651
|
Gouin O, Lebonvallet N, L'Herondelle K, Le Gall-Ianotto C, Buhé V, Plée-Gautier E, Carré JL, Lefeuvre L, Misery L. Self-maintenance of neurogenic inflammation contributes to a vicious cycle in skin. Exp Dermatol 2015; 24:723-6. [DOI: 10.1111/exd.12798] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Olivier Gouin
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
- Uriage Dermatological Laboratories; Courbevoie France
| | - Nicolas Lebonvallet
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | - Killian L'Herondelle
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | | | - Virginie Buhé
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | | | - Jean-Luc Carré
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | - Luc Lefeuvre
- Uriage Dermatological Laboratories; Courbevoie France
| | - Laurent Misery
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| |
Collapse
|
652
|
Ryu WI, Lee H, Kim JH, Bae HC, Ryu HJ, Son SW. IL-33 induces Egr-1-dependent TSLP expression via the MAPK pathways in human keratinocytes. Exp Dermatol 2015; 24:857-63. [DOI: 10.1111/exd.12788] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Woo-In Ryu
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hana Lee
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Jin Hee Kim
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hyun Cheol Bae
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Hwa Jung Ryu
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| | - Sang Wook Son
- Department of Dermatology; Division of Brain Korea 21 Project for Biomedical Science; Korea University College of Medicine; Seoul Korea
| |
Collapse
|
653
|
Jairaman A, Yamashita M, Schleimer RP, Prakriya M. Store-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:2122-33. [PMID: 26238490 DOI: 10.4049/jimmunol.1500396] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/30/2015] [Indexed: 01/11/2023]
Abstract
The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Robert P Schleimer
- Division of Allergy/Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
654
|
Howell MD, Parker ML, Mustelin T, Ranade K. Past, present, and future for biologic intervention in atopic dermatitis. Allergy 2015; 70:887-96. [PMID: 25879391 DOI: 10.1111/all.12632] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 12/31/2022]
Abstract
Atopic dermatitis (AD) is a debilitating disease that significantly alters the quality of life for one in four children and one in 10 adults. Current management of AD utilizes combinations of treatments to symptomatically alleviate disease by suppressing the inflammatory response and restoring barrier function in the skin, reducing disease exacerbation and flare, and preventing secondary skin infections. Resolution is temporary and long-term usage of these treatments can be associated with significant side-effects. Antibody therapies previously approved for inflammatory diseases have been opportunistically evaluated in patients with atopic dermatitis; however, they often failed to demonstrate a significant clinical benefit. Monoclonal antibodies currently in development offer hope to those individuals suffering from the disease by specifically targeting immune and molecular pathways important for the pathogenesis of atopic dermatitis. Here, we review the underlying biological pathways and the state of the art in therapeutics in AD.
Collapse
Affiliation(s)
| | | | | | - K Ranade
- MedImmune, LLC, Gaithersburg, MD, USA
| |
Collapse
|
655
|
Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs. Nat Commun 2015. [PMID: 26216096 PMCID: PMC4520244 DOI: 10.1038/ncomms8864] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch.
Collapse
|
656
|
Storan ER, O'Gorman SM, McDonald ID, Steinhoff M. Role of cytokines and chemokines in itch. Handb Exp Pharmacol 2015; 226:163-76. [PMID: 25861779 DOI: 10.1007/978-3-662-44605-8_9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines classically are secreted "messenger" proteins that modulate cellular function of immune cells. Chemokines attract immune cells to the site where they exert various functions in inflammation, autoimmunity or cancer. Increasing evidence is emerging that cytokines or chemokines can act as "neuro-modulators" by activating high-affinity receptors on peripheral or central neurons, microglia cells or Schwann cells. Very recently, cytokines have been shown to act as pruritogens in rodents and humans, while a role of chemokines in itch has thus far been only demonstrated in mice. Upon stimulation, cytokines are released by skin or immune cells and form a "bridge of communication" between the immune and nervous system. For some cytokines such as IL-31 and TSLP, the evidence for this role is strong in rodents. For cytokines such as IL-4, there is some convincing evidence, while for cytokines such as oncostatin M, IL-2, IL-6, IL-8 and IL-13, direct evidence is currently limited. Current clinical trials support the idea that cytokines and chemokines and their receptors or signalling pathways are promising targets for the future therapy of certain subtypes of itch.
Collapse
Affiliation(s)
- Eoin R Storan
- Department of Dermatology, Dept. of Dermatology and UCD Charles Institute of Translational Dermatology University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
657
|
Chigbu DI, Coyne AM. Update and clinical utility of alcaftadine ophthalmic solution 0.25% in the treatment of allergic conjunctivitis. Clin Ophthalmol 2015; 9:1215-25. [PMID: 26185412 PMCID: PMC4501164 DOI: 10.2147/opth.s63790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Allergic disorders of the ocular surface are primarily characterized as IgE- and/or T-lymphocyte-mediated disorders that affect the cornea, conjunctiva, and eyelid. Approximately 40% of individuals in the developed countries have allergic conjunctivitis, and as such, it is the most common form of ocular allergy. Seasonal allergic conjunctivitis is the most prevalent type of allergic conjunctivitis that impacts the quality of life of patients. This article reviews the pharmacology, pharmacodynamics, pharmacokinetics, clinical trials, clinical efficacy, and safety of alcaftadine. Histamine and the pathological mechanism of ocular allergy will be briefly reviewed with the intent of providing a background for the detailed discussion on the clinical utility of alcaftadine in allergic conjunctivitis. The Medline PubMed, Elsevier Science Direct, and Google Scholar databases were used to search for evidence-based literature on histamine and immunopathological mechanism of allergic conjunctivitis, as well as on pharmacology, pharmacodynamics, pharmacokinetics, clinical trials, and clinical efficacy of alcaftadine. The treatment and management goals of allergic conjunctivitis are to prevent or minimize the inflammatory cascade associated with allergic response in the early stages of the pathological mechanism. It is of note that activation of histamine receptors on immune and nonimmune cells are associated with allergen-induced inflammation of the conjunctiva and its associated ocular allergic manifestations, including itching, edema, hyperemia, and tearing. Alcaftadine is an efficacious multiple action antiallergic therapeutic agent with inverse agonist activity on H1, H2, and H4 receptors, as well as anti-inflammatory and mast cell stabilizing effects that could provide therapeutic benefits to patients with allergic conjunctivitis.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Pennsylvania College of Optometry Salus University, Elkins Park, PA, USA
| | - Alissa M Coyne
- Pennsylvania College of Optometry Salus University, Elkins Park, PA, USA
| |
Collapse
|
658
|
