651
|
Risitano A, Fox KR. Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res 2004; 32:2598-606. [PMID: 15141030 PMCID: PMC419475 DOI: 10.1093/nar/gkh598] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have determined the stability of intramolecular DNA quadruplexes in which the four G(3)-tracts are connected by non-nucleosidic linkers containing propanediol, octanediol or hexaethylene glycol, replacing the TTA loops in the human telomeric repeat sequence. We find that these sequences all fold to form intramolecular complexes, which are stabilized by lithium < sodium < potassium. Quadruplex stability increases in the order propanediol < hexaethylene glycol < octanediol. The shallower shape of the melting profile with propanediol linkers and its lower dependency on potassium concentration suggests that this complex contains fewer stacks of G-quartets. The sequence with octanediol linkers displays a biphasic melting profile, suggesting that it can adopt more than one stable structure. All these complexes display melting temperatures above 310 K in the presence of 10 mM lithium, without added potassium, in contrast to the telomeric repeat sequence. These complexes also fold much faster than the telomeric repeat and there is little or no hysteresis between their melting and annealing profiles. In contrast, the human telomeric repeat sequence and a complex containing two hexaethylene glycol groups in each loop, are less stable and fold more slowly. The melting and annealing profiles for the latter sequence show significant differences, even when heated at 0.2 degrees C min(-1). CD spectra for the oligonucleotides containing non-nucleosidic linkers show positive maxima at 264 nm, with negative minima approximately 244 nm, which are characteristic of parallel quadruplex structures. These results show that the structure and stability of intramolecular quadruplexes is profoundly influenced by the length and composition of the loops.
Collapse
Affiliation(s)
- Antonina Risitano
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
652
|
Gabus C, Mazroui R, Tremblay S, Khandjian EW, Darlix JL. The fragile X mental retardation protein has nucleic acid chaperone properties. Nucleic Acids Res 2004; 32:2129-37. [PMID: 15096575 PMCID: PMC407820 DOI: 10.1093/nar/gkh535] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The fragile X syndrome is the most common cause of inherited mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP contains two K-homology (KH) domains and one RGG box that are landmarks characteristic of RNA-binding proteins. In agreement with this, FMRP associates with messenger ribonucleoparticles (mRNPs) within actively translating ribosomes, and is thought to regulate translation of target mRNAs, including its own transcript. To investigate whether FMRP might chaperone nucleic acid folding and hybridization, we analysed the annealing and strand exchange activities of DNA oligonucleotides and the enhancement of ribozyme-directed RNA substrate cleavage by FMRP and deleted variants relative to canonical nucleic acid chaperones, such as the cellular YB-1/p50 protein and the retroviral nucleocapsid protein HIV-1 NCp7. FMRP was found to possess all the properties of a potent nucleic acid chaperone, requiring the KH motifs and RGG box for optimal activity. These findings suggest that FMRP may regulate translation by acting on RNA-RNA interactions and thus on the structural status of mRNAs.
Collapse
Affiliation(s)
- Caroline Gabus
- LaboRetro, Unité INSERM de Virologie Humaine (412), ENS, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
653
|
Van Dyke MW, Nelson LD, Weilbaecher RG, Mehta DV. Stm1p, a G4 quadruplex and purine motif triplex nucleic acid-binding protein, interacts with ribosomes and subtelomeric Y' DNA in Saccharomyces cerevisiae. J Biol Chem 2004; 279:24323-33. [PMID: 15044472 DOI: 10.1074/jbc.m401981200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae protein Stm1 was originally identified as a G4 quadruplex and purine motif triplex nucleic acid-binding protein. However, more recent studies have suggested a role for Stm1p in processes ranging from antiapoptosis to telomere maintenance. To better understand the biological role of Stm1p and its potential for G(*)G multiplex binding, we used epitope-tagged protein and immunological methods to identify the subcellular localization and protein and nucleic acid partners of Stm1p in vivo. Indirect immunofluorescence microscopy indicated that Stm1p is primarily a cytoplasmic protein, although a small percentage is also present in the nucleus. Conventional immunoprecipitation found that Stm1p is associated with ribosomal proteins and rRNA. This association was verified by rate zonal separation through sucrose gradients, which showed that Stm1p binds exclusively to mature 80 S ribosomes and polysomes. Chromatin immunoprecipitation experiments found that Stm1p preferentially binds telomere-proximal Y' element DNA sequences. Taken together, our data suggest that Stm1p is primarily a ribosome-associated protein, but one that can also interact with DNA, especially subtelomeric sequences. We discuss the implications of our findings in relation to prior genetic, genomic, and proteomic studies that have identified STM1 and/or Stm1p as well as the possible biological role of Stm1p.
Collapse
Affiliation(s)
- Michael W Van Dyke
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
654
|
Abstract
RNA-proteins interactions are involved in numerous cellular functions. These interactions are found in most cases within complex macromolecular assemblies. The recent development of tools and techniques to study RNA-protein complexes has significantly increased our knowledge in the nature of these specific interactions. The aim of this article is to present the different techniques used to study RNA-protein complexes, as well as recent data concerning the application of RNA as therapeutic molecules.
Collapse
Affiliation(s)
- Nicolas Hugo
- Ecole Normale Supérieure de Lyon, Cnrs UMR 5665, 46, allée d'Italie, 69364 Lyon 07, France
| | | |
Collapse
|
655
|
Abstract
Discrete classes of mRNAs that encode functionally related proteins are associated with sequence-specific RNA-binding proteins in yeast and mammalian cells. recently reported that pre-mRNAs encoding components of inhibitory synapses are bound to neuron-specific Nova RNA-binding proteins.
Collapse
Affiliation(s)
- Jack D Keene
- Center for RNA Biology, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
656
|
Gomez D, Lemarteleur T, Lacroix L, Mailliet P, Mergny JL, Riou JF. Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res 2004; 32:371-9. [PMID: 14729921 PMCID: PMC373291 DOI: 10.1093/nar/gkh181] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ligand 12459, a potent G-quadruplex-interacting agent that belongs to the triazine series, was previously shown to downregulate telomerase activity in the human A549 lung carcinoma cell line. We show here that the downregulation of telomerase activity is caused by an alteration of the hTERT splicing pattern induced by 12459, i.e. an almost complete disappearance of the active (+alpha,+beta) transcript and an over-expression of the inactive -beta transcript. Spliced intron 6 forming the -beta hTERT transcript contained several tracks of G-rich sequences able to form G-quadruplexes. By using a specific PCR-stop assay, we show that 12459 is able to stabilize the formation of these G-quadruplex structures. A549 cell line clones selected for resistance to 12459 have been analyzed for their hTERT splicing pattern. Resistant clones are able to maintain the active hTERT transcript under 12459 treatment, suggesting the appearance of mechanisms able to bypass the 12459-induced splicing alterations. In contrast to 12459, telomestatin and BRACO19, two other G-quadruplex-interacting agents, have no effect on the hTERT splicing pattern in A549 cells, are cytotoxic against the A549-resistant clones and display a lower efficiency to stabilize hTERT G-quadruplexes. These results lead us to propose that 12459 impairs the splicing machinery of hTERT through stabilization of quadruplexes located in the hTERT intron 6. Differences of selectivity between 12459, BRACO19 and telomestatin for these hTERT quadruplexes may be important to explain their respective activity and inactivity against hTERT splicing.
Collapse
Affiliation(s)
- Dennis Gomez
- Onco-Pharmacologie, IFR53, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | | | | | | | | | | |
Collapse
|
657
|
Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 2004; 7:113-7. [PMID: 14703574 DOI: 10.1038/nn1174] [Citation(s) in RCA: 451] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 12/12/2003] [Indexed: 11/08/2022]
Abstract
Fragile X syndrome is caused by a loss of expression of the fragile X mental retardation protein (FMRP). FMRP is a selective RNA-binding protein which forms a messenger ribonucleoprotein (mRNP) complex that associates with polyribosomes. Recently, mRNA ligands associated with FMRP have been identified. However, the mechanism by which FMRP regulates the translation of its mRNA ligands remains unclear. MicroRNAs are small noncoding RNAs involved in translational control. Here we show that in vivo mammalian FMRP interacts with microRNAs and the components of the microRNA pathways including Dicer and the mammalian ortholog of Argonaute 1 (AGO1). Using two different Drosophila melanogaster models, we show that AGO1 is critical for FMRP function in neural development and synaptogenesis. Our results suggest that FMRP may regulate neuronal translation via microRNAs and links microRNAs with human disease.
