651
|
Lendvai B, Stern EA, Chen B, Svoboda K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 2000; 404:876-81. [PMID: 10786794 DOI: 10.1038/35009107] [Citation(s) in RCA: 594] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Do changes in neuronal structure underlie cortical plasticity? Here we used time-lapse two-photon microscopy of pyramidal neurons in layer 2/3 of developing rat barrel cortex to image the structural dynamics of dendritic spines and filopodia. We found that these protrusions were highly motile: spines and filopodia appeared, disappeared or changed shape over tens of minutes. To test whether sensory experience drives this motility we trimmed whiskers one to three days before imaging. Sensory deprivation markedly (approximately 40%) reduced protrusive motility in deprived regions of the barrel cortex during a critical period around postnatal days (P)11-13, but had no effect in younger (P8-10) or older (P14-16) animals. Unexpectedly, whisker trimming did not change the density, length or shape of spines and filopodia. However, sensory deprivation during the critical period degraded the tuning of layer 2/3 receptive fields. Thus sensory experience drives structural plasticity in dendrites, which may underlie the reorganization of neural circuits.
Collapse
Affiliation(s)
- B Lendvai
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
652
|
Abstract
Since early anatomical descriptions, the existence of dendritic spines has stimulated intense curiosity and speculation about their regulation and function. Research over the past three decades has described an impressive mutability in dendritic-spine number and morphology under a variety of physiological circumstances. Current evidence favors a proposed model in which two pools of actin filaments, one stable and the other dynamic, support both persistent spine structure and rapid spine motility. Potential functions of spine motility and dynamic actin include regulated protein scaffolding, retrograde signaling and synapse stabilization.
Collapse
Affiliation(s)
- S Halpain
- Dept of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
653
|
Honjo Y, Nakagawa S, Takeichi M. Blockade of cadherin-6B activity perturbs the distribution of PSD-95 family proteins in retinal neurones. Genes Cells 2000; 5:309-18. [PMID: 10792468 DOI: 10.1046/j.1365-2443.2000.00327.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Synaptic junctions have cadherin-catenin complexes, but their functions are poorly understood. Using retinal neurones, we investigated the role of this adhesion machinery in synaptic organization. RESULTS In cultures of chicken retinal cells, cadherin-6B (cad6B) and cadherin-7 (cad7) are expressed by distinct neurones, each being distributed in a punctate pattern along their neurites as well as in the soma. Double-immunostaining for cad6B and PSD-95/SAP90 or other PSD-95 family members, known to localize in the postsynaptic density, showed that their distributions overlapped each other. To assess the role for cad6B, we incubated retinal cells with antibodies that could specifically block cad6B-mediated adhesion. In the antibody-treated neurones, the localization pattern of PSD-95 family proteins was altered, that is, their staining signals tended to be reduced or disarranged. We then examined whether cadherins interacted molecularly with PSD-95: Cadherin immunoprecipitates from brain lysates did not contain PSD-95; nevertheless, this protein was co-precipitated with alphaN- and beta-catenins. When PSD-95 proteins were ectopically expressed in epithelial cells, some of these molecules were concentrated in cell-cell junctions, co-localizing with E-cadherin, and this junctional localization of PSD-95 was abolished by blocking of E-cadherin activity. CONCLUSION These results suggest that cadherins play a role in the subcellular organization of postsynaptic density components through some, perhaps indirect, molecular interactions.
Collapse
Affiliation(s)
- Y Honjo
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
654
|
Abstract
A series of recent studies has provided long-awaited direct evidence that enduring changes in synaptic strength, presumably underlying the formation of persistent memories, may be encoded in a lasting form as a change in synaptic structure.
Collapse
Affiliation(s)
- S M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, 21201, USA.
| |
Collapse
|
655
|
Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci 2000. [PMID: 10684874 DOI: 10.1523/jneurosci.20-05-01722.2000] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Although the mechanisms of calcium influx into spines have been explored, it is unknown what determines the calcium decay kinetics in spines. With two-photon microscopy we investigate action potential-induced calcium dynamics in spines from rat CA1 pyramidal neurons in slices. The [Ca(2+)](i) in most spines shows two decay kinetics: an initial fast component, during which [Ca(2+)](i) in spines decays to dendritic levels, followed by a slower decay phase in which the spine follows dendritic kinetics. The correlation between [Ca(2+)](i) in spine and dendrite at the breakpoint of the decay kinetics demonstrates diffusional equilibration between spine and dendrite during the slower component. To explain the faster initial decay, we rule out saturation or kinetic effects of endogenous or exogenous buffers and focus instead on (1) active calcium extrusion and (2) buffered diffusion of calcium from spine to dendrite. The presence of an undershoot in most spines indicates that extrusion mechanisms can be intrinsic to the spine. Supporting the two mechanisms, pharmacological blockade of smooth endoplasmic reticulum calcium (SERCA) pumps and the length of the spine neck affect spine decay kinetics. Using a mathematical model, we find that the contribution of calcium pumps and diffusion varies from spine to spine. We conclude that dendritic spines have calcium pumps and that their density and kinetics, together with the morphology of the spine neck, determine the time during which the spine compartmentalizes calcium.
