601
|
Cruzat VF, Rogero MM, Tirapegui J. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise. Cell Biochem Funct 2010; 28:24-30. [PMID: 19885855 DOI: 10.1002/cbf.1611] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concentrations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise.
Collapse
|
602
|
Abstract
The transport of amino acid across the membranes has great importance in cell metabolism. Specific experimental methodologies are required for measuring the vectorial reactions catalyzed by the membrane transporters. So far, the most widely used technique to study amino acid transport was the measure of amino acid flux in intact cell systems expressing a specific transporter. Some limitations in this procedure are caused by the presence of endogenous transporters and intracellular enzymes and by the inaccessibility of the intracellular compartment. Alternative experimental strategies which allow to reducing the interferences and improving the handling of the internal compartment would be useful to the amino acid transport knowledge.An experimental protocol, which makes use of liposomes to study the transport of amino acid mediated by the glutamine/amino acid (ASCT2) transporter, solubilized from rat kidney brush borders, is described. The procedure is based on the reconstitution of the transporter in liposomes by removal of detergent from mixed micelles of detergent, solubilized protein, and phospholipid. The transport is assayed in the formed proteoliposomes measuring the Na(+) dependent uptake of L: -[(3)H]glutamine in antiport with internal L: -glutamine. This method allows measuring the transport activity under well controlled experimental conditions and permits performing experiments which cannot be realized in intact cell systems.
Collapse
|
603
|
Woodward AD, Holcombe SJ, Steibel JP, Staniar WB, Colvin C, Trottier NL. Cationic and neutral amino acid transporter transcript abundances are differentially expressed in the equine intestinal tract. J Anim Sci 2010; 88:1028-33. [DOI: 10.2527/jas.2009-2406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
604
|
Deo RC, Hunter L, Lewis GD, Pare G, Vasan RS, Chasman D, Wang TJ, Gerszten RE, Roth FP. Interpreting metabolomic profiles using unbiased pathway models. PLoS Comput Biol 2010; 6:e1000692. [PMID: 20195502 PMCID: PMC2829050 DOI: 10.1371/journal.pcbi.1000692] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an oral glucose tolerance test (OGTT) in 50 individuals, 25 with normal (NGT) and 25 with impaired glucose tolerance (IGT). Our focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for "active modules"--regions of the metabolic network enriched for changes in metabolite levels. Active modules identified relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles. Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12, and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters in human disease, metabolite profiling may contribute to improved disease classification via the interrogation of specific transporter activities.
Collapse
Affiliation(s)
- Rahul C. Deo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Luke Hunter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory D. Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Guillaume Pare
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Donald W. Reynolds Center for Cardiovascular Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ramachandran S. Vasan
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Boston, Massachusetts, United States of America
- Sections of Cardiology and Preventive Medicine, and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Daniel Chasman
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Donald W. Reynolds Center for Cardiovascular Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas J. Wang
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Boston, Massachusetts, United States of America
| | - Robert E. Gerszten
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Frederick P. Roth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
605
|
Changes in kinetics of amino acid uptake at the ageing ovine blood-cerebrospinal fluid barrier. Neurobiol Aging 2010; 33:121-33. [PMID: 20138405 DOI: 10.1016/j.neurobiolaging.2010.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 01/05/2023]
Abstract
Amino acids (AA) in brain are precisely controlled by blood-brain barriers, which undergo a host of changes in both morphology and function during ageing. The effect of these age-related changes on AA homeostasis in brain is not well described. This study investigated the kinetics of four AA (Leu, Phe, Ala and Lys) uptakes at young and old ovine choroid plexus (CP), the blood-cerebrospinal fluid (CSF) barrier (BCB), and measured AA concentrations in CSF and plasma samples. In old sheep, the weight of lateral CP increased, so did the ratio of CP/brain. The expansion of the CP is consistent with clinical observation of thicker leptomeninges in old age. AA concentrations in old CSF, plasma and their ratio were different from the young. Both V(max) and K(m) of Phe and Lys were significant higher compared to the young, indicating higher trans-stimulation in old BCB. Cross-competition and kinetic inhibition studies found the sensitivity and specificity of these transporters were impaired in old BCB. These changes may be the first signs of a compromised barrier system in ageing brain leading increased AA influx into the brain causing neurotoxicity.
Collapse
|
606
|
Frølund S, Marquez OC, Larsen M, Brodin B, Nielsen CU. Delta-aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1). Br J Pharmacol 2010; 159:1339-53. [PMID: 20128809 DOI: 10.1111/j.1476-5381.2009.00620.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE delta-Aminolevulinic acid (ALA) is used in cancer patients for photodynamic diagnosis or therapy. Oral administration of ALA has been used in patients with prostate and bladder cancer. The present aim was to investigate the mechanism of intestinal absorption of ALA and its transport via the amino acid transporter SLC36A1. EXPERIMENTAL APPROACH In vitro investigations of ALA affinity for and uptake via SLC36A1 and SLC15A1 were performed in Caco-2 cell monolayers. Interaction of ALA with SLC15A1 was investigated in MDCK/SLC15A1 cells, whereas interactions with SLC36A1 were investigated in COS-7 cells transiently expressing SLC36A1. KEY RESULTS ALA inhibited SLC36A1-mediated L-[(3)H]Pro and SLC15A1-mediated [(14)C]Gly-Sar uptake in Caco-2 cell monolayers with IC(50) values of 11.3 and 2.1 mM respectively. In SLC36A1-expressing COS-7 cells, the uptake of [(14)C]ALA was saturable with a K(m) value of 6.8 +/- 3.0 mM and a V(max) of 96 +/- 13 pmol x cm(-2) x min(-1). Uptake of [(14)C]ALA was pH and concentration dependent, and could be inhibited by glycine, proline and GABA. In a membrane potential assay, translocation of ALA via SLC36A1 was concentration dependent, with a K(m) value of 3.8 +/- 1.0 mM. ALA is thus a substrate for SLC36A1. In Caco-2 cells, apical [(14)C]ALA uptake was pH dependent, but Na(+) independent, and completely inhibited by 5-hydroxy-L-tryptophan and L-4,4'-biphenylalanyl-l-proline. CONCLUSIONS AND IMPLICATIONS. ALA was a substrate for SLC36A1, and the apical absorption in Caco-2 cell was only mediated by SLC36A1 and SLC15A1. This advances our understanding of intestinal absorption mechanisms of ALA, as well as its potential for drug interactions.
