601
|
Molecular identification of an MHC-independent ligand recognized by a human {alpha}/{beta} T-cell receptor. Blood 2011; 117:4816-25. [PMID: 21300979 DOI: 10.1182/blood-2010-11-317743] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During an analysis of T-cell responses against human renal cell carcinoma (RCC), we identified a CD4(+) T-cell line that showed TCR-mediated recognition and lysis of nearly all RCC lines regardless of MHC type. We have now elucidated the nature of the ligand for this α/β TCR, and it contains no MHC-related moiety and does not involve classic peptide processing. First, matrix metalloproteinase 14 (MMP14) expressed on RCC cells releases membrane-bound TRAIL expressed by the T cell; then, soluble TRAIL binds to its receptor DR4 (TRAIL-R1), which is expressed on tumor cells, and this TRAIL-DR4 complex is recognized by the TCR through a complementarity-determining region 3α (CDR3α)-mediated interaction. Direct and specific antigen-TCR interaction was demonstrated when the immobilized recombinant TRAIL/DR4 complex stimulated the TCR. In addition, amino acid substitutions in the CDR3α of the TCR either obliterated or enhanced target-specific recognition. This description of the molecular nature of a non-MHC target structure recognized by a naturally occurring α/β TCR not only broadens our concept of what the TCR can recognize, but also raises the question of whether such a T cell could be of clinical utility against RCC.
Collapse
|
602
|
Champagne E. γδ T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp (Warsz) 2011; 59:117-37. [PMID: 21298486 DOI: 10.1007/s00005-011-0118-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 01/03/2023]
Abstract
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Collapse
Affiliation(s)
- Eric Champagne
- INSERM U1043/CNRS U5282; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| |
Collapse
|
603
|
Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 2011; 33:545-67. [DOI: 10.3109/08923973.2010.513391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
604
|
Yang JQ, Wen X, Kim PJ, Singh RR. Invariant NKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1512-20. [PMID: 21209282 PMCID: PMC3039137 DOI: 10.4049/jimmunol.1002373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoantibody production is a hallmark of autoimmune diseases, such as lupus and rheumatoid arthritis. Accumulating evidence suggests a role of invariant NKT (iNKT) cells in their pathogenesis. Mechanisms underlying the role of iNKT cells in these diseases, however, remain unclear. In this study, we show that iNKT cells suppress IgG anti-DNA Ab and rheumatoid factor production and reduce IL-10-secreting B cells in a contact-dependent manner, but increase total IgG production and enhance activation markers on B cells via soluble factors. In vivo reconstitution with iNKT cells also reduces autoantibody production in iNKT-deficient mice and in SCID mice implanted with B cells. Using an anti-DNA transgenic model, we found that autoreactive B cells spontaneously produce IL-10 and are activated in vivo. In the presence of activated iNKT cells, these autoreactive B cells are selectively reduced, whereas nonautoreactive B cells are markedly activated. Because iNKTs recognize CD1d, we reasoned that CD1d might play a role in the differential regulation of autoreactive versus nonautoreactive B cells by iNKT cells. Indeed, autoreactive B cells express more CD1d than nonautoreactive B cells, and CD1d deficiency in lupus mice exacerbates autoantibody production and enhances Ab response to a self-peptide but not to a foreign peptide. Importantly, iNKT cells fail to inhibit autoantibody production by CD1d-deficient B cells. Thus, iNKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner but activate nonautoreactive B cells via cytokines. Such ability of iNKTs to suppress autoantibody production, without causing global suppression of B cells, has important implications for the development of iNKT-based therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Jun-Qi Yang
- Autoimmunity and Tolerance Laboratory, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095
- University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Xiangshu Wen
- Autoimmunity and Tolerance Laboratory, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095
| | - Peter J. Kim
- Autoimmunity and Tolerance Laboratory, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095
- University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095
| |
Collapse
|
605
|
Abstract
Type 1 diabetes mellitus (T1DM) affects 1 in 300 people and the incidence of the disease is rising worldwide. T1DM is caused by chronic autoimmune destruction of the insulin-producing β-cells. The exact etiology and primary auto-antigen are not yet known. The autoimmune, chronic, and progressive nature of the disease raises the possibility of intervention, preferably by slowing down or stopping the destruction of the β-cells as early as the prediabetic stage. Since the 1980s, several attempts have been made to maintain β-cell function using immunosuppressive agents, immune modulation such as plasmapheresis, cytokine therapy, or antibody treatment. These agents were not diabetes specific; the occasionally observed beneficial effect did not compensate for the often very severe side effects. According to the latest assumption, the administration of diabetes-specific auto-antigens can elicit tolerance, which can prevent the destruction of the β-cells, hopefully without serious side effects. The authors summarize current understanding of the immunology of T1DM, review the trials on prevention, and discuss their vaccination study.
Collapse
Affiliation(s)
- Tihamer Orban
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Janos Tibor Kis
- Department of Internal Medicine, Polyclinic of the Hospitaller Brothers of St. John, Frankel Leo st. 17–19, Budapest, H-1027, Hungary
| |
Collapse
|
606
|
Harner S, Noessner E, Nadas K, Leumann-Runge A, Schiemann M, Faber FL, Heinrich J, Krauss-Etschmann S. Cord blood Vα24-Vβ11 natural killer T cells display a Th2-chemokine receptor profile and cytokine responses. PLoS One 2011; 6:e15714. [PMID: 21305060 PMCID: PMC3031538 DOI: 10.1371/journal.pone.0015714] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background The fetal immune system is characterized by a Th2 bias but it is unclear how the Th2 predominance is established. Natural killer T (NKT) cells are a rare subset of T cells with immune regulatory functions and are already activated in utero. To test the hypothesis that NKT cells are part of the regulatory network that sets the fetal Th2 predominance, percentages of Vα24+Vβ11+ NKT cells expressing Th1/Th2-related chemokine receptors (CKR) were assessed in cord blood. Furthermore, IL-4 and IFN-γ secreting NKT cells were quantified within the single CKR+ subsets. Results Cord blood NKT cells expressed the Th2-related CCR4 and CCR8 at significantly higher frequencies compared to peripheral blood NKT cells from adults, while CXCR3+ and CCR5+ cord blood NKT cells (Th1-related) were present at lower percentages. Within CD4negCD8neg (DN) NKT cells, the frequency of IL-4 producing NKT cells was significantly higher in cord blood, while frequencies of IFN-γ secreting DN NKT cells tended to be lower. A further subanalysis showed that the higher percentage of IL-4 secreting DN NKT cells was restricted to CCR3+, CCR4+, CCR5+, CCR6+, CCR7+, CCR8+ and CXCR4+ DN subsets in cord blood. This resulted in significantly decreased IFN-γ /IL-4 ratios of CCR3+, CCR6+ and CCR8+ cord blood DN NKT cells. Sequencing of VA24AJ18 T cell receptor (TCR) transcripts in sorted cord blood Vα24Vβ11 cells confirmed the invariant TCR alpha-chain ruling out the possibility that these cells represent an unusual subset of conventional T cells. Conclusions Despite the heterogeneity of cord blood NKT cells, we observed a clear Th2-bias at the phenotypic and functional level which was mainly found in the DN subset. Therefore, we speculate that NKT cells are important for the initiation and control of the fetal Th2 environment which is needed to maintain tolerance towards self-antigens as well as non-inherited maternal antigens.
