601
|
Wacker DA, Ruhl DD, Balagamwala EH, Hope KM, Zhang T, Kraus WL. The DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1 cooperate in the regulation of chromatin structure and transcription. Mol Cell Biol 2007; 27:7475-85. [PMID: 17785446 PMCID: PMC2169059 DOI: 10.1128/mcb.01314-07] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We explored the mechanisms of chromatin compaction and transcriptional regulation by poly(ADP-ribose) polymerase 1 (PARP-1), a nucleosome-binding protein with an NAD(+)-dependent enzymatic activity. By using atomic force microscopy and a complementary set of biochemical assays with reconstituted chromatin, we showed that PARP-1 promotes the localized compaction of chromatin into supranucleosomal structures in a manner independent of the amino-terminal tails of core histones. In addition, we defined the domains of PARP-1 required for nucleosome binding, chromatin compaction, and transcriptional repression. Our results indicate that the DNA binding domain (DBD) of PARP-1 is necessary and sufficient for binding to nucleosomes, yet the DBD alone is unable to promote chromatin compaction and only partially represses RNA polymerase II-dependent transcription in an in vitro assay with chromatin templates (approximately 50% of the repression observed with wild-type PARP-1). Furthermore, our results show that the catalytic domain of PARP-1, which does not bind nucleosomes on its own, cooperates with the DBD to promote chromatin compaction and efficient transcriptional repression in a manner independent of its enzymatic activity. Collectively, our results have revealed a novel function for the catalytic domain in chromatin compaction. In addition, they show that the DBD and catalytic domain cooperate to regulate chromatin structure and chromatin-dependent transcription, providing mechanistic insights into how these domains contribute to the chromatin-dependent functions of PARP-1.
Collapse
Affiliation(s)
- David A Wacker
- Department of Molecular Biology and Genetics, Cornell University, 465 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
602
|
Bentle MS, Reinicke KE, Dong Y, Bey EA, Boothman DA. Nonhomologous end joining is essential for cellular resistance to the novel antitumor agent, beta-lapachone. Cancer Res 2007; 67:6936-45. [PMID: 17638905 DOI: 10.1158/0008-5472.can-07-0935] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Commonly used antitumor agents, such as DNA topoisomerase I/II poisons, kill cancer cells by creating nonrepairable DNA double-strand breaks (DSBs). To repair DSBs, error-free homologous recombination (HR), and/or error-prone nonhomologous end joining (NHEJ) are activated. These processes involve the phosphatidylinositol 3'-kinase-related kinase family of serine/threonine enzymes: ataxia telangiectasia mutated (ATM), ATM- and Rad3-related for HR, and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ. Alterations in these repair processes can cause drug/radiation resistance and increased genomic instability. beta-Lapachone (beta-lap; also known as ARQ 501), currently in phase II clinical trials for the treatment of pancreatic cancer, causes a novel caspase- and p53-independent cell death in cancer cells overexpressing NAD(P)H:quinone oxidoreductase-1 (NQO1). NQO1 catalyzes a futile oxidoreduction of beta-lap leading to reactive oxygen species generation, DNA breaks, gamma-H2AX foci formation, and hyperactivation of poly(ADP-ribose) polymerase-1, which is required for cell death. Here, we report that beta-lap exposure results in NQO1-dependent activation of the MRE11-Rad50-Nbs-1 complex. In addition, ATM serine 1981, DNA-PKcs threonine 2609, and Chk1 serine 345 phosphorylation were noted; indicative of simultaneous HR and NHEJ activation. However, inhibition of NHEJ, but not HR, by genetic or chemical means potentiated beta-lap lethality. These studies give insight into the mechanism by which beta-lap radiosensitizes cancer cells and suggest that NHEJ is a potent target for enhancing the therapeutic efficacy of beta-lap alone or in combination with other agents in cancer cells that express elevated NQO1 levels.
Collapse
Affiliation(s)
- Melissa S Bentle
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
603
|
Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, Minna JD, Bornmann WG, Gao J, Boothman DA. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci U S A 2007; 104:11832-7. [PMID: 17609380 PMCID: PMC1913860 DOI: 10.1073/pnas.0702176104] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the number one cause of cancer-related deaths in the world. Patients treated with current chemotherapies for non-small-cell lung cancers (NSCLCs) have a survival rate of approximately 15% after 5 years. Novel approaches are needed to treat this disease. We show elevated NAD(P)H:quinone oxidoreductase-1 (NQO1) levels in tumors from NSCLC patients. beta-Lapachone, an effective chemotherapeutic and radiosensitizing agent, selectively killed NSCLC cells that expressed high levels of NQO1. Isogenic H596 NSCLC cells that lacked or expressed NQO1 along with A549 NSCLC cells treated with or without dicoumarol, were used to elucidate the mechanism of action and optimal therapeutic window of beta-lapachone. NSCLC cells were killed in an NQO1-dependent manner by beta-lapachone (LD50, approximately 4 microM) with a minimum 2-h exposure. Kinetically, beta-lapachone-induced cell death was characterized by the following: (i) dramatic reactive oxygen species (ROS) formation, eliciting extensive DNA damage; (ii) hyperactivation of poly(ADP-ribose)polymerase-1 (PARP-1); (iii) depletion of NAD+/ATP levels; and (iv) proteolytic cleavage of p53/PARP-1, indicating mu-calpain activation and apoptosis. Beta-lapachone-induced PARP-1 hyperactivation, nucleotide depletion, and apoptosis were blocked by 3-aminobenzamide, a PARP-1 inhibitor, and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), a Ca2+ chelator. NQO1- cells (H596, IMR-90) or dicoumarol-exposed NQO1+ A549 cells were resistant (LD50, >40 microM) to ROS formation and all cytotoxic effects of beta-lapachone. Our data indicate that the most efficacious strategy using beta-lapachone in chemotherapy was to deliver the drug in short pulses, greatly reducing cytotoxicity to NQO1- "normal" cells. beta-Lapachone killed cells in a tumorselective manner and is indicated for use against NQO1+ NSCLC cancers.
Collapse
Affiliation(s)
- Erik A. Bey
- Departments of Pharmacology and Oncology, Laboratory of Molecular Stress Responses
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
- To whom correspondence may be addressed at:
Laboratory of Molecular Stress Responses, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, 5323 Harry Hines Boulevard, ND2.210K, Dallas, TX 75390-8807. E-mail: or
| | | | | | - Ying Dong
- Departments of Pharmacology and Oncology, Laboratory of Molecular Stress Responses
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
| | - Chin-Rang Yang
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William G. Bornmann
- Department of Experimental Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Jinming Gao
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
| | - David A. Boothman
- Departments of Pharmacology and Oncology, Laboratory of Molecular Stress Responses
- Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, and
- To whom correspondence may be addressed at:
Laboratory of Molecular Stress Responses, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, 5323 Harry Hines Boulevard, ND2.210K, Dallas, TX 75390-8807. E-mail: or
| |
Collapse
|
604
|
Ditsworth D, Zong WX, Thompson CB. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 2007; 282:17845-54. [PMID: 17430886 PMCID: PMC3140953 DOI: 10.1074/jbc.m701465200] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Necrotic cells release inflammatory mediators that activate cytokine production from innate immune cells. One mediator of this activation is high mobility group box 1 protein (HMGB1). HMGB1 is normally a chromatin-associated protein and is sequestered at condensed chromatin during apoptosis. How it is released from chromatin during necrotic cell death is not known. Here we show that after DNA-alkylating damage, the activation of poly(ADP)-ribose polymerase (PARP) regulates the translocation of HMGB1 from the nucleus to the cytosol. This displaced HMGB1 is subject to release if the cell then loses plasma membrane integrity as a result of necrosis. Both full-length HMGB1 and a truncated form of HMGB1 lacking the highly conserved glutamate-rich C-terminal tail can induce macrophage activation and tumor necrosis factor-alpha production. However, displacement of HMGB1 from the nucleus following PARP activation requires the presence of the glutamate-rich C-terminal tail. Although the C-terminal tail is not the sole substrate for PARP modification of HMGB1, it appears to be required to destabilize HMGB1 association with chromatin following PARP-dependent chromatin modifications. These data suggest that PARP-dependent nuclear-to-cytosolic translocation of HMGB1 serves to establish the ability of cells to release this potent inflammatory mediator upon subsequent necrotic death.
