601
|
He Q, Lin BR, Zhao J, Shi YZ, Yan FF, Huang CB. No effects of anodal transcranial direct current stimulation on contrast sensitivity function. Restor Neurol Neurosci 2019; 37:109-118. [DOI: 10.3233/rnn-180881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Qing He
- Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bo-Rong Lin
- Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhao
- Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Zhen Shi
- Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Yan
- Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Bing Huang
- Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
602
|
Kindred JH, Kautz SA, Wonsetler EC, Bowden MG. Single Sessions of High-Definition Transcranial Direct Current Stimulation Do Not Alter Lower Extremity Biomechanical or Corticomotor Response Variables Post-stroke. Front Neurosci 2019; 13:286. [PMID: 31031579 PMCID: PMC6470292 DOI: 10.3389/fnins.2019.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/11/2019] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate cortical activity. However, measured effects on clinically relevant assessments have been inconsistent, possibly due to the non-focal dispersion of current from traditional two electrode configurations. High-definition (HD)-tDCS uses a small array of electrodes (N = 5) to improve targeted current delivery. The purpose of this study was to determine the effects of a single session of anodal and cathodal HD-tDCS on gait kinematics and kinetics and the corticomotor response to transcranial magnetic stimulation (TMS) in individuals post-stroke. We hypothesized that ipsilesional anodal stimulation would increase the corticomotor response to TMS leading to beneficial changes in gait. Eighteen participants post-stroke (average age: 64.8 years, SD: 12.5; average months post-stroke: 54, SD: 42; average lower extremity Fugl-Meyer score: 26, SD: 6) underwent biomechanical and corticomotor response testing on three separate occasions prior to and after HD-tDCS stimulation. In a randomized order, anodal, cathodal, and sham HD-tDCS were applied to the ipsilesional motor cortex for 20 min while participants pedaled on a recumbent cycle ergometer. Gait kinetic and kinematic data were collected while walking on an instrumented split-belt treadmill with motion capture. The corticomotor response of the paretic and non-paretic tibialis anterior (TA) muscles were measured using neuronavigated TMS. Repeated measures ANOVAs using within-subject factors of time point (pre, post) and stimulation type (sham, anodal, cathodal) were used to compare effects of HD-tDCS stimulation on measured variables. HD-tDCS had no effect on over ground walking speed (P > 0.41), or kinematic variables (P > 0.54). The corticomotor responses of the TA muscles were also unaffected by HD-tDCS (resting motor threshold, P = 0.15; motor evoked potential (MEP) amplitude, P = 0.25; MEP normalized latency, P = 0.66). A single session of anodal or cathodal HD-tDCS delivered to a standardized ipsilesional area of the motor cortex does not appear to alter gait kinematics or corticomotor response post-stroke. Repeated sessions and individualized delivery of HD-tDCS may be required to induce beneficial plastic effects. Contralesional stimulation should also be investigated due to the altered interactions between the cerebral hemispheres post-stroke.
Collapse
Affiliation(s)
- John Harvey Kindred
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Steven A Kautz
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth Carr Wonsetler
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Physical Therapy, School of Health Sciences, High Point University, High Point, NC, United States
| | - Mark Goodman Bowden
- Ralph H. Johnson, Veteran's Administration Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
603
|
Mamlins A, Hulst T, Donchin O, Timmann D, Claassen J. No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects. J Neurophysiol 2019; 121:2112-2125. [PMID: 30943093 DOI: 10.1152/jn.00352.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that cerebellar transcranial direct current stimulation (tDCS) leads to faster adaptation of arm reaching movements to visuomotor rotation and force field perturbations in healthy subjects. The first aim of the present study was to confirm a stimulation-dependent effect on motor adaptation. Second, we investigated whether tDCS effects differ depending on onset, that is, before or at the beginning of the adaptation phase. A total of 120 healthy and right-handed subjects (60 women, mean age 23.2 ± SD 2.7 yr, range 18-31 yr) were tested. Subjects moved a cursor with a manipulandum to one of eight targets presented on a vertically orientated screen. Three baseline blocks were followed by one adaptation block and three washout blocks. Sixty subjects did a force field adaptation task (FF), and 60 subjects did a visuomotor adaptation task (VM). Equal numbers of subjects received anodal, cathodal, or sham cerebellar tDCS beginning either in the third baseline block or at the start of the adaptation block. In FF and VM, tDCS and the onset of tDCS did not show a significant effect on motor adaptation (all P values >0.05). We were unable to support previous findings of modulatory cerebellar tDCS effects in reaching adaptation tasks in healthy subjects. Prior to possible application in patients with cerebellar disease, future experiments are needed to determine which tDCS and task parameters lead to robust tDCS effects. NEW & NOTEWORTHY Transcranial direct current stimulation (tDCS) is a promising tool to improve motor learning. We investigated whether cerebellar tDCS improves motor learning in force field and visuomotor tasks in healthy subjects and what influence the onset of stimulation has. We did not find stimulation effects of tDCS or an effect of onset of stimulation. A reevaluation of cerebellar tDCS in healthy subjects and at the end of the clinical potential in cerebellar patients is demanded.
Collapse
Affiliation(s)
- A Mamlins
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany
| | - T Hulst
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany.,Department of Neuroscience, Erasmus MC, Rotterdam , The Netherlands ; Erasmus University College, Rotterdam , The Netherlands
| | - O Donchin
- Ben-Gurion University of the Negev, Department of Biomedical Engineering and Zlotowski Center for Neuroscience , Beer Sheva , Israel
| | - D Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany
| | - J Claassen
- Department of Neurology, University Hospital Essen, University of Duisburg - Essen , Germany
| |
Collapse
|
604
|
Chen W, Zhang S, Turel O, Peng Y, Chen H, He Q. Sex-based differences in right dorsolateral prefrontal cortex roles in fairness norm compliance. Behav Brain Res 2019; 361:104-112. [DOI: 10.1016/j.bbr.2018.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
|
605
|
Effect of transcranial direct current stimulation on decision making and cognitive flexibility in gambling disorder. Eur Arch Psychiatry Clin Neurosci 2019; 269:275-284. [PMID: 30367243 DOI: 10.1007/s00406-018-0948-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
Decision making and cognitive flexibility are two components of cognitive control that play a critical role in the emergence, persistence, and relapse of gambling disorder. Transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been reported to enhance decision making and cognitive flexibility in healthy volunteers and individuals with addictive disorders. In this triple-blind randomized sham-controlled parallel study, we aimed to determine whether tDCS over DLPFC would modulate decision making and cognitive flexibility in individuals with gambling disorder. Twenty participants with gambling disorder were administered Iowa Gambling Task (IGT) and Wisconsin Card Sorting Test (WCST). Subsequently, participants were administered three every other day sessions of active right anodal /left cathodal tDCS (20 min, 2 mA) or sham stimulation over bilateral DLPFC. WCST and IGT were readministered following the last session. Baseline clinical severity, depression, impulsivity levels, and cognitive performance were similar between groups. TDCS over the DLPFC resulted in more advantageous decision making (F1,16 = 8.128, p = 0.01, ɳp2 =0.33) and better cognitive flexibility (F1,16 =8.782, p = 0.009, ɳp2 = 0.35), representing large effect sizes. The results suggest for the first time that tDCS enhanced decision making and cognitive flexibility in gambling disorder. Therefore, tDCS may be a promising neuromodulation-based therapeutic approach in gambling disorder.Trial registration: Clinicaltrials.gov NCT03477799.
Collapse
|
606
|
Berntsen MB, Cooper NR, Hughes G, Romei V. Prefrontal transcranial alternating current stimulation improves motor sequence reproduction. Behav Brain Res 2019; 361:39-49. [PMID: 30578806 DOI: 10.1016/j.bbr.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022]
Abstract
Cortical activity in frontal, parietal, and motor regions during sequence observation correlates with performance on sequence reproduction. Increased cortical activity observed during observation has therefore been suggested to represent increased learning. Causal relationships have been demonstrated between M1 and motor sequence reproduction and between parietal cortex and bimanual learning. However, similar effects have not been reported for frontal regions despite a number of reports implicating its involvement in encoding of motor sequences. Investigating causal relations between cortical activity and reproduction of motor sequences in parietal, frontal and primary motor regions can disentangle whether specific regions during simple observation can be selectively ascribed to encoding or reproduction or both. We designed a sensorimotor paradigm that included a strong motor sequence component, and tested the impact of individually adjusted transcranial alternating current stimulation (IAF-tACS) to prefrontal, parietal, and primary motor regions on electroencephalographic motor rhythms (alpha and beta bandwidths) during motor sequence observation and the ability to reproduce the observed sequences. Independently of the stimulated region, IAF-tACS led to a reduction in suppression in the lower beta-range relative to sham. Prefrontal IAF-tACS however, led to significant improvement in motor sequence reproduction, pinpointing the crucial role of prefrontal regions in motor sequence reproduction.