Mizuno K, Morizane S, Takiguchi T, Iwatsuki K. Dexamethasone but not tacrolimus suppresses TNF-α-induced thymic stromal lymphopoietin expression in lesional keratinocytes of atopic dermatitis model. J Dermatol Sci 2015. [PMID: 26198442 DOI: 10.1016/j.jdermsci.2015.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) initiates the Th2-type allergic inflammation, and is thought to play an important role in the pathogenesis of atopic dermatitis (AD). TNF-α is a key cytokine which is involved in the pathophysiology of various inflammatory diseases, and the expression level is elevated in the sera and skin of patients with AD. In addition, TNF-α has been reported to induce TSLP expression in epidermal keratinocytes. Topical glucocorticoids and calcineurin inhibitors are safe and effective agents for AD, but the effects of these agents on TNF-α-induced TSLP expression are not fully understood. OBJECTIVE To investigate whether the glucocorticosteroid dexamethasone and the calcineurin inhibitor tacrolimus could affect TSLP expression induced by TNF-α in lesional keratinocytes of AD. METHODS The effects of topical dexamethasone and tacrolimus on TSLP expression were evaluated in an AD mouse model induced by repeated 2,4,6-trinitro-1-chlorobenzene application. Co-immunostaining for TSLP and TNF-α was performed using skin samples from AD patients and the mouse model. Normal human epidermal keratinocytes (NHEKs) were cultured with dexamethasone or tacrolimus in the presence of TNF-α to analyze TSLP expression. RESULTS Topical application of dexamethasone but not tacrolimus repressed TSLP expression in the mouse model. TSLP and TNF-α showed similar distribution pattern in epidermal keratinocytes of AD lesions and the mouse model. TSLP expression was induced by TNF-α via NF-κB in a dose-dependent and an autocrine and/or paracrine manner in NHEKs, which was significantly suppressed by dexamethasone but not by tacrolimus. Similarly to TSLP expression, IL-6, TNF-α, IL-8, and IL-36γ expression induced by TNF-α were significantly suppressed by dexamethasone but not by tacrolimus in NHEKs. CONCLUSION Dexamethasone but not tacrolimus suppresses the TSLP expression induced by TNF-α in lesional keratinocytes of AD model. Our observations uncover the unreported functional difference between topical glucocorticosteroids and calcineurin inhibitors in cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Kazuko Mizuno
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Tetsuya Takiguchi
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Plastic and Reconstructive Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
659
|
Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Neuron 2015; 87:341-54. [PMID: 26119026 DOI: 10.1016/j.neuron.2015.06.007] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 01/15/2023]
Abstract
Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma.
Collapse
|
660
|
Fostini AC, Girolomoni G. Experimental elicitation of itch: Evoking and evaluation techniques. J Dermatol Sci 2015; 80:13-7. [PMID: 26095137 DOI: 10.1016/j.jdermsci.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/10/2015] [Indexed: 01/20/2023]
Abstract
Itch is a very common symptom of many skin diseases. Chronic itch may be very troublesome and may strongly impact on work ability, sleep and on the quality of life. Many studies have been conducted to define peripheral and central itch pathways, and to test the anti-pruritic effect of drugs, in which pruritus was experimentally evoked by chemical mediators and by physical stimuli. However, no objective methods to reproduce and to evaluate itch has been standardized. In this review we summarize the experimental techniques used to induce pruritus and to quantify it both in animal models and in humans.
Collapse
Affiliation(s)
- Anna Chiara Fostini
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, 37126, Verona, Italy.
| | - Giampiero Girolomoni
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, 37126, Verona, Italy
| |
Collapse
|
661
|
Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, Lyman K, Olsen ASB, Wong JF, Stucky CL, Brem RB, Bautista DM. HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron 2015; 87:124-38. [PMID: 26074006 DOI: 10.1016/j.neuron.2015.05.044] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
Chronic itch is a prevalent and debilitating condition for which few effective therapies are available. We harnessed the natural variation across genetically distinct mouse strains to identify transcripts co-regulated with itch behavior. This survey led to the discovery of the serotonin receptor HTR7 as a key mediator of serotonergic itch. Activation of HTR7 promoted opening of the ion channel TRPA1, which in turn triggered itch behaviors. In addition, acute itch triggered by serotonin or a selective serotonin reuptake inhibitor required both HTR7 and TRPA1. Aberrant serotonin signaling has long been linked to a variety of human chronic itch conditions, including atopic dermatitis. In a mouse model of atopic dermatitis, mice lacking HTR7 or TRPA1 displayed reduced scratching and skin lesion severity. These data highlight a role for HTR7 in acute and chronic itch and suggest that HTR7 antagonists may be useful for treating a variety of pathological itch conditions.
Collapse
Affiliation(s)
- Takeshi Morita
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannan P McClain
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Lyn M Batia
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Maurizio Pellegrino
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Sarah R Wilson
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael A Kienzler
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kyle Lyman
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Justin F Wong
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Cheryl L Stucky
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Diana M Bautista
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
662
|
Fornasa G, Tsilingiri K, Caprioli F, Botti F, Mapelli M, Meller S, Kislat A, Homey B, Di Sabatino A, Sonzogni A, Viale G, Diaferia G, Gori A, Longhi R, Penna G, Rescigno M. Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. J Allergy Clin Immunol 2015; 136:413-22. [PMID: 26014813 PMCID: PMC4534776 DOI: 10.1016/j.jaci.2015.04.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/29/2023]
Abstract
Background Thymic stromal lymphopoietin (TSLP) is a cytokine with pleiotropic functions in the immune system. It has been associated with allergic reactions in the skin and lungs but also homeostatic tolerogenic responses in the thymus and gut. Objective In human subjects TSLP is present in 2 isoforms, short and long. Here we wanted to investigate the differential expression of the TSLP isoforms and discern their biological implications under homeostatic or inflammatory conditions. Methods We evaluated the expression of TSLPs in tissues from healthy subjects, patients with ulcerative colitis, patients with celiac disease, and patients with atopic dermatitis and on epithelial cells and keratinocytes under steady-state conditions or after stimulation. We then tested the immune activity of TSLP isoforms both in vitro and in vivo. Results We showed that TSLP isoforms are responsible for 2 opposite immune functions. The short isoform is expressed under steady-state conditions and exerts anti-inflammatory activities by affecting the capacity of PBMCs and dendritic cells to produce inflammatory cytokines. Moreover, the short isoform TSLP ameliorates experimental colitis in mice and prevents endotoxin shock. The long isoform of TSLP is proinflammatory and is only expressed during inflammation. The isoforms are differentially regulated by pathogenic bacteria, such as Salmonella species and adhesive-invasive Escherichia coli. Conclusions We have solved the dilemma of TSLP being both homeostatic and inflammatory. The TSLP isoform ratio is altered during several inflammatory disorders, with strong implications in disease treatment and prevention. Indeed, targeting of the long isoform of TSLP at the C-terminal portion, which is common to both isoforms, might lead to unwanted side effects caused by neutralization of the homeostatic short isoform.
