601
|
Campbell VA, Gowran A. Alzheimer's disease; taking the edge off with cannabinoids? Br J Pharmacol 2007; 152:655-62. [PMID: 17828287 PMCID: PMC2190031 DOI: 10.1038/sj.bjp.0707446] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/03/2007] [Accepted: 08/08/2007] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative condition associated with cognitive decline. The pathological hallmarks of the disease are the deposition of beta-amyloid protein and hyperphosphorylation of tau, which evoke neuronal cell death and impair inter-neuronal communication. The disease is also associated with neuroinflammation, excitotoxicity and oxidative stress. In recent years the proclivity of cannabinoids to exert a neuroprotective influence has received substantial interest as a means to mitigate the symptoms of neurodegenerative conditions. In brains obtained from Alzheimer's patients alterations in components of the cannabinoid system have been reported, suggesting that the cannabinoid system either contributes to, or is altered by, the pathophysiology of the disease. Certain cannabinoids can protect neurons from the deleterious effects of beta-amyloid and are capable of reducing tau phosphorylation. The propensity of cannabinoids to reduce beta-amyloid-evoked oxidative stress and neurodegeneration, whilst stimulating neurotrophin expression neurogenesis, are interesting properties that may be beneficial in the treatment of Alzheimer's disease. Delta 9-tetrahydrocannabinol can also inhibit acetylcholinesterase activity and limit amyloidogenesis which may improve cholinergic transmission and delay disease progression. Targeting cannabinoid receptors on microglia may reduce the neuroinflammation that is a feature of Alzheimer's disease, without causing psychoactive effects. Thus, cannabinoids offer a multi-faceted approach for the treatment of Alzheimer's disease by providing neuroprotection and reducing neuroinflammation, whilst simultaneously supporting the brain's intrinsic repair mechanisms by augmenting neurotrophin expression and enhancing neurogenesis. The evidence supporting a potential role for the cannabinoid system as a therapeutic target for the treatment of Alzheimer's disease will be reviewed herewith.
Collapse
Affiliation(s)
- V A Campbell
- Department of Physiology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | | |
Collapse
|
602
|
Curtis MA, Faull RLM, Eriksson PS. The effect of neurodegenerative diseases on the subventricular zone. Nat Rev Neurosci 2007; 8:712-23. [PMID: 17704813 DOI: 10.1038/nrn2216] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During brain development, one of the most important structures is the subventricular zone (SVZ), from which most neurons are generated. In adulthood the SVZ maintains a pool of progenitor cells that continuously replace neurons in the olfactory bulb. Neurodegenerative diseases induce a substantial upregulation or downregulation of SVZ progenitor cell proliferation, depending on the type of disorder. Far from being a dormant layer, the SVZ responds to neurodegenerative disease in a way that makes it a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Maurice A Curtis
- Institute of Neuroscience and Physiology at Sahlgrenska Academy, Medicinaregat 11, Box 432, s-40530 Göteborg, Sweden.
| | | | | |
Collapse
|
603
|
Goldman SA. Disease Targets and Strategies for the Therapeutic Modulation of Endogenous Neural Stem and Progenitor Cells. Clin Pharmacol Ther 2007; 82:453-60. [PMID: 17713467 DOI: 10.1038/sj.clpt.6100337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neural stem cells, able to self-renew and give rise to both neurons and glia, line the cerebral ventricles of the adult human brain. Humans also harbor lineage-restricted neuronal progenitors in the hippocampus and glial progenitor cells in both the gray and white matter of the forebrain. These various stem and progenitor cell types may provide targets for pharmacotherapy for a variety of disorders of the central nervous system. Each resident progenitor phenotype may be mobilized and induced to differentiate in vivo by the actions of both exogenous growth factors and small molecule modulators of progenitor-selective signaling pathways. This strategy may be particularly efficacious in neurodegenerations such as Huntington's disease, in which lost neurons may be replenished through the directed induction of progenitor cells lining the ventricular wall of the affected striatum. Similarly, the mobilization of glial progenitor cells may permit the introduction of new oligodendrocytes to demyelinated regions of adult white matter. Our rapidly increasing understanding of the molecular control of progenitor cell mobilization and differentiation should provide a wealth of new opportunities for recruiting endogenous progenitors as a means of treating neurological disease.
Collapse
Affiliation(s)
- S A Goldman
- Division of Cell and Gene Therapy, Departments of Neurology and Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
604
|
Gan L, Qiao S, Lan X, Chi L, Luo C, Lien L, Yan Liu Q, Liu R. Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer's disease-like transgenic (pPDGF-APPSw,Ind) mice. Neurobiol Dis 2007; 29:71-80. [PMID: 17916429 DOI: 10.1016/j.nbd.2007.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 07/17/2007] [Accepted: 08/06/2007] [Indexed: 12/31/2022] Open
Abstract
Formation and accumulation of amyloid-beta (A beta) plaques are associated with declined memory and other neurocognitive function in Alzheimer's disease (AD) patients. However, the effects of A beta plaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ (pNes-LacZ) reporter transgenic mice (pNes-Tg) and Bi-transgenic mice (Bi-Tg) containing both pPDGF-APPSw,Ind and pNes-LacZ transgenes to investigate the effects of A beta plaques on neurogenesis in the hippocampus and other brain regions of the AD-like mice. We chose transgenic mice at 2, 8 and 12 months of age, corresponding to the stages of A beta plaque free, plaque onset and plaque progression to analyze the effects of A beta plaques on the distribution and de novo neurogenesis of (from) NPCs. We demonstrated a slight increase in the number of NPCs in the hippocampal regions at the A beta plaque free stage, while a significant decrease in the number of NPCs at A beta plaque onset and progression stages. On the other hand, we showed that A beta plaques increase neurogenesis, but not gliogenesis from post-mitotic NPCs in the hippocampus of Bi-Tg mice compared with age-matched control pNes-Tg mice. The neurogenic responses of NPCs to A beta plaques suggest that experimental approaches to promote de novo neurogenesis may potentially improve neurocognitive function and provide an effective therapy for AD.
Collapse
Affiliation(s)
- Li Gan
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | |
Collapse
|
605
|
Abstract
1. In recent decades evidence has accumulated demonstrating the birth and functional integration of new neurons in specific regions of the adult mammalian brain, including the dentate gyrus of the hippocampus and the subventricular zone. 2. Studies in a variety of models have revealed genetic, environmental and pharmacological factors that regulate adult neurogenesis. The present review examines some of the molecular and cellular mechanisms that could be mediating these regulatory effects in both the normal and dysfunctional brain. 3. The dysregulation of adult neurogenesis may contribute to the pathogenesis of neurodegenerative disorders, such as Huntington's, Alzheimer's and Parkinson's disease, as well as psychiatric disorders such as depression. Recent evidence supports this idea and, furthermore, also indicates that factors promoting neurogenesis can modify the onset and progression of specific brain disorders, including Huntington's disease and depression.
Collapse
Affiliation(s)
- Helen E Grote
- University Laboratory of Physiology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
606
|
Kim Y, Szele FG. Activation of subventricular zone stem cells after neuronal injury. Cell Tissue Res 2007; 331:337-45. [PMID: 17694326 DOI: 10.1007/s00441-007-0451-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/20/2007] [Indexed: 01/19/2023]
Abstract
The mammalian subventricular zone (SVZ) has garnered a tremendous amount of attention as a potential source of replacement cells for neuronal injury. This zone is highly neurogenic, harbours stem cells and supports long-distance migration. The general pattern of activation includes increased proliferation, neurogenesis and emigration towards the injury. Intrinsic transcription factors and environmental signalling molecules are rapidly being discovered that may facilitate the induction of these cells to mount appropriate therapeutic responses. The extent of SVZ neurogenesis in humans is controversial. However, tantalizing new data suggest that humans are capable of generating increased numbers of neurons after a variety of diseases.