Collapse
Affiliation(s)
- S Frølund
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
607
|
|
608
|
Satterfield MC, Gao H, Li X, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients and Their Associated Transporters Are Increased in the Ovine Uterus Following Early Progesterone Administration1. Biol Reprod 2010; 82:224-31. [DOI: 10.1095/biolreprod.109.076729] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
609
|
Blood serum free amino acids pattern in newborn calves on colostral diet and orally treated with zeolite. ACTA VET-BEOGRAD 2010. [DOI: 10.2298/avb1004411g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
610
|
Taylor J, Cooper C, Mommsen T. Implications of GI function for gas exchange, acid–base balance and nitrogen metabolism. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03006-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
611
|
Evans AM, Aimanova KG, Gill SS. Characterization of a blood-meal-responsive proton-dependent amino acid transporter in the disease vector, Aedes aegypti. ACTA ACUST UNITED AC 2009; 212:3263-71. [PMID: 19801431 DOI: 10.1242/jeb.029553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
After anautogenous mosquitoes ingest the required blood meal, proteins in it are rapidly cleaved, yielding a large pool of amino acids. Transport of these amino acids into gut epithelial cells and their subsequent translocation into other tissues is critical for oogenesis and other physiological processes. We have identified a proton amino acid transporter (PAT) in Aedes aegypti (AaePAT1, AAEL007191) which facilitates this transport and is expressed in epithelial cell membranes of larval caecae and the adult midgut. AaePAT1 encodes a 475 amino acid protein showing high similarity to Anopheles gambiae AGAP009896, Culex pipiens CPIJ011438 and Drosophila melanogaster CG7888. When expressed in Xenopus oocytes the transport kinetics showed AaePAT1 is a low affinity transporter with low substrate specificity, having Km and Vmax values of about 7.2 mmol l(-1) and 69 pmol oocyte(-1) min(-1), respectively, for glutamine. A number of other amino acids are also transported by this PAT. In female adult midgut, AaePAT1 transcript levels were induced after ingestion of a blood meal.
Collapse
Affiliation(s)
- Amy M Evans
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
612
|
Keszthelyi D, Troost FJ, Masclee AAM. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil 2009; 21:1239-49. [PMID: 19650771 DOI: 10.1111/j.1365-2982.2009.01370.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan is the precursor of a wide array of metabolites, which are involved in a variety of aspects of human nutrition and metabolism. Accumulating evidence suggests a role of tryptophan metabolites, especially serotonin (5-hydroxytryptamin) in intestinal (patho) physiology, although mechanisms of action are still poorly understood. Alterations of serotonin metabolism may give rise to gastrointestinal dysfunction. Recently, it has been postulated that other metabolites of tryptophan, mostly of the kynurenine pathway, also play a role in regulating gut function. This review analyses the current knowledge of the interrelationship between tryptophan metabolic pathways and summarizes the existing scientific evidence regarding the role of tryptophan metabolites in intestinal function and in the pathogenesis of gastrointestinal diseases.
Collapse
Affiliation(s)
- D Keszthelyi
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.
| | | | | |
Collapse
|
613
|
Abstract
This review summarizes the current view of amino acid transport by epithelial cells of vertebrates. A wide variety of transporter proteins are expressed in apical and basolateral membranes and collectively play complex interactive roles in controlling the entire organism’s overall metabolism of amino acids. Regulation of the transport systems can be manifested at many levels, including gene splicing and promoter regulation, interactions between requisite subunits of oligomers, thermodynamic electrochemical gradients contributed by ion exchangers, overlap of substrate specificity, selective tissue distribution, and specific spatial distribution of transporters leading to net vectorial flow of the amino acids. The next frontier for workers in this field is to uncover a comprehensive molecular understanding of the manner by which epithelial cells signal gene expression of transporters as triggered by substrates, hormones or other triggers, in order to further understand the trafficking and interactions among multimeric transport system proteins, to extend discoveries of novel small drug substrates for oral and ocular delivery, and to examine gene therapy or nanotherapy of diseases using small molecules delivered via amino acid transporters.
Collapse
Affiliation(s)
- George A. Gerencser
- College of Medicine, University of Florida, SW. Archer Road 1600, Gainesville, 32610-0274 U.S.A
| |
Collapse
|
614
|
Blot A, Billups D, Bjørkmo M, Quazi AZ, Uwechue NM, Chaudhry FA, Billups B. Functional expression of two system A glutamine transporter isoforms in rat auditory brainstem neurons. Neuroscience 2009; 164:998-1008. [PMID: 19751803 PMCID: PMC2789247 DOI: 10.1016/j.neuroscience.2009.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/26/2009] [Accepted: 09/04/2009] [Indexed: 01/11/2023]
Abstract
Glutamine plays multiple roles in the CNS, including metabolic functions and production of the neurotransmitters glutamate and GABA. It has been proposed to be taken up into neurons via a variety of membrane transport systems, including system A, which is a sodium-dependent electrogenic amino acid transporter system. In this study, we investigate glutamine transport by application of amino acids to individual principal neurons of the medial nucleus of the trapezoid body (MNTB) in acutely isolated rat brain slices. A glutamine transport current was studied in patch-clamped neurons, which had the electrical and pharmacological properties of system A: it was sodium-dependent, had a non-reversing current-voltage relationship, was activated by proline, occluded by N-(methylamino)isobutyric acid (MeAIB), and was unaffected by 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH). Additionally, we examined the expression of different system A transporter isoforms using immunocytochemical staining with antibodies raised against system A transporter 1 and 2 (SAT1 and SAT2). Our results indicate that both isoforms are expressed in MNTB principal neurons, and demonstrate that functional system A transporters are present in the plasma membrane of neurons. Since system A transport is highly regulated by a number of cellular signaling mechanisms and glutamine then goes on to activate other pathways, the study of these transporters in situ gives an indication of the mechanisms of neuronal glutamine supply as well as points of regulation of neurotransmitter production, cellular signaling and metabolism in the native neuronal environment.