Collapse
|
656
|
Deller T, Merten T, Roth SU, Mundel P, Frotscher M. Actin-associated protein synaptopodin in the rat hippocampal formation: localization in the spine neck and close association with the spine apparatus of principal neurons. J Comp Neurol 2000; 418:164-81. [PMID: 10701442 DOI: 10.1002/(sici)1096-9861(20000306)418:2<164::aid-cne4>3.0.co;2-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dendritic spines are sites of synaptic plasticity in the brain and are capable of remodeling their shape and size. However, little is known about the cellular mechanisms that regulate spine morphology and motility. Synaptopodin is a recently described actin-associated protein found in renal podocytes and dendritic spines (Mundel et al. J Cell Biol. [1997] 139:193-204), which is believed to play a role in spine plasticity. The present study analyzed the distribution of synaptopodin in the hippocampal formation. In situ hybridization histochemistry revealed a high constitutive expression of synaptopodin mRNA in the principal cell layers. Light microscopic immunohistochemistry showed that the protein is distributed throughout the hippocampal formation in a region- and lamina-specific manner. Postembedding immunogold histochemistry demonstrated that synaptopodin is exclusively present in dendrites and spines, specifically in the spine neck in close association with the spine apparatus. Spines lacking a spine apparatus are not immunoreactive for synaptopodin. These data suggest that synaptopodin links the spine apparatus to actin and may thus be involved in the actin-based plasticity of spines.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany.
| | | | | | | | | |
Collapse
|
657
|
Penzes P, Johnson RC, Alam MR, Kambampati V, Mains RE, Eipper BA. An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction. J Biol Chem 2000; 275:6395-403. [PMID: 10692441 DOI: 10.1074/jbc.275.9.6395] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Communication between membranes and the actin cytoskeleton is an important aspect of neuronal function. Regulators of actin cytoskeletal dynamics include the Rho-like small GTP-binding proteins and their exchange factors. Kalirin is a brain-specific protein, first identified through its interaction with peptidylglycine-alpha-amidating monooxygenase. In this study, we cloned rat Kalirin-7, a 7-kilobase mRNA form of Kalirin. Kalirin-7 contains nine spectrin-like repeats, a Dbl homology domain, and a pleckstrin homology domain. We found that the majority of Kalirin-7 protein is associated with synaptosomal membranes, but a fraction is cytosolic. We also detected higher molecular weight Kalirin proteins. In rat cerebral cortex, Kalirin-7 is highly enriched in the postsynaptic density fraction. In primary cultures of neurons, Kalirin-7 is detected in spine-like structures, while other forms of Kalirin are visualized in the cell soma and throughout the neurites. Kalirin-7 and its Dbl homology-pleckstrin homology domain induce formation of lamellipodia and membrane ruffling, when transiently expressed in fibroblasts, indicative of Rac1 activation. Using Rac1, the Dbl homology-pleckstrin homology domain catalyzed the in vitro exchange of bound GDP with GTP. Kalirin-7 is the first guanine-nucleotide exchange factor identified in the postsynaptic density, where it is positioned optimally to regulate signal transduction pathways connecting membrane proteins and the actin cytoskeleton.
Collapse
Affiliation(s)
- P Penzes
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
658
|
Abstract
Major technical advances in the imaging of live cells have led to a recent flurry of studies demonstrating how dendrites remodel dynamically during development. Taken together with our current understanding of axonal development, these studies help provide a more unified picture of how neural circuits might be formed altered or maintained throughout life.
Collapse
Affiliation(s)
- W T Wong
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
659
|
Abstract
Our understanding of neuronal synapse development has advanced in recent years. The development of glycinergic synapses appears to depend on gephyrin and glycine receptor activity. Molecular characterization of the structure and development of glutamatergic synapses is in progress, but the underlying mechanisms remain unclear. Activity-dependent mechanisms and specific molecules that regulate the morphological development of dendritic spines have recently been identified.