Collapse
Affiliation(s)
- Dara Ditsworth
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Craig B. Thompson
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
605
|
Gamble MJ, Fisher RP. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 2007; 14:548-55. [PMID: 17529993 DOI: 10.1038/nsmb1248] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 04/06/2007] [Indexed: 11/09/2022]
Abstract
The histone chaperone SET is required for transcription of chromatin templates by RNA polymerase Pol II (Pol II) in vitro. Here we uncover a positive role for SET in dislodging DEK and PARP1, which restrict access to chromatin in the absence of SET and the PARP1 substrate NAD(+). SET binds chromatin, dissociating DEK and PARP1 to allow transcription in the absence of NAD(+). In the absence of SET, depletion of DEK restores chromatin accessibility to endonuclease but does not permit Mediator recruitment or transcription. In the presence of NAD(+), PARP1 poly(ADP-ribosyl)ates and evicts DEK (and itself) from chromatin to permit Mediator loading and transcription independent of SET. An artificial DEK variant resistant to SET and PARP1 represses transcription, indicating a requirement for DEK removal. Therefore, SET, DEK and PARP1 constitute a network governing access to chromatin by the transcription machinery.
Collapse
Affiliation(s)
- Matthew J Gamble
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, New York 10021, USA
| | | |
Collapse
|
606
|
Khan JA, Forouhar F, Tao X, Tong L. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets 2007; 11:695-705. [PMID: 17465726 DOI: 10.1517/14728222.11.5.695] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) has crucial roles in many cellular processes, both as a coenzyme for redox reactions and as a substrate to donate ADP-ribose units. Enzymes involved in NAD(+) metabolism are attractive targets for drug discovery against a variety of human diseases, including cancer, multiple sclerosis, neurodegeneration and Huntington's disease. A small-molecule inhibitor of nicotinamide phosphoribosyltransferase, an enzyme in the salvage pathway of NAD(+) biosynthesis, is presently in clinical trials against cancer. An analog of a kynurenine pathway intermediate is efficacious against multiple sclerosis in an animal model. Indoleamine 2,3-dioxygenase plays an important role in immune evasion by cancer cells and other disease processes. Inhibitors against kynurenine 3-hydroxylase can reduce the production of neurotoxic metabolites while increasing the production of neuroprotective compounds. This review summarizes the existing knowledge on NAD(+) metabolic enzymes, with emphasis on their relevance for drug discovery.
Collapse
Affiliation(s)
- Javed A Khan
- Columbia University, Department of Biological Sciences, New York, NY 10027, USA
| | | | | | | |
Collapse
|
607
|
Goenka S, Cho SH, Boothby M. Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J Biol Chem 2007; 282:18732-9. [PMID: 17478423 DOI: 10.1074/jbc.m611283200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor Stat6 plays a critical role in interleukin-4-dependent gene activation. To mediate this function, Stat6 recruits canonical transcriptional co-activators including the histone acetyl transferases CREB-binding protein and NCoA-1 and other proteins such as a p100 co-factor. However, much remains unknown regarding the constituents of Stat6 enhancer complexes, and the exact molecular events that modulate Stat6-dependent gene activation are not fully understood. Recently, we identified a novel co-factor, CoaSt6 (collaborator of Stat6), which associates with Stat6 and enhances its transcriptional activity. Sequence homologies place CoaSt6 in a superfamily of poly(ADP-ribosyl)polymerase (PARP)-like proteins. We have demonstrated here that PARP enzymatic activity is associated with CoaSt6, and this function of CoaSt6 can append ADP-ribose to itself and p100. Further, we show that a catalytically inactive mutant of CoaSt6 was unable to enhance Stat6-mediated transcription of a test promoter. Consistent with these findings, chemical inhibition of PARP activity blocked interleukin-4-dependent transcription from target promoters in vivo. Taken together, we have identified a CoaSt6-associated PARP activity and provided evidence for a role of poly(ADP ribosyl)ation in Stat-mediated transcriptional responses involving a novel PARP.
Collapse
Affiliation(s)
- Shreevrat Goenka
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, USA.
| | | | | |
Collapse
|
608
|
Cao WH, Wang X, Frappart L, Rigal D, Wang ZQ, Shen Y, Tong WM. Analysis of genetic variants of the poly(ADP-ribose) polymerase-1 gene in breast cancer in French patients. Mutat Res 2007; 632:20-8. [PMID: 17560163 DOI: 10.1016/j.mrgentox.2007.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/20/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that catalyzes the poly(ADP-ribosyl)ation of target proteins in response to DNA damage and has been proposed to play a role in DNA repair, recombination, transcription, cell death, cell proliferation, as well as in stabilization of the genome. We have recently shown that PARP-1 deficiency causes mammary tumorigenesis in mice. In the present study, we investigated whether genetic variants and single nucleotide polymorphisms (SNPs) of PARP-1 contribute to human breast cancer. To this end, we screened all PARP-1 exons, 7.1kb of intron-exon junction and 1.0-kb promoter sequences in 83 French patients with breast cancer and 100 controls by direct sequencing of genomic DNA. Twenty rare genetic variants of PARP-1, including c.1148C>A (Ser383Tyr), c.1354C>A (Arg452Arg), c.2819A>G (Lys940Arg) were detected in nine (10.8%) breast cancers of these patients. Among 31 polymorphic sites examined, five haplotype-tagging SNPs (htSNPs) of PARP-1 were identified. Interestingly, the genotype distribution of htSNP c.852T>C (Ala284Ala) was likely associated with loss of estrogen- and progesterone-receptor expression. The present study implies that genetic variants of PARP-1 may contribute to breast cancerogenesis and that PARP-1 htSNP c.852T>C (Ala284Ala) may influence hormonal therapy of breast cancer.
Collapse
Affiliation(s)
- Wen-Hui Cao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5, Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
609
|
Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, Poirier GG. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 2007; 282:16441-53. [PMID: 17428792 DOI: 10.1074/jbc.m608406200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification that is instantly stimulated by DNA strand breaks creating a unique signal for the modulation of protein functions in DNA repair and cell cycle checkpoint pathways. Here we report that lack of poly(ADP-ribose) synthesis leads to a compromised response to DNA damage. Deficiency in poly(ADP-ribosyl)ation metabolism induces profound cellular sensitivity to DNA-damaging agents, particularly in cells deficient for the protein kinase ataxia telangiectasia mutated (ATM). At the biochemical level, we examined the significance of poly(ADP-ribose) synthesis on the regulation of early DNA damage-induced signaling cascade initiated by ATM. Using potent PARP inhibitors and PARP-1 knock-out cells, we demonstrate a functional interplay between ATM and poly(ADP-ribose) that is important for the phosphorylation of p53, SMC1, and H2AX. For the first time, we demonstrate a functional and physical interaction between the major DSB signaling kinase, ATM and poly(ADP-ribosyl)ation by PARP-1, a key enzyme of chromatin remodeling. This study suggests that poly(ADP-ribose) might serve as a DNA damage sensory molecule that is critical for early DNA damage signaling.
Collapse
Affiliation(s)
- Jean-François Haince
- Health and Environment Unit, Laval University Hospital Research Center, CHUQ, Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
610
|
Heart E, Yaney G, Corkey R, Schultz V, Luc E, Liu L, Deeney J, Shirihai O, Tornheim K, Smith P, Corkey B. Ca2+, NAD(P)H and membrane potential changes in pancreatic beta-cells by methyl succinate: comparison with glucose. Biochem J 2007; 403:197-205. [PMID: 17181533 PMCID: PMC1828901 DOI: 10.1042/bj20061209] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/14/2006] [Accepted: 12/20/2006] [Indexed: 11/17/2022]
Abstract
The present study was undertaken to determine the main metabolic secretory signals generated by the mitochondrial substrate MeS (methyl succinate) compared with glucose in mouse and rat islets and to understand the differences. Glycolysis and mitochondrial metabolism both have key roles in the stimulation of insulin secretion by glucose. Both fuels elicited comparable oscillatory patterns of Ca2+ and changes in plasma and mitochondrial membrane potential in rat islet cells and clonal pancreatic beta-cells (INS-1). Saturation of the Ca2+ signal occurred between 5 and 6 mM MeS, while secretion reached its maximum at 15 mM, suggesting operation of a K(ATP)-channel-independent pathway. Additional responses to MeS and glucose included elevated NAD(P)H autofluorescence in INS-1 cells and islets and increases in assayed NADH and NADPH and the ATP/ADP ratio. Increased NADPH and ATP/ADP ratios occurred more rapidly with MeS, although similar levels were reached after 5 min of exposure to each fuel, whereas NADH increased more with MeS than with glucose. Reversal of MeS-induced cell depolarization by Methylene Blue completely inhibited MeS-stimulated secretion, whereas basal secretion and KCl-induced changes in these parameters were not affected. MeS had no effect on secretion or signals in the mouse islets, in contrast with glucose, possibly due to a lack of malic enzyme. The data are consistent with the common intermediates being pyruvate, cytosolic NADPH or both, and suggest that cytosolic NADPH production could account for the more rapid onset of MeS-induced secretion compared with glucose stimulation.