Collapse
Affiliation(s)
- Giulia Fornasa
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Katerina Tsilingiri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Flavio Caprioli
- Unità Operativa Gastroenterologia ed Endoscopica, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano and Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Fiorenzo Botti
- Unità Operativa Gastroenterologia ed Endoscopica, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano and Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Stephan Meller
- Department of Dermatology, Medical Faculty, University of Dusseldorf, Düsseldorf, Germany
| | - Andreas Kislat
- Department of Dermatology, Medical Faculty, University of Dusseldorf, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University of Dusseldorf, Düsseldorf, Germany
| | - Antonio Di Sabatino
- First Department of Medicine, St Matteo Hospital, University of Pavia, Pavia, Italy
| | - Angelica Sonzogni
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Giuseppe Viale
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Giuseppe Diaferia
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Giuseppe Penna
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy; Dipartimento di Scienze della Salute, San Paolo, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
663
|
Mediators of Chronic Pruritus in Atopic Dermatitis: Getting the Itch Out? Clin Rev Allergy Immunol 2015; 51:263-292. [DOI: 10.1007/s12016-015-8488-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
664
|
Florsheim E, Yu S, Bragatto I, Faustino L, Gomes E, Ramos RN, Barbuto JAM, Medzhitov R, Russo M. Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin. THE JOURNAL OF IMMUNOLOGY 2015; 194:4621-30. [PMID: 25876764 DOI: 10.4049/jimmunol.1402493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/01/2015] [Indexed: 01/08/2023]
Abstract
Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined in this study that s.c. or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokine release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor-2, IL-33R ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the proallergic cytokines IL-1α, IL-33, thymic stromal lymphopoietin, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required protease-activated receptor-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne Ag-promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease.
Collapse
Affiliation(s)
- Esther Florsheim
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil; Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | - Shuang Yu
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | - Ivan Bragatto
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Lucas Faustino
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Eliane Gomes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Rodrigo N Ramos
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - José Alexandre M Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil
| | - Ruslan Medzhitov
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; and
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP Brazil;
| |
Collapse
|
665
|
Schüttenhelm BN, Duraku LS, Dijkstra JF, Walbeehm ET, Holstege JC. Differential Changes in the Peptidergic and the Non-Peptidergic Skin Innervation in Rat Models for Inflammation, Dry Skin Itch, and Dermatitis. J Invest Dermatol 2015; 135:2049-2057. [PMID: 25848979 DOI: 10.1038/jid.2015.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023]
Abstract
Skin innervation is a dynamic process that may lead to changes in nerve fiber density during pathological conditions. We have investigated changes in epidermal nerve fiber density in three different rat models that selectively produce chronic itch (the dry skin model), or itch and inflammation (the dermatitis model), or chronic inflammation without itch (the CFA model). In the epidermis, we identified peptidergic fibers-that is, immunoreactive (IR) for calcitonin gene-related peptide or substance P—and non-peptidergic fibers—that is, IR for P2X3. The overall density of nerve fibers was determined using IR for the protein gene product 9.5. In all three models, the density of epidermal peptidergic nerve fibers increased up to five times when compared with a sham-treated control group. In contrast, the density of epidermal non-peptidergic fibers was not increased, except for a small but significant increase in the dry skin model. Chronic inflammation showed an increased density of peptidergic fibers without itch, indicating that increased nerve fiber density is not invariably associated with itch. The finding that different types of skin pathology induced differential changes in nerve fiber density may be used as a diagnostic tool in humans, through skin biopsies, to identify different types of pathology and to monitor the effect of therapies.
Collapse
Affiliation(s)
- Barthold N Schüttenhelm
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Liron S Duraku
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jouke F Dijkstra
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Erik T Walbeehm
- Department of Plastic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
666
|
Chen J, Hackos DH. TRPA1 as a drug target--promise and challenges. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:451-63. [PMID: 25640188 PMCID: PMC4359712 DOI: 10.1007/s00210-015-1088-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 12/25/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a nonselective cation channel belonging to the superfamily of transient receptor potential (TRP) channels. It is predominantly expressed in sensory neurons and serves as an irritant sensor for a plethora of electrophilic compounds. Recent studies suggest that TRPA1 is involved in pain, itch, and respiratory diseases, and TRPA1 antagonists have been actively pursued as therapeutic agents. Here, we review the recent progress, unsettled issues, and challenges in TRPA1 research and drug discovery.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080 USA
| | - David H. Hackos
- Department of Neuroscience, Genentech, South San Francisco, CA 94080 USA
| |
Collapse
|
667
|
Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16:343-53. [PMID: 25789684 PMCID: PMC4507498 DOI: 10.1038/ni.3123] [Citation(s) in RCA: 1369] [Impact Index Per Article: 136.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
668
|
Liu Z, Hu Y, Yu X, Xi J, Fan X, Tse CM, Myers AC, Pasricha PJ, Li X, Yu S. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2015; 308:G482-8. [PMID: 25591867 PMCID: PMC4360047 DOI: 10.1152/ajpgi.00374.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE.
Collapse
Affiliation(s)
- Zhenyu Liu
- 1Division of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China; ,2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Youtian Hu
- 2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Xiaoyun Yu
- 2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Jiefeng Xi
- 3Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Xiaoming Fan
- 4Division of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Chung-Ming Tse
- 2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Allen C. Myers
- 2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Pankaj J. Pasricha
- 2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Xingde Li
- 3Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Shaoyong Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
669
|
George SMC, Makrygeorgou A. 8th Georg Rajka International Symposium on Atopic Dermatitis: meeting report. Br J Dermatol 2015; 172:916-25. [PMID: 25736487 DOI: 10.1111/bjd.13718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2014] [Indexed: 01/03/2023]
Abstract
The 8th Georg Rajka International Symposium on Atopic Dermatitis was held in Nottingham in May 2014. The 3-day meeting featured a number of lectures by experts in the field of atopic dermatitis from around the world, as well as several original research presentations and a question and answer session. This paper aims to summarize the main oral presentations from the meeting, but is not meant to be a substitute for reading the conference proceedings and related references.
Collapse
Affiliation(s)
- S M C George
- Department of Dermatology, East Sussex Healthcare NHS Trust, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex, BN21 2UD, U.K
| | | |
Collapse
|
670
|
Abstract
Evidence suggests that allergic immune responses can protect against some types of cancer. What are the possible underlying mechanisms, and can allergic reactions be harnessed for anticancer therapy?