Collapse
Affiliation(s)
- S H Lee
- Department of Neurobiology and Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,USA
| | | |
Collapse
|
660
|
Tanaka H, Shan W, Phillips GR, Arndt K, Bozdagi O, Shapiro L, Huntley GW, Benson DL, Colman DR. Molecular modification of N-cadherin in response to synaptic activity. Neuron 2000; 25:93-107. [PMID: 10707975 DOI: 10.1016/s0896-6273(00)80874-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes and becomes markedly protease resistant. These properties are indices of strong, stable, enhanced cadherin-mediated intercellular adhesion. N-cadherin retained protease resistance for at least 2 hr after recovery, while other surface molecules, including other cadherins, were completely degraded. The acquisition of protease resistance and dimerization of N-cadherin is not dependent on new protein synthesis, nor is it accompanied by internalization of N-cadherin. By immunocytochemistry, we found that high K+ selectively induces surface dispersion of N-cadherin, which, after recovery, returns to synaptic puncta. N-cadherin dispersion under K+ treatment parallels the rapid expansion of the presynaptic membrane consequent to the massive vesicle fusion that occurs with this type of depolarization. In contrast, with NMDA application, N-cadherin does not disperse but does acquire enhanced protease resistance and dimerizes. Our data strongly suggest that synaptic adhesion is dynamically and locally controlled, and modulated by synaptic activity.
Collapse
Affiliation(s)
- H Tanaka
- Program in Cell Adhesion, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
661
|
Abstract
Neuronal connections and cortical maps are continuously remodeled by our experience. Knowledge of the potential capabilityof the brain to compensate for lesions is a prerequisite for optimal stroke rehabilitation strategies. Experimental focal cortical lesions induce changes in adjacent cortex and in the contralateral hemisphere. Neuroimaging studies in stroke patients indicate altered poststroke activation patterns, which suggest some functional reorganization. To what extent functional imaging data correspond to outcome data needs to be evaluated. Reorganization may be the principle process responsible for recovery of function after stroke, but what are the limits, and to what extent can postischemic intervention facilitate such changes? Postoperative housing of animals in an enriched environment can significantly enhance functional outcome and can also interact with other interventions, including neocortical grafting. What role will neuronal progenitor cells play in future rehabilitation-stimulated in situ or as neural replacement? And what is the future for blocking neural growth inhibitory factors? Better knowledge of postischemic molecular and neurophysiological events, and close interaction between basic and applied research, will hopefully enable us to design rehabilitation strategies based on neurobiological principles in a not-too-distant future.
Collapse
Affiliation(s)
- B B Johansson
- Division for Experimental Neurology, Wallenberg Neuroscience Center, University Hospital, Lund, Sweden.
| |
Collapse
|
662
|
Abstract
Ubiquitous among eukaryotes, the ADF/cofilins are essential proteins responsible for the high turnover rates of actin filaments in vivo. In vertebrates, ADF and cofilin are products of different genes. Both bind to F-actin cooperatively and induce a twist in the actin filament that results in the loss of the phalloidin-binding site. This conformational change may be responsible for the enhancement of the off rate of subunits at the minus end of ADF/cofilin-decorated filaments and for the weak filament-severing activity. Binding of ADF/cofilin is competitive with tropomyosin. Other regulatory mechanisms in animal cells include binding of phosphoinositides, phosphorylation by LIM kinases on a single serine, and changes in pH. Although vertebrate ADF/cofilins contain a nuclear localization sequence, they are usually concentrated in regions containing dynamic actin pools, such as the leading edge of migrating cells and neuronal growth cones. ADF/cofilins are essential for cytokinesis, phagocytosis, fluid phase endocytosis, and other cellular processes dependent upon actin dynamics.
Collapse
Affiliation(s)
- J R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA.
| |
Collapse
|
663
|
Hayashi K, Ishikawa R, Kawai-Hirai R, Takagi T, Taketomi A, Shirao T. Domain analysis of the actin-binding and actin-remodeling activities of drebrin. Exp Cell Res 1999; 253:673-80. [PMID: 10585290 DOI: 10.1006/excr.1999.4663] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drebrin is an actin-binding protein which is expressed at highly levels in neurons. When introduced into fibroblasts, it has been known to bind to F-actin and to cause remodeling of F-actin. Here, we performed a domain analysis of the actin-binding and actin-remodeling activities of drebrin. Various fragments of drebrin cDNA were fused with green fluorescent protein cDNA and introduced into Chinese hamster ovary cells. Association of the fusion protein with F-actin and remodeling of the F-actin were examined. We found that the central 85-amino-acid sequence (residues 233-317) was sufficient for the binding to and remodeling of F-actin. The binding activity of this fragment was relatively low compared with that of full-length drebrin, but all the types of abnormalities of F-actin that are observed with full-length drebrin were also observed with this fragment. When this sequence was further fragmented, the actin-binding activity was greatly reduced and the actin-remodeling activity disappeared. The actin-binding activity of the central region of drebrin was confirmed by a cosedimentation assay of chymotryptic fragments of drebrin with purified actin. These data indicate that the actin-binding domain and actin-remodeling domain are identical and that this domain is located at the central region of drebrin.