Collapse
Affiliation(s)
- Monica B Berntsen
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom.
| | - Nicholas R Cooper
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom.
| | - Gethin Hughes
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom
| | - Vincenzo Romei
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom; Dipartimento di Psicologia and Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena, Universitá di Bologna, 47521 Cesena, Italy
| |
Collapse
|
607
|
Bihemispheric anodal transcranial direct-current stimulation over temporal cortex enhances auditory selective spatial attention. Exp Brain Res 2019; 237:1539-1549. [PMID: 30927041 DOI: 10.1007/s00221-019-05525-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
The capacity to selectively focus on a particular speaker of interest in a complex acoustic environment with multiple persons speaking simultaneously-a so-called "cocktail-party" situation-is of decisive importance for human verbal communication. Here, the efficacy of single-dose transcranial direct-current stimulation (tDCS) in improving this ability was tested in young healthy adults (n = 24), using a spatial task that required the localization of a target word in a simulated "cocktail-party" situation. In a sham-controlled crossover design, offline bihemispheric double-monopolar anodal tDCS was applied for 30 min at 1 mA over auditory regions of temporal lobe, and the participant's performance was assessed prior to tDCS, immediately after tDCS, and 1 h after tDCS. A significant increase in the amount of correct localizations by on average 3.7 percentage points (d = 1.04) was found after active, relative to sham, tDCS, with only insignificant reduction of the effect within 1 h after tDCS offset. Thus, the method of bihemispheric tDCS could be a promising tool for enhancement of human auditory attentional functions that are relevant for spatial orientation and communication in everyday life.
Collapse
|
608
|
Rich TL, Gillick BT. Electrode Placement in Transcranial Direct Current Stimulation-How Reliable Is the Determination of C3/C4? Brain Sci 2019; 9:brainsci9030069. [PMID: 30909374 PMCID: PMC6468365 DOI: 10.3390/brainsci9030069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
The 10/20 electroencephalogram (EEG) measurements system often guides electrode placement for transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation. One targeted region of the brain is the primary motor cortex (M1) for motor recovery after stroke, among other clinical indications. M1 is identified by C3 and C4 of the 10/20 EEG system yet the reliability of 10/20 EEG measurements by novice research raters is unknown. We investigated the reliability of the 10/20 EEG measurements for C3 and C4 in 25 adult participants. Two novice raters were assessed for inter-rater reliability. Both raters received two hours of instruction from a registered neurodiagnostic technician. One of the raters completed the measurements across two testing days for intra-rater reliability. Relative reliability was determined using the intraclass coefficient (ICC) and absolute reliability. We observed a low to fair inter and intra-rater ICC for motor cortex measurements. The absolute reliability was <1.0 cm by different novice raters and on different days. Although a low error was observed, consideration of the integrity of the targeted region of the brain is critical when designing tDCS interventions in clinical populations who may have compromised brain structure, due to a lesion or altered anatomy.
Collapse
Affiliation(s)
- Tonya L Rich
- Department of Rehabilitation Medicine, Division of Rehabilitation Science, University of Minnesota, 420 Delaware Street SE, MMC 388, Minneapolis, MN 55455, USA.
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, Division of Rehabilitation Science, University of Minnesota, 420 Delaware Street SE, MMC 388, Minneapolis, MN 55455, USA.
| |
Collapse
|
609
|
Gomez-Tames J, Asai A, Mikkonen M, Laakso I, Tanaka S, Uehara S, Otaka Y, Hirata A. Group-level and functional-region analysis of electric-field shape during cerebellar transcranial direct current stimulation with different electrode montages. J Neural Eng 2019; 16:036001. [DOI: 10.1088/1741-2552/ab0ac5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
610
|
Nissim NR, O'Shea A, Indahlastari A, Telles R, Richards L, Porges E, Cohen R, Woods AJ. Effects of in-Scanner Bilateral Frontal tDCS on Functional Connectivity of the Working Memory Network in Older Adults. Front Aging Neurosci 2019; 11:51. [PMID: 30930766 PMCID: PMC6428720 DOI: 10.3389/fnagi.2019.00051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
Working memory is an executive memory process essential for everyday decision-making and problem solving that declines with advanced age. Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation that has demonstrated potential for improving working memory performance in older adults. However, the neural mechanisms underlying effects of tDCS on working memory are not well understood. This mechanistic study investigated the acute and after-effects of bilateral frontal (F3/F4) tDCS at 2 mA for 12-min on functional connectivity of the working memory network in older adults. We hypothesized active tDCS over sham would increase frontal connectivity during working memory performance. The study used a double-blind within-subject 2 session crossover design. Participants performed an functional magnetic resonance imaging (fMRI) N-Back working memory task before, during, and after active or sham stimulation. Functional connectivity of the working memory network was assessed within and between stimulation conditions (FDR < 0.05). Active tDCS produced a significant increase in functional connectivity between left ventrolateral prefrontal cortex (VLPFC) and left dorsolateral PFC (DLPFC) during stimulation, but not after stimulation. Connectivity did not significantly increase with sham stimulation. In addition, our data demonstrated both state-dependent and time-dependent effects of tDCS working memory network connectivity in older adults. tDCS during working memory performance produces a selective change in functional connectivity of the working memory network in older adults. These data provide important mechanistic insight into the effects of tDCS on brain connectivity in older adults, as well as key methodological considerations for tDCS-working memory studies.
Collapse
Affiliation(s)
- Nicole R Nissim
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Telles
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Lindsey Richards
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eric Porges
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
611
|
Albein-Urios N, Chase H, Clark L, Kirkovski M, Davies C, Enticott PG. Increased perseverative errors following high-definition transcranial direct current stimulation over the ventrolateral cortex during probabilistic reversal learning. Brain Stimul 2019; 12:959-966. [PMID: 30833215 DOI: 10.1016/j.brs.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The prefrontal cortex regulates behavioural adaptation in response to feedback. However, the causal role of different prefrontal regions remains unclear, based on indirect evidence derived from functional neuroimaging. Neuroimaging studies show dorsomedial prefrontal activation during feedback monitoring, whereas the ventrolateral prefrontal cortex engages during behavioural adaptation (shifting). OBJECTIVE We used high-definition transcranial direct current stimulation (HD-tDCS) to elucidate the roles of the ventrolateral prefrontal cortex (vlPFC) and the dorsomedial prefrontal cortex (dmPFC) in behaviour change, using a probabilistic reversal learning task (PRLT). METHOD Fifty-two healthy adults were randomly assigned to receive cathodal HD-tDCS to inhibit the vlPFC or the dmPFC versus sham stimulation, prior to completing the PRLT. The outcome measures were the number of perseverative errors and the electroencephalography (EEG) signals of feedback-related negativity (FRN) in the PRLT. We hypothesised that inhibition of the vlPFC would be specifically associated with more perseverative errors and weaker FRNs. RESULTS We found that vlPFC inhibition was associated with higher perseverative errors compared to sham and dmPFC stimulation conditions. Although there were no statistically significant differences in FRN amplitudes, the effect sizes indicate an association between inhibition of the vlPFC and lower FRN amplitudes. CONCLUSION Our findings support a causal role of the vlPFC on feedback-based behavioural adaptation, which is critical for adaptive goal-driven behaviour.
Collapse
Affiliation(s)
- Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Henry Chase
- Department of Psychiatry, University of Pittsburgh, PA, USA
| | - Luke Clark
- Centre for Gambling Research at UBC, Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Charlotte Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
612
|
Vitório R, Stuart S, Charvet LE, Godfrey A. Introducing the thematic series on transcranial direct current stimulation (tDCS) for motor rehabilitation: on the way to optimal clinical use. J Neuroeng Rehabil 2019; 16:34. [PMID: 30832684 PMCID: PMC6399883 DOI: 10.1186/s12984-019-0507-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/27/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rodrigo Vitório
- São Paulo State University (Unesp), Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Samuel Stuart
- Department of Neurology, Oregon Health & Science University, Portland, OR USA
| | - Leigh E. Charvet
- Department of Neurology, NYU School of Medicine, New York, NY USA
| | - Alan Godfrey
- Department of Computer and Information Science, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
613
|
Indahlastari A, Albizu A, Nissim NR, Traeger KR, O'Shea A, Woods AJ. Methods to monitor accurate and consistent electrode placements in conventional transcranial electrical stimulation. Brain Stimul 2019; 12:267-274. [PMID: 30420198 PMCID: PMC6348875 DOI: 10.1016/j.brs.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Inaccurate electrode placement and electrode drift during a transcranial electrical stimulation (tES) session have been shown to alter predicted field distributions in the brain and thus may contribute to a large variation in tES study outcomes. Currently, there is no objective and independent measure to quantify electrode placement accuracy/drift in tES clinical studies. OBJECTIVE/HYPOTHESIS We proposed and tested novel methods to quantify accurate and consistent electrode placements in tES using models generated from a 3D scanner. METHODS Accurate electrode placements were quantified as Discrepancy in eight tES participants by comparing landmark distances of physical electrode locations F3/F4 to their model counterparts. Distances in models were computed using curve and linear based methods. Variability of landmark locations in a single subject was computed for multiple stimulation sessions to determine consistent electrode placements across four experimenters. MAIN RESULTS We obtained an average of 0.4 cm in Discrepancy, which was within the placement accuracy/drift threshold (1 cm) for conventional tES electrodes (∼35 cm2) to achieve reliable tES sessions suggested in the literature. Averaged Variability was 5.2%, with F4 electrode location as the least consistent placement. CONCLUSIONS These methods provide objective feedback for experimenters on their performance in placing tES electrodes. Applications of these methods can be used to monitor electrode locations in tES studies of a larger cohort using F3/F4 montage and other conventional electrode arrangements. Future studies may include co-registering the landmark locations with imaging-derived head models to quantify the effects of electrode accuracy/drift on predicted field distributions in the brain.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Alejandro Albizu
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kelsey R Traeger
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
614
|
Osório AAC, Brunoni AR. Transcranial direct current stimulation in children with autism spectrum disorder: a systematic scoping review. Dev Med Child Neurol 2019; 61:298-304. [PMID: 30451290 DOI: 10.1111/dmcn.14104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2018] [Indexed: 12/22/2022]
Abstract
AIM Our aim was to review available studies which test transcranial direct current stimulation (tDCS) to reduce symptom severity in children with autism spectrum disorder (ASD). METHOD We performed a systematic scoping review in PubMed and PsychINFO databases for studies employing tDCS in children and adolescents with ASD. RESULTS We found five studies (two small randomized controlled studies, one experimental study, one quasi-experimental study, and one case study) reporting positive effects of tDCS in ASD symptom reduction. Study design varied greatly and sample size ranged from 1 to 20 patients. INTERPRETATION Preliminary evidence is encouraging of the potential usefulness of tDCS for treatment of ASD in children and adolescents. It suggests tentative support for reductions in symptom severity and, according to parental reports and clinical observations, improvements in some aspects of language. However, the evidence is sparse and of low quality, so the true effect of tDCS is likely to be substantially different from the estimate of effect in this review. Therefore, future randomized controlled trials are needed to draw conclusions regarding tDCS efficacy in paediatric samples with ASD. WHAT THIS PAPER ADDS There is low confidence in the estimate of effect, but tentatively encouraging results warrant further investigation.