Collapse
Affiliation(s)
- Emma Heart
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- †BioCurrents Research Center, Marine Biological Laboratory, Woods Hole, MA 02543, U.S.A
| | - Gordon C. Yaney
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Richard F. Corkey
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Vera Schultz
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- ‡Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Esthere Luc
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Lihan Liu
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Jude T. Deeney
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Orian Shirihai
- §Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02118, U.S.A
| | - Keith Tornheim
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- ‡Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Peter J. S. Smith
- †BioCurrents Research Center, Marine Biological Laboratory, Woods Hole, MA 02543, U.S.A
| | - Barbara E. Corkey
- *Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, U.S.A
- ‡Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, U.S.A
| |
Collapse
|
611
|
Diaz-Hernandez JI, Moncada S, Bolaños JP, Almeida A. Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death Differ 2007; 14:1211-21. [PMID: 17347665 DOI: 10.1038/sj.cdd.4402117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In neurons, DNA is prone to free radical damage, although repair mechanisms preserve the genomic integrity. However, activation of the DNA repair system, poly(ADP-ribose) polymerase (PARP-1), is thought to cause neuronal death through NAD+ depletion and mitochondrial membrane potential (delta psi(m)) depolarization. Here, we show that abolishing PARP-1 activity in primary cortical neurons can either enhance or prevent apoptotic death, depending on the intensity of an oxidative stress. Only in severe oxidative stress does PARP-1 activation result in NAD+ and ATP depletion and neuronal death. To investigate the role of PARP-1 in an endogenous model of oxidative stress, we used an RNA interference (RNAi) strategy to specifically knock down glutamate-cysteine ligase (GCL), the rate-limiting enzyme of glutathione biosynthesis. GCL RNAi spontaneously elicited a mild type of oxidative stress that was enough to stimulate PARP-1 in a Ca2+-calmodulin kinase II-dependent manner. GCL RNAi-mediated PARP-1 activation facilitated DNA repair, although neurons underwent delta psi(m) loss followed by some apoptotic death. PARP-1 inhibition did not prevent delta psi(m) loss, but enhanced the vulnerability of neurons to apoptosis upon GCL silencing. Conversely, mild expression of PARP-1 partially prevented to GCL RNAi-dependent apoptosis. Thus, in the mild progressive damage likely occur in neurodegenerative diseases, PARP-1 activation plays a neuroprotective role that should be taken into account when considering therapeutic strategies.
Collapse
Affiliation(s)
- J I Diaz-Hernandez
- Unidad de Investigación, Hospital Universitario de Salamanca-Instituto de Estudios Ciencias de la Salud de Castilla y León, Salamanca, Spain
| | | | | | | |
Collapse
|
612
|
Ishiguro A, Ideta M, Mikoshiba K, Chen DJ, Aruga J. ZIC2-dependent Transcriptional Regulation Is Mediated by DNA-dependent Protein Kinase, Poly(ADP-ribose) Polymerase, and RNA Helicase A. J Biol Chem 2007; 282:9983-9995. [PMID: 17251188 DOI: 10.1074/jbc.m610821200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Zic family of zinc finger proteins is essential for animal development, as demonstrated by the holoprosencephaly caused by mammalian Zic2 mutation. To determine the molecular mechanism of Zic-mediated developmental control, we characterized two types of high molecular weight complexes, including Zic2. Complex I was composed of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku70/80, and poly(ADP-ribose) polymerase; complex II contained Ku70/80 and RNA helicase A; all the components interacted directly with Zic2 protein. Immunoprecipitation, subnuclear localization, and in vitro phosphorylation analyses revealed that the DNA-PKcs in complex I played an essential role in the assembly of complex II. Stepwise exchange from complex I to complex II depended on phosphorylation of Zic2 by DNA-PK and poly-(ADP-ribose) polymerase. Phosphorylated Zic2 protein made a stable complex with RNA helicase A, and complex II could interact with RNA polymerase II. Phosphorylation-dependent transformation of Zic2-containing molecular complexes may occur in transcriptional regulation.
Collapse
Affiliation(s)
- Akira Ishiguro
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| | - Maki Ideta
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - Katsuhiko Mikoshiba
- Laboratory of Developmental Neurobiology, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | - David J Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jun Aruga
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
613
|
Nusinow DA, Hernández-Muñoz I, Fazzio TG, Shah GM, Kraus WL, Panning B. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 2007; 282:12851-9. [PMID: 17322296 DOI: 10.1074/jbc.m610502200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in modulating chromatin structure, regulation of gene expression, and sensing DNA damage. Here, we report that PARP-1 enzymatic activity is inhibited by macroH2A, a vertebrate histone H2A variant that is enriched on facultative heterochromatin. MacroH2A family members have a large C-terminal non-histone domain (NHD) and H2A-like histone domain. MacroH2A1.2 and PARP-1 interact in vivo and in vitro via the NHD. The NHD of each macroH2A family member was sufficient to inhibit PARP-1 enzymatic activity in vitro. The NHD of macroH2A1.2 was a mixed inhibitor of PARP-1 catalytic activity, with affects on both catalytic activity and the substrate binding affinity of PARP-1. Depletion of PARP-1 by RNA interference caused reactivation of a reporter gene on the inactive X chromosome, demonstrating that PARP-1 participates in the maintenance of silencing. These results suggest that one function of macroH2A in gene silencing is to inhibit PARP-1 enzymatic activity, and this may affect PARP-1 association with chromatin.
Collapse
Affiliation(s)
- Dmitri A Nusinow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
614
|
Lourda M, Trougakos IP, Gonos ES. Development of resistance to chemotherapeutic drugs in human osteosarcoma cell lines largely depends on up-regulation of Clusterin/Apolipoprotein J. Int J Cancer 2007; 120:611-22. [PMID: 17096323 DOI: 10.1002/ijc.22327] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) is differentially regulated during in vivo cancer progression. We have addressed the role of CLU during the acquisition and maintenance of human cancer cells resistance to chemotherapeutic drugs. We used two osteosarcoma (OS) cell lines, namely U-2 OS and KH OS, and selected three generations of doxorubicin (DXR)-resistant cells (R1, R2 and R3; resistant to 0.0035, 0.035 and 0.35 microM DXR, respectively) by continuous exposure to increasing, clinically relevant, DXR concentrations. Our studies showed that the DXR-resistant OS cell lines were cross-resistant to a variety of unrelated cytotoxic agents. Analysis of the CLU mRNA and protein expression levels revealed a minimal CLU up-regulation in the U-2 OS R2 cells and a significant, more than 4-fold, induction in the KH OS R2 and R3 cells. Antibody-mediated neutralization of the extracellular CLU, or silencing of CLU gene expression via small interfering RNA (siRNA) partially sensitized KH OS R2 cells to the drugs assayed. Moreover, siRNA-mediated CLU knock down in the absence of DXR induced high levels of endogenous spontaneous apoptosis in both the parental and R2 OS cell lines. This effect was enhanced by more than 60% in the KH OS R2 cells as compared to their parental counterparts, indicating that the high CLU levels in the KH OS R2 cells are essential for survival. Overall, we suggest that CLU up-regulation in the multi-drug resistant OS cells relates to enhanced drug resistance. Therefore, CLU may represent a predictive marker, which correlates to response of cancer cells to chemotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/genetics
- Apoptosis/physiology
- Camptothecin/pharmacology
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Clusterin/genetics
- Clusterin/metabolism
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoblotting
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Osteosarcoma/pathology
- Paclitaxel/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/metabolism
- RNA Interference/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Magda Lourda
- Laboratory of Molecular & Cellular Ageing, Institute of Biological Research & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
| | | | | |
Collapse
|
615
|
Johnson AB, Barton MC. Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res 2007; 618:149-62. [PMID: 17292925 PMCID: PMC1924842 DOI: 10.1016/j.mrfmmm.2006.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Accepted: 10/27/2006] [Indexed: 11/16/2022]
Abstract
Cellular adaptation to stress relies on specific, regulated responses to evoke changes in gene expression. Stresses such as hypoxia, heat shock, oxidative stress and DNA-damage activate signaling cascades that ultimately lead to either induction or repression of stress-responsive genes. In this review, we concentrate on the mechanisms by which stress-induced signaling promotes alterations in chromatin structure, whether the read-out is activation or repression of transcription. Specific alterations in chromatin are highly regulated and dictated by the type of imposed stress. Our primary focus is on the types of chromatin alterations that occur under hypoxic conditions, which exist within a majority of tumors, and to compare these to changes in chromatin structure that occur in response to a wide variety of cellular stresses.