Collapse
Affiliation(s)
- Peng Jin
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
658
|
Siomi H, Ishizuka A, Siomi MC. RNA interference: A new mechanism by which FMRP acts in the normal brain? What can Drosophila teach us? ACTA ACUST UNITED AC 2004; 10:68-74. [PMID: 14994291 DOI: 10.1002/mrdd.20011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fragile X syndrome is the most common heritable form of mental retardation caused by loss-of-function mutations in the FMR1 gene. The FMR1 gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. Recent work in Drosophila melanogaster has shown that the fly homolog of FMR1 (dFMR1) plays an important role in regulating neuronal morphology, which may underlie the observed deficits in behaviors of dFMR1 mutant flies. Biochemical analysis has revealed that dFMR1 forms a complex that includes ribosomal proteins and, surprisingly, Argonaute2 (AGO2), an essential component of the RNA-induced silencing complex (RISC) that mediates RNA interference (RNAi) in Drosophila. dFMR1 also associates with Dicer, another essential processing enzyme of the RNAi pathway. Moreover, both a micro-RNA (miRNA) and short interfering RNAs (siRNAs) can coimmunoprecipitate with dFMR1. Together these findings suggest that dFMR1 functions in an RNAi-related apparatus to regulate the expression of its target genes at the level of translation. These findings raise the possibility that Fragile X syndrome may be the result of a protein synthesis abnormality caused by a defect in an RNAi-related apparatus. Because the core mechanisms of complex behaviors such as learning and memory and circadian rhythms appear to be conserved, studies of Fragile X syndrome using Drosophila as a model provide an economy-of-scale for identifying biological processes that likely underlie the abnormal morphology of dendritic spines and behavioral disturbances observed in Fragile X patients.
Collapse
Affiliation(s)
- Haruhiko Siomi
- Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan.
| | | | | |
Collapse
|
659
|
Darnell JC, Warren ST, Darnell RB. The fragile X mental retardation protein, FMRP, recognizes G-quartets. ACTA ACUST UNITED AC 2004; 10:49-52. [PMID: 14994288 DOI: 10.1002/mrdd.20008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fragile X mental retardation is a disease caused by the loss of function of a single RNA-binding protein, FMRP. Identifying the RNA targets recognized by FMRP is likely to reveal much about its functions in controlling some aspects of memory and behavior. Recent evidence suggests that one of the predominant RNA motifs recognized by the FMRP protein is an intramolecular G-quartet and that the RGG box of FMRP mediates this interaction. Searching databases of mRNA sequence information, as well as compiled sequences of predicted FMRP targets based on biochemical identification, has revealed that many of these predicted FMRP targets contain intramolecular G-quartets. Interestingly, many of the G-quartet containing RNA targets encode proteins involved in neuronal development and synaptic function. Defects in the metabolism of this set of RNAs, presumably in the translation of their protein products, is likely to underlie the behavioral and cognitive changes seen in the disease.
Collapse
Affiliation(s)
- Jennifer C Darnell
- The Rockefeller University, Laboratory of Molecular Neuro-Oncology New York, New York 10021, USA.
| | | | | |
Collapse
|
660
|
Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003; 302:1212-5. [PMID: 14615540 DOI: 10.1126/science.1090095] [Citation(s) in RCA: 834] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nova proteins are neuron-specific antigens targeted in paraneoplastic opsoclonus myoclonus ataxia (POMA), an autoimmune neurologic disease characterized by abnormal motor inhibition. Nova proteins regulate neuronal pre-messenger RNA splicing by directly binding to RNA. To identify Nova RNA targets, we developed a method to purify protein-RNA complexes from mouse brain with the use of ultraviolet cross-linking and immunoprecipitation (CLIP).Thirty-four transcripts were identified multiple times by Nova CLIP.Three-quarters of these encode proteins that function at the neuronal synapse, and one-third are involved in neuronal inhibition.Splicing targets confirmed in Nova-/- mice include c-Jun N-terminal kinase 2, neogenin, and gephyrin; the latter encodes a protein that clusters inhibitory gamma-aminobutyric acid and glycine receptors, two previously identified Nova splicing targets.Thus, CLIP reveals that Nova coordinately regulates a biologically coherent set of RNAs encoding multiple components of the inhibitory synapse, an observation that may relate to the cause of abnormal motor inhibition in POMA.
Collapse
Affiliation(s)
- Jernej Ule
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
661
|
Abstract
The fragile X mental retardation protein (FMRP) contains three RNA binding domains, two of which the KH2 domain and the C-terminal arginine-glycine-rich (RG-rich) region participate in RNA binding. Because fragile X syndrome is the leading cause of inherited mental retardation, there has been an intensive search for the messenger RNA (mRNA) targets that interact with FMRP in vivo. Initial work led to the conclusion that FMRP binds to a nucleic acid tertiary structure element called a G-quartet. Recent studies have shown that FMRP also binds mRNAs containing U-pentameric sequences. Interestingly, both motifs are mimicked by homoribopolymers (poly (rG) and poly (rU)) that were first used to determine that FMRP functioned as an RNA binding protein. The consequences of these discoveries and future areas of investigation are discussed.
Collapse
Affiliation(s)
- Robert B Denman
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
662
|
Abstract
An important aspect of gene expression in neurons involves the delivery of mRNAs to particular subcellular domains, where translation of the mRNAs is locally controlled. Local synthesis of protein within dendrites plays a key role in activity-dependent synaptic modifications. In growing axons, local synthesis in the growth cone is important for extension and guidance. Recent evidence also documents the existence of mechanisms permitting local protein degradation, providing bidirectional control of protein composition in local domains. Here, we summarize what is known about local synthesis and degradation of protein in dendrites and axons, highlighting key unresolved questions.
Collapse
Affiliation(s)
- Oswald Steward
- Reeve-Irvine Research Center and Department of Anatomy/Neurobiology, College of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
663
|
Boisvert FM, Côté J, Boulanger MC, Richard S. A Proteomic Analysis of Arginine-methylated Protein Complexes. Mol Cell Proteomics 2003; 2:1319-30. [PMID: 14534352 DOI: 10.1074/mcp.m300088-mcp200] [Citation(s) in RCA: 296] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine methylation is a post-translational modification that results in the formation of asymmetrical and symmetrical dimethylated arginines (a- and sDMA). This modification is catalyzed by type I and II protein-arginine methyltransferases (PRMT), respectively. The two major enzymes PRMT1 (type I) and PRMT5 (type II) preferentially methylate arginines located in RG-rich clusters. Arginine methylation is a common modification, but the reagents for detecting this modification have been lacking. Thus, fewer than 20 proteins have been identified in the last 40 years as containing dimethylated arginines. We have generated previously four arginine methyl-specific antibodies; ASYM24 and ASYM25 are specific for aDMA, whereas SYM10 and SYM11 recognize sDMA. All of these antibodies were generated by using peptides with aDMA or sDMA in the context of different RG-rich sequences. HeLa cell extracts were used to purify the protein complexes recognized by each of the four antibodies, and the proteins were identified by microcapillary reverse-phase liquid chromatography coupled on line with electrospray ionization tandem mass spectrometry. The analysis of two tandem mass spectra for each methyl-specific antibody resulted in the identification of over 200 new proteins that are putatively arginine-methylated. The major protein complexes that were purified include components required for pre-mRNA splicing, polyadenylation, transcription, signal transduction, and cytoskeleton and DNA repair. These findings provide a basis for the identification of the role of arginine methylation in many cellular processes.