Collapse
Affiliation(s)
- Yongsoo Kim
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | | |
Collapse
|
607
|
Abstract
The concept of brain plasticity covers all the mechanisms involved in the capacity of the brain to adjust and remodel itself in response to environmental requirements, experience, skill acquisition, and new challenges including brain lesions. Advances in neuroimaging and neurophysiologic techniques have increased our knowledge of task-related changes in cortical representation areas in the intact and injured human brain. The recognition that neuronal progenitor cells proliferate and differentiate in the subventricular zone and dentate gyrus in the adult mammalian brain has raised the hope that regeneration may be possible after brain lesions. Regeneration will require that new cells differentiate, survive, and integrate into existing neural networks and that axons regenerate. To what extent this will be possible is difficult to predict. Current research explores the possibilities to modify endogenous neurogenesis and facilitate axonal regeneration using myelin inhibitory factors. After apoptotic damage in mice new cortical neurons can form long-distance connections. Progenitor cells from the subventricular zone migrate to cortical and subcortical regions after ischemic brain lesions, apparently directed by signals from the damaged region. Postmortem studies on human brains suggest that neurogenesis may be altered in degenerative diseases. Functional and anatomic data indicate that myelin inhibitory factors, cell implantation, and modification of extracellular matrix may be beneficial after spinal cord lesions. Neurophysiologic data demonstrating that new connections are functioning are needed to prove regeneration. Even if not achieving the goal, methods aimed at regeneration can be beneficial by enhancing plasticity in intact brain regions.
Collapse
Affiliation(s)
- Barbro B Johansson
- Wallenberg Neuroscience Center, Department of Clinical Neuroscience, Lund University, Lund, Sweden.
| |
Collapse
|
608
|
Verret L, Trouche S, Zerwas M, Rampon C. Hippocampal neurogenesis during normal and pathological aging. Psychoneuroendocrinology 2007; 32 Suppl 1:S26-30. [PMID: 17629417 DOI: 10.1016/j.psyneuen.2007.04.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 11/17/2022]
Abstract
It is now widely accepted that new neurons continue to be added to the brain throughout life including during normal aging. The finding of adult neurogenesis in the hippocampus, a structure involved in the processing of memories, has favored the idea that newborn neurons might subserve cognitive functions. Recent work on human post-mortem tissues and mice models of Alzheimer's disease (AD) has reported persistent hippocampal proliferative capacity during pathological aging. Although it is not yet clear whether neurogenesis leads to the production of fully functional mature neurons in AD brains, these findings open prospects for cell-replacement therapies. Strategies aimed at promoting neurogenesis may also contribute to improve cognitive deficits caused by normal or pathological aging.
Collapse
Affiliation(s)
- Laure Verret
- CNRS UMR 5169, Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
609
|
|
610
|
Kuhn HG, Cooper-Kuhn CM, Boekhoorn K, Lucassen PJ. Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant? Eur Arch Psychiatry Clin Neurosci 2007; 257:281-9. [PMID: 17639447 DOI: 10.1007/s00406-007-0732-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease and related dementias are devastating disorders that lead to the progressive decline of cognitive functions. Characteristic features are severe brain atrophy, paralleled by accumulation of beta amyloid and neurofibrillary tangles. With the discovery of neurogenesis in the adult brain, the hopes have risen that these neurodegenerative conditions could be overcome, or at least ameliorated, by the generation of new neurons. The location of the adult neurogenic zones in the hippocampus and the lateral ventricle wall, close to corpus callosum and neocortex, indicates strategic positions for potential repair processes. However, we also need to consider that the generation of new neurons is possibly involved in cognitive functions and could, therefore, be influenced by disease pathology. Moreover, aberrant neurogenic mechanisms could even be a part of the pathological events of neurodegenerative diseases. It is the scope of this review to summarize and analyze the recent data from neurogenesis research with respect to Alzheimer's disease and its animal models.
Collapse
Affiliation(s)
- H Georg Kuhn
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, Göteborg University, Medicianregatan 11, 40530 Göteborg, Sweden.
| | | | | | | |
Collapse
|
611
|
Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 2007; 27:6771-80. [PMID: 17581964 PMCID: PMC4439193 DOI: 10.1523/jneurosci.5564-06.2007] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by severe neuronal loss in several brain regions important for learning and memory. Of the structures affected by AD, the hippocampus is unique in continuing to produce new neurons throughout life. Mounting evidence indicates that hippocampal neurogenesis contributes to the processing and storage of new information and that deficits in the production of new neurons may impair learning and memory. Here, we examine whether the overproduction of amyloid-beta (Abeta) peptide in a mouse model for AD might be detrimental to newborn neurons in the hippocampus. We used transgenic mice overexpressing familial AD variants of amyloid precursor protein (APP) and/or presenilin-1 to test how the level (moderate or high) and the aggregation state (soluble or deposited) of Abeta impacts the proliferation and survival of new hippocampal neurons. Although proliferation and short-term survival of neural progenitors in the hippocampus was unaffected by APP/Abeta overproduction, survival of newborn cells 4 weeks later was dramatically diminished in transgenic mice with Alzheimer's-type amyloid pathology. Phenotypic analysis of the surviving population revealed a specific reduction in newborn neurons. Our data indicate that overproduction of Abeta and the consequent appearance of amyloid plaques cause an overall reduction in the number of adult-generated hippocampal neurons. Diminished capacity for hippocampal neuron replacement may contribute to the cognitive decline observed in these mice.
Collapse
Affiliation(s)
- Laure Verret
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 31062 Toulouse, France
| | - Joanna L. Jankowsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, and
| | - Guilian M. Xu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - David R. Borchelt
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Claire Rampon
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
612
|
Marutle A, Ohmitsu M, Nilbratt M, Greig NH, Nordberg A, Sugaya K. Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine. Proc Natl Acad Sci U S A 2007; 104:12506-11. [PMID: 17640880 PMCID: PMC1941499 DOI: 10.1073/pnas.0705346104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we found that human neural stem cells (HNSCs) exposed to high concentrations of secreted amyloid-precursor protein (sAPP) in vitro differentiated into mainly astrocytes, suggesting that pathological alterations in APP processing during neurodegenerative conditions such as Alzheimer's disease (AD) may prevent neuronal differentiation of HNSCs. Thus, successful neuroplacement therapy for AD may require regulating APP expression to favorable levels to enhance neuronal differentiation of HNSCs. Phenserine, a recently developed cholinesterase inhibitor (ChEI), has been reported to reduce APP levels in vitro and in vivo. In this study, we found reductions of APP and glial fibrillary acidic protein (GFAP) levels in the hippocampus of APP23 mice after 14 days treatment with (+)-phenserine (25 mg/kg) lacking ChEI activity. No significant change in APP gene expression was detected, suggesting that (+)-phenserine decreases APP levels and reactive astrocytes by posttranscription regulation. HNSCs transplanted into (+)-phenserine-treated APP23 mice followed by an additional 7 days of treatment with (+)-phenserine migrated and differentiated into neurons in the hippocampus and cortex after 6 weeks. Moreover, (+)-phenserine significantly increased neuronal differentiation of implanted HNSCs in hippocampal and cortical regions of APP23 mice and in the CA1 region of control mice. These results indicate that (+)-phenserine reduces APP protein in vivo and increases neuronal differentiation of HNSCs. Combination use of HNSC transplantation and treatment with drugs such as (+)-phenserine that modulate APP levels in the brain may be a useful tool for understanding mechanisms regulating stem cell migration and differentiation during neurodegenerative conditions in AD.