Collapse
Affiliation(s)
| | - Michelle Craig Barton
- *Address correspondence to: Michelle Craig Barton, Dept. of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 1000, Houston, TX 77030. Phone: 713-834-6268, Fax: 713-834-6271,
| |
Collapse
|
616
|
Zhang S, Lin Y, Kim YS, Hande MP, Liu ZG, Shen HM. c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ 2007; 14:1001-10. [PMID: 17218956 DOI: 10.1038/sj.cdd.4402088] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Reactive oxygen species (ROS) have been closely associated with both apoptotic and non-apoptotic/necrotic cell death. Our previous study has illustrated that c-Jun-N-terminal kinase 1 (JNK1) is the main executor in hydrogen peroxide (H(2)O(2))-induced nonapoptotic cell death. The main objective of this study is to further elucidate the molecular mechanisms downstream of JNK1 in H(2)O(2)-induced cell death. In this study, poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair protein, was readily activated by H(2)O(2) and inhibition of PARP-1 activation by either a pharmacological or genetic approach offered significant protection against H(2)O(2)-induced cell death. More importantly, H(2)O(2)-mediated PARP-1 activation is subject to regulation by JNK1. Suppression of JNK1 activation by a chemical inhibitor or genetic deletion markedly suppressed the late-phase PARP-1 activation induced by H(2)O(2), suggesting that JNK1 contributes to the sustained activation of PARP-1. Such findings were supported by the temporal pattern of nuclear translocation of activated JNK and a direct protein-protein interaction between JNK1 and PARP-1 in H(2)O(2)-treated cells. Finally, in vitro kinase assay suggests that PARP-1 may serve as the direct phosphorylation target for JNK1. Taken together, data from our study reveal a novel underlying mechanism in H(2)O(2)-induced nonapoptotic cell death: JNK1 promotes a sustained PARP-1 activation via nuclear translocation, protein-protein interaction and PARP-1 phosphorylation.
Collapse
Affiliation(s)
- S Zhang
- Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
617
|
Shervington A, Patel R, Lu C, Cruickshanks N, Lea R, Roberts G, Dawson T, Shervington L. Telomerase subunits expression variation between biopsy samples and cell lines derived from malignant glioma. Brain Res 2007; 1134:45-52. [PMID: 17196947 DOI: 10.1016/j.brainres.2006.11.093] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/29/2006] [Accepted: 11/30/2006] [Indexed: 01/12/2023]
Abstract
Although scientific advances have recognised the prognostic power of telomerase activity in different cancers, as yet there has been no investigation regarding the expression variation of telomerase subunits in glioma tissues and cell lines. In this study, a recurrent anaplastic ependymoma and seven glioblastoma biopsy samples, four cell lines and four controls including two normal brain tissues were analysed for telomerase subunit expression profiles together with telomerase activity. Since telomerase activity is linked to tumourgenesis, the genes were analysed with respect to their expression variation. TEP1 was expressed in all glioma cell lines and 70% of glioblastoma tissues, in addition to the control brain tissues. Tankyrase was expressed in 85% of the glioblastoma tissues and was down-regulated in the recurrent anaplastic ependymoma tissue control cell lines. However, it was expressed in the control tissues. Dyskerin was expressed in all cell lines and tissues apart from U87-MG and NHA cells and the recurrent anaplastic ependymoma tissue. As expected, PARP1 and GAPDH showed constitutive expression throughout all cell lines and tissues since both are known to be housekeeping genes. hTERT was expressed in all glioma cell lines and tissues but was absent in the control cells and tissues. Telomerase activity was absent in IPDDC-A2 cells and 57% of the glioblastoma tissues. These results suggest that hTERT expression and not telomerase activity possibly represents a simple and reliable biological diagnostic tool.
Collapse
Affiliation(s)
- Amal Shervington
- Department of Biological Sciences, University of Central Lancashire, and Neurosurgery Department, Royal Preston Hospital, UK.
| | | | | | | | | | | | | | | |
Collapse
|
618
|
Wacker DA, Frizzell KM, Zhang T, Kraus WL. Regulation of chromatin structure and chromatin-dependent transcription by poly(ADP-ribose) polymerase-1: possible targets for drug-based therapies. Subcell Biochem 2007; 41:45-69. [PMID: 17484123 DOI: 10.1007/1-4020-5466-1_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poly(ADP-ribose) Polymerase-1 (PARP-1) is the prototypical and most abundantly expressed member of a family of PARPs that catalyze the polymerization of ADP-ribose (ADPR) units from donor NAD' molecules on target proteins. PARP-1 plays roles in a variety of genomic processes, including the regulation of chromatin structure and transcription in response to specific cellular signals. PARP-1 also plays important roles in many stress-induced disease states. In this chapter, we review the molecular and cellular aspects of PARP-1's chromatin-modulating activities, as well as the impact that these chromatin-modulating activities have on the regulation of gene expression. In addition, we highlight the potential therapeutic use of drugs that target PARP-1's enzymatic activity for the treatment of human diseases
Collapse
Affiliation(s)
- David A Wacker
- Department of Molecular Biology and Genetics, Cornell University, 465 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
619
|
Johansen KM, Johansen J. Cell and Molecular Biology of the Spindle Matrix. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:155-206. [PMID: 17725967 DOI: 10.1016/s0074-7696(07)63004-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The concept of a spindle matrix has long been proposed to account for incompletely understood features of microtubule spindle dynamics and force production during mitosis. In its simplest formulation, the spindle matrix is hypothesized to provide a stationary or elastic molecular matrix that can provide a substrate for motor molecules to interact with during microtubule sliding and which can stabilize the spindle during force production. Although this is an attractive concept with the potential to greatly simplify current models of microtubule spindle behavior, definitive evidence for the molecular nature of a spindle matrix or for its direct role in microtubule spindle function has been lagging. However, as reviewed here multiple studies spanning the evolutionary spectrum from lower eukaryotes to vertebrates have provided new and intriguing evidence that a spindle matrix may be a general feature of mitosis.
Collapse
Affiliation(s)
- Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
620
|
Wang XG, Wang ZQ, Tong WM, Shen Y. PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochem Biophys Res Commun 2006; 354:122-6. [PMID: 17214964 DOI: 10.1016/j.bbrc.2006.12.162] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K(m) of PARP1-Ala762 was increased to a 1.2-fold of the K(m) of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K(m). This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding the cancer risk of carriers of the PARP1 Val762Ala polymorphism.
Collapse
Affiliation(s)
- Xiao-Gan Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), 5 Dong Dan San Tiao, 100005 Beijing, PR China
| | | | | | | |
Collapse
|
621
|
Tong WM, Yang YG, Cao WH, Galendo D, Frappart L, Shen Y, Wang ZQ. Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 2006; 26:3857-67. [PMID: 17160013 DOI: 10.1038/sj.onc.1210156] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The DNA strand break-binding molecule, poly(ADP-ribose) polymerase-1 (PARP-1), plays a role in DNA repair, chromosomal stability, transcription and cell death. Accumulating evidence suggests that dysfunction of PARP-1 contributes to tumorigenesis. Here, we report that PARP-1 deficiency causes mammary carcinoma formation in female mice, and that the introduction of Trp53 mutations accelerates the onset and shortens the latency of mammary tumorigenesis. We show that PARP-1 deficiency results in chromosomal aneuploidy and centrosome amplification, which are substantiated by the inactivation of Trp53 in primary mammary epithelial (PME) cells. In addition, PARP-1 deficiency compromises p53 activation and impairs BRCA1 recruitment to the sites of DNA damage in PME cells. PARP-1 complementation partly rescues the defective DNA damage response mediated by p53 and BRCA1. The present study thus identifies a role of PARP-1 in suppressing mammary tumorigenesis in vivo and suggests that dysfunction of PARP-1 may be a risk factor for breast cancer in humans.