Collapse
Affiliation(s)
- K Hayashi
- Department of Neurobiology and Behavior, Department of Pharmacology, Gunma University School of Medicine, 3-39-22 Showamachi, Maebashi, 371, Japan.
| | | | | | | | | | | |
Collapse
|
664
|
Drakew A, Frotscher M, Heimrich B. Blockade of neuronal activity alters spine maturation of dentate granule cells but not their dendritic arborization. Neuroscience 1999; 94:767-74. [PMID: 10579567 DOI: 10.1016/s0306-4522(99)00378-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Organotypic co-cultures of the entorhinal cortex and hippocampus were examined to determine the role of the entorhinal fibers in the dendritic development and formation of spines of dentate granule cells. Quantitative analysis of Golgi-impregnated granule cells in single hippocampal cultures and co-cultures with the entorhinal cortex revealed that the presence of entorhinal fibers promoted the elongation and differentiation of the target granule cell dendrites. This was accompanied by an increase in the total number of spines. The contribution of neuronal activity to this afferent-mediated dendritic development was tested by chronic application of the sodium channel blocker tetrodotoxin for 20 days in vitro. Tracing with biocytin showed that the formation of the entorhinohippocampal pathway was unaffected by the blockade of neuronal activity. The dendritic arbor of cultured granule cells and the number of dendritic spines did not differ between tetrodotoxin-treated slices and untreated controls. However, there was a significant increase in the relative number of filiform spines on granule cell dendrites in tetrodotoxin-treated co-cultures. Such filiform spines are a characteristic feature of immature neurons. These results suggest the cooperation of two mechanisms in the dendritic development of dentate granule cells: the specific afferent-mediated dendritic arborization and the activity-dependent maturation of spines.
Collapse
Affiliation(s)
- A Drakew
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
665
|
Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999; 402:421-5. [PMID: 10586883 DOI: 10.1038/46574] [Citation(s) in RCA: 725] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Structural remodelling of synapses and formation of new synaptic contacts has been postulated as a possible mechanism underlying the late phase of long-term potentiation (LTP), a form of plasticity which is involved in learning and memory. Here we use electron microscopy to analyse the morphology of synapses activated by high-frequency stimulation and identified by accumulated calcium in dendritic spines. LTP induction resulted in a sequence of morphological changes consisting of a transient remodelling of the postsynaptic membrane followed by a marked increase in the proportion of axon terminals contacting two or more dendritic spines. Three-dimensional reconstruction revealed that these spines arose from the same dendrite. As pharmacological blockade of LTP prevented these morphological changes, we conclude that LTP is associated with the formation of new, mature and probably functional synapses contacting the same presynaptic terminal and thereby duplicating activated synapses.
Collapse
Affiliation(s)
- N Toni
- Neuropharmacology, CMU, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
666
|
Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R. Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A 1999; 96:13438-43. [PMID: 10557339 PMCID: PMC23966 DOI: 10.1073/pnas.96.23.13438] [Citation(s) in RCA: 338] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of dendritic spines, postsynaptic sites of excitatory input in the mammalian central nervous system (CNS), is still not well understood. Although changes in spine morphology may mediate synaptic plasticity, the extent of basal spine motility and its regulation and function remains controversial. We investigated spine motility in three principal neurons of the mouse CNS: cerebellar Purkinje cells, and cortical and hippocampal pyramidal neurons. Motility was assayed with time-lapse imaging by using two-photon microscopy of green fluorescent protein-labeled neurons in acute and cultured slices. In all three cell types, dendritic protrusions (filopodia and spines) were highly dynamic, exhibiting a diversity of morphological rearrangements over short (<1-min) time courses. The incidence of spine motility declined during postnatal maturation, but dynamic changes were still apparent in many spines in late-postnatal neurons. Although blockade or induction of neuronal activity did not affect spine motility, disruption of actin polymerization did. We hypothesize that this basal motility of dendritic protrusions is intrinsic to the neuron and underlies the heightened plasticity found in developing CNS.