Collapse
Affiliation(s)
- Ana Alexandra Caldas Osório
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University, São Paulo, Brazil.,Developmental Disorders Graduate Program, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Andre Russowsky Brunoni
- University Hospital, University of São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Laboratory of Neuroscience and National Institute of Biomarkers in Neuropsychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
615
|
Kim J, Iwata Y, Plitman E, Caravaggio F, Chung JK, Shah P, Blumberger DM, Pollock BG, Remington G, Graff-Guerrero A, Gerretsen P. A meta-analysis of transcranial direct current stimulation for schizophrenia: "Is more better?". J Psychiatr Res 2019; 110:117-126. [PMID: 30639917 DOI: 10.1016/j.jpsychires.2018.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023]
Abstract
Transcranial direct current stimulation (tDCS) has generated interest in recent years as a potential adjunctive treatment for patients with schizophrenia. The primary objective of this meta-analysis was to evaluate the efficacy of tDCS on positive symptoms, particularly auditory hallucinations, and negative symptoms. A literature search of randomized sham-controlled trials was conducted using the OVID database on October 9, 2018. The standardized mean differences (SMDs) were calculated to examine changes in symptom severity between active and sham groups for the following symptom domains: auditory hallucinations, positive symptoms (including auditory hallucinations), and negative symptoms. Moderator analyses were performed to examine the effects of study design and participant demographics. We identified 10 eligible studies. Main-analyses showed no effects of tDCS on auditory hallucinations (7 studies, n = 242), positive symptoms (9 studies, n = 313), or negative symptoms (9 studies, n = 313). Subgroup analyses of studies that applied twice-daily stimulation showed a significant reduction in the severity of auditory hallucinations (4 studies, n = 138, SMD = 1.04, p = 0.02). Studies that applied ≥10 stimulation sessions showed a reduction in both auditory hallucination (5 studies, n = 186, SMD = 0.86, p = 0.009) and negative symptom severity (7 studies, n = 257, SMD = 0.41, p = 0.04). Meta-regression analyses revealed a negative association between mean age and the SMDs for auditory hallucinations and negative symptoms, and a positive association between baseline negative symptom severity and the SMDs for negative symptoms. Our findings highlight the need to optimize tDCS parameters and suggest twice-daily or 10 or more stimulation sessions may be needed to improve clinical outcomes in patients with schizophrenia.
Collapse
Affiliation(s)
- Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
616
|
Foerster Á, Yavari F, Farnad L, Jamil A, Paulus W, Nitsche MA, Kuo MF. Effects of electrode angle-orientation on the impact of transcranial direct current stimulation on motor cortex excitability. Brain Stimul 2019; 12:263-266. [DOI: 10.1016/j.brs.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 11/15/2022] Open
|
617
|
Heise KF, Monteiro TS, Leunissen I, Mantini D, Swinnen SP. Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching. Sci Rep 2019; 9:3144. [PMID: 30816305 PMCID: PMC6395614 DOI: 10.1038/s41598-019-39900-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
In the present study we examined the effect of bihemispheric in-phase synchronization of motor cortical rhythms on complex bimanual coordination. Twenty young healthy volunteers received 10 Hz or 20 Hz tACS in a double-blind crossover design while performing a bimanual task-set switching paradigm. We used a bilateral high-density montage centred over the hand knob representation within the primary motor cortices to apply tACS time-locked to the switching events. Online tACS in either frequency led to faster but more erroneous switching transitions compared to trials without active stimulation. When comparing stimulation frequencies, 10 Hz stimulation resulted in higher error rates and slower switching transitions than 20 Hz stimulation. Furthermore, the stimulation frequencies showed distinct carry-over effects in trials following stimulation trains. Non-stimulated switching transitions were generally faster but continuous performance became more erroneous over time in the 20 Hz condition. We suggest that the behavioural effects of bifocal in-phase tACS are explained by online synchronization of long-range interhemispheric sensorimotor oscillations, which impacts on interhemispheric information flow and the top-down control required for flexible control of complex bimanual actions. Different stimulation frequencies may lead to distinct offline effects, which potentially accumulate over time and therefore need to be taken into account when evaluating subsequent performance.
Collapse
Affiliation(s)
- Kirstin-Friederike Heise
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Inge Leunissen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
618
|
Modulating Subjective Time Perception with Transcranial Random Noise Stimulation (tRNS). JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
619
|
Antonenko D, Hayek D, Netzband J, Grittner U, Flöel A. tDCS-induced episodic memory enhancement and its association with functional network coupling in older adults. Sci Rep 2019; 9:2273. [PMID: 30783198 PMCID: PMC6381175 DOI: 10.1038/s41598-019-38630-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/28/2018] [Indexed: 01/17/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) augments training-induced cognitive gains, an issue of particular relevance in the aging population. However, negative outcomes have been reported as well, and few studies so far have evaluated the impact of tDCS on episodic memory formation in elderly cohorts. The heterogeneity of previous findings highlights the importance of elucidating neuronal underpinnings of tDCS-induced modulations, and of determining individual predictors of a positive response. In the present study, we aimed to modulate episodic memory formation in 34 older adults with anodal tDCS (1 mA, 20 min) over left temporoparietal cortex. Participants were asked to learn novel associations between pictures and pseudowords, and episodic memory performance was subsequently assessed during immediate retrieval. Prior to experimental sessions, participants underwent resting-state functional magnetic resonance imaging. tDCS led to better retrieval performance and augmented learning curves. Hippocampo-temporoparietal functional connectivity was positively related to initial memory performance, and was positively associated with the magnitude of individual tDCS-induced enhancement. In sum, we provide evidence for brain stimulation-induced plasticity of episodic memory processes in older adults, corroborating and extending previous findings. Our results demonstrate that intrinsic network coupling may determine individual responsiveness to brain stimulation, and thus help to further explain variability of tDCS responsiveness in older adults.
Collapse
Affiliation(s)
- Daria Antonenko
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany.
| | - Dayana Hayek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Justus Netzband
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
| | - Agnes Flöel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany.
| |
Collapse
|
620
|
Cavinato M, Genna C, Formaggio E, Gregorio C, Storti SF, Manganotti P, Casanova E, Piperno R, Piccione F. Behavioural and electrophysiological effects of tDCS to prefrontal cortex in patients with disorders of consciousness. Clin Neurophysiol 2019; 130:231-238. [DOI: 10.1016/j.clinph.2018.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
|
621
|
Cucca A, Sharma K, Agarwal S, Feigin AS, Biagioni MC. Tele-monitored tDCS rehabilitation: feasibility, challenges and future perspectives in Parkinson's disease. J Neuroeng Rehabil 2019; 16:20. [PMID: 30704491 PMCID: PMC6357497 DOI: 10.1186/s12984-019-0481-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a modality of non-invasive brain stimulation involving the application of low amplitude direct current via surface electrodes on the scalp. tDCS has been studied in healthy populations and in multiple brain disorders and has the potential to be a treatment for several neuropsychiatric conditions by virtue of its capability of influencing cognitive, motor and behavioral processes. tDCS is a generally safe technique when performed within standardized protocols in research or clinical settings. Furthermore, tDCS portability, high acceptability and user-friendly interface makes it highly appealing for telemedicine practices. The term "telemedicine" refers to the procedures, educational strategies, and care services that are remotely administered by means of different communication technologies, with the final goal of increasing access to care for individuals and for improving public health. The use of telemedicine combined with tDCS protocols is increasing, although the safety of this approach in different clinical settings awaits further assessment. While "do-it-yourself" tDCS should be discouraged due to the unknown risk of adverse events, the implementation of tele-monitored tDCS (tele-tDCS) within standardized frameworks ensuring safety, tolerability, and reproducibility may allow this technology to reach larger clinical populations and bypass some of the common barriers preventing access to health services and clinical trials. This review will discuss the current evidence supporting the feasibility of tele-tDCS paradigms and their therapeutic potential, with particular emphasis on the implications for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Alberto Cucca
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, Department of Neurology, NYU School of Medicine, 222 East 41st Street, New York, NY 10017 USA
| | - Kush Sharma
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, Department of Neurology, NYU School of Medicine, 222 East 41st Street, New York, NY 10017 USA
| | - Shashank Agarwal
- Department of Neurology, NYU School of Medicine, New York, NY USA
| | - Andrew Seth Feigin
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, Department of Neurology, NYU School of Medicine, 222 East 41st Street, New York, NY 10017 USA
| | - Milton Cesar Biagioni
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, Department of Neurology, NYU School of Medicine, 222 East 41st Street, New York, NY 10017 USA
| |
Collapse
|
622
|
Ling S, Umbach R, Raine A. Biological explanations of criminal behavior. PSYCHOLOGY, CRIME & LAW : PC & L 2019; 25:626-640. [PMID: 31327915 PMCID: PMC6640871 DOI: 10.1080/1068316x.2019.1572753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/03/2018] [Indexed: 06/10/2023]
Abstract
There is a growing literature on biological explanations of antisocial and criminal behavior. This paper provides a selective review of three specific biological factors - psychophysiology (with the focus on blunted heart rate and skin conductance), brain mechanisms (with a focus on structural and functional aberrations of the prefrontal cortex, amygdala, and striatum), and genetics (with an emphasis on gene-environment and gene-gene interactions). Overall, understanding the role of biology in antisocial and criminal behavior may help increase the explanatory power of current research and theories, as well as inform policy and treatment options.