Collapse
Affiliation(s)
- W M Tong
- International Agency for Research on Cancer (IARC), Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
622
|
Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 2006; 20:3324-36. [PMID: 17158748 PMCID: PMC1686608 DOI: 10.1101/gad.396106] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/19/2006] [Indexed: 11/24/2022]
Abstract
The histone variant mH2A is believed to be involved in transcriptional repression, but how it exerts its function remains elusive. By using chromatin immunoprecipitation and tandem affinity immunopurification of the mH2A1.1 nucleosome complex, we identified numerous genes with promoters containing mH2A1.1 nucleosomes. In particular, the promoters of the inducible Hsp70.1 and Hsp70.2 genes, but not that of the constitutively expressed Hsp70.8, were highly enriched in mH2A1.1. PARP-1 was identified as a part of the mH2A1.1 nucleosome complex and was found to be associated with the Hsp70.1 promoter. A specific interaction between mH2A1.1 and PARP-1 was demonstrated and found to be associated with inactivation of PARP-1 enzymatic activity. Heat shock released both mH2A1.1 and PARP-1 from the Hsp70.1 promoter and activated PARP-1 automodification activity. The data we present point to a novel mechanism for control of Hsp70.1 gene transcription. mH2A1.1 recruits PARP-1 to the promoter, thereby inactivating it. Upon heat shock, the Hsp70.1 promoter-bound PARP-1 is released to activate transcription through ADP-ribosylation of other Hsp70.1 promoter-bound proteins.
Collapse
Affiliation(s)
- Khalid Ouararhni
- Laboratoire Epigénétique et Cancer, Centre National de la Recherche Scientifique FRE 2944, 94801 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
623
|
Abstract
Organisms adapt to changes in environmental conditions by altering gene expression. Such homeostatic control is apparent in metabolism, where biosynthetic metabolites play a role in regulatory feedback loops. Increasing evidence shows that small-molecule metabolites also shape the structure of chromatin and directly regulate the transcription and translation processes. These endogenous metabolites bind specialized histones, are used as substrates by chromatin-modifying enzymes, regulate the activity of transcriptional corepressors, and even modulate the structure of RNA itself. In doing so, they act as dynamic rheostats that fine-tune the activity of hard-wired gene circuits. Metabolites emerge as key effectors in tweaking gene expression.
Collapse
Affiliation(s)
- Andreas G Ladurner
- Gene Expression Unit and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
624
|
Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 2006; 34:6170-82. [PMID: 17088286 PMCID: PMC1693894 DOI: 10.1093/nar/gkl840] [Citation(s) in RCA: 604] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Huichen Wang
- Center for Neurovirology, Temple University1900 North 12th, Philadelphia, PA 19122, USA
| | - George Iliakis
- To whom correspondence should be addressed. Tel: +49 201 723 4152; Fax: +49 201 723 5966;
| |
Collapse
|
625
|
Beranger GE, Momier D, Rochet N, Quincey D, Guigonis JM, Samson M, Carle GF, Scimeca JC. RANKL treatment releases the negative regulation of the poly(ADP-ribose) polymerase-1 on Tcirg1 gene expression during osteoclastogenesis. J Bone Miner Res 2006; 21:1757-69. [PMID: 17002555 DOI: 10.1359/jbmr.060809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The Tcirg1 gene encodes the osteoclast-specific a3 isoform of the V-ATPase a subunit. Using the mouse osteoclastic model RAW264.7 cells, we studied Tcirg1 gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. INTRODUCTION The TCIRG1 gene encodes the a3 isoform of the V-ATPase a subunit, and mutations at this locus account for approximately 60% of infantile malignant osteopetrosis cases. Using RAW264.7 cells as an osteoclastic differentiation model, we undertook a transcriptional study of the mouse Tcirg1 gene focused on the 4-kb region upstream of the transcription starting point. MATERIALS AND METHODS The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cell differentiation process. We next performed EMSA, UV cross-linking, affinity purification, mass spectrometry analysis, gel supershift, and siRNA transfection experiments to identify the factor(s) interacting with the promoter. RESULTS The -3946/+113 region of the mouse Tcirg1 gene displayed a high basal promoter activity, which was enhanced by RANKL treatment of RAW264.7 cells. Constructs deleted up to -1589 retained this response to RANKL. A deletion up to -1402 induced a 3-fold enhancement of the basal activity, whereas RANKL response was not affected. EMSA experiments led us to identify within the -1589/-1402 region, a 10-nucleotide sequence, which bound a nuclear protein present in nondifferentiated RAW264.7 cells. This interaction was lost using nuclear extracts derived from RANKL-treated cells. Affinity purification followed by mass spectrometry analysis and gel supershift assay allowed the identification of poly(ADP-ribose) polymerase-1 (PARP-1) as this transcriptional repressor, whereas Western blot experiments revealed the cleavage of the DNA-binding domain of PARP-1 on RANKL treatment. Finally, both PARP-1 depletion after siRNA transfection and RAW264.7 cell treatment by an inhibitor of PARP-1 activity induced an increase of a3 mRNA expression. CONCLUSIONS We provide evidence that the basal transcription activity of the Tcirg1 gene is negatively regulated by the binding of PARP-1 protein to its promoter region in mouse pre-osteoclast. On RANKL treatment, PARP-1 protein is cleaved and loses its repression effect, allowing an increase of Tcirg1 gene expression that is critical for osteoclast function.
Collapse
Affiliation(s)
- Guillaume E Beranger
- GéPITOS-K2943 CNRS/UNSA, Faculté de Médecine de l'Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
626
|
Mueller-Dieckmann C, Kernstock S, Lisurek M, von Kries JP, Haag F, Weiss MS, Koch-Nolte F. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. Proc Natl Acad Sci U S A 2006; 103:15026-31. [PMID: 17015823 PMCID: PMC1622773 DOI: 10.1073/pnas.0606762103] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranslational modifications are used by cells from all kingdoms of life to control enzymatic activity and to regulate protein function. For many cellular processes, including DNA repair, spindle function, and apoptosis, reversible mono- and polyADP-ribosylation constitutes a very important regulatory mechanism. Moreover, many pathogenic bacteria secrete toxins which ADP-ribosylate human proteins, causing diseases such as whooping cough, cholera, and diphtheria. Whereas the 3D structures of numerous ADP-ribosylating toxins and related mammalian enzymes have been elucidated, virtually nothing is known about the structure of protein de-ADP-ribosylating enzymes. Here, we report the 3Dstructure of human ADP-ribosylhydrolase 3 (hARH3). The molecular architecture of hARH3 constitutes the archetype of an all-alpha-helical protein fold and provides insights into the reversibility of protein ADP-ribosylation. Two magnesium ions flanked by highly conserved amino acids pinpoint the active-site crevice. Recombinant hARH3 binds free ADP-ribose with micromolar affinity and efficiently de-ADP-ribosylates poly- but not monoADP-ribosylated proteins. Docking experiments indicate a possible binding mode for ADP-ribose polymers and suggest a reaction mechanism. Our results underscore the importance of endogenous ADP-ribosylation cycles and provide a basis for structure-based design of ADP-ribosylhydrolase inhibitors.