Collapse
Affiliation(s)
- A Dunaevsky
- Department of Pathology, Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
667
|
|
668
|
Korkotian E, Segal M. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc Natl Acad Sci U S A 1999; 96:12068-72. [PMID: 10518577 PMCID: PMC18413 DOI: 10.1073/pnas.96.21.12068] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to monitor ongoing changes in the shape of dendritic spines has important implications for the understanding of the functional correlates of the great variety of shapes and sizes of dendritic spines in central neurons. We have monitored and three-dimensionally reconstructed dendritic spines in cultured hippocampal neurons over several hours of observation in a confocal laser scanning microscope. In the absence of extrinsic stimulation, the dimensions of dendritic spines of 3-week-old cultured neurons did not change to any significant degree over 3-4 hr in the culture dish, unlike the case with younger cultures. Releasing calcium from stores with pulse application of caffeine causes a transient rise of [Ca(2+)](i) in dendrites and spines, monitored with the calcium dye Oregon-green. Application of caffeine to a dendrite imaged with calcein caused a fast and significant increase in the size of existing dendritic spines and could lead to formation of new ones. This effect is mediated by calcium released from the ryanodine-sensitive stores, as application of caffeine in the presence of ryanodine blocked this effect on the morphology of dendritic spines. Thus, release of calcium from stores is sufficient to produce significant changes in the shape of dendritic spines of cultured hippocampal neurons.
Collapse
Affiliation(s)
- E Korkotian
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | |
Collapse
|
669
|
The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism. J Neurosci 1999. [PMID: 10479705 DOI: 10.1523/jneurosci.19-18-08049.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have studied, at high resolution, the sizes and pattern of dendrites of directionally selective retinal ganglion cells in the rabbit. The dendrites had a distinctive pattern of branching. The major dendritic trunks were relatively thick, beginning at approximately 1 micrometer and tapering to approximately 0.5 micrometer in diameter. Higher order dendrites exiting from them generally stepped abruptly to a diameter of 0.4-0.6 micrometer, which they maintained throughout their length. Recording confirmed the existence of a zone within the receptive field, usually occupying 20-25% of its area, where direction of movement was only weakly discriminated. The dendritic arbors of cells, injected with Lucifer yellow after recording, revealed no difference in dendritic structure between the discriminating and nondiscriminating zones. The nondiscriminating zone was located on the preferred side of the receptive field (the side from which movement in the preferred direction originates). This is consistent with a mechanism of direction selectivity based on inhibition generated by movement in the null direction but not with feedforward excitation, as occurs in flies and is postulated in some models of mammalian direction selectivity.
Collapse
|
670
|
Abstract
In the adult brain, actin is concentrated in dendritic spines where it can produce rapid changes in their shape. Through various synaptic junction proteins, this postsynaptic actin is linked to neurotransmitter receptors, influencing their function and, in turn, being influenced by them. Thus, the actin cytoskeleton is emerging as a key mediator between signal transmission and anatomical plasticity at excitatory synapses.
Collapse
Affiliation(s)
- A Matus
- Friedrich Miecher Institute PO Box 2543, 4002, Basel, Switzerland.
| |
Collapse
|
671
|
Kirov SA, Harris KM. Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated. Nat Neurosci 1999; 2:878-83. [PMID: 10491607 DOI: 10.1038/13178] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendrites of CA1 pyramidal neurons in mature rat hippocampal slices were exposed to different levels of synaptic activation. In some slices, synaptic transmission was blocked with glutamate receptor antagonists, sodium and calcium channel blockers and/or a nominally calcium-free medium with high magnesium. In other slices, synapses were activated with low-frequency control stimulation or repeated tetanic stimulation. In slices with blocked synaptic transmission, dendrites were spinier than in either of the activated states. Thus, mature neurons can increase their numbers of spines, possibly compensating for lost synaptic activity.
Collapse
Affiliation(s)
- S A Kirov
- Division of Neuroscience in the Department of Neurology, Children's Hospital and Harvard Medical School, Enders 260, 300 Longwood Ave., Boston, Massachusetts 02115, USA
| | | |
Collapse
|
672
|
Abstract
The actin cytoskeleton is a dynamic filamentous network whose formation and remodeling underlies the fundamental processes of cell motility and shape determination. To serve these roles, different compartments of the actin cytoskeleton engage in forming specific coupling sites between neighbouring cells and with the underlying matrix, which themselves serve signal transducing functions. In this review, we focus on methods used to visualise the actin cytoskeleton and its dynamics, embracing the use of proteins tagged with conventional fluorophores and green fluorescent protein. Included also is a comparison of cooled CCD technology, confocal and 2-photon fluorescence microscopy of living and fixed cells, as well as a critique of current procedures for electron microscopy.