Collapse
Affiliation(s)
- François-Michel Boisvert
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Department of Oncology, McGill University, Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
664
|
Lee A, Li W, Xu K, Bogert BA, Su K, Gao FB. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 2003; 130:5543-52. [PMID: 14530299 DOI: 10.1242/dev.00792] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 gene. How these mutations affect neuronal development and function remains largely elusive. We generated specific point mutations or small deletions in the Drosophila fragile X-related (Fmr1) gene and examined the roles of Fmr1 in dendritic development of dendritic arborization (DA) neurons in Drosophila larvae. We found that Fmr1 could be detected in the cell bodies and proximal dendrites of DA neurons and that Fmr1loss-of-function mutations increased the number of higher-order dendritic branches. Conversely, overexpression of Fmr1 in DA neurons dramatically decreased dendritic branching. In dissecting the mechanisms underlying Fmr1 function in dendrite development, we found that the mRNA encoding small GTPase Rac1 was present in the Fmr1-messenger ribonucleoprotein complexes in vivo. Mosaic analysis with a repressor cell marker (MARCM) and overexpression studies revealed that Rac1 has a cell-autonomous function in promoting dendritic branching of DA neurons. Furthermore, Fmr1 and Rac1 genetically interact with each other in controlling the formation of fine dendritic branches. These findings demonstrate that Fmr1 affects dendritic development and that Rac1 is partially responsible for mediating this effect.
Collapse
Affiliation(s)
- Alan Lee
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94141-9100, USA
| | | | | | | | | | | |
Collapse
|
665
|
Todd PK, Mack KJ, Malter JS. The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci U S A 2003; 100:14374-8. [PMID: 14614133 PMCID: PMC283599 DOI: 10.1073/pnas.2336265100] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome (FXS) is a common inherited cause of mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP is thought to regulate the translation of target mRNAs, including its own transcript. Here we show that the levels of FMRP are rapidly up-regulated in primary cortical neurons in response to the type-I metabotropic glutamate receptor (mGluR) agonist S-3,5-dihydrophenylglycine. These changes require new protein synthesis but not transcription and are specific to mGluR activation. We also demonstrate that the mRNA for PSD-95, a scaffolding protein involved in synaptic plasticity, contains a highly conserved canonical binding site for FMRP within its 3' UTR. Furthermore, PSD-95 is rapidly translated in response to S-3,5-dihydrophenylglycine. Finally, we show that these mGluR-dependent changes in PSD-95 expression are lost in neurons derived from FMRP knockout mice, a model of FXS. Taken together, these studies suggest that FMRP is required for mGluR-dependent translation of PSD-95 and provide insights into the pathophysiology of FXS.
Collapse
Affiliation(s)
- Peter K Todd
- Department of Pathology, Neuroscience Training Program, and Waisman Center for Developmental Disabilities, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
666
|
Chen L, Yun SW, Seto J, Liu W, Toth M. The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 2003; 120:1005-17. [PMID: 12927206 DOI: 10.1016/s0306-4522(03)00406-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome is a common form of inherited mental retardation caused by the absence of the fragile X mental retardation protein (FMRP). It has been hypothesized that FMRP is involved in the processing and/or translation of mRNAs. Human and mouse target-mRNAs, containing purine quartets, have previously been identified. By using cDNA-SELEX (systematic evolution of ligands by exponential enrichment), we identified another class of human target-mRNAs which contain U rich sequences. This technique, in contrast to oligonucleotide-based SELEX, allows the identification of FMRP targets directly from mRNA pools. Many of the proteins encoded by the identified FMRP targets have been implicated in neuroplasticity. Steady state levels of target-mRNAs were unchanged in the brain of fragile X mice. However, levels of two target-encoded proteins, an L-type calcium channel subunit and MAP1B, were downregulated in specific brain regions suggesting a defect in the expression of target-encoded proteins in fragile X syndrome.
Collapse
Affiliation(s)
- L Chen
- Department of Pharmacology, Cornell University, Weill Medical College, 1300 York Ave, LC 522, 10021, New York, NY, USA
| | | | | | | | | |
Collapse
|
667
|
Ceman S, O'Donnell WT, Reed M, Patton S, Pohl J, Warren ST. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum Mol Genet 2003; 12:3295-305. [PMID: 14570712 DOI: 10.1093/hmg/ddg350] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fragile X mental retardation protein, FMRP, is absent in patients with fragile X syndrome, a common form of mental retardation. FMRP is a nucleocytoplasmic RNA binding protein that is primarily associated with polyribosomes. FMRP is believed to be a translational repressor and may regulate the translation of certain mRNAs at the base of dendritic spines in neurons. However, little is known about the regulation of FMRP. Using mass spectrometry and site-directed mutagenesis, we show that FMRP is phosphorylated between residues 483 and 521, N-terminal to the RGG box, both in murine brain and in cultured cells. Primary phosphorylation occurs on the highly conserved serine 499, which triggers hierarchical phosphorylation of nearby serines. FMRP is phosphorylated within 2-4 h of synthesis, however, phosphorylation has no effect on the half-life of the protein. In contrast to the Drosophila ortholog dFxr, the phosphorylation status of mammalian FMRP does not influence its association with specific mRNAs in vivo. However, we find unphosphorylated FMRP associated with actively translating polyribosomes while a fraction of phosphorylated FMRP is associated with apparently stalled polyribosomes. Our data suggest that the phosphorylation may regulate FMRP and that the release of FMRP-induced translational suppression may involve a dephosphorylation signal.
Collapse
Affiliation(s)
- Stephanie Ceman
- Department of Human Genetics,Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
668
|
Abstract
The FMR1 gene is involved in three different syndromes, the Fragile X syndrome, premature ovarian failure (POF) and the Fragile X-associated tremor/ataxia syndrome (FXTAS) at older age. Fragile X syndrome is caused by an expanded CGG repeat above 200 units in the FMR1 gene resulting in the absence of the FMR1 mRNA and protein. The FMR1 protein is proposed to act as a regulator of mRNA transport and/or translation that plays a role in synaptic maturation and function. POF and FXTAS are found in individuals with an expanded repeat between 50 and 200 CGGs and are associated with increased FMR1 mRNA levels. The presence of elevated FMR1 mRNA in all patients suggests that these syndromes may represent a gain-of-function effect from the elevated message levels. The level of FMR1 mRNA is in fragile balance and is therefore critical for normal functioning.
Collapse
Affiliation(s)
- Ben A Oostra
- Department of Clinical Genetics, Erasmus MC, The Netherlands.
| | | |
Collapse
|
669
|
Ramos A, Hollingworth D, Pastore A. G-quartet-dependent recognition between the FMRP RGG box and RNA. RNA (NEW YORK, N.Y.) 2003; 9:1198-207. [PMID: 13130134 PMCID: PMC1370484 DOI: 10.1261/rna.5960503] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fragile-X syndrome, the most common monogenic form of mental retardation, is caused by down-regulation of the expression of Fragile X Mental Retardation Protein (FMRP). FMRP is a multifunctional, multidomain RNA-binding protein that acts as a translational repressor in neuronal cells. Interaction between FMRP and mRNA targets involves an RGG box, a protein motif commonly thought to mediate unspecific interactions with nucleic acids. Instead, FMRP RGG box has been shown to recognize RNA G-quartet structures specifically and to be necessary in neurons for RNP particle formation and dendritic mRNA localization. In the present study, we have characterized structurally three representative RNA targets of FMRP in their unbound form and in complex with the RGG box. We observe a large heterogeneity in the conformation of the RNA targets and in their RGG binding mode, which could be the basis of recognition specificity. We also found that G-quartet formation occurs not only intramolecularly but can also be mediated by RNA dimerization. These findings suggest a potential role of RNA:RNA interactions in protein:RNA complexes and in RNP particle assembly.