Collapse
Affiliation(s)
- A Blot
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | | | | | | | |
Collapse
|
615
|
Chalova VI, Sirsat SA, O'Bryan CA, Crandall PG, Ricke SC. Escherichia coli, an Intestinal Microorganism, as a Biosensor for Quantification of Amino Acid Bioavailability. SENSORS 2009; 9:7038-57. [PMID: 22399985 PMCID: PMC3290505 DOI: 10.3390/s90907038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 01/06/2023]
Abstract
In animal diets optimal amino acid quantities and balance among amino acids is of great nutritional importance. Essential amino acid deficiencies have negative impacts on animal physiology, most often expressed in sub-optimal body weight gains. Over supplementation of diets with amino acids is costly and can increase the nitrogen emissions from animals. Although in vivo animal assays for quantification of amino acid bioavailability are well established, Escherichia coli-based bioassays are viable potential alternatives in terms of accuracy, cost, and time input. E. coli inhabits the gastrointestinal tract and although more abundant in colon, a relatively high titer of E. coli can also be isolated from the small intestine, where primary absorption of amino acids and peptides occur. After feed proteins are digested, liberated amino acids and small peptides are assimilated by both the small intestine and E. coli. The similar pattern of uptake is a necessary prerequisite to establish E. coli cells as accurate amino acid biosensors. In fact, amino acid transporters in both intestinal and E. coli cells are stereospecific, delivering only the respective biological l-forms. The presence of free amino- and carboxyl groups is critical for amino acid and dipeptide transport in both biological subjects. Di-, tri- and tetrapeptides can enter enterocytes; likewise only di-, tri- and tetrapeptides support E. coli growth. These similarities in addition to the well known bacterial genetics make E. coli an optimal bioassay microorganism for the assessment of nutritionally available amino acids in feeds.
Collapse
Affiliation(s)
- Vesela I Chalova
- Center for Food Safety-IFSE, and Departments of Food and Poultry Sciences, University of Arkansas, Fayetteville, AR 72704, USA; E-Mails: (V.C.); (S.S.)
| | | | | | | | | |
Collapse
|
616
|
Wolff BS, Meirelles K, Meng Q, Pan M, Cooney RN. Roux-en-Y gastric bypass alters small intestine glutamine transport in the obese Zucker rat. Am J Physiol Gastrointest Liver Physiol 2009; 297:G594-601. [PMID: 19556357 PMCID: PMC2739821 DOI: 10.1152/ajpgi.00104.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The metabolic effects of Roux-en-Y gastric bypass (RYGB) are caused by postsurgical changes in gastrointestinal anatomy affecting gut function. Glutamine is a critical gut nutrient implicated in regulating glucose metabolism as a substrate for intestinal gluconeogenesis. The present study examines the effects of obesity and RYGB on intestinal glutamine transport and metabolism. First, lean and obese Zucker rats (ZRs) were compared. Then the effects of RYGB and sham surgery with pair feeding (PF) in obese ZRs were studied. Segments of small intestine (biliopancreatic limb, Roux limb, and common channel) mucosa were harvested and brush border membrane vesicles (BBMVs) were isolated on postoperative day 28. Glutamine transporter activity and abundance, B(0)AT1 protein, and mRNA levels were measured. Levels of glutaminase, cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), and glucose-6-phosphatase (G6Pase) were measured to assess glutamine metabolism and intestinal gluconeogenesis. Obesity increased glutamine transport and B(0)AT1 expression throughout the intestine. RYGB increased glutamine transport activity in the biliopancreatic (3.8-fold) and Roux limbs (1.4-fold) but had no effect on the common channel. The relative abundance of B(0)AT1 mRNA and protein were increased in the biliopancreatic (6-fold) and Roux limbs (10-fold) after RYGB (P < 0.05 vs. PF), but not the common channel. Glutaminase levels were increased, whereas the relative abundance of PEPCK-C and G6Pase were decreased in all segments of intestine after RYGB. RYGB selectively increased glutamine absorption in biliopancreatic and Roux limbs by a mechanism involving increased B(0)AT1 expression. Post-RYGB glutaminase levels were increased, but the reductions in PEPCK-C and G6Pase suggest that RYGB downregulates intestinal gluconeogenesis.
Collapse
Affiliation(s)
- Brynn S. Wolff
- Department of Surgery and Department of Cellular and Molecular Physiology, Penn State Milton S. Hershey Medical Center, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Katia Meirelles
- Department of Surgery and Department of Cellular and Molecular Physiology, Penn State Milton S. Hershey Medical Center, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Qinghe Meng
- Department of Surgery and Department of Cellular and Molecular Physiology, Penn State Milton S. Hershey Medical Center, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Ming Pan
- Department of Surgery and Department of Cellular and Molecular Physiology, Penn State Milton S. Hershey Medical Center, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Robert N. Cooney
- Department of Surgery and Department of Cellular and Molecular Physiology, Penn State Milton S. Hershey Medical Center, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
617
|
Rocha JC, Martel F. Large neutral amino acids supplementation in phenylketonuric patients. J Inherit Metab Dis 2009; 32:472-80. [PMID: 19437129 DOI: 10.1007/s10545-009-1132-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/30/2009] [Accepted: 04/02/2009] [Indexed: 01/19/2023]
Abstract
Phenylketonuria is an inborn error of amino acid metabolism that results in severe mental retardation if not treated early and appropriately. The traditional treatment, consisting of a low-phenylalanine diet, is usually difficult to maintain throughout adolescence and adulthood, resulting in undesirable levels of blood phenylalanine and consequent neurotoxicity. The neurotoxicity of phenylalanine is enhanced by its transport mechanism across the blood-brain barrier, which has the highest affinity for phenylalanine compared with the other large neutral amino acids that share the same carrier. The supplementation of large neutral amino acids in phenylketonuric patients has been showing interesting results. Plasma phenylalanine levels can be reduced, which may guarantee important metabolic and clinical benefits to these patients. Although long-term studies are needed to determine the efficacy and safety of large neutral amino acids supplements, the present state of knowledge seems to recommend their prescription to all phenylketonuric adult patients who are non-compliant with the low-phenylalanine diet.