Collapse
Affiliation(s)
- Shichun Ling
- Department of Criminology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca Umbach
- Department of Psychology, Columbia University, New York, NY, USA
- Behavioral Sciences Training in Drug Abuse Research, NYU Rory Meyers College of Nursing, New York, NY, USA
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
623
|
Adelhöfer N, Mückschel M, Teufert B, Ziemssen T, Beste C. Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition. Brain Struct Funct 2019; 224:1291-1300. [PMID: 30701308 DOI: 10.1007/s00429-019-01839-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
Medial and superior frontal theta oscillations are important for response inhibition. The norepinephrine (NE) system has been shown to modulate these oscillations possibly via gain control mechanisms, which depend on the modulation of neuron membrane potentials. Because the latter are also modulated by tDCS, the interrelation of tDCS and NE effects on superior frontal theta band activity needs investigation. We test the hypothesis that anodal tDCS affects modulatory effects of the NE system on theta band activity during inhibitory control in superior frontal regions. Using EEG beamforming, theta band activity in the superior frontal gyrus (SFG) was integrated (correlated) with the pupil diameter data as an indirect index of NE activity. In a within-subject design, healthy participants completed a response inhibition task in two sessions in which they received 2 mA anodal tDCS over the vertex, or sham stimulation. There were no behavioral effects of anodal tDCS. Yet, tDCS affected correlations between SFG theta band activity time course and the pupil diameter time course. Correlations were evident after sham stimulation (r = .701; p < .004), but absent after anodal tDCS. The observed power of this dissociation was above 95%. The data suggest that anodal tDCS may eliminate neuromodulatory effects, likely of the NE system, on theta band activity during response inhibition in a structure of the response inhibition network. The NE system and tDCS seem to target similar mechanisms important for cognitive control in the prefrontal cortex. The results provide a hint why tDCS often fails to induce overt behavioral effects and shows that neurobiological systems, which may exert similar effects as tDCS on neural processes should closely be monitored in tDCS experiments.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.,Department of Neurology, Faculty of Medicine, MS Centre Dresden, TU Dresden, Dresden, Germany
| | - Benjamin Teufert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre Dresden, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
624
|
Choi YA, Kim Y, Shin HI. Pilot study of feasibility and effect of anodal transcutaneous spinal direct current stimulation on chronic neuropathic pain after spinal cord injury. Spinal Cord 2019; 57:461-470. [PMID: 30700853 DOI: 10.1038/s41393-019-0244-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A single-blind crossover study. OBJECTIVES This study aimed to evaluate neuropathic pain in persons with spinal cord injury (SCI) after the application of transcutaneous spinal direct current stimulation (tsDCS). SETTING Outpatient Clinic of the Rehabilitation Department, Seoul National University Hospital. METHODS The effect of single sessions of both anodal and sham tsDCS (2 mA, 20 min) on chronic neuropathic pain in ten volunteers with complete motor cervical SCI was assessed. The active electrode was placed over the spinal process of the tenth thoracic vertebra and the reference electrode, at the top of the head. Pre- to post-tsDCS intervention changes in pain intensity (numeric rating scale, NRS), patient global assessment, and present pain intensity (PPI) were assessed before and after the tsDCS session (immediately post stimulation, and at 1 and 2 h post stimulation). RESULTS All participants underwent the stimulation procedure without dropout. Our results showed no significant pre- to post-treatment difference in pain intensity between the active and sham tsDCS groups. Only in the sham tsDCS stimulation, NRS and PPI scores were reduced after the stimulation session. Furthermore, in the mixed effect model analysis, the response in the second period appeared to be more favorable. CONCLUSION The results suggest that a single session of anodal tsDCS with the montage used in this study is feasible but does not have a significant analgesic effect in individuals with chronic cervical SCI. SPONSORSHIP The study was funded by Seoul National University Hospital (No. 0420160470) and Korea Workers' Compensation & Welfare Service.
Collapse
Affiliation(s)
- Young-Ah Choi
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yale Kim
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Ik Shin
- Department of Rehabilitation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
625
|
Pini L, Manenti R, Cotelli M, Pizzini FB, Frisoni GB, Pievani M. Non-Invasive Brain Stimulation in Dementia: A Complex Network Story. NEURODEGENER DIS 2019; 18:281-301. [PMID: 30695786 DOI: 10.1159/000495945] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) is emerging as a promising rehabilitation tool for a number of neurodegenerative diseases. However, the therapeutic mechanisms of NIBS are not completely understood. In this review, we will summarize NIBS results in the context of brain imaging studies of functional connectivity and metabolites to gain insight into the possible mechanisms underlying recovery. We will briefly discuss how the clinical manifestations of common neurodegenerative disorders may be related with aberrant connectivity within large-scale neural networks. We will then focus on recent studies combining resting-state functional magnetic resonance imaging with NIBS to delineate how stimulation of different brain regions induce complex network modifications, both at the local and distal level. Moreover, we will review studies combining magnetic resonance spectroscopy and NIBS to investigate how microscale changes are related to modifications of large-scale networks. Finally, we will re-examine previous NIBS studies in dementia in light of this network perspective. A better understanding of NIBS impact on the functionality of large-scale brain networks may be useful to design beneficial treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorenzo Pini
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesca B Pizzini
- Neuroradiology, Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - Giovanni B Frisoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,University Hospitals and University of Geneva, Geneva, Switzerland
| | - Michela Pievani
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy,
| |
Collapse
|
626
|
Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? Sci Rep 2019; 9:626. [PMID: 30679770 PMCID: PMC6345748 DOI: 10.1038/s41598-018-37226-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
The effects of transcranial direct current stimulation (tDCS) on motor cortical excitability are highly variable between individuals. Inter-individual differences in the electric fields generated in the brain by tDCS might play a role in the variability. Here, we explored whether these fields are related to excitability changes following anodal tDCS of the primary motor cortex (M1). Motor evoked potentials (MEPs) were measured in 28 healthy subjects before and after 20 min sham or 1 mA anodal tDCS of right M1 in a double-blind crossover design. The electric fields were individually modelled based on magnetic resonance images. Statistical analysis indicated that the variability in the MEPs could be partly explained by the electric fields, subjects with the weakest and strongest fields tending to produce opposite changes in excitability. To explain the findings, we hypothesized that the likely locus of action was in the hand area of M1, and the effective electric field component was that in the direction normal to the cortical surface. Our results demonstrate that a large part of inter-individual variability in tDCS may be due to differences in the electric fields. If this is the case, electric field dosimetry could be useful for controlling the neuroplastic effects of tDCS.
Collapse
|
627
|
Elder GJ, Colloby SJ, Firbank MJ, McKeith IG, Taylor JP. Consecutive sessions of transcranial direct current stimulation do not remediate visual hallucinations in Lewy body dementia: a randomised controlled trial. Alzheimers Res Ther 2019; 11:9. [PMID: 30658705 PMCID: PMC6339360 DOI: 10.1186/s13195-018-0465-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Complex visual hallucinations are common in Lewy body dementia (LBD) and can cause significant patient and caregiver distress. Current treatments are primarily pharmacological in nature and have limited efficacy and associated side effects. The objective of this study was to assess the effects of consecutive sessions of transcranial direct current stimulation (tDCS) on visual hallucination frequency and severity in LBD, at short-term and long-term follow-up stages. METHODS The study was a randomised, double-blind, placebo-controlled trial involving 40 participants with LBD (Mage = 75.52 years, SDage = 8.69 years) which was conducted at a single site between November 2013 and December 2017. Participants received two consecutive 20-min sessions of active (0.048 mA/cm2) or placebo tDCS, separated by a 30-min break, over 5 consecutive days. The anodal electrode was applied to the right parietal cortex (P4) and the cathodal electrode was applied to the occipital cortex (Oz). The primary outcome measure was the Neuropsychiatric Inventory (NPI) hallucinations subscale, as completed by a caregiver/informant at baseline and day 5 (short-term) follow-up, and month 1 and month 3 (long-term) follow-up. Secondary outcome measures included visual cortical excitability, as measured using transcranial magnetic stimulation, computerised attentional and visuoperceptual tasks, and measures of global cognition and cognitive fluctuations. RESULTS Complete study data were obtained from 36 participants. There was an overall improvement in visual hallucinations (NPI) for both groups at day 5 relative to baseline, with a medium-to-large effect size; however, compared to placebo, active tDCS did not result in any improvements in visual hallucinations (NPI) at day 5 relative to baseline, or at month 1 or month 3 follow-up time points. Additionally, comparisons of secondary outcome measures showed that active tDCS did not result in any improvements on any measure (visual cortical excitability, attentional and visuoperceptual tasks or cognitive measures) at any time point. CONCLUSIONS Repeated consecutive sessions of parietal anodal tDCS, and occipital cathodal tDCS, do not improve visual hallucinations or visuoperceptual function, or alter visual cortical excitability in LBD. TRIAL REGISTRATION ISRCTN, ISRCTN40214749 . Registered on 25 October 2013.