Collapse
|
671
|
Azimi E, Lerner EA, Elmariah SB. Altered manifestations of skin disease at sites affected by neurological deficit. Br J Dermatol 2015; 172:988-93. [PMID: 25132518 DOI: 10.1111/bjd.13352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND The contribution of the nervous system to inflammation in general and inflammatory skin disease in particular has been underappreciated. It is now apparent that an intact neural component is required for the conventional clinical manifestations of many inflammatory skin diseases. OBJECTIVES To investigate the relationship between nerve damage and skin disease. METHODS Previous individual reports since 1966 were collected systematically and the clinical observations described therein were placed within current concepts of neurogenic inflammation. RESULTS We reviewed the literature and identified 23 cases of alterations in the appearance or distribution of skin disorders in patients with acquired central or peripheral neural damage or dysfunction. In 19 cases, near or complete resolution of pre-existing skin lesions occurred in areas directly or indirectly supplied by a subsequently injured nervous system. Exacerbation or new onset of skin lesions occurred in only four cases. The neural deficits described included damage within the peripheral or central nervous system resulting in pure sensory, pure motor or combined sensory and motor deficits. CONCLUSIONS These cases highlight the importance of neural innervation and neurogenic inflammation in the development of inflammatory skin disease and prompt further examination of the use of neural blockade as an adjunctive therapy in the treatment of inflammatory dermatoses.
Collapse
Affiliation(s)
- E Azimi
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, U.S.A
| | | | | |
Collapse
|
672
|
Molecular dissection of itch. Curr Opin Neurobiol 2015; 34:61-6. [PMID: 25700248 DOI: 10.1016/j.conb.2015.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 01/17/2023]
Abstract
There have been many exciting recent advances in our understanding of the molecular and cellular basis of itch. These discoveries cover diverse aspects of itch sensation, from the identification of new receptors to the characterization of spinal cord itch circuits. A common thread of these studies is that they demonstrate that itch sensory signals are segregated from input for other somatosensory modalities, such as pain, touch, and thermosensation. This specificity is achieved by the expression of dedicated receptors and transmitters in a select population of sensory neurons which detect pruritogens. Further, recent studies show that itch specificity is maintained in a spinal cord circuit by the utilization of specific neurotransmitters and cognate receptors to convey input along a distinct cellular pathway.
Collapse
|
673
|
Landheer J, Giovannone B, Sadekova S, Tjabringa S, Hofstra C, Dechering K, Bruijnzeel-Koomen C, Chang C, Ying Y, de Waal Malefyt R, Hijnen D, Knol E. TSLP is differentially regulated by vitamin D3 and cytokines in human skin. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:32-43. [PMID: 25866638 PMCID: PMC4386913 DOI: 10.1002/iid3.48] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/24/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) plays an important role in allergic diseases and is highly expressed in keratinocytes in human lesional atopic dermatitis (AD) skin. In nonlesional AD skin TSLP expression can be induced by applying house dust mite allergen onto the skin in the atopy patch test. Several studies have demonstrated that the induction of TSLP expression in mouse skin does not only lead to AD-like inflammation of the skin, but also predisposes to severe inflammation of the airways. In mice, TSLP expression can be induced by application of the 1,25-dihydroxyvitamin D3 (VD3) analogue calcipotriol and results in the development of eczema-like lesions. The objective is to investigate the effect of VD3 (calcitriol) or calcipotriol on TSLP expression in normal human skin and skin from AD patients. Using multiple ex vivo experimental setups, the effects of calci(po)triol on TSLP expression by normal human skin, and skin from AD patients were investigated and compared to effects of calcipotriol on mouse and non-human primates (NHP) skin. No induction of TSLP expression (mRNA or protein) was observed in human keratinocytes, normal human skin, nonlesional AD skin, or NHP skin samples after stimulation with calcipotriol or topical application of calcitriol. The biological activity of calci(po)triol in human skin samples was demonstrated by the increased expression of the VD3-responsive Cyp24a1 gene. TSLP expression was induced by cytokines (IL-4, IL-13, and TNF-α) in skin samples from all three species. In contrast to the findings in human and NHP, a consistent increase in TSLP expression was confirmed in mouse skin biopsies after stimulation with calcipotriol. VD3 failed to induce expression of TSLP in human or monkey skin in contrast to mouse, implicating careful extrapolation of this often-used mouse model to AD patients.
Collapse
Affiliation(s)
- Janneke Landheer
- Department of Dermatology & Allergology, University Medical Center UtrechtUtrecht, the Netherlands
| | - Barbara Giovannone
- Department of Dermatology & Allergology, University Medical Center UtrechtUtrecht, the Netherlands
| | - Svetlana Sadekova
- Biologics Discovery, Merck Research LaboratoriesPalo Alto, California
| | - Sandra Tjabringa
- Department of Dermatology & Allergology, University Medical Center UtrechtUtrecht, the Netherlands
| | - Claudia Hofstra
- Department of Immunology, Merck Sharpe and DohmeOss, the Netherlands
| | - Koen Dechering
- Department of Immunology, Merck Sharpe and DohmeOss, the Netherlands
| | - Carla Bruijnzeel-Koomen
- Department of Dermatology & Allergology, University Medical Center UtrechtUtrecht, the Netherlands
| | - Charlie Chang
- Information Technology, Merck Research LaboratoriesPalo Alto, California
| | - Yu Ying
- Biologics Discovery, Merck Research LaboratoriesPalo Alto, California
| | - Rene de Waal Malefyt
- Biologics Discovery, Merck Research LaboratoriesPalo Alto, California
- Department of Immunology, Merck Research LaboratoriesPalo Alto, California
| | - DirkJan Hijnen
- Department of Dermatology & Allergology, University Medical Center UtrechtUtrecht, the Netherlands
- Correspondence:, DirkJan Hijnen, Department of Dermatology and Allergology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands., Tel: +31 88 755 6284;, Fax: +31 88 755 5404;, E-mail:
| | - Edward Knol
- Department of Dermatology & Allergology, University Medical Center UtrechtUtrecht, the Netherlands
- Department of Immunology, University Medical Center UtrechtUtrecht, the Netherlands
| |
Collapse
|
674
|
Gillespie RMC, Brown SJ. From the outside-in: Epidermal targeting as a paradigm for atopic disease therapy. World J Dermatol 2015; 4:16-32. [DOI: 10.5314/wjd.v4.i1.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/29/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder which can precede asthma and allergic rhinitis in a disease trajectory known as the atopic march. The pathophysiology of AD includes cutaneous inflammation, disrupted epidermal barrier function, xerosis and propensity to secondary infections. AD had previously been thought to arise from the systemic atopic immune response and therapies are therefore directed towards ameliorating Th2-mediated inflammation. However in recent years the focus has shifted towards primary defects in the skin barrier as an initiating event in AD. Links between loss-of-function variants in the gene encoding filaggrin and disrupted activity of epidermal serine proteases and AD have been reported. Based on these observations, a mechanism has been described by which epidermal barrier dysfunction may lead to inflammation and allergic sensitization. Exogenous and endogenous stressors can further exacerbate inherited barrier abnormalities to promote disease activity. Pathways underlying progression of the atopic march remain unclear, but recent findings implicate thymic stromal lymphopoietin as a factor linking AD to subsequent airway inflammation in asthma. This new appreciation of the epidermis in the development of AD should lead to deployment of more specific strategies to restore barrier function in atopic patients and potentially halt the atopic march.