Collapse
Affiliation(s)
- Christoph Mueller-Dieckmann
- *European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Stefan Kernstock
- Institute of Immunology, University Hospital, Martinistrasse 52, D-20246 Hamburg, Germany; and
| | - Michael Lisurek
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Roessle-Strasse 10, Campus Berlin–Buch, D-13125 Berlin, Germany
| | - Jens Peter von Kries
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Roessle-Strasse 10, Campus Berlin–Buch, D-13125 Berlin, Germany
| | - Friedrich Haag
- Institute of Immunology, University Hospital, Martinistrasse 52, D-20246 Hamburg, Germany; and
| | - Manfred S. Weiss
- *European Molecular Biology Laboratory Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg, Germany
- To whom correspondence may be addressed. E-mail:
or
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Hospital, Martinistrasse 52, D-20246 Hamburg, Germany; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
627
|
Malavazi I, Savoldi M, Di Mauro SMZ, Menck CFM, Harris SD, Goldman MHDS, Goldman GH. Transcriptome analysis of Aspergillus nidulans exposed to camptothecin-induced DNA damage. EUKARYOTIC CELL 2006; 5:1688-704. [PMID: 17030995 PMCID: PMC1595335 DOI: 10.1128/ec.00167-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/25/2006] [Indexed: 01/09/2023]
Abstract
We have used an Aspergillus nidulans macroarray carrying sequences of 2,787 genes from this fungus to monitor gene expression of both wild-type and uvsB(ATR) (the homologue of the ATR gene) deletion mutant strains in a time course exposure to camptothecin (CPT). The results revealed a total of 1,512 and 1,700 genes in the wild-type and uvsB(ATR) deletion mutant strains that displayed a statistically significant difference at at least one experimental time point. We characterized six genes that have increased mRNA expression in the presence of CPT in the wild-type strain relative to the uvsB(ATR) mutant strain: fhdA (encoding a forkhead-associated domain protein), tprA (encoding a hypothetical protein that contains a tetratrico peptide repeat), mshA (encoding a MutS homologue involved in mismatch repair), phbA (encoding a prohibitin homologue), uvsC(RAD51) (the homologue of the RAD51 gene), and cshA (encoding a homologue of the excision repair protein ERCC-6 [Cockayne's syndrome protein]). The induced transcript levels of these genes in the presence of CPT require uvsB(ATR). These genes were deleted, and surprisingly, only the DeltauvsC mutant strain was sensitive to CPT; however, the others displayed sensitivity to a range of DNA-damaging and oxidative stress agents. These results indicate that the selected genes when inactivated display very complex and heterogeneous sensitivity behavior during growth in the presence of agents that directly or indirectly cause DNA damage. Moreover, with the exception of UvsC, deletion of each of these genes partially suppressed the sensitivity of the DeltauvsB strain to menadione and paraquat. Our results provide the first insight into the overall complexity of the response to DNA damage in filamentous fungi and suggest that multiple pathways may act in parallel to mediate DNA repair.
Collapse
Affiliation(s)
- Iran Malavazi
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
628
|
Maymon BBS, Cohen-Armon M, Yavetz H, Yogev L, Lifschitz-Mercer B, Kleiman SE, Botchan A, Hauser R, Paz G. Role of poly(ADP-ribosyl)ation during human spermatogenesis. Fertil Steril 2006; 86:1402-7. [PMID: 16996513 DOI: 10.1016/j.fertnstert.2006.03.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/28/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Genomic stability of cells is known to be linked to their poly(ADP-ribosyl)ation capacity. We aimed to demonstrate, for the first time, the patterns of poly(ADP-ribosyl)ation during human spermatogenesis. DESIGN Retrospective case-control study. SETTING Teaching hospital. PATIENT(S) Azoospermic men who underwent testicular biopsy for sperm recovery. INTERVENTION(S) Testicular biopsy evaluation by immunohistochemistry for the expression of poly(ADP-ribose) polymerase-1 (PARP-1) enzyme and of poly(ADP-ribose) (PAR) (an indicator for PARP activity.) MAIN OUTCOME MEASURE(S) The subcellular localization of both markers in testes with full spermatogenesis (obstructive azoospermia), spermatocyte maturation arrest, or Sertoli cell-only syndrome. RESULT(S) Expression of both markers was localized in germ cell nuclei in full spermatogenesis: PAR expression, indicating PARP activity, was exhibited in round and elongating spermatids and in a subpopulation of primary spermatocytes. Strong immunoreactivity for PAR was identified in all of the spermatocytes in maturation arrest at the spermatocyte level. Sertoli cells lacked immunoreactivity for both markers, whereas other somatic testicular cells were rarely immunostained. CONCLUSION(S) The detection of PAR expression in germ-line cells and its subcellular localization in meiotic and postmeiotic prophases demonstrates chromatin modifications occurring during spermatogenesis and establishes a key role for poly(ADP-ribosyl)ation in germ cell differentiation, presumably to safeguard DNA integrity.
Collapse
|
629
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
630
|
Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006; 7:517-28. [PMID: 16829982 DOI: 10.1038/nrm1963] [Citation(s) in RCA: 1475] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The addition to proteins of the negatively charged polymer of ADP-ribose (PAR), which is synthesized by PAR polymerases (PARPs) from NAD(+), is a unique post-translational modification. It regulates not only cell survival and cell-death programmes, but also an increasing number of other biological functions with which novel members of the PARP family have been associated. These functions include transcriptional regulation, telomere cohesion and mitotic spindle formation during cell division, intracellular trafficking and energy metabolism.
Collapse
Affiliation(s)
- Valérie Schreiber
- Département Intégrité du Génome de l'UMR 7175, Centre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard S. Brant, BP 10413, F-67412 Illkirch Cedex, France.
| | | | | | | |
Collapse
|
631
|
Bentle MS, Reinicke KE, Bey EA, Spitz DR, Boothman DA. Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair. J Biol Chem 2006; 281:33684-96. [PMID: 16920718 DOI: 10.1074/jbc.m603678200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After genotoxic stress poly(ADP-ribose) polymerase-1 (PARP-1) can be hyperactivated, causing (ADP-ribosyl)ation of nuclear proteins (including itself), resulting in NAD(+) and ATP depletion and cell death. Mechanisms of PARP-1-mediated cell death and downstream proteolysis remain enigmatic. beta-lapachone (beta-lap) is the first chemotherapeutic agent to elicit a Ca(2+)-mediated cell death by PARP-1 hyperactivation at clinically relevant doses in cancer cells expressing elevated NAD(P)H:quinone oxidoreductase 1 (NQO1) levels. Beta-lap induces the generation of NQO1-dependent reactive oxygen species (ROS), DNA breaks, and triggers Ca(2+)-dependent gamma-H2AX formation and PARP-1 hyperactivation. Subsequent NAD(+) and ATP losses suppress DNA repair and cause cell death. Reduction of PARP-1 activity or Ca(2+) chelation protects cells. Interestingly, Ca(2+) chelation abrogates hydrogen peroxide (H(2)O(2)), but not N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PARP-1 hyperactivation and cell death. Thus, Ca(2+) appears to be an important co-factor in PARP-1 hyperactivation after ROS-induced DNA damage, which alters cellular metabolism and DNA repair.
Collapse
Affiliation(s)
- Melissa S Bentle
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
632
|
Abstract
Hormones trigger dramatic changes in the structure and transcriptional activity of specific promoters that lead to exchange of repression complexes for activation complexes. now show that estrogen-dependent restructuring and transcription of the pS2 promoter require the generation of a DNA double-strand break by a novel protein complex containing two enzymes, topoisomerase IIbeta and poly(ADP-ribose) polymerase.
Collapse
Affiliation(s)
- John T Lis
- Department of Molecular Biology & Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
633
|
Haince JF, Rouleau M, Poirier GG. Transcription. Gene expression needs a break to unwind before carrying on. Science 2006; 312:1752-3. [PMID: 16794066 DOI: 10.1126/science.1129808] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jean-François Haince
- Health and Environment Unit, Faculty of Medicine, Laval University Medical Research Center, 2705 Boulevard Laurier, Quebec City, QC, G1V 4G2, Canada
| | | | | |
Collapse
|
634
|
Carbone M, Reale A, Di Sauro A, Sthandier O, Garcia MI, Maione R, Caiafa P, Amati P. PARP-1 interaction with VP1 capsid protein regulates polyomavirus early gene expression. J Mol Biol 2006; 363:773-85. [PMID: 16979186 DOI: 10.1016/j.jmb.2006.05.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 05/26/2006] [Accepted: 05/30/2006] [Indexed: 11/27/2022]
Abstract
Poly(ADP-ribose)polymerases are involved in fundamental cellular events as well as they seem to be associated to some viral infection process. In this work, the poly(ADP-ribose)polymerase-1 (PARP-1) role in the polyomavirus life cycle has been investigated. Early viral transcription was reduced by competitive inhibitors of PARPs in Swiss 3T3 cells and almost abolished in PARP-1 knockout fibroblasts and in wild-type fibroblasts when PARP-1 was silenced by RNA interference. In vivo chromatin immunoprecipitation assays showed that poly(ADP-ribosyl)ation (poly(ADP-ribose)) facilitates the release of the capsid protein viral protein 1 (VP1) from the chromatin of infecting virions. In vitro experiments demonstrated that VP1 stimulates the enzymatic activity of PARP-1 and binds non-covalently both protein-free and PARP-1-bound poly(ADP-ribose). Our studies suggest that PARP-1 promotes the complete VP1 displacement from viral DNA favouring the viral early transcription.