Collapse
Affiliation(s)
- Andres Ramos
- National Institute for Medical Research, London NW7 1AA, UK
| | | | | |
Collapse
|
670
|
Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. GENES, BRAIN, AND BEHAVIOR 2003; 2:255-67. [PMID: 14606691 PMCID: PMC6748642 DOI: 10.1034/j.1601-183x.2003.00037.x] [Citation(s) in RCA: 1847] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autism is a severe neurobehavioral syndrome, arising largely as an inherited disorder, which can arise from several diseases. Despite recent advances in identifying some genes that can cause autism, its underlying neurological mechanisms are uncertain. Autism is best conceptualized by considering the neural systems that may be defective in autistic individuals. Recent advances in understanding neural systems that process sensory information, various types of memories and social and emotional behaviors are reviewed and compared with known abnormalities in autism. Then, specific genetic abnormalities that are linked with autism are examined. Synthesis of this information leads to a model that postulates that some forms of autism are caused by an increased ratio of excitation/inhibition in sensory, mnemonic, social and emotional systems. The model further postulates that the increased ratio of excitation/inhibition can be caused by combinatorial effects of genetic and environmental variables that impinge upon a given neural system. Furthermore, the model suggests potential therapeutic interventions.
Collapse
Affiliation(s)
- J L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94143-0984, USA.
| | | |
Collapse
|
671
|
Bonnal S, Schaeffer C, Créancier L, Clamens S, Moine H, Prats AC, Vagner S. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 2003; 278:39330-6. [PMID: 12857733 PMCID: PMC2635476 DOI: 10.1074/jbc.m305580200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analysis of the cis-acting elements defining the FGF-2 internal ribosome entry site (IRES). A thorough deletion analysis study within the 5'-ATR led us to define a 176-nt region as being necessary and sufficient for IRES function at four codons present in a downstream 308-nt RNA segment. Unexpectedly, a single IRES module is therefore responsible for translation initiation at four distantly localized codons. The determination of the FGF-2 5'-ATR RNA secondary structure by enzymatic and chemical probing experiments showed that the FGF-2 IRES contained two stem-loop regions and a G quartet motif that constitute novel structural determinants of IRES function.
Collapse
Affiliation(s)
- Sophie Bonnal
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
| | - Céline Schaeffer
- SMBMR, Structure des macromolécules biologiques et mécanismes de reconnaissance
CNRS : UPR9002IBMC
15, Rue René Descartes
67084 STRASBOURG CEDEX,FR
| | - Laurent Créancier
- Centre de Recherches Pierre Fabre
Centre de Recherches Pierre Fabre81106 Castres,FR
| | - Simone Clamens
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
| | - Hervé Moine
- SMBMR, Structure des macromolécules biologiques et mécanismes de reconnaissance
CNRS : UPR9002IBMC
15, Rue René Descartes
67084 STRASBOURG CEDEX,FR
| | - Anne-Catherine Prats
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
- * Correspondence should be adressed to: Anne-Catherine Prats
| | - Stéphan Vagner
- Hormones, facteurs de croissance et physiopathologie vasculaire
INSERM : U589IFR31Université Paul Sabatier - Toulouse IIIHopital de Rangueil
1, Avenue Jean Poulhes
31059 TOULOUSE CEDEX 9,FR
| |
Collapse
|
672
|
Abstract
Descriptive studies have established that the developmental events responsible for the assembly of neural systems and circuitry are conserved across mammalian species. However, primates are unique regarding the time during which histogenesis occurs and the extended postnatal period during which myelination of pathways and circuitry formation occur and are then subsequently modified, particularly in the cerebral cortex. As in lower mammals, the framework for subcortical-cortical connectivity in primates is established before midgestation and already begins to remodel before birth. Association systems, responsible for modulating intracortical circuits that integrate information across functional domains, also form before birth, but their growth and reorganization extend into puberty. There are substantial differences across species in the patterns of development of specific neurochemical systems. The complexity is even greater when considering that the development of any particular cellular component may differ among cortical areas in the same primate species. Developmental and behavioral neurobiologists, psychologists, and pediatricians are challenged with understanding how functional maturation relates to the evolving anatomical organization of the human brain during childhood, and moreover, how genetic and environmental perturbations affect the adaptive changes exhibited by neural circuits in response to developmental disruption.
Collapse
Affiliation(s)
- Pat Levitt
- John F. Kennedy Center for Research on Human Development, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37203, USA
| |
Collapse
|
673
|
Aravind L, Iyer LM, Anantharaman V. The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 2003; 4:R64. [PMID: 14519199 PMCID: PMC328453 DOI: 10.1186/gb-2003-4-10-r64] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 07/24/2003] [Accepted: 07/31/2003] [Indexed: 11/10/2022] Open
Abstract
The Alba superfamily of chromosomal proteins appear to have originated as RNA-binding proteins and to have been recruited to chromosomes possibly only within the crenarchaeal lineage. Background There is considerable heterogeneity in the phyletic patterns of major chromosomal DNA-binding proteins in archaea. Alba is a well-characterized chromosomal protein from the crenarchaeal genus Sulfolobus. While Alba has been detected in most archaea and some eukaryotic taxa, its exact functions in these taxa are not clear. Here we use comparative genomics and sequence profile analysis to predict potential alternative functions of the Alba proteins. Results Using sequence-profile searches, we were able to unify the Alba proteins with RNase P/MRP subunit Rpp20/Pop7, human RNase P subunit Rpp25, and the ciliate Mdp2 protein, which is implicated in macronuclear development. The Alba superfamily contains two eukaryote-specific families and one archaeal family. We present different lines of evidence to show that both eukaryotic families perform functions related to RNA metabolism. Several members of one of the eukaryotic families, typified by Mdp2, are combined in the same polypeptide with RNA-binding RGG repeats. We also investigated the relationships of the unified Alba superfamily within the ancient RNA-binding IF3-C fold, and show that it is most closely related to other RNA-binding members of this fold, such as the YhbY and IF3-C superfamilies. Based on phyletic patterns and the principle of phylogenetic bracketing, we predict that at least some of the archaeal members may also possess a role in RNA metabolism. Conclusions The Alba superfamily proteins appear to have originated as RNA-binding proteins which formed various ribonucleoprotein complexes, probably including RNase P. It was recruited as a chromosomal protein possibly only within the crenarchaeal lineage. The evolutionary connections reported here suggest how a diversity of functions based on a common biochemical basis emerged in proteins of the Alba superfamily.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
674
|
Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H, Mathews MB. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 2003; 332:85-98. [PMID: 12946349 DOI: 10.1016/s0022-2836(03)00885-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA)-binding proteins have been implicated in several biological processes including the regulation of gene expression. cDNA sequences predict that the proteins have a functional nuclear localization signal and two dsRNA-binding motifs (dsRBMs), and are identical at their N termini. Isoforms are predicted to diverge at their C termini as well as by the insertion of four amino acid residues (NVKQ) between the two dsRBMs. In this study, we verified the expression of four of the isoforms by cDNA cloning and mass spectrometric analysis of proteins isolated from human cells. Cell fractionation studies showed that NF90 and its heteromeric partner, NF45, are predominantly nuclear and largely chromatin-associated. The C-terminally extended NF90 species, NF110, are almost exclusively chromatin-bound. Both NF110 isoforms are more active than NF90 isoforms in stimulating transcription from the proliferating cell nuclear antigen reporter in a transient expression system. NF110b, which carries the NVKQ insert, was identified as the strongest activator. It stimulated transcription of some, but not all, promoters in a fashion that suggested that it functions in concert with other transcription factors. Finally, we demonstrate that NF110b associates with the dsRBM-containing transcriptional co-activator, RNA helicase A, independently of RNA binding.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07103-1709, USA
| | | | | | | | | | | | | | | |
Collapse
|
675
|
Opal P, Garcia JJ, Propst F, Matilla A, Orr HT, Zoghbi HY. Mapmodulin/leucine-rich acidic nuclear protein binds the light chain of microtubule-associated protein 1B and modulates neuritogenesis. J Biol Chem 2003; 278:34691-9. [PMID: 12807913 DOI: 10.1074/jbc.m302785200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We had previously described the leucine-rich acidic nuclear protein (LANP) as a candidate mediator of toxicity in the polyglutamine disease, spinocerebellar ataxia type 1 (SCA1). This was based on the observation that LANP binds ataxin-1, the protein involved in this disease, in a glutamine repeat-dependent manner. Furthermore, LANP is expressed abundantly in purkinje cells, the primary site of ataxin-1 pathology. Here we focused our efforts on understanding the neuronal properties of LANP. In undifferentiated neuronal cells LANP is predominantly a nuclear protein, requiring a bona fide nuclear localization signal to be imported into the nucleus. LANP translocates from the nucleus to the cytoplasm during the process of neuritogenesis, interacts with the light chain of the microtubule-associated protein 1B (MAP1B), and modulates the effects of MAP1B on neurite extension. LANP thus could play a key role in neuronal development and/or neurodegeneration by its interactions with microtubule associated proteins.