Collapse
|
675
|
Bergot AS, Monnet N, Le Tran S, Mittal D, Al-Kouba J, Steptoe RJ, Grimbaldeston MA, Frazer IH, Wells JW. HPV16 E7 expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions. Immunol Cell Biol 2015; 93:540-7. [PMID: 25601274 PMCID: PMC4496302 DOI: 10.1038/icb.2014.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
Atopic dermatitis is a common pruritic and inflammatory skin disorder with unknown etiology. Most commonly occurring during early childhood, atopic dermatitis is associated with eczematous lesions and lichenification, in which the epidermis becomes hypertrophied resulting in thickening of the skin. In this study, we report an atopic dermatitis-like pathophysiology results in a murine model following the expression of the high-risk Human Papillomavirus (HPV) 16 oncoprotein E7 in keratinocytes under the Keratin 14 promoter. We show that HPV 16 E7 expression in the skin is associated with skin thickening, acanthosis and light spongiosis. Locally, HPV 16 E7 expressing skin secreted high levels of TSLP and contained increased numbers of ILCs. High levels of circulating IgE were associated with increased susceptibility to skin allergy in a model of cutaneous challenge, and to airway bronchiolar inflammation, enhanced airway goblet cell metaplasia and mucus production in a model of atopic march. Surprisingly, skin pathology occurred independently of T-cells and mast cells. Thus, our findings suggest that the expression of a single HPV oncogene in the skin can drive the onset of atopic dermatitis-like pathology through the induction of TSLP and type 2 ILC infiltration.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nastasia Monnet
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Son Le Tran
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Deepak Mittal
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Jane Al-Kouba
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michele A Grimbaldeston
- Division of Human Immunology, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
676
|
Valtcheva MV, Davidson S, Zhao C, Leitges M, Gereau RW. Protein kinase Cδ mediates histamine-evoked itch and responses in pruriceptors. Mol Pain 2015; 11:1. [PMID: 25558916 PMCID: PMC4298070 DOI: 10.1186/1744-8069-11-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/23/2014] [Indexed: 01/28/2023] Open
Abstract
Background Itch-producing compounds stimulate receptors expressed on small diameter fibers that innervate the skin. Many of the currently known pruritogen receptors are Gq Protein-Coupled Receptors (GqPCR), which activate Protein Kinase C (PKC). Specific isoforms of PKC have been previously shown to perform selective functions; however, the roles of PKC isoforms in regulating itch remain unclear. In this study, we investigated the novel PKC isoform PKCδ as an intracellular modulator of itch signaling in response to histamine and the non-histaminergic pruritogens chloroquine and β-alanine. Results Behavioral experiments indicate that PKCδ knock-out (KO) mice have a 40% reduction in histamine-induced scratching when compared to their wild type littermates. On the other hand, there were no differences between the two groups in scratching induced by the MRGPR agonists chloroquine or β-alanine. PKCδ was present in small diameter dorsal root ganglion (DRG) neurons. Of PKCδ-expressing neurons, 55% also stained for the non-peptidergic marker IB4, while a smaller percentage (15%) expressed the peptidergic marker CGRP. Twenty-nine percent of PKCδ-expressing neurons also expressed TRPV1. Calcium imaging studies of acutely dissociated DRG neurons from PKCδ-KO mice show a 40% reduction in the total number of neurons responsive to histamine. In contrast, there was no difference in the number of capsaicin-responsive neurons between KO and WT animals. Acute pharmacological inhibition of PKCδ with an isoform-specific peptide inhibitor (δV1-1) also significantly reduced the number of histamine-responsive sensory neurons. Conclusions Our findings indicate that PKCδ plays a role in mediating histamine-induced itch, but may be dispensable for chloroquine- and β-alanine-induced itch.
Collapse
Affiliation(s)
| | | | | | | | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University in St, Louis, 660 S, Euclid Ave, Box 8054, 63110 St, Louis, MO, USA.
| |
Collapse
|
677
|
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 2015; 67:36-73. [PMID: 25361914 DOI: 10.1124/pr.114.009555] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Sensory nerves are equipped with receptors and ion channels that allow them to detect and respond to diverse chemical, mechanical, and thermal stimuli. These sensory proteins include G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) ion channels. A subclass of peptidergic sensory nerves express GPCRs and TRP channels that detect noxious, irritant, and inflammatory stimuli. Activation of these nerves triggers protective mechanisms that lead to withdrawal from danger (pain), removal of irritants (itch, cough), and resolution of infection (neurogenic inflammation). The GPCR-TRP axis is central to these mechanisms. Signals that emanate from the GPCR superfamily converge on the small TRP family, leading to channel sensitization and activation, which amplify pain, itch, cough, and neurogenic inflammation. Herein we discuss how GPCRs and TRP channels function independently and synergistically to excite sensory nerves that mediate noxious and irritant responses and inflammation in the skin and the gastrointestinal and respiratory systems. We discuss the signaling mechanisms that underlie the GPCR-TRP axis and evaluate how new information about the structure of GPCRs and TRP channels provides insights into their functional interactions. We propose that a deeper understanding of the GPCR-TRP axis may facilitate the development of more selective and effective therapies to treat dysregulated processes that underlie chronic pain, itch, cough, and inflammation.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Megan Grace
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Peter McIntyre
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| |
Collapse
|
678
|
Abstract
Itch is the most common clinical problem seen in dogs with skin diseases. Although an etiological classification of canine pruritus does not yet exist, most causes would likely fall into the IFSI class I (dermatological) itch. One of the most common causes of canine itch is that associated with atopic dermatitis, and there is randomized controlled trial grade evidence of the efficacy of several antipruritic interventions. At this time, the mainstay of treatment of canine atopic itch relies principally on the use of topical and/or oral glucocorticoids and oral cyclosporine. Type 1 receptor antihistamines are notorious in their inconsistency in reducing pruritus in atopic dogs. A new Janus kinase (JAK)-1 inhibitor has recently been approved for treatment of allergic itch in dogs, and its onset of efficacy is remarkably fast. Modeling itch in dogs can be achieved by allergen sensitization (fleas, house dust mites), and challenges that elicit pruritic manifestation can be used for mechanistic studies as well as for testing of novel anti-itch modalities.