Collapse
Affiliation(s)
- Susanne Harner
- Comprehensive Pneumology Center, Ludwig-Maximilians University Hospital and Helmholtz Zentrum München, Großhadern, Germany
- Children's Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, Großhadern, Germany
| | - Korinna Nadas
- Children's Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Anke Leumann-Runge
- Children's Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Matthias Schiemann
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
- Clinical Cooperation Group “Immune-Monitoring”, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabienne L. Faber
- Children's Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Krauss-Etschmann
- Comprehensive Pneumology Center, Ludwig-Maximilians University Hospital and Helmholtz Zentrum München, Großhadern, Germany
- Children's Hospital of the Ludwig-Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
607
|
Lower prevalence of circulating invariant natural killer T (iNKT) cells in patients with acute myocardial infarction undergoing primary coronary stenting. Int Immunopharmacol 2011; 11:480-4. [PMID: 21238619 DOI: 10.1016/j.intimp.2010.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/17/2010] [Accepted: 12/23/2010] [Indexed: 11/21/2022]
Abstract
Invariant natural killer T cells are a unique lymphocyte subtype that can recognize lipid antigens presented by CD1d and release pro-atherogenic cytokines such as interferon-gamma. We studied the importance of iNKT cells, other lymphocyte cell types and CD11b in the peripheral blood of patients diagnosed with acute myocardial infarction (AMI) before and after primary coronary stenting. Lymphocyte population profiles and CD11b were compared between patients with AMI and healthy control subjects using flow cytometry. Both the absolute number and cell fractions of iNKT, CD3+CD4+ lymphocytes were significant lower in AMI patients than health controls. The cell fraction of NK cells was also reduced, while there was a significant increase in the cell fractions and absolute numbers of CD3+CD8+ lymphocytes, B lymphocytes and mean fluorescence intensity values of labeled CD11b. The number of iNKT cells was significantly and positively correlated with cholesterol and low-density lipoprotein levels in blood samples from AMI patients before primary coronary stenting. Logistic regression analysis demonstrated that the absolute number of iNKT cells was a significant independent predictor for restenosis during the 243 day post-operative follow-up. This study demonstrates that iNKT cell number may be a useful predictor of clinical outcome in AMI patients with primary coronary stenting.
Collapse
|
608
|
Meehan TF, Masci AM, Abdulla A, Cowell LG, Blake JA, Mungall CJ, Diehl AD. Logical development of the cell ontology. BMC Bioinformatics 2011; 12:6. [PMID: 21208450 PMCID: PMC3024222 DOI: 10.1186/1471-2105-12-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/05/2011] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Cell Ontology (CL) is an ontology for the representation of in vivo cell types. As biological ontologies such as the CL grow in complexity, they become increasingly difficult to use and maintain. By making the information in the ontology computable, we can use automated reasoners to detect errors and assist with classification. Here we report on the generation of computable definitions for the hematopoietic cell types in the CL. RESULTS Computable definitions for over 340 CL classes have been created using a genus-differentia approach. These define cell types according to multiple axes of classification such as the protein complexes found on the surface of a cell type, the biological processes participated in by a cell type, or the phenotypic characteristics associated with a cell type. We employed automated reasoners to verify the ontology and to reveal mistakes in manual curation. The implementation of this process exposed areas in the ontology where new cell type classes were needed to accommodate species-specific expression of cellular markers. Our use of reasoners also inferred new relationships within the CL, and between the CL and the contributing ontologies. This restructured ontology can be used to identify immune cells by flow cytometry, supports sophisticated biological queries involving cells, and helps generate new hypotheses about cell function based on similarities to other cell types. CONCLUSION Use of computable definitions enhances the development of the CL and supports the interoperability of OBO ontologies.
Collapse
Affiliation(s)
- Terrence F Meehan
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Anna Maria Masci
- Dept. of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Amina Abdulla
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lindsay G Cowell
- Dept. of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Judith A Blake
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Alexander D Diehl
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Neurology, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
609
|
Wu L, Van Kaer L. Natural killer T cells in health and disease. Front Biosci (Schol Ed) 2011; 3:236-51. [PMID: 21196373 DOI: 10.2741/s148] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural killer T (NKT) cells are a subset of T lymphocytes that share surface markers and functional characteristics with both conventional T lymphocytes and natural killer cells. Most NKT cells express a semi-invariant T cell receptor that reacts with glycolipid antigens presented by the major histocompatibility complex class I-related protein CD1d on the surface of antigen-presenting cells. NKT cells become activated during a variety of infections and inflammatory conditions, rapidly producing large amounts of immunomodulatory cytokines. NKT cells can influence the activation state and functional properties of multiple other cell types in the immune system and, thus, modulate immune responses against infectious agents, autoantigens, tumors, tissue grafts and allergens. One attractive aspect of NKT cells is that their immunomodulatory activities can be readily harnessed with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid alpha-galactosylceramide. These properties of NKT cells are being exploited for therapeutic intervention to prevent or treat cancer, infections, and autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Lan Wu
- Department of Microbiology and Immunology, Room A-5301, Medical Center North, 1161 21st Avenue South, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
610
|
Lee YS, Lee KA, Lee JY, Kang MH, Song YC, Baek DJ, Kim S, Kang CY. An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine 2011; 29:417-25. [DOI: 10.1016/j.vaccine.2010.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/20/2010] [Accepted: 11/02/2010] [Indexed: 01/18/2023]
|
611
|
Jin Z, Sun R, Wei H, Gao X, Chen Y, Tian Z. Accelerated liver fibrosis in hepatitis B virus transgenic mice: involvement of natural killer T cells. Hepatology 2011; 53:219-29. [PMID: 21140473 DOI: 10.1002/hep.23983] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/04/2010] [Indexed: 02/06/2023]
Abstract
UNLABELLED The immunopathogenic process from hepatitis B virus (HBV) infection to liver fibrosis is incompletely understood because it lacks an animal model. In this study we observed the development of liver fibrosis in HBV transgenic (HBV-tg) mice and found the roles of natural killer T (NKT) cells in HBV-related liver fibrosis. We found liver fibrosis spontaneously developed in HBV-tg mice with the elevated transcription of col1a1, matrix metalloproteinase (MMP)2, and tissue inhibitor of metalloproteinase (TIMP)1. Mice were then injected with repetitive hepatotoxin carbon tetrachloride (CCl(4) ) to induce prominent liver fibrosis. After chronic CCl(4) treatment, the serum alanine aminotransferase (ALT) was higher, the liver regenerative nodules became more and bigger, and the fibrosis area was remarkably increased in HBV-tg mice than in C57BL/6 mice. Moreover, the increase in col1a1 and MMP2 transcription was greater, with a sustaining high level of TIMP1 and a greater activation of hepatic stellate cells (HSCs) in the livers of CCl(4) -treated HBV-tg mice. Our data also showed that there were more liver mononuclear cells (MNCs) in HBV-tg mice after CCl(4) injection, and Rag1(-/-) mice adoptive transferred lymphocytes from HBV-tg mice displayed increased collagen deposition. Further study demonstrated the number of liver NKT cells increased after CCl(4) treatment and NKT cells were overactivated in HBV-tg mice in the long term. It was further confirmed that NKT cells were critical for HSCs activation by depletion of NKT cells of HBV-tg mice and adoptive transfer of purified NKT cells from HBV-tg mice into recipient Rag1(-/-) mice. The inflammatory cytokines IL-4 and IL-13 produced by NKT cells played a pivotal role in HSCs activation in an in vitro coculture experiment. CONCLUSION These data suggest that NKT cells from HBV-tg mice induce the HSC activation in liver fibrogenesis.
Collapse
Affiliation(s)
- Zixue Jin
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | | | |
Collapse
|
612
|
Zhou G, Liu X, Su D, Li L, Xiao M, Wang PG. Large scale enzymatic synthesis of oligosaccharides and a novel purification process. Bioorg Med Chem Lett 2011; 21:311-4. [DOI: 10.1016/j.bmcl.2010.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 11/24/2022]
|
613
|
Veerapen N, Reddington F, Salio M, Cerundolo V, Besra GS. Synthesis of truncated analogues of the iNKT cell agonist, α-galactosyl ceramide (KRN7000), and their biological evaluation. Bioorg Med Chem 2011; 19:221-8. [PMID: 21145749 PMCID: PMC3052434 DOI: 10.1016/j.bmc.2010.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/25/2022]
Abstract
Stimulation of iNKT cells by α-galactosyl ceramide (α-GalCer), also known as KRN7000, and its truncated analogue OCH induces both Th1- and Th2-cytokines, with OCH inducing a Th2-cytokine bias. Skewing of the iNKT cells' response towards either a Th1- or Th2-cytokine profile offers potential therapeutic benefits. The length of both the acyl and the sphingosine chains in α-galactosyl ceramides is known to influence the cytokine release profile. We have synthesized analogues of α-GalCer with truncated sphingosine chains for biological evaluation, with particular emphasis on the Th1/Th2 distribution. Starting from a common precursor, d-lyxose, the sphingosine derivatives were synthesised via a straightforward Wittig condensation.