Collapse
Affiliation(s)
- J C Rocha
- Center of Medical Genetics Jacinto Magalhães - INSA, Porto, Portugal
| | | |
Collapse
|
618
|
Mourad FH, Barada KA, Khoury C, Hamdi T, Saadé NE, Nassar CF. Amino acids in the rat intestinal lumen regulate their own absorption from a distant intestinal site. Am J Physiol Gastrointest Liver Physiol 2009; 297:G292-8. [PMID: 19541927 DOI: 10.1152/ajpgi.00100.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal nutrient transport is altered in response to changes in dietary conditions and luminal substrate level. It is not clear, however, whether an amino acid in the intestinal lumen can acutely affect its own absorption from a distant site. Our aim is to study the effect of an amino acid present in rat small intestinal segment on its own absorption from a proximal or distal site and elucidate the underlying mechanisms. The effect of instillation of alanine (Ala) in either jejunum or ileum on its own absorption at ileal or jejunal level was examined in vivo. The modulation of this intestinal regulatory loop by the following interventions was studied: tetrodotoxin (TTX) added to Ala, subdiaphragmatic vagotomy, chemical ablation of capsaicin-sensitive primary afferent (CSPA) fibers, and IV administration of calcitonin gene-related peptide (CGRP) antagonist. In addition, the kinetics of jejunal Ala absorption and the importance of Na+-dependent transport were studied in vitro after instilling Ala in the ileum. Basal jejunal Ala absorption [0.198 +/- 0.018 micromol x cm(-1) x 20 min(-1) (means +/- SD)] was significantly decreased with the instillation of 20 mM Ala in the ileum or in an adjacent distal jejunal segment (0.12 +/- 0.015; P < 0.0001 and 0.138 +/- 0.014; P < 0.002, respectively). Comparable inhibition was observed in the presence of proline in the ileum. Moreover, basal Ala absorption from the ileum (0.169 +/- 0.025) was significantly decreased by the presence of 20 mM Ala in the jejunum (0.103 +/- 0.027; P < 0.01). The inhibitory effect on jejunal Ala absorption was abolished by TTX, subdiaphragmatic vagotomy, neonatal capsaicin treatment, and CGRP antagonism. In vitro studies showed that Ala in the ileum affects Na+-mediated transport and increases K(m) without affecting Vmax. Intraluminal amino acids control their own absorption from a distant part of the intestine, by affecting the affinity of the Na+-mediated Ala transporter, through a neuronal mechanism that involves CSPA and CGRP.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Physiology, American University of Beirut Medical Center, Beirut, Lebanon.
| | | | | | | | | | | |
Collapse
|
619
|
Meleshkevitch EA, Robinson M, Popova LB, Miller MM, Harvey WR, Boudko DY. Cloning and functional expression of the first eukaryotic Na+-tryptophan symporter, AgNAT6. ACTA ACUST UNITED AC 2009; 212:1559-67. [PMID: 19411550 DOI: 10.1242/jeb.027383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nutrient amino acid transporter (NAT) subfamily of the neurotransmitter sodium symporter family (NSS, also known as the solute carrier family 6, SLC6) represents transport mechanisms with putative synergistic roles in the absorption of essential and conditionally essential neutral amino acids. It includes a large paralogous expansion of insect-specific genes, with seven genes from the genome of the malaria mosquito, Anopheles gambiae. One of the An. gambiae NATs, AgNAT8, was cloned, functionally expressed and characterized in X. laevis oocytes as a cation-coupled symporter of aromatic amino acids, preferably l-phenylalanine, l-tyrosine and l-DOPA. To explore an evolutionary trend of NAT-SLC6 phenotypes, we have cloned and characterized AgNAT6, which represents a counterpart of AgNAT8 descending from a recent gene duplication (53.1% pairwise sequence identity). In contrast to AgNAT8, which preferably mediates the absorption of phenol-branched substrates, AgNAT6 mediates the absorption of indole-branched substrates with highest apparent affinity to tryptophan (K(0.5)(Trp)=1.3 micromol l(-1) vs K(0.5)(Phe)=430 micromol l(-1)) and [2 or 1 Na(+) or K(+)]:[aromatic substrate] stoichiometry. AgNAT6 is highly transcribed in absorptive and secretory regions of the alimentary canal and specific neuronal structures, including the neuropile of ventral ganglia and sensory afferents. The alignment of AgNATs and LeuT(Aa), a bacterial NAT with a resolved 3D structure, reveals three amino acid differences in the substrate-binding pocket that may be responsible for the indole- vs phenol-branch selectivity of AgNAT6 vs AgNAT8. The identification of transporters with a narrow selectivity for essential amino acids suggests that basal expansions in the SLC6 family involved duplication and retention of NATs, improving the absorption and distribution of under-represented essential amino acids and related metabolites. The identified physiological and expression profiles suggest unique roles of AgNAT6 in the active absorption of indole-branched substrates that are used in the synthesis of the neurotransmitter serotonin as well as the key circadian hormone and potent free-radical scavenger melatonin.
Collapse
Affiliation(s)
- Ella A Meleshkevitch
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | |
Collapse
|
620
|
Spanier B, Lasch K, Marsch S, Benner J, Liao W, Hu H, Kienberger H, Eisenreich W, Daniel H. How the intestinal peptide transporter PEPT-1 contributes to an obesity phenotype in Caenorhabditits elegans. PLoS One 2009; 4:e6279. [PMID: 19621081 PMCID: PMC2708923 DOI: 10.1371/journal.pone.0006279] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/08/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amino acid absorption in the form of di- and tripeptides is mediated by the intestinal proton-coupled peptide transporter PEPT-1 (formally OPT-2) in Caenorhabditits elegans. Transporter-deficient animals (pept-1(lg601)) show impaired growth, slowed postembryonal development and major changes in amino acid status. PRINCIPAL FINDINGS Here we demonstrate that abolished intestinal peptide transport also leads to major metabolic alterations that culminate in a two fold increase in total body fat content. Feeding of C. elegans with [U-(13)C]-labelled E. coli revealed a decreased de novo synthesis of long-chain fatty acids in pept-1(lg601) and reduced levels of polyunsaturated fatty acids. mRNA profiling revealed increased transcript levels of enzymes/transporters needed for peroxisomal beta-oxidation and decreased levels for those required for fatty acid synthesis, elongation and desaturation. As a prime and most fundamental process that may account for the increased fat content in pept-1(lg601) we identified a highly accelerated absorption of free fatty acids from the bacterial food in the intestine. CONCLUSIONS The influx of free fatty acids into intestinal epithelial cells is strongly dependent on alterations in intracellular pH which is regulated by the interplay of PEPT-1 and the sodium-proton exchanger NHX-2. We here provide evidence for a central mechanism by which the PEPT-1/NHX-2 system strongly influences the in vivo fat content of C. elegans. Loss of PEPT-1 decreases intestinal proton influx leading to a higher uptake of free fatty acids with fat accumulation whereas loss of NHX-2 causes intracellular acidification by the PEPT-1 mediated proton/dipeptide symport with an almost abolished uptake of fatty acids and a lean phenotype.