Collapse
Affiliation(s)
- Mariarosaria Carbone
- Pasteur Institute-Fondazione Cenci Bolognetti, Department of Cellular Biotechnology and Hematology, University of Rome La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
635
|
Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 2006; 20:1405-28. [PMID: 16751179 DOI: 10.1101/gad.1424806] [Citation(s) in RCA: 699] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A decade of intensive investigation of coactivators and corepressors required for regulated actions of DNA-binding transcription factors has revealed a network of sequentially exchanged cofactor complexes that execute a series of enzymatic modifications required for regulated gene expression. These coregulator complexes possess "sensing" activities required for interpretation of multiple signaling pathways. In this review, we examine recent progress in understanding the functional consequences of "molecular sensor" and "molecular adaptor" actions of corepressor/coactivator complexes in integrating signal-dependent programs of transcriptional responses at the molecular level. This strategy imposes a temporal order for modifying programs of transcriptional regulation in response to the cellular milieu, which is used to mediate developmental/homeostatic and pathological events.
Collapse
Affiliation(s)
- Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
636
|
Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. ACTA ACUST UNITED AC 2006; 172:973-81. [PMID: 16567498 PMCID: PMC2063755 DOI: 10.1083/jcb.200601018] [Citation(s) in RCA: 1573] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a defining structural feature of organ development. Current interest in this process, which is described as an epithelial–mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1–3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the first being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal–epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, fibrosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and fibrosis, as well as the identification of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996–6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991–5995).
Collapse
Affiliation(s)
- Jonathan M Lee
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | | | |
Collapse
|
637
|
Hsiao SJ, Poitras MF, Cook BD, Liu Y, Smith S. Tankyrase 2 poly(ADP-ribose) polymerase domain-deleted mice exhibit growth defects but have normal telomere length and capping. Mol Cell Biol 2006; 26:2044-54. [PMID: 16507985 PMCID: PMC1430302 DOI: 10.1128/mcb.26.6.2044-2054.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulation of telomere length maintenance and capping are a critical cell functions in both normal and tumor cells. Tankyrase 2 (Tnks2) is a poly(ADP-ribose) polymerase (PARP) that has been shown to modify itself and TRF1, a telomere-binding protein. We show here by overexpression studies that tankyrase 2, like its closely related homolog tankyrase 1, can function as a positive regulator of telomere length in human cells, dependent on its catalytic PARP activity. To study the role of Tnks2 in vivo, we generated mice with the Tnks2 PARP domain deleted. These mice are viable and fertile but display a growth retardation phenotype. Telomere analysis by quantitative fluorescence in situ hybridization (FISH), flow-FISH, and restriction fragment analysis showed no change in telomere length or telomere capping in these mice. To determine the requirement for Tnks2 in long-term maintenance of telomeres, we generated embryonic stem cells with the Tnks2 PARP domain deleted and observed no change, even upon prolonged growth, in telomere length or telomere capping. Together, these results suggest that Tnks2 has a role in normal growth and development but is not essential for telomere length maintenance or telomere capping in mice.
Collapse
Affiliation(s)
- Susan J Hsiao
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, 2nd Floor, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
638
|
Blenn C, Althaus F, Malanga M. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death. Biochem J 2006; 396:419-29. [PMID: 16526943 PMCID: PMC1482814 DOI: 10.1042/bj20051696] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/28/2006] [Accepted: 03/09/2006] [Indexed: 11/17/2022]
Abstract
PAR [poly(ADP-ribose)] is a structural and regulatory component of multiprotein complexes in eukaryotic cells. PAR catabolism is accelerated under genotoxic stress conditions and this is largely attributable to the activity of a PARG (PAR glycohydrolase). To overcome the early embryonic lethality of parg-knockout mice and gain more insights into the biological functions of PARG, we used an RNA interference approach. We found that as little as 10% of PARG protein is sufficient to ensure basic cellular functions: PARG-silenced murine and human cells proliferated normally through several subculturing rounds and they were able to repair DNA damage induced by sublethal doses of H2O2. However, cell survival following treatment with higher concentrations of H2O2 (0.05-1 mM) was increased. In fact, PARG-silenced cells were more resistant than their wild-type counterparts to oxidant-induced apoptosis while exhibiting delayed PAR degradation and transient accumulation of ADP-ribose polymers longer than 15-mers at early stages of drug treatment. No difference was observed in response to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, suggesting a specific involvement of PARG in the cellular response to oxidative DNA damage.
Collapse
Key Words
- dna damage response
- h2o2
- n-methyl-n′-nitro-n-nitrosoguanidine (mnng)
- poly(adp-ribose) glycohydrolase (parg)
- silencing
- rna interference
- 3-ab, 3-aminobenzamide
- adp-hpd, adp (hydroxymethyl)pyrrolidinediol
- arh3, adp-ribosyl-(arginine)-hydrolase 3
- dtnb, 5,5′-dithiobis-(2-nitrobenzoic acid)
- dtt, dithiothreitol
- dmem, dulbecco's modified eagle's medium
- fbs, fetal bovine serum
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- mef, mouse embryonic fibroblast
- mnng, n-methyl-n′-nitro-n-nitrosoguanidine
- nls, nuclear localization signal
- par, poly(adp-ribose)
- parg, par glycohydrolase
- parp, par polymerase
- pcna, proliferating-cell nuclear antigen
- pi3k, phosphoinositide 3-kinase
- rnai, rna interference
- sirna, small interfering rna
- svpde, snake venom phosphodiesterase
Collapse
Affiliation(s)
- Christian Blenn
- Institute of Pharmacology and Toxicology, University of Zurich-Tierspital, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Felix R. Althaus
- Institute of Pharmacology and Toxicology, University of Zurich-Tierspital, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Maria Malanga
- Institute of Pharmacology and Toxicology, University of Zurich-Tierspital, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| |
Collapse
|
639
|
Abstract
In this issue of Cell, Midorikawa et al. (2006) demonstrate that the kinesin superfamily member KIF4, a microtubule-based molecular motor, regulates the survival of electrically active neurons in the developing brain by modulating the function of poly(ADP-ribose) polymerase-1 in an unexpected way.
Collapse
Affiliation(s)
- David R Kaplan
- Cancer Research and Developmental Biology, Hospital for Sick Children Research Institute, Department of Molecular, University of Toronto, Ontario, Canada M5G 1X8.
| | | |
Collapse
|
640
|
Abstract
Following stimulation of NMDA receptors, neurons transiently synthesize nitric oxide (NO) in a calcium/calmodulin-dependent manner through the activation of neuronal NO synthase. Nitric oxide acts as a messenger, activating soluble guanylyl cyclase and participating in the transduction signalling pathways involving cyclic GMP. Nitric oxide also binds to cytochrome c oxidase, and is able to inhibit cell respiration in a process that is reversible and in competition with oxygen. This action can also lead to the release of superoxide anion from the mitochondrial respiratory chain. Here, we discuss recent evidence that this mitochondrial interaction represents a molecular switch for cell signalling pathways involved in the control of physiological functions. These include superoxide- or oxygen-dependent modulation of gene transcription, calcium-dependent cell signalling responses, changes in the mitochondrial membrane potential or AMP-activated protein kinase-dependent control of glycolysis. In pathophysiological conditions, such as brain ischaemia or neurological disorders, NO is formed excessively by NMDA receptor over-activation in neurons, or by inducible NO synthase from neighbouring glia (microglial cells and astrocytes). Elevated NO concentrations can then interact with superoxide anion, generated by the mitochondria or by other mechanisms, leading to the formation of the powerful oxidant species peroxynitrite. During pathological conditions activation of the NAD(+)-consuming enzyme poly(APD-ribose) polymerase-1 (PARP-1) is also a likely mechanism for NO-mediated energy failure and neurotoxicity. Activation of PARP-1 is, however, a repair process, which in milder forms of oxidative stress protects neurons from death. Thus, whilst NO plays a physiological role in neuronal cell signalling, its over-production may cause neuronal energy compromise leading to neurodegeneration.