Collapse
Affiliation(s)
- Greg J. Elder
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Sean J. Colloby
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - Michael J. Firbank
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - Ian G. McKeith
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| |
Collapse
|
628
|
Steinberg F, Pixa NH, Fregni F. A Review of Acute Aerobic Exercise and Transcranial Direct Current Stimulation Effects on Cognitive Functions and Their Potential Synergies. Front Hum Neurosci 2019; 12:534. [PMID: 30687048 PMCID: PMC6336823 DOI: 10.3389/fnhum.2018.00534] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
Today, several pharmaceutic and non-pharmaceutic approaches exist to treat psychiatric and neurological diseases. Because of the lack of treatment procedures that are medication free and without severe side effects, transcranial direct current stimulation (tDCS) and aerobic exercise (AE) have been tested to explore the potential for initiating and modulating neuroplasticity in the human brain. Both tDCS and AE could support cognition and behavior in the clinical and non-clinical context to improve the recovery process within neurological or psychiatric conditions or to increase performance. As these techniques still lack meaningful effects, although they provide multiple beneficial opportunities within disease and health applications, there is emerging interest to find improved tDCS and AE protocols. Since multimodal approaches could provoke synergetic effects, a few recent studies have begun to combine tDCS and AE within different settings such as in cognitive training in health or for treatment purposes within clinical settings, all of which show superior effects compared to single technique applications. The beneficial outcomes of both techniques depend on several parameters and the understanding of neural mechanisms that are not yet fully understood. Recent studies have begun to directly combine tDCS and AE within one session, although their interactions on the behavioral, neurophysiological and neurochemical levels are entirely unclear. Therefore, this review: (a) provides an overview of acute behavioral, neurophysiological, and neurochemical effects that both techniques provoke within only one single application in isolation; (b) gives an overview regarding the mechanistic pathways; and (c) discusses potential interactions and synergies between tDCS and AE that might be provoked when directly combining both techniques. From this literature review focusing primarily on the cognitive domain in term of specific executive functions (EFs; inhibition, updating, and switching), it is concluded that a direct combination of tDCS and AE provides multiple beneficial opportunities for synergistic effects. A combination could be useful within non-clinical settings in health and for treating several psychiatric and neurologic conditions. However, there is a lack of research and there are several possibly interacting moderating parameters that must be considered and more importantly must be systematically investigated in the future.
Collapse
Affiliation(s)
- Fabian Steinberg
- Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nils Henrik Pixa
- Sport Psychology, Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
629
|
Asan AS, Gok S, Sahin M. Electrical fields induced inside the rat brain with skin, skull, and dural placements of the current injection electrode. PLoS One 2019; 14:e0203727. [PMID: 30629578 PMCID: PMC6328113 DOI: 10.1371/journal.pone.0203727] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022] Open
Abstract
Transcranial electrical stimulation (tES) is rapidly becoming an indispensable clinical tool with its different forms. Animal data are crucially needed for better understanding of the underlying mechanisms of tES. For reproducibility of results in animal experiments, the electric fields (E-Fields) inside the brain parenchyma induced by the injected currents need to be predicted accurately. In this study, we measured the electrical fields in the rat brain perpendicular to the brain surface, i.e. vertical electric field (VE-field), when the stimulation electrode was placed over the skin, skull, or dura mater through a craniotomy hole. The E-field attenuation through the skin was a few times larger than that of the skull and the presence of skin substantially reduced the VE-field peak at the cortical surface near the electrode. The VE-field declined much quicker in the gray matter underneath the pial surface than it did in the white matter, and thus the large VE-fields were contained mostly in the gray matter. The transition at the gray/white matter border caused a significant peak in the VE-field, as well as at other local inhomogeneties. A conductivity value of 0.57 S/m is predicted as a global value for the whole brain by matching our VE-field measurements to the field profile given by analytical equations for volume conductors. Finally, insertion of the current return electrode into the shoulder, submandibular, and hind leg muscles had virtually no effects on the measured E-field amplitudes in the cortex underneath the epidural electrodes.
Collapse
Affiliation(s)
- Ahmet S. Asan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Sinan Gok
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
630
|
Dwyer GE, Craven AR, Hirnstein M, Kompus K, Assmus J, Ersland L, Hugdahl K, Grüner R. No Effects of Anodal tDCS on Local GABA and Glx Levels in the Left Posterior Superior Temporal Gyrus. Front Neurol 2019; 9:1145. [PMID: 30671014 PMCID: PMC6332511 DOI: 10.3389/fneur.2018.01145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
A number of studies investigating the biological effects of transcranial direct current stimulation (tDCS) using magnetic resonance spectroscopy (MRS) have found that it may affect local levels of γ-aminobutyric acid (GABA), glutamate and glutamine (commonly measured together as “Glx” in spectroscopy), and N-acetyl aspartate (NAA), however, these effects depend largely on the stimulation parameters used and the cortical area targeted. Given that different cortical areas may respond to stimulation in different ways, the purpose of this experiment was to assess the as yet unexplored biological effects of tDCS in the posterior superior temporal gyrus (pSTG), an area that has attracted some attention as a potential target for the treatment of auditory verbal hallucinations in schizophrenia patients. Biochemical changes were monitored using continuous, online MRS at a field strength of 3 Tesla. Performing intrascanner stimulation, with continuous spectroscopy before, during and after stimulation, permitted the assessment of acute effects of tDCS that would otherwise be lost when simply comparing pre- and post-stimulation differences. Twenty healthy participants underwent a repeated-measures experiment in which they received both active anodal and sham intrascanner stimulation in a stratified, randomized, double-blind experiment. No significant changes in GABA, Glx, or NAA levels were observed as a result of anodal stimulation, or between active and sham stimulation, suggesting that a single session of anodal tDCS to the pSTG may be less effective than in other cortical areas that have been similarly investigated.
Collapse
Affiliation(s)
- Gerard E Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Marco Hirnstein
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Jörg Assmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Division of Psychiatry, Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
631
|
Kohli S, Casson AJ. Removal of Gross Artifacts of Transcranial Alternating Current Stimulation in Simultaneous EEG Monitoring. SENSORS 2019; 19:s19010190. [PMID: 30621077 PMCID: PMC6338981 DOI: 10.3390/s19010190] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/08/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Transcranial electrical stimulation is a widely used non-invasive brain stimulation approach. To date, EEG has been used to evaluate the effect of transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS), but most studies have been limited to exploring changes in EEG before and after stimulation due to the presence of stimulation artifacts in the EEG data. This paper presents two different algorithms for removing the gross tACS artifact from simultaneous EEG recordings. These give different trade-offs in removal performance, in the amount of data required, and in their suitability for closed loop systems. Superposition of Moving Averages and Adaptive Filtering techniques are investigated, with significant emphasis on verification. We present head phantom testing results for controlled analysis, together with on-person EEG recordings in the time domain, frequency domain, and Event Related Potential (ERP) domain. The results show that EEG during tACS can be recovered free of large scale stimulation artifacts. Previous studies have not quantified the performance of the tACS artifact removal procedures, instead focusing on the removal of second order artifacts such as respiration related oscillations. We focus on the unresolved challenge of removing the first order stimulation artifact, presented with a new multi-stage validation strategy.