Collapse
Affiliation(s)
- Britta Spanier
- Abteilung Biochemie, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
621
|
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124:3-20; quiz 21-2. [PMID: 19560575 PMCID: PMC4266989 DOI: 10.1016/j.jaci.2009.05.038] [Citation(s) in RCA: 1188] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 02/08/2023]
Abstract
The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier, permitting the absorption of nutrients, electrolytes, and water while maintaining an effective defense against intraluminal toxins, antigens, and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mechanically link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form 3 adhesive complexes: desmosomes, adherens junctions, and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an association between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review we summarize the evolving understanding of the molecular composition and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the effect of exogenous factors on intestinal barrier function. Finally, we summarize clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease.
Collapse
Affiliation(s)
- Katherine R. Groschwitz
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Simon P. Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
622
|
Arginine transport in human erythroid cells: discrimination of CAT1 and 4F2hc/y+LAT2 roles. Pflugers Arch 2009; 458:1163-73. [DOI: 10.1007/s00424-009-0692-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
|
623
|
Abstract
The role of intestinal microflora in digestive and metabolic processes has received increasing attention from researchers and clinicians. Both enterocytes and small intestine luminal microorganisms can degrade peptides and amino acids (AA). Further, enterocytes can utilize ammonia via glutamate, glutamine, citrulline, and urea synthesis, whereas luminal microbes will deaminate AA, hydrolyze luminal urea, and recycle this ammonia by synthesis of new microbial cells. Although, undoubtedly, some indispensable AA may arise from N cycling and microbial synthesis in the intestinal lumen, the actual net impact on protein nutrition status appears to be limited in humans and animals. Moreover, potential contributions of the recycled N as colonic luminal microbial proteins to AA in blood depend on colonic protein digestion and AA absorption. Finally, new evidence indicates that gut microbial metabolism may be enhanced by prebiotics and probiotics, with the prospects of new treatment paradigms for eliminating undesirable secondary N metabolites and ameliorating complications in whole-body N metabolism under the conditions of intestinal stress, liver disease, and kidney failure.
Collapse
Affiliation(s)
- Werner G Bergen
- Department of Animal Sciences, Auburn University, AL 36849, USA.
| | | |
Collapse
|
624
|
Hussain MM, Pan X. Clock genes, intestinal transport and plasma lipid homeostasis. Trends Endocrinol Metab 2009; 20:177-85. [PMID: 19349191 PMCID: PMC4544755 DOI: 10.1016/j.tem.2009.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/30/2008] [Accepted: 01/05/2009] [Indexed: 02/03/2023]
Abstract
Light and food are two major environmental factors that impact daily life. Light entrainment is centrally controlled by suprachiasmatic nuclei of the hypothalamus. Food entrainment might require cooperation between the intestine and dorsomedial hypothalamus. Clock genes that are essential for light entrainment also play a part in food entrainment. Understanding the role of clock genes in the entrainment of intestinal functions, as well as in gut-brain communication during food entrainment, will enhance our understanding of gastrointestinal and metabolic disorders. This review highlights recent studies examining light- and food-entrained regulation of plasma lipids and of various intestinal activities and offers insight into the role of the intestine in food entrainment.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
625
|
Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Nutrition 2009; 25:428-35. [DOI: 10.1016/j.nut.2008.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/15/2008] [Accepted: 09/21/2008] [Indexed: 11/22/2022]
|
626
|
Kamal MA, Jiang H, Hu Y, Keep RF, Smith DE. Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. Am J Physiol Regul Integr Comp Physiol 2009; 296:R986-91. [PMID: 19225147 PMCID: PMC2698603 DOI: 10.1152/ajpregu.90744.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 02/12/2009] [Indexed: 11/22/2022]
Abstract
Carnosine (beta-alanyl-l-histidine), an endogenous dipeptide substrate of the proton-coupled oligopeptide transporter PEPT2, plays an important role in many physiological processes. This study examined the effect of PEPT2 on the disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. After exogenous dosing of [(3)H]carnosine (1 nmol/g iv bolus), a marked increase was observed in its systemic clearance in Pept2 null mice (0.50 vs. 0.29 ml/min), resulting in a decreased systemic exposure of dipeptide (area under the curve = 43.7 vs. 73.0 microM). Carnosine uptake was substantially reduced in the kidney of Pept2 null mice, and renal clearance increased 18-fold in this genotype (206 vs. 11.5 microl/min). Fractional reabsorption of carnosine in Pept2 null mice was only one-fifth that in wild-type animals (0.20 vs. 0.94). PEPT2 also had a substantial impact in brain where the cerebrospinal fluid (CSF)-to-plasma concentration ratio of carnosine was eightfold greater in Pept2 null mice (0.70 vs. 0.08). With respect to endogenous carnosine levels, significant reductions were observed in Pept2 null compared with wild-type mice for choroid plexus (0.026 vs. 0.20 mmol/kg), olfactory bulb (1.12 vs. 1.79 mmol/kg), and spleen (0.019 vs. 0.029 mmol/kg). In contrast, carnosine levels in the skeletal muscle of Pept2 null mice were significantly increased (1.70 vs. 1.14 mmol/kg), and no differences were observed between genotypes for endogenous carnosine levels in plasma and CSF. These results demonstrate that PEPT2 significantly modulates the disposition of exogenous carnosine. However, endogenous carnosine levels may be under homeostatic control to maintain systemic and central concentrations under physiological in vivo conditions.