Collapse
Affiliation(s)
- Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC, USA,
| | | |
Collapse
|
679
|
Tóth BI, Szallasi A, Bíró T. Transient receptor potential channels and itch: how deep should we scratch? Handb Exp Pharmacol 2015; 226:89-133. [PMID: 25861776 DOI: 10.1007/978-3-662-44605-8_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past 30 years, transient receptor potential (TRP) channels have evolved from a somewhat obscure observation on how fruit flies detect light to become the center of drug discovery efforts, triggering a heated debate about their potential as targets for therapeutic applications in humans. In this review, we describe our current understanding of the diverse mechanism of action of TRP channels in the itch pathway from the skin to the brain with focus on the peripheral detection of stimuli that elicit the desire to scratch and spinal itch processing and sensitization. We predict that the compelling basic research findings on TRP channels and pruritus will be translated into the development of novel, clinically useful itch medications.
Collapse
Affiliation(s)
- Balázs I Tóth
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, 4032, Hungary
| | | | | |
Collapse
|
680
|
Abstract
Protease-activated receptors (PARs) have been implicated in a variety of physiological functions, as well as somatosensation and particularly itch and pain. Considerable attention has focused on PARs following the finding they are upregulated in the skin of atopic dermatitis patients. The present review focuses on recent studies showing that PARs are critically involved in itch and sensitization of itch. PARs are expressed by diverse cell types including primary sensory neurons, keratinocytes, and immune cells and are activated by proteases that expose a tethered ligand. Endogenous proteases are also released from diverse cell types including keratinocytes and immune cells. Exogenous proteases released from certain plants and insects contacting the skin can also induce itch. Increased levels of proteases in the skin contribute to inflammation that is often accompanied by chronic itch which is not predominantly mediated by histamine. The neural pathway signaling itch induced by activation of PARs is distinct from that mediating histamine-induced itch. In addition, there is evidence that PARs play an important role in sensitization of itch signaling under conditions of chronic itch. These recent findings suggest that PARs and other molecules involved in the itch-signaling pathway are good targets to develop novel treatments for most types of chronic itch that are poorly treated with antihistamines.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Dermatology, Anatomy and Cell Biology/Temple Itch Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
681
|
Schwendinger-Schreck J, Wilson SR, Bautista DM. Interactions between keratinocytes and somatosensory neurons in itch. Handb Exp Pharmacol 2015; 226:177-90. [PMID: 25861780 DOI: 10.1007/978-3-662-44605-8_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Keratinocytes are epithelial cells that make up the stratified epidermis of the skin. Recent studies suggest that keratinocytes promote chronic itch. Changes in skin morphology that accompany a variety of chronic itch disorders and the multitude of inflammatory mediators secreted by keratinocytes that target both sensory neurons and immune cells highlight the importance of investigating the connection between keratinocytes and chronic itch. This chapter addresses some of the most recent data and models for the role keratinocytes play in the development and maintenance of chronic itch.
Collapse
Affiliation(s)
- Jamie Schwendinger-Schreck
- Department of Molecular and Cellular Biology, University of California Berkeley, 355 LSA MC#3200, Berkeley, CA, 94720-3200, USA
| | | | | |
Collapse
|
682
|
Abstract
Pruritus is defined as "an unpleasant sensation that causes the need to scratch". This is not a small pain. It seems that pruriceptors exist but their level of separation from nociceptive receptors is still debated. Pathways of pruritus were identified from the skin (around the dermo-epidermal junction) to the brain. Many mediators are involved in pruritus but there are at least a histaminergic and a non-histaminergic pathway (PAR-2dependent). Similarly to pain, gate control or peripheral and central sensitization mechanisms have been highlighted in pruritus. These pathophysiological advances are important and anticipate therapeutic advances, that will be very useful for the symptomatic treatment of pruritus (poorly efficient at present).
Collapse
Affiliation(s)
- Laurent Misery
- Laboratoire des neurosciences de Brest (EA4685), université de Bretagne occidentale, faculté de médecine, rue Camille Desmoulins, 29200 Brest, France service de dermatologie, CHU de Brest, 2, avenue Foch, 29200 Brest, France
| |
Collapse
|
683
|
Therapeutic Interventions for Itch in AD. CURRENT TREATMENT OPTIONS IN ALLERGY 2014. [DOI: 10.1007/s40521-014-0031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
684
|
Jovanovic K, Siebeck M, Gropp R. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells. Clin Exp Immunol 2014; 178:201-11. [PMID: 24981014 DOI: 10.1111/cei.12409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 12/23/2022] Open
Abstract
T helper type 2 (Th2)-characterized inflammatory responses are highly dynamic processes initiated by epithelial cell damage resulting in remodelling of the tissue architecture to prevent further harm caused by a dysfunctional epithelial barrier or migrating parasites. This process is a temporal and spatial response which requires communication between immobile cells such as epithelial, endothelial, fibroblast and muscle cells and the highly mobile cells of the innate and adaptive immunity. It is further characterized by a high cellular plasticity that enables the cells to adapt to a specific inflammatory milieu. Incipiently, this milieu is shaped by cytokines released from epithelial cells, which stimulate Th2, innate lymphoid and invariant natural killer (NK) T cells to secrete Th2 cytokines and to activate dendritic cells which results in the further differentiation of Th2 cells. This milieu promotes wound-healing processes which are beneficial in parasitic infections or toxin exposure but account for increasingly dysfunctional vital organs, such as the lung in the case of asthma and the colon in ulcerative colitis. A better understanding of the dynamics underlying relapses and remissions might lead ultimately to improved therapeutics for chronic inflammatory diseases adapted to individual needs and to different phases of the inflammation.
Collapse
Affiliation(s)
- K Jovanovic
- Department of General-, Visceral-, Transplantation- and Thoracic Surgery, University Clinics of Munich, Munich, Germany
| | | | | |
Collapse
|
685
|
Zhang X. Targeting TRP ion channels for itch relief. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:389-99. [PMID: 25418889 DOI: 10.1007/s00210-014-1068-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Abstract
Acute itch (pruritus) is unpleasant and acts as an alerting mechanism for removing irritants. However, severe chronic itch is debilitating and impairs the quality of life. Rapid progress has been made in recent years in our understanding of the fundamental neurobiology of itch. Notably, several temperature-sensitive transient receptor potential (thermo-TRP) ion channels have emerged as critical players in many types of itch, in addition to pain. They serve as markers that define the itch neural pathway. Thermo-TRP ion channels are thus becoming attractive targets for developing effective anti-pruritic therapies.