Collapse
Affiliation(s)
- Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Faye Reddington
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mariolina Salio
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Vincenzo Cerundolo
- The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
614
|
Banchet-Cadeddu A, Hénon E, Dauchez M, Renault JH, Monneaux F, Haudrechy A. The stimulating adventure of KRN 7000. Org Biomol Chem 2011; 9:3080-104. [DOI: 10.1039/c0ob00975j] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
615
|
Novak J, Lehuen A. Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 2010; 53:263-70. [PMID: 21185200 DOI: 10.1016/j.cyto.2010.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 10/06/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023]
Abstract
iNKT cells, CD1d dependent natural killer T cells are a unique population of T cells. The capacity of iNKT cells to produce regulatory cytokines first provided an indication of their regulatory potential. Later on, in experimental models as well as in patients afflicted with an auto-immune disease, such as Type 1 diabetes mellitus, multiple sclerosis, and systemic lupus erythematosus along with others, a deficit in iNKT cell number was observed, suggesting the role these cells may possibly have in the prevention of auto-immune diseases. More importantly, experimental strategies which focused on increasing the volume or stimulation of iNKT cells in laboratory animals, demonstrated an improved level of protection against the development of auto-immune diseases. This article reviews the mechanism of protection against autoimmunity by iNKT cells, discusses the obstacles against and indications for the potential use of iNKT cell manipulation in the treatment of human auto-immune diseases.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Centre of Research for Diabetes, Endocrinological Diseases and Clinical Nutrition, Czech Republic.
| | | |
Collapse
|
616
|
Bricard G, Venkataswamy MM, Yu KOA, Im JS, Ndonye RM, Howell AR, Veerapen N, Illarionov PA, Besra GS, Li Q, Chang YT, Porcelli SA. Α-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents. PLoS One 2010; 5:e14374. [PMID: 21179412 PMCID: PMC3003687 DOI: 10.1371/journal.pone.0014374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/05/2010] [Indexed: 01/22/2023] Open
Abstract
CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.
Collapse
Affiliation(s)
- Gabriel Bricard
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Manjunatha M. Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karl O. A. Yu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jin S. Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rachel M. Ndonye
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Petr A. Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Qian Li
- Department of Chemistry, National University of Singapore, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
617
|
Jervis PJ, Cox LR, Besra GS. Synthesis of a versatile building block for the preparation of 6-N-derivatized α-galactosyl ceramides: rapid access to biologically active glycolipids. J Org Chem 2010; 76:320-3. [PMID: 21155575 PMCID: PMC3018865 DOI: 10.1021/jo102064p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
A concise route to the 6-azido-6-deoxy-α-galactosyl-phytosphingosine derivative 9 is reported. Orthogonal protection of the two amino groups allows elaboration of 9 into a range of 6-N-derivatized α-galactosyl ceramides by late-stage introduction of the acyl chain of the ceramide and the 6-N-group in the sugar headgroup. Biologically active glycolipids 6 and 8 have been synthesized to illustrate the applicability of the approach.
Collapse
Affiliation(s)
- Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
618
|
Sarrabayrouse G, Corvaisier M, Ouisse LH, Bossard C, Le Mével B, Potiron L, Meurette G, Gervois N, Jotereau F. Tumor-reactive CD4+ CD8αβ+ CD103+ αβT cells: a prevalent tumor-reactive T-cell subset in metastatic colorectal cancers. Int J Cancer 2010; 128:2923-32. [PMID: 20824715 DOI: 10.1002/ijc.25640] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/12/2010] [Indexed: 01/26/2023]
Abstract
High level of T-cell infiltration in colorectal carcinomas (CRCs) is a good prognostic indicator, but the tumor reactivity of this infiltrate (tumor infiltrating lymphocytes [TIL]) is poorly documented. This study examined the presence, phenotype and functional features of tumor-reactive lymphocytes in human CRC. Freshly dissociated TIL and T cell lines were isolated from CRC samples and from some paired normal colonic mucosa. Four tumor cell lines were obtained. Autologous tumor reactivity of CRC TIL and tumor-reactive cell features were analyzed. We demonstrate the presence among CRC TIL of variable fractions (up to 18%) of double positive CD4(+) CD8αβ(+) (DP) αβ T cells. Interestingly, a high proportion (16-20%) of this TIL subset displayed tumor reactivity, whilst this was the case for no or few single positive TIL. Low levels of DP TIL were found in most CRC samples and in normal colonic mucosa, but these cells were higher in metastatic CRC. Furthermore, we showed that DP TIL were polyclonal, restricted by HLA class-I, proliferated poorly and secreted higher amounts of IL-4 and IL-13 than single positive T cells, on cognate or CD3 stimulation. DP CRC TIL also expressed CD103, confirming their mucosal origin. Increased frequencies of tumor-reactive DP TIL in metastatic CRC suggest that these cells play a role in the metastatic process of this cancer. Based on their high secretion of IL-4 and IL-13 and on previously described roles of these cytokines in cancers, we postulate that DP TIL could favor CRC growth or metastasis and/or downmodulate immune responses to these tumors.
Collapse
|
619
|
Muxel SM, Freitas do Rosário AP, Sardinha LR, Castillo-Méndez SI, Zago CA, Rodriguez-Málaga SM, Alvarez Mosig JM, D'Império Lima MR. Comparative analysis of activation phenotype, proliferation, and IFN-gamma production by spleen NK1.1(+) and NK1.1(-) T cells during Plasmodium chabaudi AS malaria. J Interferon Cytokine Res 2010; 30:417-26. [PMID: 20187775 DOI: 10.1089/jir.2009.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The NK1.1 molecule participates in NK, NKT, and T-cell activation, contributing to IFN-gamma production and cytotoxicity. To characterize the early immune response to Plasmodium chabaudi AS, spleen NK1.1(+) and NK1.1(-) T cells were compared in acutely infected C57BL/6 mice. The first parasitemia peak in C57BL/6 mice correlated with increase in CD4(+)NK1.1(+)TCR-alphabeta(+), CD8(+)NK1.1(+)TCR-alphabeta(+), and CD4(+)NK1.1(-)TCR-alphabeta(+) cell numbers per spleen, where a higher increment was observed for NK1.1(+) T cells compared to NK1.1(-) T cells. According to the ability to recognize the CD1d-alpha-GalCer tetramer, CD4(+)NK1.1(+) cells in 7-day infected mice were not predominantly invariant NKT cells. At that time, nearly all NK1.1(+) T cells and around 30% of NK1.1(-) T cells showed an experienced/activated (CD44(HI)CD69(HI)CD122(HI)) cell phenotype, with high expression of Fas and PD-L1 correlating with their low proliferative capacity. Moreover, whereas IFN-gamma production by CD4(+)NK1.1(+) cells peaked at day 4 p.i., the IFN-gamma response of CD4(+)NK1.1(-) cells continued to increase at day 5 of infection. We also observed, at day 7 p.i., 2-fold higher percentages of perforin(+) cells in CD8(+)NK1.1(+) cells compared to CD8(+)NK1.1(-) cells. These results indicate that spleen NK1.1(+) and NK1.1(-) T cells respond to acute P. chabaudi malaria with different kinetics in terms of activation, proliferation, and IFN-gamma production.