Collapse
Affiliation(s)
- Puneet Opal
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
676
|
|
677
|
Sokolowski M, Scott JE, Heaney RP, Patel AH, Clements JB. Identification of herpes simplex virus RNAs that interact specifically with regulatory protein ICP27 in vivo. J Biol Chem 2003; 278:33540-9. [PMID: 12783881 DOI: 10.1074/jbc.m302063200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) protein ICP27 has an essential regulatory role during viral replication, in part by post-transcriptional control of gene expression, and has a counterpart in all herpes viruses sequenced so far. Although much is known about the functions of this signature herpesvirus protein, little is known about its RNA binding capabilities; ICP27 interacts with specificity for a subset of intronless HSV-1 RNAs and poly(G), through its RGG box. We performed an in vivo yeast three-hybrid screen of an HSV-1 genomic library, searching for ICP27 interacting RNAs. Comparable with a yeast genomic screen, 24 of 55 single inserts mapped to antisense strands of HSV-1 transcribed regions or non-transcribed regions. The 31 HSV-1 sense RNAs identified were 35 to 225 nucleotides in length and interacted with preferred specificity for ICP27 as compared with an unrelated RNA-binding protein. They map to 10 monocistronic and 10 polycistronic transcripts of all kinetic classes and represent 28 open reading frames encoding predominantly essential viral proteins with roles in viral DNA replication and virion maturation. Several studies show regulatory effects by ICP27 on the majority of these transcripts, consistent with its regulation of the early-late switch in the HSV-1 life cycle. Deletion of the ICP27 RGG box and the ICP27 M15 mutation, both lethal in virus, abolished or severely reduced the ICP27-RNA interactions, indicating their biological relevance. The study facilitates continued study of gene regulation by ICP27 by further defining its interactions with viral RNAs.
Collapse
Affiliation(s)
- Marcus Sokolowski
- Division of Virology, Institute of Biomedical Life Sciences, Church Street, University of Glasgow, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
678
|
Dredge BK, Darnell RB. Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer. Mol Cell Biol 2003; 23:4687-700. [PMID: 12808107 PMCID: PMC164843 DOI: 10.1128/mcb.23.13.4687-4700.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nova is a neuron-specific RNA binding protein targeted in patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia, which is characterized by failure of inhibition of brainstem and spinal motor systems. Here, we have biochemically confirmed the observation that splicing regulation of the inhibitory GABA(A) receptor gamma2 (GABA(A)Rgamma2) subunit pre-mRNA exon E9 is disrupted in mice lacking Nova-1. To elucidate the mechanism by which Nova-1 regulates GABA(A)Rgamma2 alternative splicing, we systematically screened minigenes derived from the GABA(A)Rgamma2 and human beta-globin genes for their ability to support Nova-dependent splicing in transient transfection assays. These studies demonstrate that Nova-1 acts directly on GABA(A)Rgamma2 pre-mRNA to regulate E9 splicing and identify an intronic region that is necessary and sufficient for Nova-dependent enhancement of exon inclusion, which we term the NISE (Nova-dependent intronic splicing enhancer) element. The NISE element (located 80 nucleotides upstream of the splice acceptor site of the downstream exon E10) is composed of repeats of the sequence YCAY, consistent with previous studies of the mechanism by which Nova binds RNA. Mutation of these repeats abolishes binding of Nova-1 to the RNA in vitro and Nova-dependent splicing regulation in vivo. These data provide a molecular basis for understanding Nova regulation of GABA(A)Rgamma2 alternative splicing and suggest that general dysregulation of Nova's splicing enhancer function may underlie the neurologic defects seen in Nova's absence.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Antigens, Neoplasm
- Base Sequence
- Blotting, Western
- Cell Line
- Collodion/pharmacology
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enhancer Elements, Genetic
- Exons
- Gene Expression Regulation
- Globins/genetics
- Humans
- Introns
- Mice
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nerve Tissue Proteins/genetics
- Neuro-Oncological Ventral Antigen
- Plasmids/metabolism
- Protein Binding
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Transfection
Collapse
Affiliation(s)
- B Kate Dredge
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
679
|
Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL, Giangrande A. CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 2003; 38:887-98. [PMID: 12818175 DOI: 10.1016/s0896-6273(03)00354-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuronal plasticity requires actin cytoskeleton remodeling and local protein translation in response to extracellular signals. Rho GTPase pathways control actin reorganization, while the fragile X mental retardation protein (FMRP) regulates the synthesis of specific proteins. Mutations affecting either pathway produce neuronal connectivity defects in model organisms and mental retardation in humans. We show that CYFIP, the fly ortholog of vertebrate FMRP interactors CYFIP1 and CYFIP2, is specifically expressed in the nervous system. CYFIP mutations affect axons and synapses, much like mutations in dFMR1 (the Drosophila FMR1 ortholog) and in Rho GTPase dRac1. CYFIP interacts biochemically and genetically with dFMR1 and dRac1. Finally, CYFIP acts as a dRac1 effector that antagonizes FMR1 function, providing a bridge between signal-dependent cytoskeleton remodeling and translation.
Collapse
Affiliation(s)
- Annette Schenck
- Department of Molecular Pathology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Boite Postale 10142, 67404 Illkirch, Cedex, France
| | | | | | | | | | | |
Collapse
|
680
|
Cocco MJ, Hanakahi LA, Huber MD, Maizels N. Specific interactions of distamycin with G-quadruplex DNA. Nucleic Acids Res 2003; 31:2944-51. [PMID: 12771220 PMCID: PMC156726 DOI: 10.1093/nar/gkg392] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 03/19/2003] [Accepted: 04/04/2003] [Indexed: 11/14/2022] Open
Abstract
Distamycin binds the minor groove of duplex DNA at AT-rich regions and has been a valuable probe of protein interactions with double-stranded DNA. We find that distamycin can also inhibit protein interactions with G-quadruplex (G4) DNA, a stable four-stranded structure in which the repeating unit is a G-quartet. Using NMR, we show that distamycin binds specifically to G4 DNA, stacking on the terminal G-quartets and contacting the flanking bases. These results demonstrate the utility of distamycin as a probe of G4 DNA-protein interactions and show that there are (at least) two distinct modes of protein-G4 DNA recognition which can be distinguished by sensitivity to distamycin.
Collapse
Affiliation(s)
- Melanie J Cocco
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
681
|
Dolzhanskaya N, Sung YJ, Conti J, Currie JR, Denman RB. The fragile X mental retardation protein interacts with U-rich RNAs in a yeast three-hybrid system. Biochem Biophys Res Commun 2003; 305:434-41. [PMID: 12745094 DOI: 10.1016/s0006-291x(03)00766-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently identified several ESTs that bind to the fragile X mental retardation protein (FMRP) in vitro. To determine whether they interacted in vivo we performed three-hybrid screens in a Saccharomyces cerevisiae histidine auxotroph. We demonstrate that two of the ESTs support growth on histidine and transduce beta-galactosidase activity when co-expressed with FMRP under selective growth conditions. In contrast, the iron response element (IRE) RNA does not. Likewise, the ESTs do not support growth or transduce beta-galactosidase activity when co-expressed with the iron response element binding protein (IRP). Each EST is relatively small and has 40% identity with a sequence in FMR1 mRNA harboring FMRP binding determinants. Interestingly, while neither the ESTs contain a G-quartet structural motif they do contain U-rich sequences that are found in mRNA with demonstrated in vitro binding and in vivo association with FMRP. This indicates that U-rich elements comprise another motif recognized by FMRP.