Collapse
Affiliation(s)
- Amelia Marutle
- Biomolecular Sciences Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | | | |
Collapse
|
613
|
Chambon C, Paban V, Manrique C, Alescio-Lautier B. Behavioral and immunohistological effects of cholinergic damage in immunolesioned rats: Alteration of c-Fos and polysialylated neural cell adhesion molecule expression. Neuroscience 2007; 147:893-905. [PMID: 17601671 DOI: 10.1016/j.neuroscience.2007.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the brain structures as well as the plasticity events associated with the behavioral effects of cholinergic damage. Rats were submitted to injection of 192 IgG-saporin in the medial septum/diagonal band of Broca complex and the nucleus basalis magnocellularis. The immunohistochemical expression of c-Fos protein and PSA-NCAM (polysialylated neural cell adhesion molecule) and the behavioral performances in the nonmatching-to-position task were assessed at various post-lesion times. Thus, 3 days after injection of the immunotoxin, increased c-Fos labeling was observed in the areas of infusion, indicating these cells were undergoing some plastic changes and/or apoptotic processes. A drastic increase was observed in the number of PSA-NCAM positive cells and in their dendritic arborization in the dentate gyrus. At 7 days post-lesion, no behavioral deficit was observed in immunolesioned rats despite the drastic loss of cholinergic neurons. These neurons showed decreased c-Fos protein expression in the piriform and entorhinal cortex and in the dentate gyrus. In the latter, PSA-NCAM induction was high, suggesting that remodeling occurred, which in turn might contribute to sustaining some mnemonic function in immunolesioned rats. At 1 month, cholinergic neurons totally disappeared and behavioral deficits were drastic. c-Fos expression showed no change. In contrast, the increased PSA-NCAM-labeling observed at short post-lesion times was maintained but the plastic changes due to this molecule could not compensate the behavioral deficit caused by the immunotoxin. Thus, as the post-lesion time increases, a gradual degeneration process should occur that may contribute to mnemonic impairments. This neuronal loss leads to molecular and cellular alterations, which in turn may aggravate cognitive deficits.
Collapse
Affiliation(s)
- C Chambon
- Université d'Aix-Marseille I, Laboratoire de Neurobiologie Intégrative et Adaptative, UMR/CNRS 6149, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France
| | | | | | | |
Collapse
|
614
|
Uchida Y, Nakano SI, Gomi F, Takahashi H. Differential Regulation of Basic Helix-Loop-Helix Factors Mash1 and Olig2 by β-Amyloid Accelerates Both Differentiation and Death of Cultured Neural Stem/Progenitor Cells. J Biol Chem 2007; 282:19700-9. [PMID: 17488716 DOI: 10.1074/jbc.m703099200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite increased neurogenic differentiation markers in the hippocampal CA1 in Alzheimer disease, neurons are not replaced in CA1 and the neocortex in the disease. beta-Amyloid (Abeta) might cause deterioration of the brain microenvironment supporting neurogenesis and the survival of immature neurons. To test this possibility, we examined whether Abeta alters the expression of cell fate determinants in cerebral cortical cultures and in an Alzheimer disease mouse model (PrP-APP(SW)). Up-regulation of Mash1 and down-regulation of Olig2 were found in cerebral cortical cultures treated with Abeta-(1-42). Mash1 was expressed in nestin-positive immature cells. The majority of Mash1-positive cells in untreated cortical culture co-expressed Olig2. Abeta increased the proportion of Olig2-negative/Mash1-positive cells. A decrease in Olig2+ cells was also observed in the cerebral cortex of adult PrP-APP(SW) mice. Cotransfection experiments with Mash1 cDNA and Olig2 siRNA revealed that overexpression of Mash1 in neurosphere cells retaining Olig2 expression enhanced neural differentiation but accelerated death of Olig2-depleted cells. Growth factor deprivation, which down-regulated Olig2, accelerated death of Mash1-overexpressing neurosphere cells. We conclude that cooperation between Mash1 and Olig2 is necessary for neural stem/progenitor cells to develop into fully mature neurons and that down-regulation of Olig2 by Abeta in Mash1-overexpressing cells switches the cell fate to death. Maintaining Olig2 expression in differentiating cells could have therapeutic potential.
Collapse
Affiliation(s)
- Yoko Uchida
- Gene Expression Research Group, Research Team for Geriatric Disorders, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku, Tokyo 173-0015, Japan.
| | | | | | | |
Collapse
|
615
|
|
616
|
Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW. Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiol Learn Mem 2007; 88:249-59. [PMID: 17587610 PMCID: PMC2173881 DOI: 10.1016/j.nlm.2007.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/12/2007] [Accepted: 05/02/2007] [Indexed: 01/08/2023]
Abstract
New neurons are continually produced in the adult mammalian brain from progenitor cells located in specific brain regions, including the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. We hypothesized that neurogenesis occurs in the canine brain and is reduced with age. We examined neurogenesis in the hippocampus of five young and five aged animals using doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining. The total unilateral number of new neurons in the canine SGZ and granule cell layer (GCL) was estimated using stereological techniques based upon unbiased principles of systematic uniformly random sampling. Animals received 25mg/kg of BrdU once a day for 5 days and were euthanized 9 days after the last injection. We found evidence of neurogenesis in the canine brain and that cell genesis and neurogenesis are greatly reduced in the SGZ/GCL of aged animals compared to young. We further tested the hypothesis that an antioxidant fortified food or behavioral enrichment would improve neurogenesis in the aged canine brain and neurogenesis may correlate with cognitive function. Aged animals were treated for 2.8 years and tissue was available for six that received the antioxidant food, five that received the enrichment and six receiving both treatments. There were no significant differences in the absolute number of DCX or DCX-BrdU neurons or BrdU nuclei between the treatment groups compared to control animals. The number of DCX-positive neurons and double-labeled DCX-BrdU-positive neurons, but not BrdU-positive nuclei alone, significantly correlated with performance on several cognitive tasks including spatial memory and discrimination learning. These results suggest that new neurons in the aged canine dentate gyrus may participate in modulating cognitive functions.
Collapse
Affiliation(s)
- Christina T Siwak-Tapp
- Institute for Brain Aging and Dementia, University of California, 1226 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4540, USA.
| | | | | | | | | |
Collapse
|
617
|
Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF. p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J Neurosci 2007; 27:5146-55. [PMID: 17494700 PMCID: PMC6672366 DOI: 10.1523/jneurosci.0654-07.2007] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although our understanding of adult neurogenesis has increased dramatically over the last decade, confusion still exists regarding both the identity of the stem cell responsible for neuron production and the mechanisms that regulate its activity. Here we show, using flow cytometry, that a small population of cells (0.3%) within the stem cell niche of the rat subventricular zone (SVZ) expresses the p75 neurotrophin receptor (p75(NTR)) and that these cells are responsible for neuron production in both newborn and adult animals. In the adult, the p75(NTR)-positive population contains all of the neurosphere-producing precursor cells, whereas in the newborn many of the precursor cells are p75(NTR) negative. However, at both ages, only the neurospheres derived from p75(NTR)-positive cells are neurogenic. We also show that neuron production from p75(NTR)-positive but not p75(NTR)-negative precursors is greatly enhanced after treatment with brain-derived neurotrophic factor (BDNF) or nerve growth factor. This effect appears to be mediated specifically by p75(NTR), because precursor cells from p75(NTR)-deficient mice show a 70% reduction in their neurogenic potential in vitro and fail to respond to BDNF treatment. Furthermore, adult p75(NTR)-deficient mice have significantly reduced numbers of PSA-NCAM (polysialylated neural cell adhesion molecule)-positive SVZ neuroblasts in vivo and a lower olfactory bulb weight. Thus, p75(NTR) defines a discrete population of highly proliferative SVZ precursor cells that are able to respond to neurotrophin activation by increasing neuroblast generation, making this pathway the most likely mechanism for the increased neurogenesis that accompanies raised BDNF levels in a variety of disease and behavioral situations.