Collapse
Affiliation(s)
- Sandra Marcia Muxel
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
620
|
Mahmoud F, Habeeb F, Arifhodzic N, Haines D, Novotny L. T Lymphocyte Activation Profiles in Peripheral Blood of Long-Versus Short-Term Residents of Kuwait: Comparison with Asthmatics. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2010. [DOI: 10.47102/annals-acadmedsg.v39n11p854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: During the Arabian Gulf Wars of 1991 and 2003, the resident population of Kuwait sustained heavy exposure to environmental toxicants introduced by military activities. No comprehensive studies have been conducted to assess how exposure to the wartime and postwar environment may have altered the fundamental patterns of immune reactivity among Kuwaitis in ways that affect pathogenesis of disease. This present study addresses this issue by characterising immunological features of asthma and allergies in a Kuwaiti population that is unique and possibly correlates with toxicant exposures. Materials and Methods: Twenty-five long-term residents of Kuwait afflicted with bronchial asthma concurrent with rhinitis; and 2 healthy control groups: 18 long-term residents and 10 newcomers to Kuwait were evaluated by 2- and 3-colour flow cytometry for peripheral blood T cell subpopulation frequencies. Results: Relative to healthy, long-term residents, significantly elevated frequencies of all activated cell phenotypes were observed in the blood of the asthmatic group (P <0.05 to P <0.001), except for CD8+HLA-DR+ cells and a presumed T-regulatory (Treg) subpopulation: CD4+CD25high. The asthmatic group was also observed to have larger populations of CD3+ (pan-T cells), CD4+ (T helper cells) and CD8+ (cytotoxic T cells), CD3+CD56 (NKT-like cells) and CD56+CD16+ (NK cells) compared to healthy long-term residents. Compared to healthy recent immigrants, the blood of long-term residents contained elevated levels of CD3+CD56+ (NK-like), CD4+CD45RA+/CD45RO+ (Naive-to-Memory Transitional), but lower CD4+CD25+high (Treg) (P <0.05). Conclusions: Elevated representation of natural killer (NKT)-like and memory phenotypes may predispose long-term residents towards enhanced susceptibility for airway disease; while at the same time, reducing representation of Treg cells which are protective against airway disease, and this may increase vulnerability to these syndromes among the residents of Kuwait. These results may provide insight into the features of immunopathogenesis of asthma and allergies in Kuwait that arise as a result of the special environment of the country.
Key words: Asthma, Immune reactivity, Kuwait, Rhinitis, T cells
Collapse
Affiliation(s)
- Fadia Mahmoud
- Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | - Fatema Habeeb
- Faculty of Allied Health Sciences, Kuwait University, Kuwait
| | | | | | | |
Collapse
|
621
|
Chakravarti S, Godfrey DI. Directing traffic on the NKT-cell highway: a key role for ThPOK. Eur J Immunol 2010; 40:2372-5. [PMID: 20809492 DOI: 10.1002/eji.201040844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD1d-restricted NKT cells include CD4(+) and DN subsets, with an additional CD8(+) subset that is present in humans but not in mice. The molecular regulation of CD4/CD8 expression by NKT cells, and differentiation of these NKT-cell subsets, is poorly understood. The transcription factors GATA3 and ThPOK regulate lineage commitment of conventional MHC class II-restricted CD4(+) T cells; however, their role in CD4/CD8 expression by CD1d-restricted NKT cells is less clear. A new study in this issue of the European Journal of Immunology demonstrates a key role for ThPOK in differentiation of NKT-cell subsets. This study reveals that GATA3 and ThPOK are necessary for the development of CD4(+) NKT cells. Furthermore, ThPOK-deficient mice generate an unusual population of CD8(+) NKT cells, which are absent in control mice. This study sheds new light on the underlying molecular events leading to the emergence of distinct NKT-cell subsets.
Collapse
Affiliation(s)
- Sumone Chakravarti
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia.
| | | |
Collapse
|
622
|
Okita K, Motohashi S, Shinnakasu R, Nagato K, Yamasaki K, Sato Y, Kitamura H, Hijikata A, Yamashita M, Shimizu K, Fujii SI, Ohara O, Taniguchi M, Sakaida I, Nakayama T. A set of genes associated with the interferon-γ response of lung cancer patients undergoing α-galactosylceramide-pulsed dendritic cell therapy. Cancer Sci 2010; 101:2333-40. [PMID: 20804502 PMCID: PMC11159413 DOI: 10.1111/j.1349-7006.2010.01696.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells possess potent antitumor effects after activation with a specific glycolipid antigen, α-galactosylceramide (αGalCer). A phase I-II clinical study of αGalCer-pulsed dendritic cells (DC) to activate endogenous iNKT cells was previously performed in patients with non-small-cell lung cancer (NSCLC). In this clinical trial, the patients with increased interferon-γ (IFN-γ) production (>two-fold) in PBMC after the DC treatment (good responder group) experienced a prolonged overall survival time in comparison with the poor responder group. We extended the previous study and performed a microarray-based gene expression analysis using peripheral blood CD56(+) cells and CD56(-) CD3(+) T cells from patients enrolled in the above-mentioned clinical study. We sought to identify any biomarkers associated with the immune responses in this immunotherapy trial. Six patient samples corresponding to three subjects in the good responder group and three subjects in the poor responder group were included in the microarray analysis. Genes differentially expressed between pre-treatment and post-treatment samples were selected for analysis. Subsequently, genes that were only expressed in the good responder group or poor responder group were chosen. After these procedures, four selected genes were quantified by reverse transcriptase-polymerase chain reaction in another eight patient samples, and two genes, LTB4DH and DPYSL3, were confirmed to be candidate genes for the predictor of a good immune response. The expression profile of these two genes may be associated with the responsiveness of IFN-γ production after αGalCer-pulsed DC treatment.
Collapse
Affiliation(s)
- Kohsuke Okita
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
623
|
De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, Salio M, Middleton M, Cerundolo V. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 2010; 11:1039-46. [PMID: 20890286 PMCID: PMC3001335 DOI: 10.1038/ni.1942] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/08/2010] [Indexed: 12/15/2022]
Abstract
Neutrophils are the main effector cells during inflammation, but they can also control excessive inflammatory responses by secreting anti-inflammatory cytokines. However, the mechanisms that modulate their plasticity remain unclear. We now show that systemic serum amyloid A 1 (SAA-1) controls the plasticity of neutrophil differentiation. SAA-1 not only induced anti-inflammatory interleukin 10 (IL-10)-secreting neutrophils but also promoted the interaction of invariant natural killer T cells (iNKT cells) with those neutrophils, a process that limited their suppressive activity by diminishing the production of IL-10 and enhancing the production of IL-12. Because SAA-1-producing melanomas promoted differentiation of IL-10-secreting neutrophils, harnessing iNKT cells could be useful therapeutically by decreasing the frequency of immunosuppressive neutrophils and restoring tumor-specific immune responses.
Collapse
Affiliation(s)
- Carmela De Santo
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Ramon Arscott
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Sarah Booth
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Ioannis Karydis
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Margaret Jones
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, UK
| | - Ruth Asher
- Department of Cellular Pathology, John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, UK
| | - Mariolina Salio
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Mark Middleton
- Department of Medical Oncology, Oxford Cancer and Haematology Centre, Churchill Hospital, University of Oxford, Oxford, OX3 7LJ, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, Oxford, UK
| |
Collapse
|
624
|
Chen M, Mohtize M, Matteï MF, Villemot JP, Kohler C, Faure GC, Béné MC, de Carvalho Bittencourt M. Reduced levels of both circulating CD4+ CD25+ CD127(low/neg) and CD4+ CD8(neg) invariant natural killer regulatory T cells in stable heart transplant recipients. Clin Exp Immunol 2010; 163:104-12. [PMID: 21039425 DOI: 10.1111/j.1365-2249.2010.04281.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A cross-regulation between two regulatory T cell (T(reg) ) subsets [CD4(+) CD25(+) and invariant natural killer (NK) T - iNK T] has been described to be important for allograft tolerance induction. However, few studies have evaluated these cellular subsets in stable recipients as correlates of favourable clinical outcome after heart transplantation. T(reg) and iNK T cell levels were assayed by flow cytometry in peripheral blood samples from 44 heart transplant recipients at a 2-year interval in 38 patients, and related to clinical outcome. Multi-parameter flow cytometry used CD4/CD25/CD127 labelling to best identify T(reg) , and a standard CD3/CD4/CD8/Vα24/Vβ11 labelling strategy to appreciate the proportions of iNK T cells. Both subtypes of potentially tolerogenic cells were found to be decreased in stable heart transplant recipients, with similar or further decreased levels after 2 years. Interestingly, the patient who presented with several rejection-suggesting incidents over this period displayed a greater than twofold increase of both cell subsets. These results suggest that CD4(+) CD25(+) CD127(low/neg) T(reg) and iNK T cells could be involved in the local control of organ rejection, by modulating immune responses in situ, in clinically stable patients. The measurement of these cell subsets in peripheral blood could be useful for non-invasive monitoring of heart transplant recipients, especially in the growing context of tolerance-induction trials.