Collapse
Affiliation(s)
- Natalia Dolzhanskaya
- Biochemical Molecular Neurobiology Laboratory, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | | | | | |
Collapse
|
682
|
Kühn U, Nemeth A, Meyer S, Wahle E. The RNA binding domains of the nuclear poly(A)-binding protein. J Biol Chem 2003; 278:16916-25. [PMID: 12637556 DOI: 10.1074/jbc.m209886200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear poly(A)-binding protein (PABPN1) is involved in the synthesis of the mRNA poly(A) tails in most eukaryotes. We report that the protein contains two RNA binding domains, a ribonucleoprotein-type RNA binding domain (RNP domain) located approximately in the middle of the protein sequence and an arginine-rich C-terminal domain. The C-terminal domain also promotes self-association of PABPN1 and moderately cooperative binding to RNA. Whereas the isolated RNP domain binds specifically to poly(A), the isolated C-terminal domain binds non-specifically to RNA and other polyanions. Despite this nonspecific RNA binding by the C-terminal domain, selection experiments show that adenosine residues throughout the entire minimal binding site of approximately 11 nucleotides are recognized specifically. UV-induced cross-links with oligo(A) carrying photoactivatable nucleotides at different positions all map to the RNP domain, suggesting that most or all of the base-specific contacts are made by the RNP domain, whereas the C-terminal domain may contribute nonspecific contacts, conceivably to the same nucleotides. Asymmetric dimethylation of 13 arginine residues in the C-terminal domain has no detectable influence on the interaction of the protein with RNA. The N-terminal domain of PABPN1 is not required for RNA binding but is essential for the stimulation of poly(A) polymerase.
Collapse
Affiliation(s)
- Uwe Kühn
- Institut für Biochemie, Martin-Luther-Universität Halle, 06099 Halle, Germany
| | | | | | | |
Collapse
|
683
|
Sung YJ, Dolzhanskaya N, Nolin SL, Brown T, Currie JR, Denman RB. The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J Biol Chem 2003; 278:15669-78. [PMID: 12594214 DOI: 10.1074/jbc.m211117200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of the RNA-binding protein FMRP (fragile X mental retardation protein) leads to fragile X syndrome, the most common form of inherited mental retardation. Although some of the messenger RNA targets of this protein, including FMR1, have been ascertained, many have yet to be identified. We have found that Xenopus elongation factor 1A (EF-1A) mRNA binds tightly to recombinant human FMRP in vitro. Binding depended on protein determinants located primarily in the C-terminal end of hFMRP, but the hnRNP K homology domain influenced binding as well. When hFMRP was expressed in cultured cells, it dramatically reduced endogenous EF-1A protein expression but had no effect on EF-1A mRNA levels. In contrast, the translation of several other mRNAs, including those coding for dynamin and constitutive heat shock 70 protein, was not affected by the hFMRP expression. Most importantly, EF-1A mRNA and hFMR1 mRNA were coimmunoprecipitated with hFMRP. Finally, in fragile X lymphoblastoid cells in which hFMRP is absent, human EF-1A protein but not its corresponding mRNA is elevated compared with normal lymphoblastoid cells. These data suggest that hFMRP binds to EF-1A mRNA and also strongly argue that FMRP negatively regulates EF-1A expression in vivo.
Collapse
Affiliation(s)
- Ying Ju Sung
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
684
|
Reichman TW, Mathews MB. RNA binding and intramolecular interactions modulate the regulation of gene expression by nuclear factor 110. RNA (NEW YORK, N.Y.) 2003; 9:543-554. [PMID: 12702813 PMCID: PMC1370420 DOI: 10.1261/rna.2181103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 01/17/2003] [Indexed: 05/24/2023]
Abstract
Nuclear factor 110 (NF110) belongs to the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA) binding proteins that regulate gene expression at the transcriptional level in vertebrates. The proteins are identical at their N terminus, which functions as a negative regulatory region, but have distinct C termini as a result of alternate splicing. Maximal transcriptional activity of NF110 requires its C-terminal domain and a central domain that contains a nuclear localization signal and two dsRNA-binding motifs (dsRBMs). We find that dsRNA binding is reduced by RGG and GQSY motifs present in the C-terminal region. To directly evaluate the role of RNA binding in transactivation, we conducted site-directed mutagenesis to substitute conserved residues in one or both of the dsRBMs. The mutations reduced the ability of NF110 to stimulate gene expression to an extent that paralleled the mutants' reduced ability to bind dsRNA. Full activity was restored when the dsRBM-containing region of NF110 was replaced with the RNA-binding region of the protein kinase PKR. Finally, NF110-mediated transactivation was inhibited by cotransfection of a plasmid encoding an artificial highly structured RNA. These data suggest that NF110 and its homologs are regulated by cis-acting domains present in some of the protein isoforms, and via interactions with RNAs that bind to their dsRBMs. We propose a model in which structured RNAs regulate gene expression by modulating transcription through interactions with members of the NF90 protein family.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark 01701-1709, USA
| | | |
Collapse
|
685
|
Teulade-Fichou MP, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny JL, David A, Lehn JM, Wilson WD. Selective recognition of G-qQuadruplex telomeric DNA by a bis(quinacridine) macrocycle. J Am Chem Soc 2003; 125:4732-40. [PMID: 12696891 DOI: 10.1021/ja021299j] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of G-quadruplex DNA with the macrocyclic compound BOQ1, which possesses two dibenzophenanthroline (quinacridine) subunits, has been investigated by a variety of methods. The oligonucleotide 5'-A(GGGT(2)A)(3)G(3), which mimics the human telomeric repeat sequence and forms an intramolecular quadruplex, was used as one model system. Equilibrium binding constants measured by biosensor surface plasmon resonance (SPR) methods indicate a high affinity of the macrocycle for the quadruplex conformation (K > 1 x 10(7) M(-)(1)) with two equivalent binding sites. The affinity of BOQ1 for DNA duplexes is at least 1 order of magnitude lower. In addition, the macrocycle is more selective than the monomeric control compound (MOQ2), which is not able to discriminate between the two DNA structures (K(duplex) approximately K(quadruplex) approximately 10(6) M(-)(1)). Strong binding of BOQ1 to G4 DNA sequences was confirmed by fluorometric titrations with a tetraplex-forming oligonucleotide. Competition dialysis experiments with a panel of different DNA structures, from single strands to quadruplexes, clearly established the quadruplex binding specificity of BOQ1. Fluorescence resonance energy transfer (FRET) T(m) experiments with a doubly labeled oligonucleotide also revealed a strong stabilization of the G4 conformation in the presence of BOQ1 (DeltaT(m) = +28 degrees C). This DeltaT(m) value is one of the highest values measured for a G-quadruplex ligand and is significantly higher than observed for the monomer control compounds (DeltaT(m) = +10-12 degrees C). Gel mobility shift assays indicated that the macrocycle efficiently induces the formation of G-tetraplexes. Strong inhibition of telomerase was observed in the submicromolar range (IC(50) = 0.13 microM). These results indicate that macrocycles represent an exciting new development opportunity for targeting DNA quadruplexes.