Collapse
Affiliation(s)
- Mohamed A Kamal
- Univeersity of Michigan, Upjohn Center for Clinical Pharmacology, Ann Arbor, Michigan 48109-5633, USA
| | | | | | | | | |
Collapse
|
627
|
Mitsuoka K, Shirasaka Y, Fukushi A, Sato M, Nakamura T, Nakanishi T, Tamai I. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells. Biopharm Drug Dispos 2009; 30:126-37. [DOI: 10.1002/bdd.653] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
628
|
Liao SF, Vanzant ES, Harmon DL, McLeod KR, Boling JA, Matthews JC. Ruminal and abomasal starch hydrolysate infusions selectively decrease the expression of cationic amino acid transporter mRNA by small intestinal epithelia of forage-fed beef steers. J Dairy Sci 2009; 92:1124-35. [PMID: 19233805 DOI: 10.3168/jds.2008-1521] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although cationic amino acids (CAA) are considered essential to maximize optimal growth of cattle, transporters responsible for CAA absorption by bovine small intestinal epithelia have not been described. This study was conducted to test 2 hypotheses: 1) the duodenal, jejunal, and ileal epithelia of beef cattle differentially express 7 mRNA associated with 4 mammalian amino acid (AA) transport activities: y(+) (CAT1), B(0,+) (ATB(0,+)), b(0,+) (b(0,+)AT and rBAT), and y(+)L (y(+)LAT1, y(+)LAT2, and 4F2hc), and 2) the expression of these mRNA is responsive to small intestinal luminal supply of AA substrates (derived from ruminal microbes) or glucose-derived energy (from starch hydrolysate, SH), or both. Eighteen ruminally and abomasally catheterized Angus steers (body weight = 260 +/- 17 kg) fed an alfalfa cube-based diet at 1.33 x net energy for maintenance requirement were assigned to 3 treatments (n = 6): ruminal and abomasal water infusion (control); ruminal SH and abomasal water infusion; and ruminal water and abomasal SH infusion. The dosage of SH infusion amounted to 20% of metabolizable energy intake. After 14 or 16 d of infusion, steers were slaughtered, duodenal, jejunal, and ileal epithelia were harvested, and total RNA was extracted. The relative amounts of mRNA expressed by epithelia were quantified using real-time reverse transcription-PCR. All 7 mRNA species were expressed by the epithelium from each region, but their abundance differed among the regions. Specifically, duodenal expression of CAT1 and ATB(0,+) mRNA was greater than jejunal or ileal expression; ileal expression of b(0,+)AT, rBAT, and y(+)LAT1 mRNA was greater than jejunal or duodenal expression, whereas the expression of y(+)LAT2 and 4F2hc mRNA did not differ among the 3 epithelia. With regard to SH infusion effect, ruminal infusion down-regulated or tended to down-regulate the jejunal expression of CAT1, rBAT, y(+)LAT2, and 4F2hc mRNA. Abomasal infusion down-regulated the jejunal expression of y(+)LAT2 mRNA and tended to down-regulate the jejunal expression of 4F2hc mRNA. This study characterized the pattern of CAA transporter mRNA expressed by growing beef cattle fed an alfalfa-based diet. Moreover, this study demonstrated that increasing the luminal supply of microbe-derived AA (by ruminal supplementation of SH) results in a reduced capacity of apical and basolateral membrane to transport of CAA, whereas increasing luminal glucose supply (by abomasal supplementation of SH) reduces only the basolateral transport capacity, assuming that CAA transporter mRNA content represents functional capacity.
Collapse
Affiliation(s)
- S F Liao
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
629
|
Anas MKI, Lee MB, Zhou C, Hammer MA, Slow S, Karmouch J, Liu XJ, Bröer S, Lever M, Baltz JM. SIT1 is a betaine/proline transporter that is activated in mouse eggs after fertilization and functions until the 2-cell stage. Development 2009; 135:4123-30. [PMID: 19029042 DOI: 10.1242/dev.026575] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Betaine (N,N,N-trimethylglycine) added to culture media is known to substantially improve the development of preimplantation mouse embryos in vitro, and to be imported into 1-cell embryos by a transporter that also accepts proline. Here, we found that the betaine/proline transporter is active in preimplantation mouse embryos only for a short period of development, between the 1- and 2-cell stages. Betaine/proline transport was activated after fertilization, beginning approximately 4 hours post-egg activation and reaching a maximum by approximately 10 hours. One- and 2-cell embryos contained endogenous betaine, indicating that a likely function for the transporter in vivo is the accumulation or retention of intracellular betaine. The appearance of transport activity after egg activation was independent of protein synthesis, but was reversibly blocked by disruption of the Golgi with brefeldin A. We assessed two candidates for the betaine/proline transporter: SIT1 (IMINO; encoded by Slc6a20a) and PROT (Slc6a7). mRNA from both genes was present in eggs and 1-cell embryos. However, when exogenously expressed in Xenopus oocytes, mouse PROT did not transport betaine and had an inhibition profile different from that of the embryonic transporter. By contrast, exogenously expressed mouse SIT1 transported both betaine and proline and closely resembled the embryonic transporter. A morpholino oligonucleotide designed to block translation of SIT1, when present from the germinal vesicle stage, blocked the appearance of betaine transport activity in parthenogenotes. Thus, SIT1 is likely to be a developmentally restricted betaine transporter in mouse preimplantation embryos that is activated by fertilization.
Collapse
|
630
|
Amino acid transporters: éminences grises of nutrient signalling mechanisms? Biochem Soc Trans 2009; 37:237-41. [PMID: 19143639 DOI: 10.1042/bst0370237] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nutrient signalling by the mTOR (mammalian target of rapamycin) pathway involves upstream sensing of free AA (amino acid) concentrations. Several AA-regulated kinases have recently been identified as putative intracellular AA sensors. Their activity will reflect the balance between AA flows through underlying mechanisms which together determine the size of the intracellular free AA pool. For indispensable AAs, these mechanisms are primarily (i) AA transport across the cell membrane, and (ii) protein synthesis/breakdown. The System L AA transporter is the primary conduit for cellular entry of indispensable neutral AAs (including leucine and phenylalanine) and potentially a key modulator of AA-sensitive mTOR signalling. Coupling of substrate flows through System L and other AA transporters (e.g. System A) may extend the scope for sensing nutrient abundance. Factors influencing AA transporter activity (e.g. hormones) may affect intracellular AA concentrations and hence indirectly mTOR pathway activity. Several AA transporters are themselves regulated by AA availability through 'adaptive regulation', which may help to adjust the gain of AA sensing. The substrate-binding sites of AA transporters are potentially direct sensors of AA availability at both faces of the cell surface, and there is growing evidence that AA transporters of the SNAT (sodium-coupled neutral AA transporter) and PAT (proton-assisted AA transporter) families may operate, at least under some circumstances, as transporter-like sensors (or 'transceptors') upstream of mTOR.