Collapse
Affiliation(s)
- M Chen
- Laboratory of Immunology Department of Cardiothoracic Surgery, University Hospital of Nancy and Nancy Université, Allée du Morvan, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
625
|
Martorelli D, Muraro E, Merlo A, Turrini R, Rosato A, Dolcetti R. Role of CD4+ cytotoxic T lymphocytes in the control of viral diseases and cancer. Int Rev Immunol 2010; 29:371-402. [PMID: 20635880 DOI: 10.3109/08830185.2010.489658] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our knowledge on the physiological role of CD4(+) T lymphocytes has improved in the last decade: available data convincingly demonstrate that, besides the 'helper' activity, CD4(+) T cells may be also endowed with lytic properties. The cytotoxic function of these effector cells has a relevant role in the control of pathogenic infections and in mediating antitumor immune responses. On these bases, several immunotherapeutic approaches exploiting the cytotoxic properties of CD4(+) T cells are under investigation. This review summarizes available data supporting the functional and therapeutic relevance of cytotoxic CD4(+) T cells, with a particular focus on Epstein-Barr virus (EBV)-related disorders.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano (PN), Italy
| | | | | | | | | | | |
Collapse
|
626
|
Leung B, Harris HW. NKT cells: the culprits of sepsis? J Surg Res 2010; 167:87-95. [PMID: 21035139 DOI: 10.1016/j.jss.2010.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 06/08/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022]
Abstract
Sepsis is currently a leading cause of death in hospital intensive care units. Previous studies suggest that the pathophysiology of sepsis involves the hyperactivation of complex pro-inflammatory cascades that include the activation of various immune cells and the exuberant secretion of pro-inflammatory cytokines by these cells. Natural killer T-cells (NKT) are a sub-lineage of T cells that share characteristics of conventional T cells and NK cells, and bridge innate and adaptive immunity. More recently, NKT cells have been implicated in microbial immunity, including the onset of sepsis. Moreover, apolipoprotein E (apoE), a component of triglyceride-rich lipoproteins, has been shown to be protective in endotoxemia and gram-negative infections in addition to its well-known role in lipid metabolism. Here, we will review the role of NKT cells in sepsis and septic shock, the immunoregulatory role of apoE in the host immune response to infection, and propose a mechanism for this immunoregulation.
Collapse
Affiliation(s)
- Briana Leung
- Department of Surgery, University of California, San Francisco, California 94143-0104, USA
| | | |
Collapse
|
627
|
Federico A, D’Aiuto E, Borriello F, Barra G, Gravina AG, Romano M, De Palma R. Fat: a matter of disturbance for the immune system. World J Gastroenterol 2010; 16:4762-4772. [PMID: 20939104 PMCID: PMC2955245 DOI: 10.3748/wjg.v16.i38.4762] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 02/06/2023] Open
Abstract
Obesity is increasingly being recognized as a risk factor for a number of benign and malignant gastrointestinal conditions. However, literature on the underlying pathophysiological mechanisms is sparse and ambiguous. There is compelling evidence that both overnutrition and undernutrition negatively interfere with the immune system. Overnutrition has been found to increase susceptibility to the development of inflammatory diseases, autoimmune diseases and cancer. In the regulation of immune and inflammatory processes, white adipose tissue plays a critical role, not only as an energy store but also as an important endocrine organ. The obese state is characterised by a low-grade systemic inflammation, mainly as a result of increased adipocytes as well as fat resident- and recruited-macrophage activity. In the past few years, various products of adipose tissue including adipokines and cytokines have been characterised and a number of pathways linking adipose tissue metabolism with the immune system have been identified. Activation of the innate immune system plays a major role in hepatic steatosis. Non-alcoholic fatty liver disease includes a wide spectrum of diseases, from pure steatosis to non-alcoholic steatohepatitis in the absence of significant alcohol consumption. Although steatosis is considered a non-progressive disease, non-alcoholic steatohepatitis may deteriorate in advanced chronic liver diseases, cirrhosis, and hepatocellular carcinoma. An important parallel between obesity-related pathology of adipose tissue and liver pertains to the emerging role of macrophages, and growing evidence suggests that Kupffer cells critically contribute to progression of non-alcoholic fatty liver disease. Moreover, a close link between specific immune activation and atherosclerosis has been well established, suggesting that fat can directly trigger immune responses. This review discusses the role of fat as "a matter of disturbance for the immune system" with a focus on hepatic steatosis.
Collapse
|
628
|
Vyth-Dreese FA, Sein J, van de Kasteele W, Dellemijn TAM, van den Bogaard C, Nooijen WJ, de Gast GC, Haanen JBAG, Bex A. Lack of anti-tumour reactivity despite enhanced numbers of circulating natural killer T cells in two patients with metastatic renal cell carcinoma. Clin Exp Immunol 2010; 162:447-59. [PMID: 20942806 DOI: 10.1111/j.1365-2249.2010.04274.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Natural killer T (NK T) cells play a central role as intermediates between innate and adaptive immune responses important to induce anti-tumour reactivity in cancer patients. In two of 14 renal cell carcinoma (RCC) patients, treated with interferon (IFN)-α, we detected significantly enhanced numbers of circulating NK T cells which were typed phenotypically and analysed for anti-tumour reactivity. These NK T cells were T cell receptor (TCR) Vα24/Vβ11(+), 6B11(+) and bound CD1d tetramers. No correlation was observed between NK T frequencies and regulatory T cells (T(regs)), which were also enhanced. NK T cells expressed CD56, CD161, CD45RO and CD69 and were predominantly CD8(+), in contrast to the circulating T cell pool that contained both CD4(+) and CD8(+) T cells, as is found in healthy individuals. It is unlikely that IFN-α triggered the high NK T frequency, as all other patients expressed low to normal NK T numbers. A parallel was observed in IFN-α-related increase in activation of NK T cells with that in conventional T and non-T cells. Normal interleukin (IL)-7, IL-12 and IL-15 plasma levels were found. In one of the patients sporadic NK T cells were detected at the tumour site. α-Galactosylceramide (αGalCer) stimulation of peripheral blood mononuclear cells or isolated NK T cell lines from both patients induced IFN-γ, but no IL-4 and no response towards autologous tumour cells or lysates. The clinical course of disease in both patients was not exceptional with regard to histological subtype and extent of metastatic disease. Therefore, despite a constitutive high peripheral frequency and in vitroαGalCer responsiveness, the NK T cells in the two RCC patients did not show anti-tumour responsiveness.
Collapse
Affiliation(s)
- F A Vyth-Dreese
- Division of Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
629
|
Abstract
Sepsis is currently a leading cause of death in hospital intensive care units. Previous studies suggest that the pathophysiology of sepsis involves the hyperactivation of complex proinflammatory cascades that include the activation of various immune cells and the exuberant secretion of proinflammatory cytokines by these cells. Natural killer T-cells (NKTs) are a sublineage of T cells that share characteristics of conventional T cells and NK cells and bridge innate and adaptive immunity. More recently, NKT cells have been implicated in microbial immunity, including the onset of sepsis. Moreover, apolipoprotein E (apoE), a component of triglyceride-rich lipoproteins, has been shown to be protective in endotoxemia and gram-negative infections in addition to its well-known role in lipid metabolism. Here, we will review the role of NKT cells in sepsis and septic shock, the immunoregulatory role of apoE in the host immune response to infection, and propose a mechanism for this immunoregulation.