Collapse
Affiliation(s)
- Marie-Paule Teulade-Fichou
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11 place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
686
|
Kim YM, Watanabe T, Allen PB, Kim YM, Lee SJ, Greengard P, Nairn AC, Kwon YG. PNUTS, a protein phosphatase 1 (PP1) nuclear targeting subunit. Characterization of its PP1- and RNA-binding domains and regulation by phosphorylation. J Biol Chem 2003; 278:13819-28. [PMID: 12574161 DOI: 10.1074/jbc.m209621200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PNUTS, Phosphatase 1 NUclear Targeting Subunit, is a recently described protein that targets protein phosphatase 1 (PP1) to the nucleus. In the present study, we characterized the biochemical properties of PNUTS. A variety of truncation and site-directed mutants of PNUTS was prepared and expressed either as glutathione S-transferase fusion proteins in Escherichia coli or as FLAG-tagged proteins in 293T cells. A 50-amino acid domain in the center of PNUTS mediated both high affinity PP1 binding and inhibition of PP1 activity. The PP1-binding domain is related to a motif found in several other PP1-binding proteins but is distinct in that Trp replaces Phe. Mutation of the Trp residue essentially abolished the ability of PNUTS to bind to and inhibit PP1. The central PP1-binding domain of PNUTS was an effective substrate for protein kinase A in vitro, and phosphorylation substantially reduced the ability of PNUTS to bind to PP1 in vitro and following stimulation of protein kinase A in intact cells. In vitro RNA binding experiments showed that a C-terminal region including several RGG motifs and a novel repeat domain rich in His and Gly interacted with mRNA and single-stranded DNA. PNUTS exhibited selective binding for poly(A) and poly(G) compared with poly(U) or poly(C) ribonucleotide homopolymers, with specificity being mediated by distinct regions within the domain rich in His and Gly and the domain containing the RGG motifs. Finally, a PNUTS-PP1 complex was isolated from mammalian cell lysates using RNA-conjugated beads. Together, these studies support a role for PNUTS in protein kinase A-regulated targeting of PP1 to specific RNA-associated complexes in the nucleus.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
687
|
Abstract
DNA guanine (G) quadruplexes are stabilized by an interesting variation of the hydrogen-bonding schemes encountered in nucleic acid duplexes and triplexes. In an attempt to use this mode of molecular recognition, we target a dimeric G-quadruplex formed by the Oxytricha nova telomeric sequence d(G(4)T(4)G(4)) with a peptide nucleic acid (PNA) probe having a homologous rather than complementary sequence. UV-vis and CD spectroscopy reveal that a stable hybrid possessing G-quartets is formed between the PNA and DNA. The four-stranded character of the hybrid and the relative orientation of the strands is determined by fluorescence resonance energy transfer (FRET) experiments. FRET results indicate that (i) the two PNA strands are parallel to each other, (ii) the two DNA strands are parallel to each other, and (iii) the 5'-termini of the DNA strands align with the N-termini of the PNA strands. The resulting PNA(2)-DNA(2) quadruplex shows a preference of Na(+) over Li(+) and displays thermodynamic behavior consistent with alternating PNA and DNA strands in the hybrid. The formation of this novel supramolecular structure demonstrates a new high-affinity DNA recognition mechanism and expands the scope of molecular recognition by PNA.
Collapse
Affiliation(s)
- Bhaskar Datta
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | |
Collapse
|
688
|
Barnea-Goraly N, Eliez S, Hedeus M, Menon V, White CD, Moseley M, Reiss AL. White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging. Am J Med Genet B Neuropsychiatr Genet 2003; 118B:81-8. [PMID: 12627472 DOI: 10.1002/ajmg.b.10035] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fragile X syndrome, the most common form of hereditary mental retardation, causes disruption in the development of dendrites and synapses, the targets for axonal growth in the central nervous system. This disruption could potentially affect the development, wiring, and targeting of axons. The current study utilized diffusion tensor imaging (DTI) to investigate whether white matter tract integrity and connectivity are altered in fragile X syndrome. Ten females with a diagnosis of fragile X syndrome and ten, age matched, female control subjects underwent diffusion weighted MRI scans. A whole brain analysis of fractional anisotropy (FA) values was performed using statistical parametric mapping (SPM). A follow-up, regions-of-interest analysis also was conducted. Relative to controls, females with fragile X exhibited lower FA values in white matter in fronto-striatal pathways, as well as in parietal sensory-motor tracts. This preliminary study suggests that regionally specific alterations of white matter integrity occur in females with fragile X. Aberrant white matter connectivity in these regions is consistent with the profile of cognitive and behavioral features of fragile X syndrome, and potentially provide additional insight into the detrimental effects of suboptimal levels of FMRP in the developing brain.
Collapse
Affiliation(s)
- Naama Barnea-Goraly
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305-5719, USA
| | | | | | | | | | | | | |
Collapse
|
689
|
Abstract
Fragile X syndrome is the most common cause of inherited mental retardation, and recently a number of mouse models have been generated to study the condition. Knockout of the gene associated with fragile X, Fmr1, results in mild, but consistent abnormalities, analogous to the clinical and pathological symptoms observed in human patients. Thus, many aspects of the syndrome can now be studied in mice, taking full advantage of the benefits of this model organism, including the short generation time and unlimited supply of tissue. The experimental data suggest that knockout of Fmr1 mildly disturbs a variety of processes in different brain regions.
Collapse
Affiliation(s)
- R Frank Kooy
- Dept of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
690
|
Abstract
Hybridization of oligonucleotides and their analogues to complementary DNA or RNA sequences is complicated by the presence of secondary and tertiary structure in the target. In particular, folding of the target nucleic acid imposes substantial thermodynamic penalties to hybridization. Slower kinetics for hybridization can also be observed, relative to an unstructured target. The development of high affinity oligonucleotide analogues such as peptide nucleic acid (PNA) can compensate for the thermodynamic and kinetic barriers to hybridization. Examples of structured targets successfully hybridized by PNA oligomers include DNA duplexes, DNA hairpins, DNA quadruplexes and an RNA hairpin embedded within a mRNA.
Collapse
Affiliation(s)
- Bruce A Armitage
- Dept of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA.
| |
Collapse
|
691
|
Abstract
Fragile X syndrome - a common form of inherited mental retardation - is caused by the loss of the fragile X mental retardation 1 protein (FMRP). FMRP is an RNA-binding protein which forms a messenger ribonucleoprotein (mRNP) complex that associates with translating polyribosomes. It has been proposed that FMRP is involved in synaptic plasticity through the regulation of mRNA transportation and translation. Recent advances in the identification of the mRNA ligands that are bound by FMRP, the RNA sequence and structure required for FMRP-RNA interaction, and the physiological consequences of FMRP deficiency in the brain are important steps towards understanding the molecular pathogenesis of fragile X syndrome, and learning and memory in general.
Collapse
Affiliation(s)
- Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
692
|
Lombroso PJ. Genetics of childhood disorders: XLVIII. Learning and memory, Part 1: Fragile X syndrome update. J Am Acad Child Adolesc Psychiatry 2003; 42:372-5. [PMID: 12595792 DOI: 10.1097/00004583-200303000-00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
693
|
Abstract
Recent studies provide new insight into the mechanistic function of Fragile X Mental Retardation Protein (FMRP), paving the way to understanding the biological basis of Fragile X Syndrome. While it has been known for several years that there are spine defects associated with the absence of the mRNA binding protein FMRP, it has been unclear how its absence may lead to specific synaptic defects that underlie the learning and cognitive impairments in Fragile X. One hypothesis under study is that FMRP may play a key role in the regulation of dendritically localized mRNAs, at subsynaptic sites where regulation of local protein synthesis may influence synaptic structure and plasticity. This review highlights recent progress to identify the specific mRNA targets of FMRP and assess defects in mRNA regulation that occur in cells lacking FMRP. In addition, exciting new studies on Fmr1 knockout mice and mutant flies have begun to elucidate a key role for FMRP in synaptic growth, structure, and long-term plasticity.