Collapse
Affiliation(s)
- Siddharth Kohli
- School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
| | - Alexander J Casson
- School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
632
|
Indahlastari A, Chauhan M, Sadleir RJ. Benchmarking transcranial electrical stimulation finite element models: a comparison study. J Neural Eng 2019; 16:026019. [PMID: 30605892 DOI: 10.1088/1741-2552/aafbbd] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To compare field measure differences in simulations of transcranial electrical stimulation (tES) generated by variations in finite element (FE) models due to boundary condition specification, use of tissue compartment smoothing filters, and use of free or structured tetrahedral meshes based on magnetic resonance imaging (MRI) data. APPROACH A structural MRI head volume was acquired at 1 mm3 resolution and segmented into ten tissue compartments. Predicted current densities and electric fields were computed in segmented models using modeling pipelines involving either an in-house (block) or a commercial platform commonly used in previous FE tES studies involving smoothed compartments and free meshing procedures (smooth). The same boundary conditions were used for both block and smooth pipelines. Differences caused by varying boundary conditions were examined using a simple geometry. Percentage differences of median current density values in five cortical structures were compared between the two pipelines for three electrode montages (F3-right supraorbital, T7-T8 and Cz-Oz). MAIN RESULTS Use of boundary conditions commonly used in previous tES FE studies produced asymmetric current density profiles in the simple geometry. In head models, median current density differences produced by the two pipelines, using the same boundary conditions, were up to 6% (isotropic) and 18% (anisotropic) in structures targeted by each montage. Tangential electric field measures calculated via either pipeline were within the range of values reported in the literature, when averaged over cortical surface patches. SIGNIFICANCE Apparently equivalent boundary settings may affect predicted current density outcomes and care must be taken in their specification. Smoothing FE model compartments may not be necessary, and directly translated, voxellated tissue boundaries at 1 mm3 resolution may be sufficient for use in tES FE studies, greatly reducing processing times. The findings here may be used to inform future current density modeling studies.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | | | | |
Collapse
|
633
|
Xu Y, Qiu Z, Zhu J, Liu J, Wu J, Tao J, Chen L. The modulation effect of non-invasive brain stimulation on cognitive function in patients with mild cognitive impairment: a systematic review and meta-analysis of randomized controlled trials. BMC Neurosci 2019; 20:2. [PMID: 30602377 PMCID: PMC6317253 DOI: 10.1186/s12868-018-0484-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/21/2018] [Indexed: 01/17/2023] Open
Abstract
Background To prevent and control dementia, many scholars have focused on the transition stage between normal ageing and dementia, mild cognitive impairment (MCI) which is a key interventional target for dementia. Studies have shown that non-invasive brain stimulation (NIBS) is beneficial to improve cognitive function of MCI patients. However, whether NIBS is conducive to the protection of cognitive ability in MCI patients remains unknown due to limited evidence. The aim of the study was to systematically evaluate the modulation effect of NIBS on cognitive function (global cognitive ability and specific domains of cognition) in patients with MCI. Results A total of 11 RCTs comprising a total of 367 MCI participants. Meta-analysis showed that NIBS can significantly improve global cognition (n = 271, SMD = 0.94, 95% CI 0.47–1.41, p < 0.0001) and verbal fluency (n = 72, MD = 2.03, 95% CI 0.17–3.88, p = 0.03). However, there was no significant improvement in other domains of cognition. Conclusions NIBS has a positive effect on improving global cognitive function and verbal fluency. At the same time, it has a small positive effect on improving executive function. However, these findings should be interpreted carefully due to the limitations of the study. Electronic supplementary material The online version of this article (10.1186/s12868-018-0484-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Xu
- Rehabilitation Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhijie Qiu
- Rehabilitation Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jingfang Zhu
- Rehabilitation Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiao Liu
- National Rehabilitation Research Center of Traditional Chinese Medicine, Fuzhou, China
| | - Jingsong Wu
- Rehabilitation Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Rehabilitation Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
634
|
Fonteneau C, Mondino M, Arns M, Baeken C, Bikson M, Brunoni AR, Burke MJ, Neuvonen T, Padberg F, Pascual-Leone A, Poulet E, Ruffini G, Santarnecchi E, Sauvaget A, Schellhorn K, Suaud-Chagny MF, Palm U, Brunelin J. Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul 2019; 12:668-673. [PMID: 30639235 DOI: 10.1016/j.brs.2018.12.977] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique increasingly used to modulate neural activity in the living brain. In order to establish the neurophysiological, cognitive or clinical effects of tDCS, most studies compare the effects of active tDCS to those observed with a sham tDCS intervention. In most cases, sham tDCS consists in delivering an active stimulation for a few seconds to mimic the sensations observed with active tDCS and keep participants blind to the intervention. However, to date, sham-controlled tDCS studies yield inconsistent results, which might arise in part from sham inconsistencies. Indeed, a multiplicity of sham stimulation protocols is being used in the tDCS research field and might have different biological effects beyond the intended transient sensations. Here, we seek to enlighten the scientific community to this possible confounding factor in order to increase reproducibility of neurophysiological, cognitive and clinical tDCS studies.
Collapse
Affiliation(s)
- Clara Fonteneau
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Marine Mondino
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Martijn Arns
- neuroCare Group GmbH, Munich, Germany; Research Institute Brainclinics, Nijmegen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York City, NY, USA
| | - Andre R Brunoni
- Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany; Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Matthew J Burke
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Emmanuel Poulet
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Giulio Ruffini
- Neuroelectrics Corporation, 210 Broadway, 02139, Cambridge, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anne Sauvaget
- CHU de Nantes, Psychiatric Neuromodulation Unit, Addictology and Liaison-Psychiatry Department, Nantes, France; Laboratory "Movement, Interactions, Performance" (E.A. 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | | | - Marie-Françoise Suaud-Chagny
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Jérome Brunelin
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, France; University Lyon 1, Villeurbanne, F-69000, France; Centre Hospitalier Le Vinatier, Lyon, F-69000, France.
| |
Collapse
|
635
|
Alkharan A, Almasoud AS, Alkahtani LS, Bashir S. Effect of Anodal Transcranial Direct Current Stimulation over the Motor Cortex for Cognition. BRAIN & NEUROREHABILITATION 2019. [DOI: 10.12786/bn.2019.12.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Afnan Alkharan
- Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
636
|
Sedgmond J, Lawrence NS, Verbruggen F, Morrison S, Chambers CD, Adams RC. Prefrontal brain stimulation during food-related inhibition training: effects on food craving, food consumption and inhibitory control. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181186. [PMID: 30800367 PMCID: PMC6366210 DOI: 10.1098/rsos.181186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Modulation of dorsolateral prefrontal cortex (DLPFC) activity using non-invasive brain stimulation has been shown to reduce food craving as well as food consumption. Using a preregistered design, we examined whether bilateral transcranial direct current stimulation (tDCS) of the DLPFC could reduce food craving and consumption in healthy participants when administered alongside the cognitive target of inhibitory control training. Participants (N = 172) received either active or sham tDCS (2 mA; anode F4, cathode F3) while completing a food-related Go/No-Go task. State food craving, ad-lib food consumption and response inhibition were evaluated. Compared with sham stimulation, we found no evidence for an effect of active tDCS on any of these outcome measures in a predominantly female sample. Our findings raise doubts about the effectiveness of single-session tDCS on food craving and consumption. Consideration of individual differences, improvements in tDCS protocols and multi-session testing are discussed.
Collapse
Affiliation(s)
- Jemma Sedgmond
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, UK
| | - Natalia S. Lawrence
- School of Psychology, University of Exeter, Washington Singer Building, Exeter EX4 4QG, UK
| | - Frederick Verbruggen
- School of Psychology, University of Exeter, Washington Singer Building, Exeter EX4 4QG, UK
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Sinead Morrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, UK
| | - Christopher D. Chambers
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, UK
| | - Rachel C. Adams
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
637
|
Abstract
Healthy aging is associated with numerous deficits in cognitive function, which have been attributed to changes within the prefrontal cortex (PFC). This chapter summarizes some of the most prominent cognitive changes associated with age-related alterations in the anatomy and physiology of the PFC. Specifically, aging of the PFC results in deficient aspects of cognitive control, including sustained attention, selective attention, inhibitory control, working memory, and multitasking abilities. Yet, not all cognitive functions associated with the PFC exhibit age-related declines, such as arithmetic, comprehension, emotion perception, and emotional control. Moreover, not all older adults exhibit declines in cognition. Multiple life-course and lifestyle factors, as well as genetics, play a role in the trajectory of cognitive performance across the life span. Thus many adults retain cognitive function well into advanced age. Moreover, the brain remains plastic throughout life and there is increasing evidence that most age-related declines in cognition can be remediated by various methods such as physical exercise, cognitive training, or noninvasive brain stimulation. Overall, because cognitive aging is associated with numerous life-course and lifestyle factors, successful aging likely begins in early life, while maintaining cognition or remediating declines is a life-long process.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Departments of Physiology and Psychiatry, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
638
|
Kortteenniemi A, Lehto SM, Javadi AH. Delayed, distant skin lesions after transcranial direct current stimulation. Brain Stimul 2019; 12:204-206. [DOI: 10.1016/j.brs.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/27/2022] Open
|
639
|
Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimul 2018; 12:593-605. [PMID: 30630690 DOI: 10.1016/j.brs.2018.12.227] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been used to improve exercise performance, though the protocols used, and results found are mixed. OBJECTIVE We aimed to analyze the effect of tDCS on improving exercise performance. METHODS A systematic search was performed on the following databases, until December 2017: PubMed/MEDLINE, Embase, Web of Science, SCOPUS, and SportDiscus. Full-text articles that used tDCS for exercise performance improvement in adults were included. We compared the effect of anodal (anode near nominal target) and cathodal (cathode near nominal target) tDCS to a sham/control condition on the outcome measure (performance in isometric, isokinetic or dynamic strength exercise and whole-body exercise). RESULTS 22 studies (393 participants) were included in the qualitative synthesis and 11 studies (236 participants) in the meta-analysis. The primary motor cortex (M1) was the main nominal tDCS target (n = 16; 72.5%). A significant effect favoring anodal tDCS (a-tDCS) applied before exercise over M1 was found on cycling time to exhaustion (mean difference = 93.41 s; 95%CI = 27.39 s-159.43 s) but this result was strongly influenced by one study (weight = 84%), no effect was found for cathodal tDCS (c-tDCS). No significant effect was found for a-tDCS applied on M1 before or during exercise on isometric muscle strength of the upper or lower limbs. Studies regarding a-tDCS over M1 on isokinetic muscle strength presented mixed results. Individual results of studies using a-tDCS applied over the prefrontal and motor cortices either before or during dynamic muscle strength testing showed positive results, but performing meta-analysis was not possible. CONCLUSION For the protocols tested, a-tDCS but not c-tDCS vs. sham over M1 improved exercise performance in cycling only. However, this result was driven by a single study, which when removed was no longer significant. Further well-controlled studies with larger sample sizes and broader exploration of the tDCS montages and doses are warranted.