Collapse
|
630
|
Tudhope SJ, von Delwig A, Falconer J, Pratt A, Woolridge T, Wilson G, Isaacs JD, Ng WF. Profound invariant natural killer T-cell deficiency in inflammatory arthritis. Ann Rheum Dis 2010; 69:1873-9. [PMID: 20444757 DOI: 10.1136/ard.2009.125849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Data from rodent models indicate that invariant natural killer T (iNKT) cells are key regulators of many immune responses including autoimmune arthritis, but their role in human diseases is unclear. The aims of this study are to determine whether iNKT cell frequency and function are altered in patients with rheumatoid arthritis (RA), and the clinical significance of such iNKT cell abnormalities. METHODS Peripheral blood iNKT cell frequency and proliferative response to an iNKT cell-specific agonist, α-galactosylceramide were measured in 46 RA patients (including 23 untreated, newly diagnosed patients), 22 healthy controls and 27 patients presenting with recent-onset joint pain. The relationship between iNKT cell frequency and clinical characteristics and the effects of immunosuppressive treatment was examined. RESULTS Compared with healthy controls, RA patients had a decreased frequency of peripheral blood iNKT cells (median 0.001% vs 0.021%, p<0.001) and the proliferative response of this subset to α-galactosylceramide was also diminished in the patient group (median fold-expansion 31 vs 121, p=0.037). These abnormalities preceded the initiation of disease-modifying or immunosuppressive therapy, whose effect was to increase the circulating iNKT cell frequency (p=0.037). Furthermore, iNKT cell frequency correlated inversely with the systemic inflammatory marker, C-reactive protein (p=0.008). Finally, in patients presenting with recent-onset joint symptoms, normal peripheral blood iNKT cell frequency predicted a non-inflammatory cause of joint pain. CONCLUSION iNKT cell deficiency is present in patients with RA and other inflammatory arthropathy. Normal iNKT cell frequency predicts non-inflammatory causes of joint pain.
Collapse
Affiliation(s)
- Susan J Tudhope
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
631
|
Monzon-Casanova E, Steiniger B, Schweigle S, Clemen H, Zdzieblo D, Starick L, Müller I, Wang CR, Rhost S, Cardell S, Pyz E, Herrmann T. CD1d expression in paneth cells and rat exocrine pancreas revealed by novel monoclonal antibodies which differentially affect NKT cell activation. PLoS One 2010; 5:e13089. [PMID: 20927351 PMCID: PMC2948036 DOI: 10.1371/journal.pone.0013089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/30/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND CD1d is a nonpolymorphic MHC class I-like molecule which presents nonpeptide ligands, e.g. glycolipids, to NKT cells. These cells are known to have multiple effects on innate and adaptive immune responses and on the development of pathological conditions. In order to analyze CD1d expression and function in the rat, the first rat CD1d-specific monoclonal antibodies (mAbs) were generated. METHODOLOGY/PRINCIPAL FINDINGS Two mAbs, WTH-1 and WTH-2, were generated which bound equally well to cell surface-expressed rat and mouse CD1d. Their non-overlapping epitopes were mapped to the CD1d heavy chain. Flow cytometry and immunohistological analyses revealed a nearly identical degree and pattern of CD1d expression for hematopoieitic cells of both species. Notable is also the detection of CD1d protein in mouse and rat Paneth cells as well as the extremely high CD1d expression in acinar exocrine cells of the rat pancreas and the expression of CD4 on rat marginal zone B cells. Both mAbs blocked α-galactosylceramide recognition by primary rat and mouse NKT cells. Interestingly, the two mAbs differed in their impact on the activation of various autoreactive T cell hybridomas, including the XV19.2 hybridoma whose activation was enhanced by the WTH-1 mAb. CONCLUSIONS/SIGNIFICANCE The two novel monoclonal antibodies described in this study, allowed the analysis of CD1d expression and CD1d-restricted T cell responses in the rat for the first time. Moreover, they provided new insights into mechanisms of CD1d-restricted antigen recognition. While CD1d expression by hematopoietic cells of mice and rats was extremely similar, CD1d protein was detected at not yet described sites of non-lymphatic tissues such as the rat exocrine pancreas and Paneth cells. The latter is of special relevance given the recently reported defects of Paneth cells in CD1d(-/-) mice, which resulted in an altered composition of the gut flora.
Collapse
Affiliation(s)
- Elisa Monzon-Casanova
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Birte Steiniger
- Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Schweigle
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Holger Clemen
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Daniela Zdzieblo
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Ingrid Müller
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Sara Rhost
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Goteborg, Goteborg, Sweden
| | - Susanna Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Goteborg, Goteborg, Sweden
| | - Elwira Pyz
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
632
|
Reilly EC, Wands JR, Brossay L. Cytokine dependent and independent iNKT cell activation. Cytokine 2010; 51:227-31. [PMID: 20554220 PMCID: PMC2914806 DOI: 10.1016/j.cyto.2010.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 11/19/2022]
Abstract
Invariant NKT (iNKT) cells have been extensively studied throughout the last decade due to their ability to polarize and amplify the downstream immune response. Only recently however, have the various mechanisms underlying NKT cell activation begun to unfold. iNKT cells have the ability to respond as innate immune cells with minimal TCR involvement as well as through direct TCR recognition of glycolipid antigens. Additionally, the existence of several subsets of iNKT cells creates the potential for other unique pathways, which are not yet clearly defined. Here, we provide an overview of the known mechanisms of invariant NKT cell activation, focusing on cytokine driven pathways and the resulting cytokine responses.
Collapse
Affiliation(s)
- Emma C. Reilly
- Department of Molecular Microbiology and Immunology and Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | - Jack R. Wands
- Department of Molecular Microbiology and Immunology and Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
- Liver Research Center, Rhode Island Hospital and the Department of Medicine, Warren Alpert Medical School at Brown University, Providence, Rhode Island
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology and Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
633
|
Stuart JK, Bisch SP, Leon-Ponte M, Hayatsu J, Mazzuca DM, Vareki SM, Haeryfar SM. Negative modulation of invariant natural killer T cell responses to glycolipid antigens by p38 MAP kinase. Int Immunopharmacol 2010; 10:1068-76. [DOI: 10.1016/j.intimp.2010.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/19/2010] [Accepted: 06/07/2010] [Indexed: 12/21/2022]
|
634
|
Abstract
Postmenopausal osteoporosis and hyperparathyroidism are to two common forms of bone loss caused primarily by an expansion of the osteoclastic pool only partially compensated by a stimulation of bone formation. The intimate mechanisms by which estrogen deficiency and excessive production of PTH cause bone loss remain to be determined in part because in vitro studies do not provide the means to adequately reproduce the effects of ovx and PTH overproduction observed in vivo. This article examines the connection between T cells and bone in health and disease and reviews the evidence in favor of the hypothesis that T cells play an unexpected critical role in the mechanism of action of estrogen and PTH in bone.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
635
|
|
636
|
Rodríguez-Cortés O, Vela-Ojeda J, López-Santiago R, Montiel-Cervantes L, Reyes-Maldonado E, Estrada-García I, Moreno-Lafont MC. Granulocyte colony-stimulating factor produces a decrease in IFNγ and increase in IL-4 when administrated to healthy donors. J Clin Apher 2010; 25:181-7. [DOI: 10.1002/jca.20234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
637
|
Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. Cell Tissue Res 2010; 343:43-55. [PMID: 20734065 DOI: 10.1007/s00441-010-1023-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 02/08/2023]
Abstract
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North, Room A-5301, 1161 21st Ave. South, Nashville, TN 37232-2363, USA.