Collapse
Affiliation(s)
- Xuming Zhang
- Rowett Institute of Nutrition and Health & Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK,
| |
Collapse
|
686
|
von Moltke J, Locksley RM. I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Curr Opin Immunol 2014; 31:58-65. [PMID: 25458996 DOI: 10.1016/j.coi.2014.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 12/17/2022]
Abstract
Innate type 2 immune cells are activated in response to helminths, allergens, and certain types of proteases and particulates. Recently, innate type 2 immune pathways have also been implicated in protective host responses to homeostatic perturbations, such as metabolic dysfunction, atherosclerosis, and tissue injury. In this context, innate type 2 cytokines stimulate local tissues, recruit eosinophils, and alternatively activate macrophages to restore homeostasis. As the major source of innate interleukin (IL)-5 and IL-13, group 2 innate lymphoid cells are positioned to initiate and maintain homeostatic type 2 responses. The absence of exogenous stimuli in these processes implicates endogenous pathways in the activation of type 2 immunity and suggests an alternative evolutionary trajectory for type 2 immunity, apart from its role in response to helminths and allergens.
Collapse
Affiliation(s)
- Jakob von Moltke
- Departments of Microbiology and Immunology and Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Richard M Locksley
- Departments of Microbiology and Immunology and Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
687
|
Saarnilehto M, Chapman H, Savinko T, Lindstedt K, Lauerma AI, Koivisto A. Contact sensitizer 2,4-dinitrochlorobenzene is a highly potent human TRPA1 agonist. Allergy 2014; 69:1424-7. [PMID: 25041656 DOI: 10.1111/all.12488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 11/27/2022]
Abstract
2,4-Dinitrochlorobenzene (DNCB) is widely used in human clinical studies and in experimental animal studies to evoke allergic contact dermatitis. 2,4-Dinitrochlorobenzene is a potent immunogen capable of inducing contact sensitization in all humans exposed. However, the mechanism by which DNCB evokes such symptoms is presently unknown. TRPA1 is a nonselective cation channel that is expressed in peptidergic sensory neurons and fibroblasts. TRPA1 activation was recently implicated in the pathophysiology of atopic dermatitis especially in transducing cutaneous itch signals. Here, we test the hypothesis that DNCB acts as a TRPA1 agonist and thereby evokes allergic symptoms. We found that DNCB activates human TRPA1 dose dependently in FLIPR experiments with an EC50 of 167 nM, an effect that was fully blocked by selective TRPA1 antagonists Chembridge-5861528 and A-967079. Similarly, DNCB activated nonselective TRPA1 current in patch clamp studies. Neutralization of 3 critical cysteines in TRPA1 resulted in a loss of DNCB agonism.
Collapse
Affiliation(s)
| | - H. Chapman
- In Vitro Biology; R&D; Orion Pharma; Turku Finland
| | - T. Savinko
- Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | | | - A. I. Lauerma
- Department of Dermatology; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - A. Koivisto
- In Vitro Biology; R&D; Orion Pharma; Turku Finland
| |
Collapse
|
688
|
Crisante G, Battista L, Iwaszkiewicz J, Nesca V, Mérillat AM, Sergi C, Zoete V, Frateschi S, Hummler E. The CAP1/Prss8 catalytic triad is not involved in PAR2 activation and protease nexin-1 (PN-1) inhibition. FASEB J 2014; 28:4792-805. [PMID: 25138159 DOI: 10.1096/fj.14-253781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Serine proteases, serine protease inhibitors, and protease-activated receptors (PARs) are responsible for several human skin disorders characterized by impaired epidermal permeability barrier function, desquamation, and inflammation. In this study, we addressed the consequences of a catalytically dead serine protease on epidermal homeostasis, the activation of PAR2 and the inhibition by the serine protease inhibitor nexin-1. The catalytically inactive serine protease CAP1/Prss8, when ectopically expressed in the mouse, retained the ability to induce skin disorders as well as its catalytically active counterpart (75%, n=81). Moreover, this phenotype was completely normalized in a PAR2-null background, indicating that the effects mediated by the catalytically inactive CAP1/Prss8 depend on PAR2 (95%, n=131). Finally, nexin-1 displayed analogous inhibitory capacity on both wild-type and inactive mutant CAP1/Prss8 in vitro and in vivo (64% n=151 vs. 89% n=109, respectively), indicating that the catalytic site of CAP1/Prss8 is dispensable for nexin-1 inhibition. Our results demonstrate a novel inhibitory interaction between CAP1/Prss8 and nexin-1, opening the search for specific CAP1/Prss8 antagonists that are independent of its catalytic activity.
Collapse
Affiliation(s)
| | | | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | | - Chloé Sergi
- Department of Pharmacology and Toxicology and
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
689
|
Lessons learned from mice and man: mimicking human allergy through mouse models. Clin Immunol 2014; 155:1-16. [PMID: 25131136 DOI: 10.1016/j.clim.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 01/06/2023]
Abstract
The relevance of using mouse models to represent human allergic pathologies is still unclear. Recent studies suggest the limitations of using models as a standard for assessing immune response and tolerance mechanisms, as mouse models often do not sufficiently depict human atopic conditions. Allergy is a combination of aberrant responses to innocuous environmental agents and the subsequent TH2-mediated inflammatory responses. In this review, we will discuss current paradigms of allergy - specifically, TH2-mediated and IgE-associated immune responses - and current mouse models used to recreate these TH2-mediated pathologies. Our overall goal is to highlight discrepancies that exist between mice and men by examining the advantages and disadvantages of allergic mouse models with respect to the human allergic condition.
Collapse
|
690
|
Thyssen JP, Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol 2014; 134:792-9. [PMID: 25065719 DOI: 10.1016/j.jaci.2014.06.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/14/2014] [Accepted: 06/14/2014] [Indexed: 02/06/2023]
Abstract
The epidermis protects human subjects from exogenous stressors and helps to maintain internal fluid and electrolyte homeostasis. Filaggrin is a crucial epidermal protein that is important for the formation of the corneocyte, as well as the generation of its intracellular metabolites, which contribute to stratum corneum hydration and pH. The levels of filaggrin and its degradation products are influenced not only by the filaggrin genotype but also by inflammation and exogenous stressors. Pertinently, filaggrin deficiency is observed in patients with atopic dermatitis regardless of filaggrin mutation status, suggesting that the absence of filaggrin is a key factor in the pathogenesis of this skin condition. In this article we review the various causes of low filaggrin levels, centralizing the functional and morphologic role of a deficiency in filaggrin, its metabolites, or both in the etiopathogenesis of atopic dermatitis.
Collapse
Affiliation(s)
- Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital Gentofte, University of Copenhagen, Hellerup, Denmark.