Collapse
Affiliation(s)
- Kaylene M. Young
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
- The Walter and Eliza Hall Institute for Medical Research, Melbourne VIC 3050, Australia, and
| | - Tobias D. Merson
- Howard Florey Institute, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Areechun Sotthibundhu
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Elizabeth J. Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Perry F. Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
618
|
Ziabreva I, Ballard C, Johnson M, Larsen JP, McKeith I, Perry R, Aarsland D, Perry E. Loss of Musashi1 in Lewy body dementia associated with cholinergic deficit. Neuropathol Appl Neurobiol 2007; 33:586-90. [PMID: 17573814 DOI: 10.1111/j.1365-2990.2007.00848.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
619
|
Koibuchi H, Hayashi S. Development of neurons expressing estrogen receptor α transiently in facial nucleus of prenatal and postnatal rat brains. Neurosci Res 2007; 58:190-8. [PMID: 17395327 DOI: 10.1016/j.neures.2007.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
The transient expression of estrogen receptor alpha (ERalpha) in the facial nucleus of rats during development was already reported. However, how and whether the receptor functions physiologically in the nucleus of developing rats are as yet unclear. In this study, we applied a retrograde tracer into one of the possible target muscles of the motoneurons in the nucleus, that is, the transverse auricular muscle (Mta), and examined whether ERalpha-immunopositive neurons take up the tracer. Because it is probable that neurogenesis, apoptosis, and maturation may be associated with the transient expression of ERalpha, we attempted to analyze the neurons expressing the receptor in the nucleus. We found that ERalpha-immunopositive neurons in the medial facial subnucleus innervate mostly the Mta. Quantitative analyses showed that the number of motoneurons projecting to the Mta remained the same throughout the ages examined, whereas that of ERalpha-immunopositive neurons decreased between postnatal days 6 and 11. Apoptosis and neurogenesis in the nucleus were not affected by the expression of ERalpha during development. ERalpha expression coincided with the maturation of neurons in the nucleus. Thus, it is possible that ERalpha expression in the facial nucleus during development plays important roles in the development of motoneurons and/or external pinna muscles.
Collapse
Affiliation(s)
- Hiroshi Koibuchi
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | | |
Collapse
|
620
|
Endogenous Neural Stem Cells in the Adult Brain. J Neuroimmune Pharmacol 2007; 2:236-42. [DOI: 10.1007/s11481-007-9076-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 04/24/2007] [Indexed: 01/18/2023]
|
621
|
Burke D, Hickie I, Breakspear M, Götz J. Possibilities for the prevention and treatment of cognitive impairment and dementia. Br J Psychiatry 2007; 190:371-2. [PMID: 17470948 DOI: 10.1192/bjp.bp.106.033407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human brain has a remarkable capacity for plasticity, but does it have the capacity for repair and/or regeneration? On the basis of controversial new evidence we speculate that the answer may be ;yes', and suggest that clinicians should therefore approach cognitive impairment and dementia with a new, cautious optimism.
Collapse
|
622
|
Shivraj Sohur U, Emsley JG, Mitchell BD, Macklis JD. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci 2007; 361:1477-97. [PMID: 16939970 PMCID: PMC1664671 DOI: 10.1098/rstb.2006.1887] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.
Collapse
|
623
|
Caltagarone J, Jing Z, Bowser R. Focal adhesions regulate Abeta signaling and cell death in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:438-45. [PMID: 17215111 PMCID: PMC1876750 DOI: 10.1016/j.bbadis.2006.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/25/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that results from a loss of synaptic transmission and ultimately cell death. The presenting pathology of AD includes neuritic plaques composed of beta-amyloid peptide (Abeta) and neurofibrillary tangles composed of hyperphosphorylated tau, with neuronal loss in specific brain regions. However, the mechanisms that induce neuronal cell loss remain elusive. Focal adhesion (FA) proteins assemble into intracellular complexes involved in integrin-mediated communication between the extracellular matrix and the actin cytoskeleton, regulating many cell physiological processes including the cell cycle. Interestingly, recent studies report that integrins bind to Abeta fibrils, mediating Abeta signal transmission from extracellular sites of Abeta deposits into the cell and ultimately to the nucleus. In this review, we will discuss the Abeta induced integrin/FA signaling pathways that mediate cell cycle activation and cell death.
Collapse
Affiliation(s)
- John Caltagarone
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Zheng Jing
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Robert Bowser
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
624
|
Physical activity and the maintenance of cognition: Learning from animal models. Alzheimers Dement 2007; 3:S30-7. [DOI: 10.1016/j.jalz.2007.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 01/03/2007] [Indexed: 11/27/2022]
|
625
|
Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer's disease. FASEB J 2007; 21:2400-8. [PMID: 17356006 DOI: 10.1096/fj.06-7649com] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Standardized Ginkgo biloba extract EGb 761 exhibits beneficial effects to patients with Alzheimer's disease (AD). It was previously demonstrated that EGb 761 inhibits amyloid beta (Abeta) oligomerization in vitro, protects neuronal cells against Abeta toxicity, and improves cognitive defects in a mouse model of AD (Tg 2576). In this study, the neurogenic potential of EGb 761 and its effect on cAMP response element binding protein (CREB) were examined in a double transgenic mouse model (TgAPP/PS1). EGb 761 significantly increases cell proliferation in the hippocampus of both young (6 months) and old (22 months) TgAPP/PS1 mice, and the total number of neuronal precursor cells in vitro in a dose-dependent manner. Furthermore, Abeta oligomers inhibit phosphorylation of CREB and cell proliferation in the hippocampus of TgAPP/PS1 mice. Administration of EGb 761 reduces Abeta oligomers and restores CREB phosphorylation in the hippocampus of these mice. The present findings suggest that 1) enhanced neurogenesis by EGb 761 may be mediated by activation of CREB, 2) stimulation of neurogenesis by EGb 761 may contribute to its beneficial effects in AD patients and improved cognitive functions in the mouse model of AD, and 3) EGb 761 has therapeutic potential for the prevention and improved treatment of AD.