Collapse
|
631
|
L-Glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 2009; 37:131-42. [PMID: 19189199 DOI: 10.1007/s00726-009-0243-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/14/2009] [Indexed: 02/08/2023]
Abstract
This study tested the hypothesis that L-glutamine (Gln) or L-alanyl-L-glutamine (Ala-Gln) prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Enterocytes of neonatal pigs rapidly hydrolyzed Ala-Gln and utilized Gln. To determine whether Gln or Ala-Gln has a cytoprotective effect, IPEC-1 cells were cultured for 24 h in Gln-free Dulbecco's modified Eagle's-F12 Ham medium containing 0, 0.5, 2.0 or 5.0 mM Gln or Ala-Gln, and 0, 0.5 mM H(2)O(2) or 30 ng/ml lipopolysaccharide (LPS). Without Gln or Ala-Gln, H(2)O(2)- or LPS-treated cells exhibited almost complete death. Gln or Ala-Gln at 0.5, 2 and 5 mM dose-dependently reduced H(2)O(2)- or LPS-induced cell death by 14, 54 and 95%, respectively, whereas D: -glutamine, alanine, glutamate, ornithine, proline, glucosamine or nucleosides had no effect. To evaluate the effectiveness of Gln or Ala-Gln in vivo, 7-day-old piglets received one-week oral administration of Gln or Ala-Gln (3.42 mmol/kg body weight) twice daily and then a single intraperitoneal injection of LPS (0.1 mg/kg body weight); piglets were euthanized in 24 and 48 h to analyze intestinal apoptotic proteins and morphology. Administration of Gln or Ala-Gln to LPS-challenged piglets increased Gln concentrations in small-intestinal lumen and plasma, reduced intestinal expression of Toll-like receptor-4, active caspase-3 and NFkB, ameliorated intestinal injury, decreased rectal temperature, and enhanced growth performance. These results demonstrate a protective effect of Gln or Ala-Gln against H(2)O(2)- or LPS-induced enterocyte death. The findings support addition of Gln or Ala-Gln to current Gln-free pediatric amino acid solutions to prevent intestinal oxidative injury and inflammatory disease in neonates.
Collapse
|
632
|
Abstract
Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na(+)-dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B(0)AT1 (SLC6A19) and suggested for the L: -proline transporter SIT1 (IMINO(B), SLC6A20) and for B(0)AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin-angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B(0)AT1 and SIT1. Some mutations of B(0)AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentration.
Collapse
|
633
|
Uematsu A, Tsurugizawa T, Kondoh T, Torii K. Conditioned flavor preference learning by intragastric administration of L-glutamate in rats. Neurosci Lett 2009; 451:190-3. [PMID: 19146916 DOI: 10.1016/j.neulet.2008.12.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/27/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
Abstract
The preference for foods or fluids in rats is partly dependent on its postingestive consequences. Many studies have investigated postingestive effect of high caloric substances, such as carbohydrate or fat. In this study, we examined postingestive effect of L-glutamate at the preferable concentration using conditioned flavor preference paradigm. Adult male rats with chronic intragastric (IG) cannula were trained to drink a flavored solution (conditioned stimulus; CS+) paired with IG infusion of nutrient solution and another flavored solution (CS-) with IG distilled water infusion on alternate days. The nutrient solution was 60mM monosodium L-glutamate, sodium chloride or glucose. Before and after conditioning, rats received 30min two-bottle choice tests for CS+ and CS- solution. All groups exhibited no significant preference for CS+ in pre-test period. By the last half of conditioning period, intake of CS+ solution was significantly higher than that of CS- in MSG group, but not in NaCl and glucose groups. After conditioned, the MSG group showed significantly higher intake and preference for CS+ solution (69.9%), while the NaCl and glucose group did not show any significant intake and preference for CS+ solution (50.9%, 43.5%, respectively). These results indicate that the amino acid L-glutamate at a preferable concentration has a positive postingestive effect as demonstrated by its ability to condition a flavor preference. The mechanism(s) for this positive effect could be through a direct effect on gut Glu receptors rather than the provision of calories or glucose from metabolized Glu; Further studies are needed to test these hypotheses.
Collapse
Affiliation(s)
- Akira Uematsu
- Institute of Life Sciences, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki 210-8681, Japan
| | | | | | | |
Collapse
|
634
|
SATSU H, HYUN JS, SHIN HS, SHIMIZU M. Cycloheximide Treatment Induces the Uptake of Neutral and Dibasic Amino Acids via the Activation of System b0,+ in Human Intestinal Caco-2 Cells. J Nutr Sci Vitaminol (Tokyo) 2009; 55:44-51. [DOI: 10.3177/jnsv.55.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
635
|
Bröer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, Auray-Blais C, Cavanaugh JA, Bröer A, Rasko JEJ. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 2008. [PMID: 19033659 DOI: 10.1172/jci3662536625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Iminoglycinuria (IG) is an autosomal recessive abnormality of renal transport of glycine and the imino acids proline and hydroxyproline, but the specific genetic defect(s) have not been determined. Similarly, although the related disorder hyperglycinuria (HG) without iminoaciduria has been attributed to heterozygosity of a putative defective glycine, proline, and hydroxyproline transporter, confirming the underlying genetic defect(s) has been difficult. Here we applied a candidate gene sequencing approach in 7 families first identified through newborn IG screening programs. Both inheritance and functional studies identified the gene encoding the proton amino acid transporter SLC36A2 (PAT2) as the major gene responsible for IG in these families, and its inheritance was consistent with a classical semidominant pattern in which 2 inherited nonfunctional alleles conferred the IG phenotype, while 1 nonfunctional allele was sufficient to confer the HG phenotype. Mutations in SLC36A2 that retained residual transport activity resulted in the IG phenotype when combined with mutations in the gene encoding the imino acid transporter SLC6A20 (IMINO). Additional mutations were identified in the genes encoding the putative glycine transporter SLC6A18 (XT2) and the neutral amino acid transporter SLC6A19 (B0AT1) in families with either IG or HG, suggesting that mutations in the genes encoding these transporters may also contribute to these phenotypes. In summary, although recognized as apparently simple Mendelian disorders, IG and HG exhibit complex molecular explanations depending on a major gene and accompanying modifier genes.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
636
|
Abstract
1. The monocarboxylate transporter (MCT, SLC16) family comprises 14 members, of which to date only MCT1-4 have been shown to carry monocarboxylates, transporting important metabolic compounds such as lactate, pyruvate and ketone bodies in a proton-coupled manner. The transport of such compounds is fundamental for metabolism, and the tissue locations, properties and regulation of these isoforms is discussed. 2. Of the other members of the MCT family, MCT8 (a thyroid hormone transporter) and TAT1 (an aromatic amino acid transporter) have been characterized more recently, and their physiological roles are reviewed herein. The endogenous substrates and functions of the remaining members of the MCT family await elucidation. 3. The MCT proteins have the typical twelve transmembrane-spanning domain (TMD) topology of membrane transporter proteins, and their structure-function relationship is discussed, especially in relation to the future impact of the single nucleotide polymorphism (SNP) databases and, given their ability to transport pharmacologically relevant compounds, the potential impact for pharmacogenomics.