Collapse
Affiliation(s)
- J Small
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg, Austria.
| | | | | | | |
Collapse
|
673
|
Abstract
Glutamatergic synapses vary, exhibiting EPSCs of widely different magnitudes and timecourses. The main contributors to this variability are: presynaptic factors, including release probability, quantal content and vesicle composition; factors that modulate the concentration and longevity of glutamate in the cleft, including diffusion and the actions of glutamate transporters; and postsynaptic factors, including the types and locations of ionotropic glutamate receptors, their numbers, and the nature and locations of associated intracellular signalling systems.
Collapse
Affiliation(s)
- F Conti
- Istituto di Fisiologia Umana, Università di Ancona, I-60020 Ancona, Italy
| | | |
Collapse
|
674
|
Robbins JR, Barth AI, Marquis H, de Hostos EL, Nelson WJ, Theriot JA. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J Cell Biol 1999; 146:1333-50. [PMID: 10491395 PMCID: PMC1785326 DOI: 10.1083/jcb.146.6.1333] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The bacterial pathogen, Listeria monocytogenes, grows in the cytoplasm of host cells and spreads intercellularly using a form of actin-based motility mediated by the bacterial protein ActA. Tightly adherent monolayers of MDCK cells that constitutively express GFP-actin were infected with L. monocytogenes, and intercellular spread of bacteria was observed by video microscopy. The probability of formation of membrane-bound protrusions containing bacteria decreased with host cell monolayer age and the establishment of extensive cell-cell contacts. After their extension into a recipient cell, intercellular membrane-bound protrusions underwent a period of bacterium-dependent fitful movement, followed by their collapse into a vacuole and rapid vacuolar lysis. Actin filaments in protrusions exhibited decreased turnover rates compared with bacterially associated cytoplasmic actin comet tails. Recovery of motility in the recipient cell required 1-2 bacterial generations. This delay may be explained by acid-dependent cleavage of ActA by the bacterial metalloprotease, Mpl. Importantly, we have observed that low levels of endocytosis of neighboring MDCK cell surface fragments occurs in the absence of bacteria, implying that intercellular spread of bacteria may exploit an endogenous process of paracytophagy.
Collapse
Affiliation(s)
| | - Angela I. Barth
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5307
| | - Hélène Marquis
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262
| | - Eugenio L. de Hostos
- Tropical Disease Research Unit, University of California, San Francisco, California 94121
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5307
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5307
| |
Collapse
|
675
|
Okabe S, Kim HD, Miwa A, Kuriu T, Okado H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat Neurosci 1999; 2:804-11. [PMID: 10461219 DOI: 10.1038/12175] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A postsynaptic density (PSD) protein, PSD-95, was tagged with green fluorescent protein (GFP-PSD-95) and expressed in cultured hippocampal neurons using recombinant adenoviruses. GFP-PSD-95 was selectively localized to excitatory postsynaptic sites. Time-lapse fluorescence imaging of hippocampal neurons revealed that >20% of GFP-PSD-95 clusters turned over within 24 hours. The appearance rate of clusters was higher than the disappearance rate, and this difference accounted for the gradual increase of the cluster density observed in culture. Dynamics of PSD-95 clusters were also inhibited by blockers of excitatory synaptic transmission. Continual PSD turnover and its regulation by synaptic activity may be important in activity-dependent remodeling of neuronal connections.
Collapse
Affiliation(s)
- S Okabe
- Department of Anatomy, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | | | | | | | | |
Collapse
|
676
|
Kaech S, Brinkhaus H, Matus A. Volatile anesthetics block actin-based motility in dendritic spines. Proc Natl Acad Sci U S A 1999; 96:10433-7. [PMID: 10468626 PMCID: PMC17906 DOI: 10.1073/pnas.96.18.10433] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines form the postsynaptic contact sites for most excitatory synapses in the brain. Spines occur in a wide range of different shapes that can vary depending on an animal's experience or behavioral status. Recently we showed that spines on living neurons can change shape within seconds in a process that depends on actin polymerization. We have now found that this morphological plasticity is blocked by inhalational anesthetics at concentrations at which they are clinically effective. These volatile compounds also block actin-based motility in fibroblasts, indicating that their action is independent of neuron-specific components and thus identifying the actin cytoskeleton as a general cellular target of anesthetic action. These observations imply that inhibition of actin dynamics at brain synapses occurs during general anesthesia and that inhalational anesthetics are capable of influencing the morphological plasticity of excitatory synapses in the brain.