Collapse
Affiliation(s)
- Flaubert Tchantchou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
626
|
|
627
|
Leal-Galicia P, Saldívar-González A, Morimoto S, Arias C. Exposure to environmental enrichment elicits differential hippocampal cell proliferation: Role of individual responsiveness to anxiety. Dev Neurobiol 2007; 67:395-405. [PMID: 17443796 DOI: 10.1002/dneu.20322] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmental enrichment (EE) is a largely employed behavioral procedure in which animals are exposed to high stimulation compared with conventional housing conditions. Animal exposure to an EE exerts beneficial effects on the performance of different learning tasks and induces a number of behavioral, neurochemical, and neuroanatomical changes including hippocampal cell proliferation. However, the importance of voluntary interaction with the environment in these changes has not been clearly resolved yet. Moreover, the effects of a complex environment on animal emotionality still remains questionable and has not been explored in detail under conditions that allow unmasking individual responses among subjects in a group. The present study was aimed at exposing groups of rats to an EE, and analyzing individual differences in activity levels during EE sessions. We observed differences with respect to the activity level displayed by rats during the enriched sessions, which correlated with differences in the rate of hippocampal cell proliferation. It is suggested that exposure to EE may reduce anxiety-like behaviors and may elicit individual differences on emotional reactions positively linked with hippocampal neurogenesis and testosterone levels.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 México D.F., México
| | | | | | | |
Collapse
|
628
|
Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H. Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 2007; 25:649-58. [PMID: 17328769 DOI: 10.1111/j.1460-9568.2007.05309.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neural stem/progenitor cells (NSPCs) proliferate and differentiate depending on their intrinsic properties and local environment. It has been recognized that astrocytes promote neurogenic differentiation of NSPCs, suggesting the importance of cell-cell interactions between glial cells and NSPCs. Recent studies have demonstrated that microglia, one type of glial cells, play an important role in neurogenesis. However, little is known about how activated microglia control the proliferation and differentiation of NSPCs. In this study, we investigated the possibility that microglia-derived soluble factors regulate the behaviour of NSPCs. To this end, NSPCs and microglial cultures were obtained from rat embryonic day 16 subventricular zone (SVZ) and rat postnatal 1 day cortex, respectively, and the conditioned medium from microglia was prepared. Microglial-conditioned medium had no significant effect on the proliferation of NSPCs. In contrast, it increased the percentage of cells positive for a marker of astrocytes, glial fibrillary acidic protein (GFAP) during differentiation. The induction of astrocytic differentiation by microglial-conditioned medium was reduced by the inhibition of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) and mitogen-activated protein kinase (MAPK) pathways. Furthermore, microglia-derived interleukin (IL)-6 and leukaemia inhibitory factor (LIF) were identified as essential molecules for this astrocytic differentiation using neutralizing antibodies and recombinant cytokines. Our results suggest that microglia as well as astrocytes contribute to the integrity of the local environment of NSPCs, and at least IL-6 and LIF released by activated microglia promote astrocytic differentiation of NSPCs via the activation of the JAK/STAT and MAPK pathways.
Collapse
Affiliation(s)
- Masaya Nakanishi
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
629
|
Frisoni GB, Pievani M, Testa C, Sabattoli F, Bresciani L, Bonetti M, Beltramello A, Hayashi KM, Toga AW, Thompson PM. The topography of grey matter involvement in early and late onset Alzheimer's disease. ACTA ACUST UNITED AC 2007; 130:720-30. [PMID: 17293358 DOI: 10.1093/brain/awl377] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Clinical observations have suggested that the neuropsychological profile of early and late onset forms of Alzheimer's disease (EOAD and LOAD) differ in that neocortical functions are more affected in the former and learning in the latter, suggesting that they might be different diseases. The aim of this study is to assess the brain structural basis of these observations, and test whether neocortical areas are more heavily affected in EOAD and medial temporal areas in LOAD. Fifteen patients with EOAD and 15 with LOAD (onset before and after age 65; Mini Mental State Examination 19.8, SD 4.0 and 20.7, SD 4.2) were assessed with a neuropsychological battery and high-resolution MRI together with 1:1 age- and sex-matched controls. Cortical atrophy was assessed with cortical pattern matching, and hippocampal atrophy with region-of-interest-based analysis. EOAD patients performed more poorly than LOAD on visuospatial, frontal-executive and learning tests. EOAD patients had the largest atrophy in the occipital [25% grey matter (GM) loss in the left and 24% in the right hemisphere] and parietal lobes (23% loss on both sides), while LOAD patients were remarkably atrophic in the hippocampus (21 and 22% loss). Hippocampal GM loss of EOAD (9 and 16% to the left and right) and occipital (12 and 14%) and parietal (13 and 12%) loss of LOAD patients were less marked. In EOAD, GM loss of 25% or more was mapped to large neocortical areas and affected all lobes, with relative sparing of primary sensory, motor, and visual cortex, and anterior cingulate and orbital cortex. In LOAD, GM loss was diffusely milder (below 15%); losses of 15-20% were confined to temporoparietal and retrosplenial cortex, and reached 25% in restricted areas of the medial temporal lobe and right superior temporal gyrus. These findings indicate that EOAD and LOAD differ in their typical topographic patterns of brain atrophy, suggesting different predisposing or aetiological factors.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS Centro San Giovanni di Dio FBF, The National Centre for Research and Care of Alzheimer's and Mental Diseases, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
630
|
Spires TL, Hannan AJ. Molecular mechanisms mediating pathological plasticity in Huntington's disease and Alzheimer's disease. J Neurochem 2007; 100:874-82. [PMID: 17217424 DOI: 10.1111/j.1471-4159.2006.04275.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases such as Huntington's disease and Alzheimer's disease, although very different in etiology, share common degenerative processes. These include neuronal dysfunction, decreased neural connectivity, and disruption of cellular plasticity. Understanding the molecular mechanisms underlying the neural plasticity deficits in these devastating conditions may lead the way toward new therapeutic targets, both disease-specific and more generalized, which can ameliorate degenerative cognitive deficits. Furthermore, investigations of 'pathological plasticity' in these diseases lend insight into normal brain function. This review will present evidence for altered plasticity in Huntington's and Alzheimer's diseases, relate these findings to symptomatology, and review possible causes and commonalities.
Collapse
Affiliation(s)
- Tara L Spires
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
631
|
Abstract
OBJECTIVE To conduct a comprehensive literature review of the area of neural stem cells and neuropsychiatry. METHODS 'Neural stem cells' (NSCs) and 'neurogenesis' were used as keywords in Medline (1966 - November 2006) to identify relevant papers in the areas of Alzheimer's disease (AD), depression, schizophrenia and Parkinson's disease (PD). This list was supplemented with papers from reference lists of seminal reviews. RESULTS The concept of a 'stem cell' continues to evolve and is currently defined by operational criteria related to symmetrical renewal, multipotency and functional viability. In vivo adult mammalian neurogenesis occurs in discrete niches in the subventricular and subgranular zones - however, functional precursor cells can be generated in vitro from a wide variety of biological sources. Both artificial and physiological microenvironment is therefore critical to the characteristics and behaviour of neural precursors, and it is not straightforward how results from the laboratory can be extrapolated to the living organism. Transplant strategies in PD have shown that it is possible for primitive neural tissue to engraft into neuropathic brain areas, become biologically functional and lead to amelioration of clinical signs and symptoms. However, with long-term follow-up, significant problems related to intractable side-effects and potential neoplastic growth have been reported. These are therefore the potentials and pitfalls for NSC technology in neuropsychiatry. In AD, the physiology of amyloid precursor protein may directly interact with NSCs, and a role in memory function has been speculated. The role of endogenous neurogenesis has also been implicated in the etiology of depression. The significance of NSCs and neurogenesis for schizophrenia is still emerging. CONCLUSIONS There are a number of technical and conceptual challenges ahead before the promise of NSCs can be harnessed for the understanding and treatment of neuropsychiatric disorders. Further research into fundamental NSC biology and how this interacts with the neuropsychiatric disease processes is required.