Collapse
Affiliation(s)
- D Meredith
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK.
| | | |
Collapse
|
637
|
Wang J, Wu G, Zhou H, Wang F. Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids 2008; 37:177-86. [DOI: 10.1007/s00726-008-0193-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/05/2008] [Indexed: 12/30/2022]
|
638
|
Bröer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, Auray-Blais C, Cavanaugh JA, Bröer A, Rasko JEJ. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 2008; 118:3881-92. [PMID: 19033659 DOI: 10.1172/jci36625] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 10/01/2008] [Indexed: 11/17/2022] Open
Abstract
Iminoglycinuria (IG) is an autosomal recessive abnormality of renal transport of glycine and the imino acids proline and hydroxyproline, but the specific genetic defect(s) have not been determined. Similarly, although the related disorder hyperglycinuria (HG) without iminoaciduria has been attributed to heterozygosity of a putative defective glycine, proline, and hydroxyproline transporter, confirming the underlying genetic defect(s) has been difficult. Here we applied a candidate gene sequencing approach in 7 families first identified through newborn IG screening programs. Both inheritance and functional studies identified the gene encoding the proton amino acid transporter SLC36A2 (PAT2) as the major gene responsible for IG in these families, and its inheritance was consistent with a classical semidominant pattern in which 2 inherited nonfunctional alleles conferred the IG phenotype, while 1 nonfunctional allele was sufficient to confer the HG phenotype. Mutations in SLC36A2 that retained residual transport activity resulted in the IG phenotype when combined with mutations in the gene encoding the imino acid transporter SLC6A20 (IMINO). Additional mutations were identified in the genes encoding the putative glycine transporter SLC6A18 (XT2) and the neutral amino acid transporter SLC6A19 (B0AT1) in families with either IG or HG, suggesting that mutations in the genes encoding these transporters may also contribute to these phenotypes. In summary, although recognized as apparently simple Mendelian disorders, IG and HG exhibit complex molecular explanations depending on a major gene and accompanying modifier genes.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
639
|
Larsen M, Larsen BB, Frølund B, Nielsen CU. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1: Characterization of conditions for affinity and transport experiments in Caco-2 cells. Eur J Pharm Sci 2008; 35:86-95. [DOI: 10.1016/j.ejps.2008.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/13/2008] [Accepted: 06/15/2008] [Indexed: 10/21/2022]
|
640
|
Xu EY, Perlina A, Vu H, Troth SP, Brennan RJ, Aslamkhan AG, Xu Q. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. Chem Res Toxicol 2008; 21:1548-61. [PMID: 18656965 DOI: 10.1021/tx800061w] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, approximately 40 endogenous metabolites were identified and quantified by (1)H NMR in urine samples from male rats dosed with two proximal tubule toxicants, cisplatin and gentamicin. The excreted amount of a majority of those metabolites in urine was found to be dose-dependent and exhibited a strong correlation with histopathology scores of overall proximal tubule damage. MetaCore pathway analysis software (GeneGo Inc.) was employed to identify nephrotoxicant-associated biochemical changes via an integrated quantitative analysis of both urine metabolomic and kidney transcriptomic profiles. Correlation analysis was applied to establish quantitative linkages between pairs of individual metabolite and gene transcript profiles in both cisplatin and gentamicin studies. This analysis revealed that cisplatin and gentamicin treatments were strongly linked to declines in mRNA transcripts for several luminal membrane transporters that handle each of the respective elevated urinary metabolites, such as glucose, amino acids, and monocarboxylic acids. The integrated pathway analysis performed on these studies indicates that cisplatin- or gentamicin-induced renal Fanconi-like syndromes manifested by glucosuria, hyperaminoaciduria, lactic aciduria, and ketonuria might be better explained by the reduction of functional proximal tubule transporters rather than by the perturbation of metabolic pathways inside kidney cells. Furthermore, this analysis suggests that renal transcription factors HNF1alpha, HNF1beta, and HIF-1 might be the central mediators of drug-induced kidney injury and adaptive response pathways.
Collapse
Affiliation(s)
- Ethan Yixun Xu
- Department of Safety Assessment, Merck Research Laboratories, West Point, Pennsylvania 19486, USA. ,
| | | | | | | | | | | | | |
Collapse
|
641
|
Bröer S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 2008; 23:95-103. [PMID: 18400692 DOI: 10.1152/physiol.00045.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Absorption of amino acids in kidney and intestine involves a variety of transporters for different groups of amino acids. This is illustrated by inherited disorders of amino acid absorption, such as Hartnup disorder, cystinuria, iminoglycinuria, dicarboxylic aminoaciduria, and lysinuric protein intolerance, affecting separate groups of amino acids. Recent advances in the molecular identification of apical neutral amino acid transporters has shed a light on the molecular basis of Hartnup disorder and iminoglycinuria.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
642
|
Reconstitution into liposomes of the B degrees -like glutamine-neutral amino acid transporter from renal cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2258-65. [PMID: 18572012 DOI: 10.1016/j.bbamem.2008.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 05/20/2008] [Accepted: 05/27/2008] [Indexed: 11/20/2022]
Abstract
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+ and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue alpha-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B degrees-like.
Collapse
|
643
|
Kowalczuk S, Bröer A, Tietze N, Vanslambrouck JM, Rasko JEJ, Bröer S. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J 2008; 22:2880-7. [PMID: 18424768 DOI: 10.1096/fj.08-107300] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein absorption in the intestine is mediated by proteases and brush-border peptidases together with peptide and amino acid transporters. Neutral amino acids are generated by a variety of aminopeptidases and carboxypeptidases and are subsequently taken up by the amino acid transporter B(0)AT1 (SLC6A19), which is mutated in Hartnup disorder. Coexpression of B(0)AT1 together with the brush-border carboxypeptidase angiotensin-converting enzyme 2 (ACE2) in Xenopus laevis oocytes led to a dramatic increase of transporter expression at the oocyte surface. Other members of the SLC6 family were not stimulated by coexpression with ACE2. Addition of a peptide containing a carboxyterminal leucine residue to ACE2- and B(0)AT1-coexpressing oocytes caused inward currents due to Na(+)-leucine cotransport, demonstrating the formation of a metabolic complex. Coexpression of the Hartnup disorder causing mutation B(0)AT1(R240Q) showed reduced interaction with ACE2 and its renal paralogue collectrin. This would result in reduced surface expression in both kidney and intestine, thereby explaining the onset of the disorder in individuals carrying this mutation.
Collapse
Affiliation(s)
- Sonja Kowalczuk
- School of Biochemistry and Molecular Biology, Australian National University, Linnaeus Way 41, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|