Collapse
Affiliation(s)
- S Kaech
- Friedrich Miescher Institute, P.O. Box 2543, 4002 Basel, Switzerland
| | | | | |
Collapse
|
677
|
Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci 1999. [PMID: 10414979 DOI: 10.1523/jneurosci.19-15-06506.1999] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The postsynaptic density (PSD) is crucially involved in the structural and functional organization of the postsynaptic neurotransmitter reception apparatus. Using antisera against rat brain synaptic junctional protein preparations, we isolated cDNAs coding for proline-rich synapse-associated protein-1 (ProSAP1), a PDZ-domain protein. This protein was found to be identical to the recently described cortactin-binding protein-1 (CortBP1). Homology screening identified a related protein, ProSAP2. Specific antisera raised against a C-terminal fusion construct and a central part of ProSAP1 detect a cluster of immunoreactive bands of 180 kDa in the particulate fraction of rat brain homogenates that copurify with the PSD fraction. Transcripts and immunoreactivity are widely distributed in the brain and are upregulated during the period of synapse formation in the brain. In addition, two short N-terminal insertions are detected; they are differentially regulated during brain development. Confocal microscopy of hippocampal neurons showed that ProSAP1 is predominantly localized in synapses, and immunoelectron microscopy in situ revealed a strong association with PSDs of hippocampal excitatory synapses. The accumulation of ProSAP1 at synaptic structures was analyzed in the developing cerebral cortex. During early postnatal development, strong immunoreactivity is detectable in neurites and somata, whereas from postnatal day 10 (P10) onward a punctate staining is observed. At the ultrastructural level, the immunoreactivity accumulates at developing PSDs starting from P8. Both interaction with the actin-binding protein cortactin and early appearance at postsynaptic sites suggest that ProSAP1/CortBP1 may be involved in the assembly of the PSD during neuronal differentiation.
Collapse
|
678
|
Bartoli M, Ternaux JP, Forni C, Portalier P, Salin P, Amalric M, Monneron A. Down-regulation of striatin, a neuronal calmodulin-binding protein, impairs rat locomotor activity. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199908)40:2<234::aid-neu9>3.0.co;2-t] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
679
|
van Rossum D, Hanisch UK. Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci 1999; 22:290-5. [PMID: 10370249 DOI: 10.1016/s0166-2236(99)01404-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide heterogeneity in dendritic-spine morphology is observed and ultrastructural changes can be induced following experimental stimulation of neurons. Morphological adaptation of a given spine might, thus, reflect its history or the current state of synaptic activity. These changes could conceivably result from rearrangements of the cytoskeleton that is subjacent to excitatory synapses. This article dicusses the direct and indirect interactions, between glutamate receptors and the cytoskeletal proteins, which include PDZ-containing proteins, actin and tubulin, as well as associated proteins. In fact, the synaptic-activity-controlled balancing of monomeric, dimeric and polymeric forms of actin and tubulin might underlie the changes in spine shape. These continuous adaptations could be relevant for physiological events, such as learning and the formation of memory.
Collapse
Affiliation(s)
- D van Rossum
- Max Delbrück Centre for Molecular Medicine, 13092 Berlin-Buch, Germany
| | | |
Collapse
|
680
|
Moore H, West AR, Grace AA. The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 1999; 46:40-55. [PMID: 10394473 DOI: 10.1016/s0006-3223(99)00078-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the discovery that the therapeutic efficacy of antipsychotic drugs was significantly correlated to their ability to block dopamine D2 receptors, abnormal dopamine transmission in the forebrain has been postulated to underlie psychosis in schizophrenia. In the past 15 years, an impressive amount of clinical and basic research aimed at the study of schizophrenia has indicated that prefrontal and temporal cortical abnormalities may be more important in the etiology of many of the symptoms of schizophrenia, including psychosis. However, the cortical systems that appear to have structural and/or metabolic abnormalities in schizophrenia patients potently regulate forebrain dopamine transmission through a number of mechanisms. In turn, dopamine modulates excitatory transmission mediated by frontal and temporal cortical projections to the basal ganglia and other regions. The present review summarizes the multiple interactions between forebrain DA systems and frontal and temporal corticostriatal transmission. It then examines the role of these interactions in normal behaviors and the psychopathology of schizophrenia.