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
691
|
Dalessandri T, Strid J. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer. Front Immunol 2014; 5:347. [PMID: 25101088 PMCID: PMC4105846 DOI: 10.3389/fimmu.2014.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022] Open
Abstract
Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
692
|
Melnik BC. Does therapeutic intervention in atopic dermatitis normalize epidermal Notch deficiency? Exp Dermatol 2014; 23:696-700. [DOI: 10.1111/exd.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück Germany
| |
Collapse
|
693
|
Yang F, Tanaka M, Wataya-Kaneda M, Yang L, Nakamura A, Matsumoto S, Attia M, Murota H, Katayama I. Topical application of rapamycin ointment ameliorates Dermatophagoides farina body extract-induced atopic dermatitis in NC/Nga mice. Exp Dermatol 2014; 23:568-72. [PMID: 24903639 DOI: 10.1111/exd.12463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 12/24/2022]
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease characterized by relapsing eczema and intense prurigo, requires effective and safe pharmacological therapy. Recently, rapamycin, an mTOR (mammalian target of rapamycin) inhibitor, has been reported to play a critical role in immune responses and has emerged as an effective immunosuppressive drug. In this study, we assessed whether inhibition of mTOR signalling could suppress dermatitis in mice. Rapamycin was topically applied to inflamed skin in a murine AD model that was developed by repeated topical application of Dermatophagoides farina body (Dfb) extract antigen twice weekly for 7 weeks in NC/Nga mice. The efficacy of topical rapamycin treatment was evaluated immunologically and serologically. Topical application of rapamycin reduced inflammatory cell infiltration in the dermis, alleviated the increase of serum IgE levels and resulted in a significant reduction in clinical skin condition score and marked improvement of histological findings. In addition, increased mTOR phosphorylation in the lesional skin was observed in our murine AD model. Topical application of rapamycin ointment inhibited Dfb antigen-induced dermatitis in NC/Nga mice, promising a new therapy for atopic dermatitis.
Collapse
Affiliation(s)
- Fei Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
694
|
Abstract
Ca(2+) influx controls essential epidermal functions, including proliferation, differentiation, cell migration, itch, and barrier homeostasis. The Orai1 ion channel allows capacitive Ca(2+) influx after Ca(2+) release from the endoplasmic reticulum, and it has now been shown to modulate epidermal atrophy. These findings reveal new interactions among various Ca(2+) signaling pathways and uncover novel functions for Ca(2+) signaling via the Orai1 channel.
Collapse
|
695
|
Clinical Management of Atopic Dermatitis: Practical Highlights and Updates from the Atopic Dermatitis Practice Parameter 2012. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2014; 2:361-9; quiz 370. [DOI: 10.1016/j.jaip.2014.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/20/2022]
|
696
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 382] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
697
|
Receptors, cells and circuits involved in pruritus of systemic disorders. Biochim Biophys Acta Mol Basis Dis 2014; 1842:869-92. [DOI: 10.1016/j.bbadis.2014.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
|
698
|
Fujisawa D, Kashiwakura JI, Kita H, Kikukawa Y, Fujitani Y, Sasaki-Sakamoto T, Kuroda K, Nunomura S, Hayama K, Terui T, Ra C, Okayama Y. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J Allergy Clin Immunol 2014; 134:622-633.e9. [PMID: 24954276 DOI: 10.1016/j.jaci.2014.05.004] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/26/2014] [Accepted: 05/01/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Wheal reactions to intradermally injected neuropeptides, such as substance P (SP) and vasoactive intestinal peptide, are significantly larger and longer lasting in patients with chronic urticaria (CU) than in nonatopic control (NC) subjects. Mas-related gene X2 (MrgX2) has been identified as a receptor for basic neuropeptides, such as SP and vasoactive intestinal peptide. Mast cell (MC) responsiveness to eosinophil mediators contributes to the late-phase reaction of allergy. OBJECTIVE We sought to compare the frequency of MrgX2 expression in skin MCs from patients with CU and NC subjects and to identify the receptor for basic eosinophil granule proteins on human skin MCs. METHODS MrgX2 expression was investigated by using immunofluorescence in skin tissues from NC subjects and patients with severe CU and on skin-derived cultured MCs. MrgX2 expression in human MCs was reduced by using a lentiviral small hairpin RNA silencing technique. Ca(2+) influx was measured in CHO cells transfected with MrgX2 in response to eosinophil granule proteins. Histamine and prostaglandin D2 levels were measured by using enzyme immunoassays. RESULTS The number of MrgX2(+) skin MCs and the percentage of MrgX2(+) MCs in all MCs in patients with CU were significantly greater than those in NC subjects. Eosinophil infiltration in urticarial lesions was observed in 7 of 9 patients with CU. SP, major basic protein, and eosinophil peroxidase, but not eosinophil-derived neurotoxin, induced histamine release from human skin MCs through MrgX2. CONCLUSION MrgX2 might be a new target molecule for the treatment of wheal reactions in patients with severe CU.
Collapse
Affiliation(s)
- Daisuke Fujisawa
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Jun-Ichi Kashiwakura
- Laboratory for Allergic Disease, RCAI, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Japan
| | - Hirohito Kita
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minn
| | - Yusuke Kikukawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Yasushi Fujitani
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Tomomi Sasaki-Sakamoto
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan
| | - Kazumichi Kuroda
- Department of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Nunomura
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Koremasa Hayama
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Tadashi Terui
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Chisei Ra
- Department of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
699
|
Jia X, Zhang H, Cao X, Yin Y, Zhang B. Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca2+/NFAT pathway in airway epithelial cells. FEBS Lett 2014; 588:3047-54. [PMID: 24931369 DOI: 10.1016/j.febslet.2014.06.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022]
Abstract
The airway epithelium is exposed to a range of irritants in the environment that are known to trigger inflammatory response such as asthma. Transient receptor potential vanilloid 1 (TRPV1) is a Ca(2+)-permeable cation channel critical for detecting noxious stimuli by sensory neurons. Recently increasing evidence suggests TRPV1 is also crucially involved in the pathophysiology of asthma on airway epithelium in human. Here we report that in airway epithelial cells TRPV1 activation potently induces allergic cytokine thymic stromal lymphopoietin (TSLP) release. TSLP induction by protease-activated receptor (PAR)-2 activation is also partially mediated by TRPV1 channels.
Collapse
Affiliation(s)
- Xinying Jia
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China
| | - Hong Zhang
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China
| | - Xu Cao
- Department of Neurology, Peking University Health Science Center, 100191 Beijing, China.
| | - Yuxin Yin
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China
| | - Bo Zhang
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China.
| |
Collapse
|
700
|
Owens DM, Lumpkin EA. Diversification and specialization of touch receptors in skin. Cold Spring Harb Perspect Med 2014; 4:4/6/a013656. [PMID: 24890830 DOI: 10.1101/cshperspect.a013656] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory specializations has been poorly understood. In addition, the relationship between cutaneous mechanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin.
Collapse
Affiliation(s)
- David M Owens
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|