Collapse
|
640
|
Sensorimotor Robotic Measures of tDCS- and HD-tDCS-Enhanced Motor Learning in Children. Neural Plast 2018; 2018:5317405. [PMID: 30662456 PMCID: PMC6312578 DOI: 10.1155/2018/5317405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify complex sensorimotor functions to better understand mechanisms of motor learning. We aimed to characterize changes in sensorimotor function induced by tDCS and HD-tDCS paired motor learning in children within an interventional trial. Healthy, right-handed children (12–18 y) were randomized to anodal tDCS, HD-tDCS, or sham targeting the right primary motor cortex during left-hand Purdue pegboard test (PPT) training over five consecutive days. A KINARM robotic protocol quantifying proprioception, kinesthesia, visually guided reaching, and an object hit task was completed at baseline, posttraining, and six weeks later. Effects of the treatment group and training on changes in sensorimotor parameters were explored. Twenty-four children (median 15.5 years, 52% female) completed all measures. Compared to sham, both tDCS and HD-tDCS demonstrated enhanced motor learning with medium effect sizes. At baseline, multiple KINARM measures correlated with PPT performance. Following training, visually guided reaching in all groups was faster and required less corrective movements in the trained arm (H(2) = 9.250, p = 0.010). Aspects of kinesthesia including initial direction error improved across groups with sustained effects at follow-up (H(2) = 9.000, p = 0.011). No changes with training or stimulation were observed for position sense. For the object hit task, the HD-tDCS group moved more quickly with the right hand compared to sham at posttraining (χ2(2) = 6.255, p = 0.044). Robotics can quantify complex sensorimotor function within neuromodulator motor learning trials in children. Correlations with PPT performance suggest that KINARM metrics can assess motor learning effects. Understanding how tDCS and HD-tDCS enhance motor learning may be improved with robotic outcomes though specific mechanisms remain to be defined. Exploring mechanisms of neuromodulation may advance therapeutic approaches in children with cerebral palsy and other disabilities.
Collapse
|
641
|
Marron EM, Viejo-Sobera R, Cuatrecasas G, Redolar-Ripoll D, Lorda PG, Datta A, Bikson M, Magerowski G, Alonso-Alonso M. Prefronto-cerebellar neuromodulation affects appetite in obesity. Int J Obes (Lond) 2018; 43:2119-2124. [PMID: 30538282 PMCID: PMC6559868 DOI: 10.1038/s41366-018-0278-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/15/2018] [Accepted: 11/10/2018] [Indexed: 11/23/2022]
Abstract
Human neuroimaging studies have consistently reported changes in cerebellar function and integrity in association with obesity. To date, however, the nature of this link has not been studied directly. Emerging evidence suggests a role for the cerebellum in higher cognitive functions through reciprocal connections with the prefrontal cortex. The purpose of this exploratory study was to examine appetite changes associated with noninvasive prefronto-cerebellar neuromodulation in obesity. 12 subjects with class I obesity (mean BMI 32.9 kg/m2) underwent a randomized, single-blinded, sham-controlled, crossover study, during which they received transcranial direct current stimulation (tDCS; active/sham) aimed at simultaneously enhancing the activity of the prefrontal cortex and decreasing the activity of the cerebellum. Changes in appetite (state and food-cue-triggered) and performance in a food-modified working memory task were evaluated. We found that active tDCS caused an increase in hunger and desire to eat following food-cue exposure. In line with these data, subjects also tended to make more errors during the working memory task. No changes in basic motor performance occurred. This study represents the first demonstration that prefronto-cerebellar neuromodulation can influence appetite in individuals with obesity. While preliminary, our findings support a potential role for prefronto-cerebellar pathways in the behavioral manifestations of obesity.
Collapse
Affiliation(s)
- Elena M Marron
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain. .,Laboratory of Bariatric and Nutritional Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Guillem Cuatrecasas
- Endocrinology Department, Clínica Sagrada Familia. Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Diego Redolar-Ripoll
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Pilar García Lorda
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | | | - Marom Bikson
- Department of Biomedical Engineering, City College of New York (CCNY), New York, NY, USA
| | - Greta Magerowski
- Laboratory of Bariatric and Nutritional Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Miguel Alonso-Alonso
- Laboratory of Bariatric and Nutritional Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
642
|
Vicario CM, Salehinejad MA, Felmingham K, Martino G, Nitsche MA. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. Neurosci Biobehav Rev 2018; 96:219-231. [PMID: 30543906 DOI: 10.1016/j.neubiorev.2018.12.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
The interest in the use of non-invasive brain stimulation for enhancing neural functions and reducing symptoms in anxiety disorders is growing. Based on the DSM-V classification for anxiety disorders, we examined all available research using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) for the treatment of specific phobias, social anxiety disorder, panic disorder, agoraphobia, and generalized anxiety disorder. A systematic literature search conducted in PubMed and Google Scholar databases provided 26 results: 12 sham-controlled studies and 15 not sham-controlled studies. With regard to the latter sub-group of studies, 9 were case reports, and 6 open label studies. Overall, our work provides preliminary evidence that both, excitatory stimulation of the left prefrontal cortex and inhibitory stimulation of the right prefrontal cortex can reduce symptom severity in anxiety disorders. The current results are discussed in the light of a model for the treatment for anxiety disorders via non-invasive brain stimulation, which is based on up-/downregulation mechanisms and might serve as guide for future systematic investigations in the field.
Collapse
Affiliation(s)
- C M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy; Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; School of Psychology, University of Tasmania, Hobart, TAS, Australia.
| | - Mohammad Ali Salehinejad
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - K Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| | - G Martino
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - M A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
643
|
Efficacy of Invasive and Non-Invasive Brain Modulation Interventions for Addiction. Neuropsychol Rev 2018; 29:116-138. [PMID: 30536145 PMCID: PMC6499746 DOI: 10.1007/s11065-018-9393-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
It is important to find new treatments for addiction due to high relapse rates despite current interventions and due to expansion of the field with non-substance related addictive behaviors. Neuromodulation may provide a new type of treatment for addiction since it can directly target abnormalities in neurocircuits. We review literature on five neuromodulation techniques investigated for efficacy in substance related and behavioral addictions: transcranial direct current stimulation (tDCS), (repetitive) transcranial magnetic stimulation (rTMS), EEG, fMRI neurofeedback and deep brain stimulation (DBS) and additionally report on effects of these interventions on addiction-related cognitive processes. While rTMS and tDCS, mostly applied at the dorsolateral prefrontal cortex, show reductions in immediate craving for various addictive substances, placebo-responses are high and long-term outcomes are understudied. The lack in well-designed EEG-neurofeedback studies despite decades of investigation impedes conclusions about its efficacy. Studies investigating fMRI neurofeedback are new and show initial promising effects on craving, but future trials are needed to investigate long-term and behavioral effects. Case studies report prolonged abstinence of opioids or alcohol with ventral striatal DBS but difficulties with patient inclusion may hinder larger, controlled trials. DBS in neuropsychiatric patients modulates brain circuits involved in reward processing, extinction and negative-reinforcement that are also relevant for addiction. To establish the potential of neuromodulation for addiction, more randomized controlled trials are needed that also investigate treatment duration required for long-term abstinence and potential synergy with other addiction interventions. Finally, future advancement may be expected from tailoring neuromodulation techniques to specific patient (neurocognitive) profiles.
Collapse
|
644
|
Hughes S, Grimsey S, Strutton PH. Primary Motor Cortex Transcranial Direct Current Stimulation Modulates Temporal Summation of the Nociceptive Withdrawal Reflex in Healthy Subjects. PAIN MEDICINE 2018; 20:1156-1165. [DOI: 10.1093/pm/pny200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sam Hughes
- The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Sybil Grimsey
- The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Paul H Strutton
- The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
645
|
Dobbs B, Pawlak N, Biagioni M, Agarwal S, Shaw M, Pilloni G, Bikson M, Datta A, Charvet L. Generalizing remotely supervised transcranial direct current stimulation (tDCS): feasibility and benefit in Parkinson's disease. J Neuroeng Rehabil 2018; 15:114. [PMID: 30522497 PMCID: PMC6284269 DOI: 10.1186/s12984-018-0457-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has been shown to improve common symptoms of neurological disorders like depressed mood, fatigue, motor deficits and cognitive dysfunction. tDCS requires daily treatment sessions in order to be effective. We developed a remotely supervised tDCS (RS-tDCS) protocol for participants with multiple sclerosis (MS) to increase accessibility of tDCS, reducing clinician, patient, and caregiver burden. The goal of this protocol is to facilitate home use for larger trials with extended treatment periods. In this study we determine the generalizability of RS-tDCS paired with cognitive training (CT) by testing its feasibility in participants with Parkinson’s disease (PD). Methods Following the methods in our MS protocol development, we enrolled sixteen participants (n = 12 male, n = 4 female; mean age 66 years) with PD to complete ten open-label sessions of RS-tDCS paired with CT (2.0 mA × 20 min) at home under the remote supervision of a trained study technician. Tolerability data were collected before, during, and after each individual session. Baseline and follow-up measures included symptom inventories (fatigue and sleep) and cognitive assessments. Results RS-tDCS was feasible and tolerable for patients with PD, with at-home access leading to high protocol compliance. Side effects were mostly limited to mild sensations of transient itching and burning under the electrode sites. Similar to prior finding sin MS, we found preliminary efficacy for improvement of fatigue and cognitive processing speed in PD. Conclusions RS-tDCS paired with CT is feasible for participants with PD to receive at home treatment. Signals of benefit for reduced fatigue and improved cognitive processing speed are consistent across the PD and MS samples. RS-tDCS can be generalized to provide tDCS to a range of patients with neurologic disorders for at-home rehabilitation. Trial registration ClinicalTrials.gov Identifier: NCT02746705. Registered April 21st 2016.