| | | | | |
Collapse
|
638
|
Distinct roles in NKT cell maturation and function for the different transcription factors in the classical NF‐κB pathway. Immunol Cell Biol 2010; 89:294-303. [DOI: 10.1038/icb.2010.93] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
639
|
Rout N, Else JG, Yue S, Connole M, Exley MA, Kaur A. Heterogeneity in phenotype and function of CD8+ and CD4/CD8 double-negative Natural Killer T cell subsets in sooty mangabeys. J Med Primatol 2010; 39:224-34. [PMID: 20618588 PMCID: PMC2904642 DOI: 10.1111/j.1600-0684.2010.00431.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have recently reported the presence of CD8(+) and CD4/8 double-negative (DN) natural killer T (NKT) lymphocytes in sooty mangabeys. To investigate differences in the two NKT cell subsets, we compared the phenotype and function of sooty mangabey CD8(+) and DN NKT cells. METHODS Flow-sorted NKT lymphocytes from one SIV-negative sooty mangabey were subjected to limiting dilution cloning. Invariant NKT clones were characterized by flow cytometry and cytokine ELISA. RESULTS The majority of NKT clones displayed an effector memory phenotype and expressed CXCR3 and NKG2D. While CD8(+) NKT subsets expressed significantly higher levels of granzyme B and perforin and produced more IFN-gamma, the DN NKT subsets secreted significantly more IL-4, IL-13, and IL-10. CONCLUSIONS The Th1 and Th2 cytokine bias of CD8(+) and DN NKT cells, respectively, indicates the presence of functionally heterogeneous populations of NKT cells in sooty mangabeys.
Collapse
Affiliation(s)
- Namita Rout
- New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - James G. Else
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Simon Yue
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Michelle Connole
- New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Mark A. Exley
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Amitinder Kaur
- New England Primate Research Center, Harvard Medical School, Southborough, MA
| |
Collapse
|
640
|
Collins PL, Chang S, Henderson M, Soutto M, Davis GM, McLoed AG, Townsend MJ, Glimcher LH, Mortlock DP, Aune TM. Distal regions of the human IFNG locus direct cell type-specific expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1492-501. [PMID: 20574006 PMCID: PMC2923829 DOI: 10.4049/jimmunol.1000124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genes, such as IFNG, which are expressed in multiple cell lineages of the immune system, may employ a common set of regulatory elements to direct transcription in multiple cell types or individual regulatory elements to direct expression in individual cell lineages. By employing a bacterial artificial chromosome transgenic system, we demonstrate that IFNG employs unique regulatory elements to achieve lineage-specific transcriptional control. Specifically, a one 1-kb element 30 kb upstream of IFNG activates transcription in T cells and NKT cells but not in NK cells. This distal regulatory element is a Runx3 binding site in Th1 cells and is needed for RNA polymerase II recruitment to IFNG, but it is not absolutely required for histone acetylation of the IFNG locus. These results support a model whereby IFNG uses cis-regulatory elements with cell type-restricted function.
Collapse
Affiliation(s)
- Patrick L. Collins
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Shaojing Chang
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Melodie Henderson
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mohammed Soutto
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Georgia M. Davis
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Allyson G. McLoed
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michael J. Townsend
- Department of Immunology and Infectious Diseases, Harvard School of Public Health and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Douglas P. Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M. Aune
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
641
|
Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010; 10:554-67. [PMID: 20616810 PMCID: PMC3885992 DOI: 10.1038/nri2808] [Citation(s) in RCA: 733] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGFbeta) is an immunosuppressive cytokine produced by tumour cells and immune cells that can polarize many components of the immune system. This Review covers the effects of TGFbeta on natural killer (NK) cells, dendritic cells, macrophages, neutrophils, CD8(+) and CD4(+) effector and regulatory T cells, and NKT cells in animal tumour models and in patients with cancer. Collectively, many recent studies favour the hypothesis that blocking TGFbeta-induced signalling in the tumour microenvironment enhances antitumour immunity and may be beneficial for cancer therapy. An overview of the current drugs and reagents available for inhibiting TGFbeta-induced signalling and their phase in clinical development is also provided.
Collapse
Affiliation(s)
- Richard A Flavell
- Yale University School of Medicine, 300 Cedar Street, TAC S-569, PO BOX 208011, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
642
|
Kastner P, Chan S, Vogel WK, Zhang LJ, Topark-Ngarm A, Golonzhka O, Jost B, Le Gras S, Gross MK, Leid M. Bcl11b represses a mature T-cell gene expression program in immature CD4(+)CD8(+) thymocytes. Eur J Immunol 2010; 40:2143-54. [PMID: 20544728 PMCID: PMC2942964 DOI: 10.1002/eji.200940258] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bcl11b is a transcription factor that, within the hematopoietic system, is expressed specifically in T cells. Although Bcl11b is required for T-cell differentiation in newborn Bcl11b-null mice, and for positive selection in the adult thymus of mice bearing a T-cell-targeted deletion, the gene network regulated by Bcl11b in T cells is unclear. We report herein that Bcl11b is a bifunctional transcriptional regulator, which is required for the correct expression of approximately 1000 genes in CD4(+)CD8(+)CD3(lo) double-positive (DP) thymocytes. Bcl11b-deficient DP cells displayed a gene expression program associated with mature CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) thymocytes, including upregulation of key transcriptional regulators, such as Zbtb7b and Runx3. Bcl11b interacted with regulatory regions of many dysregulated genes, suggesting a direct role in the transcriptional regulation of these genes. However, inappropriate expression of lineage-associated genes did not result in enhanced differentiation, as deletion of Bcl11b in DP cells prevented development of SP thymocytes, and that of canonical NKT cells. These data establish Bcl11b as a crucial transcriptional regulator in thymocytes, in which Bcl11b functions to prevent the premature expression of genes fundamental to the SP and NKT cell differentiation programs.
Collapse
Affiliation(s)
- Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
- Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Walter K. Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Ling-Juan Zhang
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Olga Golonzhka
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Michael K. Gross
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
643
|
In vivo protection provided by a synthetic new alpha-galactosyl ceramide analog against bacterial and viral infections in murine models. Antimicrob Agents Chemother 2010; 54:4129-36. [PMID: 20660669 DOI: 10.1128/aac.00368-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alpha-galactosyl ceramide (α-GalCer) has been known to bind to the CD1d receptor on dendritic cells and activate invariant natural killer T (iNKT) cells, which subsequently secrete T-helper-cell 1 (Th1) and Th2 cytokines, which correlate with anti-infection activity and the prevention of autoimmune diseases, respectively. α-GalCer elicits the secretion of these two cytokines nonselectively, and thus, its effectiveness is limited by the opposing effects of the Th1 and Th2 cytokines. Reported here is the synthesis of a new α-GalCer analog (compound C34), based on the structure of CD1d, with a 4-(4-fluorophenoxy) phenyl undecanoyl modification of the N-acyl moiety of α-GalCer. Using several murine bacterial and viral infection models, we demonstrated that C34 has superior antibacterial and antiviral activities in comparison with those of several other Th1-selective glycolipids and that it is most effective by administering it to mice in a prophylactic manner before or shortly after infection.
Collapse
|
644
|
The other T helper cells in asthma pathogenesis. J Allergy (Cairo) 2010; 2010:519298. [PMID: 20976014 PMCID: PMC2957587 DOI: 10.1155/2010/519298] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/18/2010] [Indexed: 12/16/2022] Open
Abstract
The complex phenotype of allergic bronchial asthma involves a variable degree of bronchoobstruction, increased mucus production, and airway remodeling. So far it is suggested that it arises from multiple interactions of infiltrating and structural cells in the context of chronic airway inflammation that is orchestrated by T helper 2 (TH2) cells. By secreting a plethora of typical mediators such as interleukin (IL) 4, IL-5, and IL-13, these cells hold a key position in asthma pathogenesis. However, therapeutic approaches targeting these TH2-type mediators failed to improve asthma symptoms and impressively showed that asthma pathogenesis cannot be reduced by TH2 cell functions. Recently, other T helper cells, that is, TH9 and TH17 cells, have been identified and these cells also contribute to asthma pathogenesis, the processes leading to formation or aggravation of asthma. Furthermore, TH25 cells, TH3 cells, and regulatory T cells have also been implicated in asthma pathogenesis. This paper aims at summarizing recent insights about these new T helper cells in asthma pathogenesis.