Collapse
Affiliation(s)
- Salvador Moncada
- The Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | |
Collapse
|
641
|
Chen J, Chen YG, Reifsnyder PC, Schott WH, Lee CH, Osborne M, Scheuplein F, Haag F, Koch-Nolte F, Serreze DV, Leiter EH. Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. THE JOURNAL OF IMMUNOLOGY 2006; 176:4590-9. [PMID: 16585549 DOI: 10.4049/jimmunol.176.8.4590] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ubiquitously expressed CD38 and T cell-expressed ADP-ribosyltransferase 2 (ART2) are ectoenzymes competing for NAD substrate. CD38 exerts pleiotropic actions in hemopoietic and nonhemopoietic compartments via effects on calcium mobilization. ART2 is an ADP-ribosyltransferase on naive CD4+ and CD8+ T cells. ART2-catalyzed ADP-ribosylation of the P2X7 purinoreceptor elicits apoptosis. Transfer of a genetically disrupted CD38 allele into the autoimmune diabetes-prone NOD/Lt background accelerated diabetes onset in both sexes, whereas transfer of a disrupted ART2 complex had no effect. However, the fact that the accelerated pathogenesis mediated by CD38 deficiency required ART2 activity was demonstrated by combining both ART2 and CD38 deficiencies. Reciprocal bone marrow reconstitution studies demonstrated accelerated diabetes only when CD38-deficient bone marrow was transferred into CD38-deficient recipients. Neither decreases in beta cell function nor viability were indicated. Rather, the balance between T-effectors and T-regulatory cells was disturbed in CD38-deficient but ART2-intact NOD mice. In these mice, significant reductions in total viable CD8+ T cells were observed. This was accompanied by an age-dependent increase in a diabetogenic CD8 clonotype. This in turn correlated with impaired T-regulatory development (10-fold reduction in Foxp3 mRNA expression). These changes were corrected when CD38 deficiency was combined with ART2 deficiency. Both ART2-deficient and CD38/ART2 combined deficient T cells were resistant to NAD-induced killing in vitro, whereas CD38-deficient but ART2-intact T cells showed increased sensitivity, particularly the CD4+ CD25+ subset. Unexpectedly, diabetes development in the combined CD38/ART2 stock was strongly suppressed, possibly through epistatic interactions between genes linked to the targeted CD38 on Chromosome 5 and the ART2 complex on Chromosome 7.
Collapse
MESH Headings
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/metabolism
- ADP-ribosyl Cyclase 1/deficiency
- ADP-ribosyl Cyclase 1/genetics
- Animals
- Apoptosis
- Autoimmunity
- Bone Marrow Transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Epistasis, Genetic
- Female
- Insulin/blood
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Male
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- NAD/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Jing Chen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
642
|
Torrano V, Navascués J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, León J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD. Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 2006; 119:1746-59. [PMID: 16595548 DOI: 10.1242/jcs.02890] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple functions have been reported for the transcription factor and candidate tumour suppressor, CTCF. Among others, they include regulation of cell growth, differentiation and apoptosis, enhancer-blocking activity and control of imprinted genes. CTCF is usually localized in the nucleus and its subcellular distribution during the cell cycle is dynamic; CTCF was found associated with mitotic chromosomes and the midbody, suggesting different roles for CTCF at different stages of the cell cycle. Here we report the nucleolar localization of CTCF in several experimental model systems. Translocation of CTCF from nucleoplasm to the nucleolus was observed after differentiation of K562 myeloid cells and induction of apoptosis in MCF7 breast cancer cells. CTCF was also found in the nucleoli in terminally differentiated rat trigeminal ganglion neurons. Thus our data show that nucleolar localization of CTCF is associated with growth arrest. Interestingly, the 180 kDa poly(ADP-ribosyl)ated isoform of CTCF was predominantly found in the nucleoli fractions. By transfecting different CTCF deletion constructs into cell lines of different origin we demonstrate that the central zinc-finger domain of CTCF is the region responsible for nucleolar targeting. Analysis of subnucleolar localization of CTCF revealed that it is distributed homogeneously in both dense fibrillar and granular components of the nucleolus, but is not associated with fibrillar centres. RNA polymerase I transcription and protein synthesis were required to sustain nucleolar localization of CTCF. Notably, the labelling of active transcription sites by in situ run-on assays demonstrated that CTCF inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.
Collapse
Affiliation(s)
- Verónica Torrano
- Grupo de Biología Molecular del Cáncer, Departamento de Biologia Molecular, Universidad de Cantabria, 39011-Santander, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
643
|
Semighini CP, Savoldi M, Goldman GH, Harris SD. Functional characterization of the putative Aspergillus nidulans poly(ADP-ribose) polymerase homolog PrpA. Genetics 2006; 173:87-98. [PMID: 16510786 PMCID: PMC1461448 DOI: 10.1534/genetics.105.053199] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is a highly conserved enzyme involved in multiple aspects of animal and plant cell physiology. For example, PARP is thought to be intimately involved in the early signaling events that trigger the DNA damage response. However, the genetic dissection of PARP function has been hindered by the presence of multiple homologs in most animal and plant species. Here, we present the first functional characterization of a putative PARP homolog (PrpA) in a microbial system (Aspergillus nidulans). PrpA belongs to a group of PARP homologs that includes representatives from filamentous fungi and protists. The genetic analysis of prpA demonstrates that it is an essential gene whose role in the DNA damage response is sensitive to gene dosage. Notably, temporal patterns of prpA expression and PrpA-GFP nuclear localization suggest that PrpA acts early in the A. nidulans DNA damage response. Additional studies implicate PrpA in farnesol-induced cell death and in the initiation of asexual development. Collectively, our results provide a gateway for probing the diverse functions of PARP in a sophisticated microbial genetic system.
Collapse
Affiliation(s)
- Camile P Semighini
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln 68588-0660, USA
| | | | | | | |
Collapse
|
644
|
Abstract
Organismal homeostasis depends on an intricate balance between cell death and renewal. Early pathologists recognized that this balance could be disrupted by the extensive damage observed in internal organs during the course of certain diseases. This form of tissue damage was termed "necrosis", derived from the Greek "nekros" for corpse. As it became clear that the essential building block of tissue was the cell, necrosis came to be used to describe pathologic cell death. Until recently, necrotic cell death was believed to result from injuries that caused an irreversible bioenergetic compromise. The cell dying by necrosis has been viewed as a victim of extrinsic events beyond its control. However, recent evidence suggests that a cell can initiate its own demise by necrosis in a manner that initiates both inflammatory and/or reparative responses in the host. By initiating these adaptive responses, programmed cell necrosis may serve to maintain tissue and organismal integrity.
Collapse
Affiliation(s)
- Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, New York 11794, USA
| | | |
Collapse
|
645
|
Porter AG, Urbano AGL. Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays 2006; 28:834-43. [PMID: 16927311 DOI: 10.1002/bies.20444] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis-inducing factor (AIF) is expelled from mitochondria after some apoptotic stimuli and translocates to the nucleus, which may contribute to DNA and nuclear fragmentation in some non-physiological mammalian cell deaths. Conversely, the requirement for mitochondrial AIF in oxidative phosphorylation and energy generation provides a plausible explanation for the embryonic lethality or neurodegeneration that has been found in different AIF-deficient mouse models. These findings may help illuminate the ability of mitochondrial AIF to suppress cytoplasmic stress granule formation and to promote the tumorigenic growth of cancer cells. AIF is ideally located in the mitochondrion to perform a vital normal function in energy production. Once it translocates to the nucleus, however, the cell might die either of energy failure or nuclear fragmentation (or both). We propose that the main function of AIF is to support energy production in both normal and transformed cell physiology, whereas nuclear-translocated AIF might contribute to stress-induced or pathological cell death in certain scenarios.
Collapse
Affiliation(s)
- Alan G Porter
- Cell Death and Human Disease Group, Institute of Molecular and Cell Biology, Proteos, Singapore.
| | | |
Collapse
|