Collapse
Affiliation(s)
- Bryan Dobbs
- New York University Langone Health, New York, USA
| | | | | | | | - Michael Shaw
- New York University Langone Health, New York, USA
| | - Giuseppina Pilloni
- New York University Langone Health, New York, USA.,Department of Mechanical Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, Cagliari, 09123, Italy
| | | | | | - Leigh Charvet
- New York University Langone Health, New York, USA. .,NYU Comprehensive MS Care Center, 240 East 38th Street, 20th Floor, New York, NY, 10016, USA.
| |
Collapse
|
646
|
Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects. Neural Plast 2018; 2018:8525706. [PMID: 30627150 PMCID: PMC6304915 DOI: 10.1155/2018/8525706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 01/18/2023] Open
Abstract
Background Phosphene generation is an objective physical measure of potential transcranial alternating current stimulation (tACS) biological side effects. Interpretations from phosphene analysis can serve as a first step in understanding underlying mechanisms of tACS in healthy human subjects and assist validation of computational models. Objective/Hypothesis This preliminary study introduces and tests methods to analyze predicted phosphene occurrence using computational head models constructed from tACS recipients against verbal testimonies of phosphene sensations. Predicted current densities in the eyes and the occipital lobe were also verified against previously published threshold values for phosphenes. Methods Six healthy subjects underwent 10 Hz tACS while being imaged in an MRI scanner. Two different electrode montages, T7-T8 and Fpz-Oz, were used. Subject ratings of phosphene experience were collected during tACS and compared against current density distributions predicted in eye and occipital lobe regions of interest (ROIs) determined for each subject. Calculated median current densities in each ROI were compared to minimum thresholds for phosphene generation. Main Results All subjects reported phosphenes, and predicted median current densities in ROIs exceeded minimum thresholds for phosphenes found in the literature. Higher current densities in the eyes were consistently associated with decreased phosphene generation for the Fpz-Oz montage. There was an overall positive association between phosphene perceptions and current densities in the occipital lobe. Conclusions These methods may have promise for predicting phosphene generation using data collected during in-scanner tACS sessions and may enable better understanding of phosphene origin. Additional empirical data in a larger cohort is required to fully test the robustness of the proposed methods. Future studies should include additional montages that could dissociate retinal and occipital stimulation.
Collapse
|
647
|
Lanina AA, Feurra M, Gorbunova ES. No Effect of the Right Posterior Parietal Cortex tDCS in Dual-Target Visual Search. Front Psychol 2018; 9:2112. [PMID: 30483172 PMCID: PMC6240658 DOI: 10.3389/fpsyg.2018.02112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022] Open
Abstract
“Subsequent search misses” represent a decrease in accuracy at detecting a second target in a visual search task. In this study, we tested the possibility to modulate this effect via inhibition of the right posterior parietal cortex trough transcranial direct current stimulation (tDCS). The target stimuli were T-shapes presented among L-shaped distractors. The participant’s task was to detect targets or to report their absence. For each trial, targets could be represented by one high-salient target, one low-salient target, two different targets (one high salient and one low salient), two high salient targets, two low salient targets, or no targets at all (catch-trials). Offline tDCS was applied over the right (target site) or left (control site) posterior parietal cortex. Sham stimulation over the right posterior parietal cortex was included as a control (placebo). Stimulation lasted for 10 min. Afterward, participants were asked to perform the experiment. Our findings suggest that stimulation did not modulate any of the task conditions, suggesting potential limitation of the study: either tDCS was not enough powerful to modulate the task performance or the task was too easy to be modulated by stimulation.
Collapse
Affiliation(s)
- Alyona A Lanina
- Laboratory of Digital Interface User's Cognitive Psychology, National Research University Higher School of Economics, Moscow, Russia
| | - Matteo Feurra
- Centre for Cognition & Decision Making, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Elena S Gorbunova
- Laboratory of Digital Interface User's Cognitive Psychology, School of Psychology, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
648
|
Paradoxical, causal effects of sensory gain modulation on motor inhibitory control - a tDCS, EEG-source localization study. Sci Rep 2018; 8:17486. [PMID: 30504787 PMCID: PMC6269458 DOI: 10.1038/s41598-018-35879-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
Response inhibition is a key component of executive functioning, but the role of perceptual processes has only recently been focused. Although the interrelation of incoming information and resulting behavioural (motor) effects is well-known to depend on gain control mechanisms, the causal role of sensory gain modulation for response inhibition is elusive. We investigate it using a somatosensory response inhibition (Go/Nogo) task and examine the effects of parietal (somatosensory) cathodal and sham tDCS stimulation on a behavioural and neurophysiological level. For the latter, we combine event-related potential (ERP) and source localization analyses. Behavioural results reveal that cathodal stimulation leads to superior inhibition performance as compared to sham stimulation depending on the intensity of tDCS stimulation. The neurophysiological data show that an early (perceptual) subprocess of the Nogo-N2 ERP-component is differentially modulated by the type of stimulation but not a later (response-related) Nogo-N2 subcomponent. Under cathodal stimulation, the early N2 amplitude is reduced and the right inferior frontal gyrus (BA45) is less active. Cathodal tDCS likely enhances inhibition performance via decreasing the efficiency of gain control and the impact of sensory stimuli to trigger prepotent responses. Thereby, response inhibition processes, associated with structures of the response inhibition network, become less demanded.
Collapse
|
649
|
Brunyé TT, Smith AM, Horner CB, Thomas AK. Verbal long-term memory is enhanced by retrieval practice but impaired by prefrontal direct current stimulation. Brain Cogn 2018; 128:80-88. [PMID: 30414699 DOI: 10.1016/j.bandc.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 10/27/2022]
Abstract
Retrieval practice involves repeatedly testing a student during the learning experience, reliably conferring learning advantages relative to repeated study. Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (dlPFC) has also been shown to confer learning advantages for verbal memory, though research is equivocal. The present study examined the effects of retrieval versus study practice with or without left dlPFC tDCS on verbal episodic memory. Participants (N = 150) experienced either retrieval practice or study practice, and active anodal, active cathodal, or sham tDCS while encoding word lists, and then returned two days later for a final recall test. Three primary patterns emerged: first, during encoding, tDCS did not influence recall rates in the retrieval practice group. Second, during final recall, participants in the retrieval practice groups recalled more than those in the study practice groups. Finally, during final recall, anodal tDCS decreased recall relative to sham and cathodal stimulation, suggesting that it interfered with developing highly detailed memories that could be relied upon for subsequent recollection. Data support existing research demonstrating the effectiveness of retrieval practice as a learning strategy, but also suggest that anodal dlPFC stimulation can induce long-term negative impacts on verbal episodic memory retrieval.
Collapse
Affiliation(s)
- Tad T Brunyé
- Tufts University, Center for Applied Brain & Cognitive Sciences, Medford, MA 02155, USA; Tufts University, Department of Psychology, Medford, MA 02155, USA; U.S. Army Natick Soldier RDEC, Cognitive Sciences, Natick, MA 01760, USA.
| | - Amy M Smith
- Tufts University, Center for Applied Brain & Cognitive Sciences, Medford, MA 02155, USA
| | - Carlene B Horner
- Tufts University, Center for Applied Brain & Cognitive Sciences, Medford, MA 02155, USA
| | - Ayanna K Thomas
- Tufts University, Department of Psychology, Medford, MA 02155, USA
| |
Collapse
|
650
|
Transcranial Direct Current Stimulation in Pediatric Motor Disorders: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2018; 100:724-738. [PMID: 30414398 DOI: 10.1016/j.apmr.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To systematically examine the safety and effectiveness of transcranial direct current stimulation (tDCS) interventions in pediatric motor disorders. DATA SOURCES PubMed, EMBASE, Cochrane, CINAHL, Web of Science, and ProQuest databases were searched from inception to August 2018. STUDY SELECTION tDCS randomized controlled trials (RCTs), observational studies, conference proceedings, and dissertations in pediatric motor disorders were included. Two authors independently screened articles based on predefined inclusion criteria. DATA EXTRACTION Data related to participant demographics, intervention, and outcomes were extracted by 2 authors. Quality assessment was independently performed by 2 authors. DATA SYNTHESIS A total of 23 studies involving a total of 391 participants were included. There was no difference in dropout rates between active (1 of 144) and sham (1 of 144) tDCS groups, risk difference 0.0, 95% confidence interval (-.05 to .04). Across studies, the most common adverse effects in the active group were tingling (17.2%), discomfort (8.02%), itching (6.79%), and skin redness (4%). Across 3 studies in children with cerebral palsy, tDCS significantly improved gait velocity (MD=.23; 95% confidence interval [0.13-0.34]; P<.0005), stride length (MD=0.10; 95% confidence interval [0.05-0.15]; P<.0005), and cadence (MD=15.7; 95% confidence interval [9.72-21.68]; P<.0005). Mixed effects were found on balance, upper extremity function, and overflow movements in dystonia. CONCLUSION Based on the studies reviewed, tDCS is a safe technique in pediatric motor disorders and may improve some gait measures and involuntary movements. Research to date in pediatric motor disorders shows limited effectiveness in improving balance and upper extremity function. tDCS may serve as a potential adjunct to pediatric rehabilitation; to better understand if tDCS is beneficial for pediatric motor disorders, more well-designed RCTs are needed.
Collapse
|