Collapse
Affiliation(s)
| | - Kuldip Sidhu
- 3Diabetes Transplant Unit, The Prince of Wales Hospital, Sydney Australia
| | - Sophia Dean
- 1School of Psychiatry, University of New South Wales, Sydney Australia
| | - Perminder Sachdev
- 1School of Psychiatry, University of New South Wales, Sydney Australia
| |
Collapse
|
632
|
Becker M, Lavie V, Solomon B. Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2007; 104:1691-6. [PMID: 17242369 PMCID: PMC1785268 DOI: 10.1073/pnas.0610180104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurogenesis is a subject of intense interest and extensive research, but it stands at the center of a bitter debate over ethical and practical problems. Neurodegenerative diseases, such as Alzheimer's disease (AD), accompanied by a shifting balance between neurogenesis and neurodegeneration, are suitable for stimulation of neurogenesis for the benefit of diseased patients. We have previously shown that Abs against the EFRH sequence of beta-amyloid peptide (AbetaP) prevent aggregation and disaggregate AbetaP both in vitro and in vivo. EFRH, located in the soluble tail of the N-terminal region, acts as a regulatory site controlling both solubilization and disaggregation processes in the AbetaP molecule. Here we show that anti-EFRH immunotherapy of a platelet-derived amyloid precursor protein transgenic mouse model of AD stimulates endogenous neurogenesis, suggested by elevated numbers of BrdU-incorporated cells, most of which are colocalized with a marker of mature neurons, NeuN. These newly born neurons expressed the activity-dependent gene Zif268, indicating their functional integration and participation in response to synaptic input in the brain. These findings suggest that anti-amyloid immunotherapy may promote recovery from AD or other diseases related to AbetaP overproduction and neurotoxicity by restoring neuronal population, as well as cognitive functions in treated patients.
Collapse
Affiliation(s)
- Maria Becker
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Vered Lavie
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Beka Solomon
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
633
|
Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci 2007; 26:13114-9. [PMID: 17167100 PMCID: PMC6674966 DOI: 10.1523/jneurosci.4667-06.2006] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adult human brain retains the capacity to generate new neurons in the hippocampal formation (Eriksson et al., 1998) and neuronal progenitor cells (NPCs) in the forebrain (Bernier et al., 2000), but to what extent it is capable of reacting to injuries, such as ischemia, is not known. We analyzed postmortem tissue from normal and pathological human brain tissue (n = 54) to study the cellular response to ischemic injury in the forebrain. We observed that cells expressing the NPC marker polysialylated neural adhesion cell molecule (PSA-NCAM) are continuously generated in the adult human subventricular zone (SVZ) and migrate along the olfactory tracts. These cells were not organized in migrating chains as in the adult rodent rostral migratory stream, and their number was lower in the olfactory tracts of brains from old (56-81 years of age) compared with young (29 + 36 years of age) individuals. Moreover, we show that in brains of patients of advanced age (60-87 years of age), ischemia led to an elevated number of Ki-67-positive cells in the ipsilateral SVZ without concomitant apoptotic cell death. Additionally, ischemia led to an increased number of PSA-NCAM-positive NPCs close to the lateral ventricular walls, compared with brains of comparable age without obvious neuropathologic changes. These results suggest that the adult human brain retains a capacity to respond to ischemic injuries and that this capacity is maintained even in old age.
Collapse
Affiliation(s)
- Jadranka Macas
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| | - Christian Nern
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| | - Karl H. Plate
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), University of Frankfurt, D-60528 Frankfurt, Germany
| |
Collapse
|
634
|
|
635
|
Abstract
As part of the hippocampus, the dentate gyrus is considered to play a crucial role in associative memory. The reviewed data suggest that the dentate gyrus withstands the formation of plaques, tangles and neuronal death until late stages of Alzheimer's disease (AD). However, changes related to a disconnecting process, and more subtle intrinsic alterations, may contribute to disturbances in memory and learning observed in early stages of AD.
Collapse
Affiliation(s)
- Thomas G Ohm
- Institute of Integrative Neuroanatomy, Department of Clinical Cell and Neurobiology, Charité CCM, 10098 Berlin, Germany.
| |
Collapse
|
636
|
Kan I, Melamed E, Offen D. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 2007:219-42. [PMID: 17554511 DOI: 10.1007/978-3-540-68976-8_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.
Collapse
Affiliation(s)
- I Kan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, 49100 Petah-Tikva, Israel
| | | | | |
Collapse
|
637
|
Nyffeler M, Zhang WN, Feldon J, Knuesel I. Differential expression of PSD proteins in age-related spatial learning impairments. Neurobiol Aging 2007; 28:143-55. [PMID: 16386336 DOI: 10.1016/j.neurobiolaging.2005.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Deficits in hippocampus-dependent spatial learning that are typical for a subpopulation of aged rats are not associated with loss of neurons or excitatory synapses but accompanied by significant reduction of postsynaptic density (PSD) area in perforated synapses. Here, we examined whether structural alterations in aged learning-impaired rats correlate with altered content of PSD proteins which are critically involved in normal synaptic function. Spatial memory tasks were used to separate male rats into young, aged learning-unimpaired and impaired groups. Semi-quantitative immunohistochemistry revealed significant alterations in the content of the AMPA receptor GluR1 subunit, PSD-95 and synGAP in the hippocampal formation of aged-learning impaired compared to aged-unimpaired and young rats. While synGAP expression was reduced, GluR1 and PSD95 levels were selectively increased in aged-learning-impaired subjects. These findings suggest that age-induced changes of the PSD protein expression levels are more pronounced in learning-impaired rats compared to unimpaired subjects and that the alterations in synaptic protein content may result in reduced synaptic function, potentially underlying the individual differences in mnemonic functions during aging.
Collapse
Affiliation(s)
- Myriel Nyffeler
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
638
|
Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. ACTA ACUST UNITED AC 2007; 53:198-214. [DOI: 10.1016/j.brainresrev.2006.08.002] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/10/2006] [Accepted: 08/22/2006] [Indexed: 12/17/2022]
|
639
|
Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G. Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol Psychiatry 2006; 60:1314-23. [PMID: 16806094 DOI: 10.1016/j.biopsych.2006.04.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 12/08/2005] [Accepted: 04/12/2006] [Indexed: 12/21/2022]
Abstract
BACKGROUND In aging mice, activity maintains hippocampal plasticity and adult hippocampal neurogenesis at a level corresponding to a younger age. Here we studied whether physical exercise and environmental enrichment would also affect brain plasticity in a mouse model of Alzheimer's disease (AD). METHODS Amyloid precursor protein (APP)-23 mice were housed under standard or enriched conditions or in cages equipped with a running wheel. We assessed beta-amyloid plaque load, adult hippocampal neurogenesis, spatial learning, and mRNA levels of trophic factors in the brain. RESULTS Despite stable beta-amyloid plaque load, enriched-living mice showed improved water maze performance, an up-regulation of hippocampal neurotrophin (NT-3) and brain-derived neurotrophic factor (BDNF) and increased hippocampal neurogenesis. In contrast, despite increased bodily fitness, wheel-running APP23 mice showed no change in spatial learning and no change in adult hippocampal neurogenesis but a down-regulation of hippocampal and cortical growth factors. CONCLUSIONS We conclude that structural and molecular prerequisites for activity-dependent plasticity are preserved in mutant mice with an AD-like pathology. Our study might help explain benefits of activity for the aging brain but also demonstrates differences between physical and more cognitive activity. It also suggests a possible cellular correlate for the dissociation between structural and functional pathology often found in AD.
