. Polymers (Basel) 2021; 13:polym13183022. [PMID: 34577922 PMCID: PMC8469301 DOI: 10.3390/polym13183022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/05/2022] Open
Abstract
In our previous report, the antibacterial agents with different metals, mono(hydroxyethoxyethyl)phthalate [M(HEEP)2, M = Zn, Mn, and Ca], were synthesized. For increasing their yields, modified synthesis and purified processes were further investigated. The result of energy-dispersive X-ray spectroscopy showed the M(HEEP)2 could be stable and successfully synthesized, and their yields were raised to 73–85% from our previous report of 43–55%. For ultraviolet-cured wood floor coating application, the Zn(HEEP)2 was selected as an antibacterial agent and mixed with commercial UV wood floor coating. The effects on the antibacterial activity of UV films with different Zn(HEEP)2 additions of 0, 4, 8, and 12 phr as well as the commercial nano-Ag of 12 phr against Escherichia coli were evaluated. In the static antibacterial test, the UV films with Zn(HEEP)2 additions had similar antibacterial activity of 57–59%. In another dynamic shaking antibacterial test, the film containing 12 phr Zn(HEEP)2 had the best antibacterial activity among all the UV films. On the film properties, the Zn(HEEP)2-containing UV films had lower gloss and abrasion resistance, and slightly increased the hardness than those of UV film without Zn(HEEP)2 addition. However, there were no noticeable differences in mass retention, lightfastness, and thermal stability between UV films with and without the Zn(HEEP)2 addition. In this study, the 12 phr Zn(HEEP)2-containing UV film provided the best antibacterial activity against E. coli and had the balanced film properties for application on the UV wood floor coating.
Collapse
|
650
|
Ardestani SS, Bonan RF, Mota MF, Farias RMDC, Menezes RR, Bonan PRF, Maciel PP, Ramos-Perez FMDM, Batista AUD, da Cruz Perez DE. Effect of the incorporation of silica blow spun nanofibers containing silver nanoparticles (SiO 2/Ag) on the mechanical, physicochemical, and biological properties of a low-viscosity bulk-fill composite resin. Dent Mater 2021; 37:1615-1629. [PMID: 34479726 DOI: 10.1016/j.dental.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This work aimed at producing silica-blow-spun nanofibers containing silver nanoparticles (SiO2/Ag) and investigating the effect of their incorporation in different proportions, with or without pre-treatment with a silane coupling agent, on the mechanical, physicochemical, and biological properties of a commercial composite low-viscosity bulk-fill resin. METHODS The production of SiO2/Ag nanofibers was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). A portion of the produced nanofibers was silanized. Scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and agar diffusion tests against Streptococcus mutans were used to verify the differences between silanized and non-silanized nanofibers. Different proportions (0.5 wt% and 1 wt%) of silanized (SiO2/Ag-0.5S and SiO2/Ag-1S) and non-silanized (SiO2/Ag-0.5NS and SiO2/Ag-1NS) nanofibers were incorporated into the bulk-fill composite (Opus Bulk Fill Flow, FGM). A commercial composite was used as the control. Evaluation of the color parameters (L*, a*, and b*), radiopacity, contact angle, antimicrobial activity, Vickers microhardness, surface roughness (Sa and Sq), flexural strength, and SEM of the fractured surfaces were performed. The data were analyzed using the Mann-Whitney U test (fiber morphology), Kruskal-Wallis tests, with Dunn's post hoc test (antimicrobial activity of the specimen against S. mutans), Student's t-test (disk diffusion), one-way ANOVA and Tukey (color, radiopacity, and contact angle), and two-way ANOVA and Tukey (microhardness, surface roughness, and flexural strength) tests. All statistical analyses were performed at a significance level of 1% (α = 0.01). RESULTS Porous nanometric SiO2/Ag fibers were successfully produced. The silanization process, confirmed by FTIR, increased the diameter and contact angle and reduced the growth inhibition halos of the nanofibers (p < 0.01). After the incorporation of nanofibers into the dental composite, all color parameters were altered in all the experimental groups (p < 0.01). All the groups presented adequate radiopacity values. No statistical difference was observed in the contact angles of the experimental composites (p > 0.01). The lowest microbial counts were obtained in the SiO2/Ag-0.5S group; although no significant difference was observed with the control group (p < 0.01). The SiO2/Ag-1S, SiO2/Ag-0.5S, and SiO2/Ag-0.5NS groups exhibited higher microhardness after 30 d of immersion in water (p < 0.01). The surface roughness (Sa-μm) resembled that of the control at baseline, except for the SiO2/Ag-1NS group. For the baseline evaluation of flexural strength, all the experimental groups exhibited lower values than the control, except for SiO2/Ag-0.5NS and SiO2/Ag-0.5S, but after 30 d of immersion in water, there was no difference (p < 0.01). SIGNIFICANCE The incorporation of 0.5% wt. of silanized nanofibers in the commercial composite (SiO2/Ag-0.5S) seemed to be promising, especially for its greater inhibition of S. mutans, adequate roughness, and flexural strength, in addition to high hardness, even after aging in water.
Collapse
Affiliation(s)
| | - Roberta Ferreti Bonan
- Universidade Federal de Pernambuco, School of Dentistry, Recife, Pernambuco, Brazil; Federal University of Paraiba, Department of Dentistry, João Pessoa, Paraiba, Brazil.
| | - Mariaugusta Ferreira Mota
- Federal University of Campina Grande, Department of Materials Engineering, Campina Grande, Paraiba, Brazil.
| | | | - Romualdo Rodrigues Menezes
- Federal University of Campina Grande, Department of Materials Engineering, Campina Grande, Paraiba, Brazil.
| | | | | | | | | | | |
Collapse
|