Collapse
|
645
|
Nozad Charoudeh H, Tang Y, Cheng M, Cilio CM, Jacobsen SEW, Sitnicka E. Identification of an NK/T cell-restricted progenitor in adult bone marrow contributing to bone marrow- and thymic-dependent NK cells. Blood 2010; 116:183-92. [PMID: 20421450 DOI: 10.1182/blood-2009-10-247130] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although bone marrow (BM) is the main site of natural killer (NK)-cell development in adult mice, recent studies have identified a distinct thymic-dependent NK pathway, implicating a possible close link between NK- and T-cell development in adult hematopoiesis. To investigate whether a potential NK-/T-lineage restriction of multipotent progenitors might take place already in the BM, we tested the full lineage potentials of NK-cell progenitors in adult BM. Notably, although Lin(-)CD122(+)NK1.1(-)DX5(-) NK-cell progenitors failed to commit to the B and myeloid lineages, they sustained a combined NK- and T-cell potential in vivo and in vitro at the single-cell level. Whereas T-cell development from NK/T progenitors is Notch-dependent, their contribution to thymic and BM NK cells remains Notch-independent. These findings demonstrate the existence of bipotent NK-/T-cell progenitors in adult BM.
Collapse
Affiliation(s)
- Hojjatollah Nozad Charoudeh
- Hematopoietic Stem Cell Laboratory, Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
646
|
Abstract
The conceptual framework for reproductive immunology was put in place over 50 years ago when the survival of the fetal semi-allograft within an immunocompetent mother was first considered. During this time, a number of paradigms have emerged and the mechanisms receiving current attention are those related to immune tolerance, such as regulatory T-cells and indoleamine 2,3,-dioxygenase, and innate immunity, such as natural killer cells, trophoblast debris and inflammation. A key consideration is the temporal and spatial variation in any of these pathways (e.g. implantation v. parturition). As fetally derived trophoblasts are the semi-allogeneic cells with which the maternal immune system comes into contact, understanding the immune response to these cells is critical. There is much interest in the immunological pathways that support a healthy pregnancy and how they might be perturbed in adverse pregnancy outcomes. Additionally, there is increasing awareness that antenatal determinants of the immune function of pregnant women and their offspring have consequences for health and disease in childhood and beyond. Changes in maternal diet over recent decades coincide with the increasing prevalence of allergic and other immune-mediated diseases, and the modification of maternal diet has emerged as a strategy for disease prevention. Approaches undergoing trial at numerous sites around the world include dietary supplementation with fish oil and/or probiotics. Understanding the underlying mechanisms of any positive effect on disease outcomes should reveal further novel strategies for disease prevention.
Collapse
|
647
|
V(alpha)14iNKT cells promote liver pathology during adenovirus infection by inducing CCL5 production: implications for gene therapy. J Virol 2010; 84:8520-9. [PMID: 20573836 DOI: 10.1128/jvi.00605-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Replication-defective recombinant adenoviruses are the most widely studied replication-defective vectors for the potential treatment of inherited human diseases. However, broad clinical application of replication-defective adenoviruses in gene therapy is being hindered by the induction of vigorous innate and adaptive immune responses against the vector that cause deleterious effects in the liver. V(alpha)14 invariant natural killer T cells (V(alpha)14iNKT cells) are thymus-derived innate T cells at the interface between the two arms of the immune response and provide full engagement of host defense. The pathophysiological role of intrahepatic V(alpha)14iNKT cells during replication-defective adenovirus infection is not known and is the main focus of our study. Our data showed that intrahepatic V(alpha)14iNKT cells were activated in response to adenovirus infection to induce significant levels of hepatic chemokine (C-C motif) ligand 5 (CCL5) and subsequent liver toxicity. Moreover, intrahepatic CCL5 production was selectively reduced by V(alpha)14iNKT cell deficiency. In vivo studies utilizing CCL5-deficient mice or V(alpha)14iNKT cell-deficient mice demonstrated that CCL5 deficiency or V(alpha)14iNKT cell deficiency was associated with reduced liver pathology. Similar results were seen after blocking the biological effects of the CCL5 receptors. In conclusion, we have identified an important proinflammatory role for activated intrahepatic V(alpha)14iNKT cells in positively influencing hepatic CCL5 production to promote acute liver inflammation and injury. Therefore, our findings highlight the blockade of CCL5 interaction with a cognate receptor(s) as an important potential strategy to alleviate liver pathology associated with replication-defective adenovirus infection.
Collapse
|
648
|
Pacifici R. The immune system and bone. Arch Biochem Biophys 2010; 503:41-53. [PMID: 20599675 DOI: 10.1016/j.abb.2010.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 02/06/2023]
Abstract
T cells and B cells produce large amounts of cytokines which regulate bone resorption and bone formation. These factors play a critical role in the regulation of bone turnover in health and disease. In addition, immune cells of the bone marrow regulate bone homeostasis by cross-talking with bone marrow stromal cells and osteoblastic cells via cell surface molecules. These regulatory mechanisms are particularly relevant for postmenopausal osteoporosis and hyperparathyroidism, two common forms of bone loss caused primarily by an expansion of the osteoclastic pool only partially compensated by a stimulation of bone formation. This article describes the cytokines and immune factors that regulate bone cells, the immune cells relevant to bone, examines the connection between T cells and bone in health and disease, and reviews the evidence in favor of a link between T cells and the mechanism of action of estrogen and PTH in bone.
Collapse
|
649
|
Becker AM, Blevins JS, Tomson FL, Eitson JL, Medeiros JJ, Yarovinsky F, Norgard MV, van Oers NSC. Invariant NKT cell development requires a full complement of functional CD3 zeta immunoreceptor tyrosine-based activation motifs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6822-32. [PMID: 20483726 PMCID: PMC2947369 DOI: 10.4049/jimmunol.0902058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-gamma and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant alphabeta TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d. Furthermore, these cells are positively selected following TCR interactions with glycolipid/CD1d complexes expressed on CD4+CD8+ thymocytes. Whereas conventional T cell development can proceed with as few as 4/10 CD3 immunoreceptor tyrosine-based activation motifs (ITAMs), little is known about the ITAM requirements for iNKT cell selection and expansion. We analyzed iNKT cell development in CD3 zeta transgenic lines with various tyrosine-to-phenylalanine substitutions (YF) that eliminated the functions of the first (YF1,2), third (YF5,6), or all three (YF1-6) CD3 zeta ITAMs. iNKT cell numbers were significantly reduced in the thymus, spleen, and liver of all YF mice compared with wild type mice. The reduced numbers of iNKT cells resulted from significant reductions in the expression of the early growth response 2 and promyelocytic leukemia zinc finger transcription factors. In the mice with few to no iNKT cells, there was no difference in the severity of Lyme arthritis compared with wild type controls, following infections with the spirochete B. burgdorferi. These findings indicate that a full complement of functional CD3 zeta ITAMs is required for effective iNKT cell development.
Collapse
Affiliation(s)
- Amy M Becker
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
650
|
Jervis PJ, Veerapen N, Bricard G, Cox LR, Porcelli SA, Besra GS. Synthesis and biological activity of alpha-glucosyl C24:0 and C20:2 ceramides. Bioorg Med Chem Lett 2010; 20:3475-8. [PMID: 20529677 PMCID: PMC4374101 DOI: 10.1016/j.bmcl.2010.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 11/26/2022]
Abstract
Alpha-glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the alpha-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely alpha-selective and provided gram quantities of amine 11, from which alpha-glucosyl ceramides 4 and 5 were obtained by N-acylation. alpha-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. alpha-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2), induced extremely similar levels of iNKT cell activation and expansion.
Collapse
Affiliation(s)
- Peter J. Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gabriel Bricard
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|