Collapse
Affiliation(s)
- Susanne A Wolf
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Charité University Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
640
|
Mevel K, Chetelat G, Desgranges B, Eustache F. Maladie d’alzheimer, hippocampe et neuroimagerie. Encephale 2006; 32 Pt 4:S1149-54. [PMID: 17356489 DOI: 10.1016/s0013-7006(06)76306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- K Mevel
- Inserm-EPHE-Université de Caen Basse Normandie, Unité E0218, Caen, France
| | | | | | | |
Collapse
|
641
|
Mazur-Kolecka B, Frackowiak J. Neprilysin protects human neuronal progenitor cells against impaired development caused by amyloid-β peptide. Brain Res 2006; 1124:10-8. [PMID: 17112488 DOI: 10.1016/j.brainres.2006.09.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
Transplantation of human neuronal progenitor cells (HNPC) is being considered for neuroreplacement therapy in beta-amyloidosis associated with neuronal loss in Down's syndrome and Alzheimer's disease. However, the influence of amyloid-beta-containing brain environment on the development of HNPCs is unknown. Recently, we demonstrated that amyloid-beta peptide (Abeta) impaired differentiation of HNPCs in culture through oxidative stress. Now we studied the effect of neprilysin, an Abeta-degrading enzyme, on development of neuronal colonies from neurospheres of HNPCs in the presence of Abeta1-40. Neprilysin increased the number of neurospheres that formed colonies of neuron-like cells. This effect of neprilysin was associated with reduced amounts of the monomeric and dimeric Abeta that remained in culture supernatants as well as the Abeta uptaken by differentiating HNPCs. Phosphoramidon, a neprilysin inhibitor, attenuated these effects of neprilysin. In control cultures of HNPCs that grew without exogenous Abeta1-40, the treatment with neprilysin reduced the number of developing colonies. This effect might result from degradation by neprilysin of endogenous Abeta produced and secreted by HNPCs or other peptides that are involved in neuronal development. The results demonstrate that even a partial reduction of extracellular Abeta levels by neprilysin may facilitate development of HNPCs into neurons in an environment overloaded with Abeta. This finding suggests that neprilysin could facilitate neuroreplacement therapy with HNPCs in treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | |
Collapse
|
642
|
Chételat G, Desgranges B, Eustache F. [Brain profile of hypometabolism in early Alzheimer's disease: relationships with cognitive deficits and atrophy]. Rev Neurol (Paris) 2006; 162:945-51. [PMID: 17028562 DOI: 10.1016/s0035-3787(06)75104-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
While accurate and early prediction of patients that will develop Alzheimer's disease (AD) in the near future is urgently needed, the amnestic Mild Cognitive Impairment (MCI) state is of particular interest since it most conveniently represents the pre-dementia stage of AD. Consistently, the profile of brain functional alteration constantly evidenced in resting-state SPECT and PET studies is similar to that observed in mild AD, mainly involving the posterior cingulate and temporo-parietal regions. While the former is a characteristic feature of MCI, since it is present in each patient at this stage, the latter seems specifically associated with the future conversion to AD. Moreover, right temporo-parietal hypometabolism has been found to be the best predictor of subsequent global cognitive decline, over and above neuropsychological and MRI volumetric measurements. This review also presents a discussion on the relationships between the brain profile of hypometabolism on the one hand, and cognitive impairment as well as cerebral structural alterations on the other. Thus, firstly, while functional impairment in the posterior cingulate region seems to be associated with deficits in retrieval of episodic memories in MCI, the relationship between right temporo-parietal hypometabolism and cognitive impairment is still obscure. However, several arguments point to its relation with visuo-spatial deficits, which are often associated with future conversion to AD. Secondly, the discordance between brain areas of major functional changes, and those of highest structural alterations, leads to some relevant questions about the relations between both pathological manifestations and their underlying mechanisms. More specifically, additional hypometabolism-inducing factors could occur in areas of highest hypometabolism compared to atrophy, i.e. mainly in posterior associative cortical regions, leading to genuine functional perturbation in early AD before the development of real atrophy and perhaps of disease as well. By contrast, the hippocampus is the main site of atrophy while its functional alteration is still debated, suggesting that compensation/protective mechanisms probably specifically occur in this structure to maintain a high level of metabolism relative to its structural alteration.
Collapse
Affiliation(s)
- G Chételat
- Inserm, EPHE, Université de Caen, Unité E0218, GIP Cyceron, Caen, France.
| | | | | |
Collapse
|
643
|
Abstract
PURPOSE OF REVIEW An increasing number of genetically modified mouse models are designed and used in the field of Alzheimer disease research. This review aims to offer a general view of the existing transgenic mouse lines and to discuss their relevance and limitations. RECENT FINDINGS Potential therapeutic targets have been identified in rodent models of Alzheimer disease. Although important steps towards obtaining a safe vaccine to prevent amyloid plaque formation have been made, further evaluations and the use of intermediate models are considered a necessity. SUMMARY More than 18 million people worldwide are suffering from Alzheimer disease, the most common dementing disorder in humans. Transgenic lines have been created in order to understand the underlying mechanisms of Alzheimer disease and to find a cure. None of the available models completely recapitulates the characteristics of human pathology, but they provide valuable information on different pathogenic pathways involved. New therapeutic approaches and improvement of current strategies can be obtained from the use of Alzheimer animal models.
Collapse
Affiliation(s)
- Alina Codita
- Karolinska Institutet, NVS, KI Alzheimer's Disease Research Centre, Novum, Stockholm, Sweden
| | | | | |
Collapse
|
644
|
Aslan H, Songur A, Tunc AT, Ozen OA, Bas O, Yagmurca M, Turgut M, Sarsilmaz M, Kaplan S. Effects of formaldehyde exposure on granule cell number and volume of dentate gyrus: A histopathological and stereological study. Brain Res 2006; 1122:191-200. [PMID: 17011527 DOI: 10.1016/j.brainres.2006.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/31/2006] [Accepted: 09/03/2006] [Indexed: 11/24/2022]
Abstract
The hippocampal formation is a complex region of the brain related to memory and learning. The purpose of the present study was to determine whether exposure of neonatal rats to formaldehyde (FA) had either early or delayed effects on the numbers of granule cells in the dentate gyrus (DG). After birth, the neonatal male Wistar rats were exposed throughout a 30-day period to various concentrations of FA: 0 (control group), 6 ppm (low concentration group) and 12 ppm (high concentration group). This was done by placing them for 6 h/day and 5 days per week in a glass chamber containing FA vapor. Then, five animals from each group were anesthetized and decapitated on postnatal day (PND) 30, and the remaining five animals were sacrificed on PND 90 by intracardiac perfusion using 10% neutral buffered FA solution. The Cavalieri principle of stereological approaches was used to determine the volume of the DG in these sections. The optical fractionator counting method was used to estimate the total number of granule cells in the DG. The appearance of granule cells was normal under light microscopy in all PND 30 and PND 90 groups. There were significant age-related reductions in the volume of the DG at PND 90 irrespective of which group was examined. Significant age-related neuron loss was also determined at PND 90 compared to that at PND 30. Rats treated with a high concentration FA were found to have fewer granule cells than either the animals treated with a low concentration FA or the control group (p<0.01 and p<0.01, respectively) at PND 90 but not at PND 30. These findings clearly indicate that granule cells in the DG may be vulnerable to stress and the concentration of FA to which they are exposed during early postnatal life, and also that a neurotoxic effect of high dose FA on cell number is only seen after a long time period. These results may explain why some disorders do not appear until later life.