Collapse
Affiliation(s)
- L N Antar
- Department of Neuroscience, Rose F. Kennedy Center for Mental Retardation, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
694
|
Kreft SG, Nassal M. hRUL138, a novel human RNA-binding RING-H2 ubiquitin-protein ligase. J Cell Sci 2003; 116:605-16. [PMID: 12538761 DOI: 10.1242/jcs.00261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cellular as well as viral RNAs are usually found complexed with proteins. In an attempt to identify proteins that interact with transcripts of hepatitis B virus (HBV), a DNA virus that replicates through reverse transcription, a partial cDNA was isolated from a human cDNA expression library whose gene product bound to an HBV-derived RNA. Using an overlapping clone from a molecular hybridization screen a full-length cDNA was assembled. It contained a large open reading frame for a 1208 amino-acid protein of 138 kDa identical to the hypothetical product of the KIAA0675 clone. Closely related sequences are present in mouse cDNA libraries but not in the genomes of lower organisms. The protein sequence contained no known RNA-binding domain and, apart from a probable coiled-coil domain, the only significant homology involved a complete RING-H2 motif. This suggested that the protein might be a novel RNA-binding RING-dependent ubiquitin-protein ligase or E3 enzyme. A motif critical for RNA binding was experimentally mapped to a central Lys-rich region. Binding specificity is either broad or the protein has as yet unknown physiological targets; hence, at present, a potential importance for HBV biology remains open. The RING-H2 domain was functional in and essential for self- and trans-ubiquitylation in vitro and for proteasome-mediated turnover of the protein in vivo. We therefore termed it hRUL138 for human RNA-binding ubiquitin ligase of 138 kDa. hRUL138 mRNAs are expressed at low levels in most tissues. GFP-tagged hRUL138 derivatives were found associated with cytoplasmic structures, possibly the ER, but excluded from the nucleus. The combined presence of RNA binding and E3 activity in hRUL138 raises the possibility that both are mechanistically linked.
Collapse
Affiliation(s)
- Stefan G Kreft
- University Hospital Freiburg, Department of Internal Medicine II, Molecular Biology, Hugstetter Str 55, D-79106 Freiburg, Germany
| | | |
Collapse
|
695
|
Abstract
Stabilisation of G-quadruplex structures formed from telomeric DNA, by means of quadruplex-selective ligands, is a means of inhibiting the telomerase enzyme from catalysing the synthesis of telomeric DNA repeats. In order to understand the molecular basis of ligand-quadruplex recognition, the crystal structure has been determined of such a complex, at 1.75A resolution. This complex is between a dimeric antiparallel G-quadruplex formed from the Oxytricha nova telomeric DNA sequence d(GGGGTTTTGGGG), and a di-substituted aminoalkylamido acridine compound. The structure shows that the acridine moiety is bound at one end of the stack of G-quartets, within one of the thymine loops. It is held in place by a combination of stacking interactions and specific hydrogen bonds with thymine bases. The stability of the ligand in this binding site has been confirmed by a 2ns molecular dynamics simulation.
Collapse
Affiliation(s)
- Shozeb M Haider
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | | | | |
Collapse
|
696
|
Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 2003; 112:317-27. [PMID: 12581522 DOI: 10.1016/s0092-8674(03)00079-5] [Citation(s) in RCA: 525] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Fragile X syndrome, which results from the absence of functional FMRP protein, is the most common heritable form of mental retardation. Here, we show that FMRP acts as a translational repressor of specific mRNAs at synapses. Interestingly, FMRP associates not only with these target mRNAs, but also with the dendritic, non-translatable RNA BC1. Blocking of BC1 inhibits the interaction of FMRP with its target mRNAs. Furthermore, BC1 binds directly to FMRP and can also associate, in the absence of any protein, with the mRNAs regulated by FMRP. This suggests a mechanism where BC1 could determine the specificity of FMRP function by linking the regulated mRNAs and FMRP. Thus, when FMRP is not present, loss of translational repression of specific mRNAs at synapses could result in synaptic dysfunction phenotype of Fragile X patients.
Collapse
Affiliation(s)
- Francesca Zalfa
- Dipartimento di Biologia, Università di Roma, Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
697
|
Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, Carbonetto S, Weiler IJ, Greenough WT, Eberwine J. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 2003; 37:417-31. [PMID: 12575950 DOI: 10.1016/s0896-6273(03)00034-5] [Citation(s) in RCA: 389] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Fragile X mental retardation-1 (Fmr1) gene encodes a multifunctional protein, FMRP, with intrinsic RNA binding activity. We have developed an approach, antibody-positioned RNA amplification (APRA), to identify the RNA cargoes associated with the in vivo configured FMRP messenger ribonucleoprotein (mRNP) complex. Using APRA as a primary screen, putative FMRP RNA cargoes were assayed for their ability to bind directly to FMRP using traditional methods of assessing RNA-protein interactions, including UV-crosslinking and filter binding assays. Approximately 60% of the APRA-defined mRNAs directly associate with FMRP. By examining a subset of these mRNAs and their encoded proteins in brain tissue from Fmr1 knockout mice, we have observed that some of these cargoes as well as the proteins they encode show discrete changes in abundance and/or differential subcellular distribution. These data are consistent with spatially selective regulation of multiple biological pathways by FMRP.
Collapse
Affiliation(s)
- Kevin Y Miyashiro
- Department of Pharmacology, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
698
|
Ji X, Kong J, Liebhaber SA. In vivo association of the stability control protein alphaCP with actively translating mRNAs. Mol Cell Biol 2003; 23:899-907. [PMID: 12529395 PMCID: PMC140719 DOI: 10.1128/mcb.23.3.899-907.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional controls play a major role in eucaryotic gene expression. These controls are mediated by sequence-specific interactions of cis-acting determinants in target mRNAs with one or more protein factors. The positioning of a subset of these mRNA-protein (RNP) complexes within the 3' untranslated region (3' UTR) may allow them to remain associated with the mRNA during active translation. Robust expression of human alpha-globin mRNA during erythroid differentiation has been linked to formation of a binary complex between a KH-domain protein, alphaCP, and a 3' UTR C-rich motif. Detection of this "alpha-complex" has been limited to in vitro studies, and the functional state of the alpha-globin mRNA targeted by alphaCP has not been defined. In the present study we demonstrate that a significant fraction of alphaCP is associated with polysomal mRNA. Targeted analysis of the polysomal RNP complexes revealed that alphaCP is specifically bound to actively translating alpha-globin mRNA. The bound alphaCP is restricted to the poly(C)-rich 3' UTR motif and is dislodged when ribosomes are allowed to enter this region. These data validate the general importance of the 3' UTR as a sheltered site for RNP complexes and support a specific model in which the stabilizing function of alphaCP is mediated on actively translating target mRNAs.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
699
|
Affiliation(s)
- Richard Einstein
- ExonHit Therapeutics, Inc., 217 Perry Parkway, Bldg. 5, Gaithersburg, MD 20877, USA.
| |
Collapse
|
700
|
Côté J, Boisvert FM, Boulanger MC, Bedford MT, Richard S. Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 2003; 14:274-87. [PMID: 12529443 PMCID: PMC140244 DOI: 10.1091/mbc.e02-08-0484] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA binding proteins often contain multiple arginine glycine repeats, a sequence that is frequently methylated by protein arginine methyltransferases. The role of this posttranslational modification in the life cycle of RNA binding proteins is not well understood. Herein, we report that Sam68, a heteronuclear ribonucleoprotein K homology domain containing RNA binding protein, associates with and is methylated in vivo by the protein arginine N-methyltransferase 1 (PRMT1). Sam68 contains asymmetrical dimethylarginines near its proline motif P3 as assessed by using a novel asymmetrical dimethylarginine-specific antibody and mass spectrometry. Deletion of the methylation sites and the use of methylase inhibitors resulted in Sam68 accumulation in the cytoplasm. Sam68 was also detected in the cytoplasm of PRMT1-deficient embryonic stem cells. Although the cellular function of Sam68 is unknown, it has been shown to export unspliced human immunodeficiency virus RNAs. Cells treated with methylase inhibitors prevented the ability of Sam68 to export unspliced human immunodeficiency virus RNAs. Other K homology domain RNA binding proteins, including SLM-1, SLM-2, QKI-5, GRP33, and heteronuclear ribonucleoprotein K were also methylated in vivo. These findings demonstrate that RNA binding proteins are in vivo substrates for PRMT1, and their methylation is essential for their proper localization and function.
Collapse
Affiliation(s)
- Jocelyn Côté
- Sir Mortimer B Davis Jewish General Hospital, Department of Oncology, McGill University, Montréal, Québec, H3T 1E2 Canada
| | | | | | | | | |
Collapse
|