Collapse
Affiliation(s)
- Huseyin Aslan
- Department of Histology and Embryology, Gaziosmanpasa University School of Medicine, Tasliciflik Kampusu TR-60100 Tokat, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
645
|
Levi O, Michaelson DM. Environmental enrichment stimulates neurogenesis in apolipoprotein E3 and neuronal apoptosis in apolipoprotein E4 transgenic mice. J Neurochem 2006; 100:202-10. [PMID: 17074063 DOI: 10.1111/j.1471-4159.2006.04189.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurodegeneration in Alzheimer's disease (AD) is associated with the activation of neurogenesis. The mechanisms underlying this crosstalk between neuronal death and birth and the extent to which it is affected by genetic risk factors of AD are not known. We employed transgenic mice expressing human apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, or expressing human apoE3 (an AD-benign allele), in order to examine the hypothesis that apoE4 tilts the balance between neurogenesis and neuronal cell death in favor of the latter. The results showed an isoform-specific increase in neurogenesis in the hippocampal dentate gyrus (DG) under standard conditions in apoE4-transgenic mice. Environmental stimulation, which increases neurogenesis in the DG of apoE3-transgenic and wild-type mice, had the opposite effect on the apoE4 mice, where it triggered apoptosis while decreasing hippocampal neurogenesis. These effects were specific to the DG and were not observed in the subventricular zone, where neurogenesis was unaffected by either the apoE genotype or the environmental conditions. These in vivo findings demonstrate a linkage between neuronal apoptosis and the impaired neuronal plasticity and cognition of apoE4-transgenic mice, and suggest that similar interactions between apoE4 and environmental factors might occur in AD.
Collapse
Affiliation(s)
- Ofir Levi
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
646
|
Zhang C, McNeil E, Dressler L, Siman R. Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer's disease. Exp Neurol 2006; 204:77-87. [PMID: 17070803 PMCID: PMC1853320 DOI: 10.1016/j.expneurol.2006.09.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/22/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
Neurogenesis in the adult hippocampus has been implicated in regulating long-term memory and mood, but its integrity in Alzheimer's disease (AD) is uncertain. Studies of neurogenesis in transgenic mouse models of familial AD are complicated by ectopic overexpression restricted to terminally differentiated neurons, while AD cases have been studied only at the pre-senile or end-stage of disease. To investigate further the fidelity of adult neurogenesis, we examined mice carrying targeted mutations in amyloid precursor protein (APP), presenilin-1 (PS-1), or both APP and PS-1, in which FAD-causing mutations have been inserted into their endogenous genes. The latter "double knock-in" mice developed aging- and region-dependent amyloid deposition starting around 6 months, and by 9 months exhibited microglial activation associated with the amyloid. In the 9-month-old dentate gyrus, the double knock-in mutations reduced the numbers of MCM2-positive neural stem and progenitor cells by 3-fold and doublecortin-positive neuroblasts by 2-fold. The reduction in dentate neuroblasts persisted at 18 months of age. The impairment in neurogenesis was confirmed by quantitative Western blot analysis of doublecortin content and was restricted to the hippocampal but not the olfactory bulb neurogenic system. In contrast, neither mutant PS-1 nor APP alone led to amyloid deposition or significant alterations in the two markers. These results demonstrate long-lasting and selective impairment in adult hippocampal neurogenesis in a knock-in mutant mouse model of FAD and suggest a novel mechanism by which amyloid and its attendant microglia-mediated neuroinflammation could contribute to the cognitive and behavioral abnormalities of AD.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory for Neurodegeneration, Center for Brain Injury and Repair, University of Pennsylvania School of Medicine, 105B Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
647
|
Baker KL, Daniels SB, Lennington JB, Lardaro T, Czap A, Notti RQ, Cooper O, Isacson O, Frasca S, Conover JC. Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol 2006; 498:747-61. [PMID: 16927265 DOI: 10.1002/cne.21090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest neurogenic zone in the adult brain, the subventricular zone (SVZ), lies adjacent to the lateral wall of the lateral ventricle and is responsible for replacement of interneuron populations within the olfactory bulb. Initial gross observation of the anterior forebrain in MRL mice revealed enlarged lateral ventricles; however, little neurodegeneration was detected within the SVZ or surrounding tissues. Instead, increased proliferation within the SVZ was observed, based on incorporation of the thymidine analogue bromodeoxyuridine. Closer examination using electron microscopy revealed that a significant number of SVZ astrocytes interpolated within the ependyma and established contact with the ventricle. In addition, subependymal, protuberant nests of cells, consisting primarily of neuroblasts, were found along the anterior SVZ of MRL mice. Whole mounts of the lateral wall of the lateral ventricle stained for the neuroblast marker doublecortin revealed normal formation of chains of migratory neuroblasts along the entire wall and introduction of enhanced green fluorescent protein-tagged retrovirus into the lateral ventricles confirmed that newly generated neuroblasts were able to track into the olfactory bulb.
Collapse
Affiliation(s)
- Kasey L Baker
- Center for Regenerative Biology, University of Connecticut, Storrs, 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
648
|
Taupin P. Neurogenesis and Alzheimer's disease. Drug Target Insights 2006; 1:1-4. [PMID: 21901052 PMCID: PMC3155215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs) reside in the adult central nervous system (CNS) provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.
Collapse
Affiliation(s)
- Philippe Taupin
- National Neuroscience Institute, Singapore,National University of Singapore,Nanyang Technological University, Singapore,Correspondence: 11 Jalan Tan Tock Seng, Singapore 308433. Tel: (65) 6357-7533; Fax: (65) 6256-9178;
| |
Collapse
|
649
|
Fahrner A, Kann G, Flubacher A, Heinrich C, Freiman TM, Zentner J, Frotscher M, Haas CA. Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Exp Neurol 2006; 203:320-32. [PMID: 17049346 DOI: 10.1016/j.expneurol.2006.08.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/07/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Granule cell dispersion (GCD) in the dentate gyrus is a frequent feature of Ammon's horn sclerosis (AHS) which is often associated with temporal lobe epilepsy (TLE). It has been hypothesized that GCD may be caused by an abnormal migration of newly born granule cells. To test this hypothesis, we used markers of proliferation and neurogenesis and immunocytochemical methods as well as quantitative Western blot and real-time RT-PCR analyses in surgically resected hippocampi from TLE patients and controls. Below the age of 1 year, Ki-67-immunopositive nuclei were detected in the subgranular zone of the dentate gyrus, but not in the dentate of TLE patients independent of age. The expression of the proliferation marker minichromosome maintenance protein 2 (mcm2) and of doublecortin (DCX) decreased significantly with age in controls and in TLE patients, but the expression of both proteins was independent of the degree of AHS and GCD. Quantitative real-time RT-PCR confirmed these findings at the level of gene expression. In contrast, immunocytochemistry for glial fibrillary acidic protein (GFAP) and vimentin as well as Golgi staining revealed a radially aligned glial network in the region of GCD. GFAP-positive fiber length significantly increased with the severity of GCD. These results indicate that epileptic activity does not stimulate neurogenesis in the human dentate gyrus and that GCD probably does not result from a malpositioning of newly generated granule cells, but rather from an abnormal migration of mature granule cells along a radial glial scaffold.
Collapse
Affiliation(s)
- Alexander Fahrner
- Experimental Epilepsy Group, Neurocenter, University of Freiburg, Breisacher Strasse 64, D-79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
650
|
Polysialic Acid Profiles of Mice Expressing Variant Allelic Combinations of the Polysialyltransferases ST8SiaII and ST8SiaIV. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84074-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|