Collapse
Affiliation(s)
- H Moore
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
681
|
Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999; 23:569-82. [PMID: 10433268 DOI: 10.1016/s0896-6273(00)80809-0] [Citation(s) in RCA: 810] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NMDA receptors are linked to intracellular cytoskeletal and signaling molecules via the PSD-95 protein complex. We report a novel family of postsynaptic density (PSD) proteins, termed Shank, that binds via its PDZ domain to the C terminus of PSD-95-associated protein GKAP. A ternary complex of Shank/GKAP/PSD-95 assembles in heterologous cells and can be coimmunoprecipitated from rat brain. Synaptic localization of Shank in neurons is inhibited by a GKAP splice variant that lacks the Shank-binding C terminus. In addition to its PDZ domain, Shank contains a proline-rich region that binds to cortactin and a SAM domain that mediates multimerization. Shank may function as a scaffold protein in the PSD, potentially cross-linking NMDA receptor/PSD-95 complexes and coupling them to regulators of the actin cytoskeleton.
Collapse
Affiliation(s)
- S Naisbitt
- Howard Hughes Medical Institute, Department of Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
682
|
Abstract
The role of actin filaments in synaptic function has been studied in the CA1 region of the rat hippocampal slice. Bath application (2 hr) of the actin polymerization inhibitor latrunculin B did not substantially affect the shape of dendrites or spines. However, this and other drugs that affect actin did affect synaptic function. Bath-applied latrunculin B reduced the synaptic response. Several lines of evidence indicate that a component of this effect is presynaptic. To specifically test for a postsynaptic role for actin, latrunculin B or phalloidin, an actin filament stabilizer, was perfused into the postsynaptic neuron. The magnitude of long-term potentiation (LTP) was decreased at times when baseline transmission was not yet affected. Longer applications produced a decrease in baseline AMPA receptor (AMPAR)-mediated transmission. The magnitude of the NMDA receptor-mediated transmission was unaffected, indicating a specific effect on the AMPAR. These results suggest that postsynaptic actin filaments are involved in a dynamic process required to maintain AMPAR-mediated transmission and to enhance it during LTP.
Collapse
|
683
|
Abstract
Dendritic spines are distinguished by their shapes, subcellular composition, and synaptic receptor subtypes. Recent studies show that actin-dependent movements take place in spine heads, that spines emerge from stubby and shaft synapses after dendritic filopodia disappear, and that spines can form without synaptic activation, are maintained by optimal activation, and are lost with excessive activation or during degeneration.
Collapse
Affiliation(s)
- K M Harris
- Division of Neuroscience in the Department of Neurology, Children's Hospital, 300 Longwood Avenue, Enders 260, Boston, Massachusetts 02115, USA.
| |
Collapse
|
684
|
Abstract
Particle-mediated gene transfer and two-photon microscopy were used to monitor the behavior of dendrites of individual cortical pyramidal neurons coexpressing green fluorescent protein (GFP) and brain-derived neurotrophic factor (BDNF). While the dendrites and spines of neurons expressing GFP alone grew modestly over 24-48 hr, coexpressing BDNF elicited dramatic sprouting of basal dendrites, accompanied by a regression of dendritic spines. Compared to GFP-transfected controls, the newly formed dendrites and spines were highly unstable. Experiments utilizing Trk receptor bodies, K252a, and overexpression of nerve growth factor (NGF) demonstrated that these effects were mediated by secreted BDNF interacting with extracellular TrkB receptors. Thus, BDNF induces structural instability in dendrites and spines, which, when restricted to particular portions of a dendritic arbor, may help translate activity patterns into specific morphological changes.
Collapse
Affiliation(s)
- H W Horch
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
685
|
Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons. J Neurosci 1999. [PMID: 10234022 DOI: 10.1523/jneurosci.19-10-03918.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines are known to be extremely motile, providing a structural mechanism for synaptic plasticity. Actin filaments are thought to be responsible for the changes in the shape of spines. We tested our hypothesis that drebrin, an actin-binding protein, is a regulator of spine shape. In high-density long-term primary cultures of rat cerebral cortex neurons, drebrin was colocalized with actin filaments at spines. We introduced drebrin tagged with green fluorescent protein (GFP) into these neurons to test the ability of exogenous drebrin to localize at spines and the effect of overexpression of drebrin on spine shape. We observed that exogenous drebrin indeed accumulated in spines. But when the actin-binding domain of drebrin was deleted, the protein was distributed in both spines and dendritic shafts, indicating that accumulation of drebrin in the spines required its actin-binding activity. Statistical analysis of the lengths of spines as determined from confocal laser microscopic images revealed that the spines were significantly longer in GFP-drebrin-expressing neurons than in GFP-expressing neurons. The longer spines labeled with GFP-drebrin were demonstrated to be postsynaptic by double labeling of the presynaptic terminals with antibody against synaptophysin. These results directly indicate that drebrin binds to actin filaments at dendritic spines and alters spine shape.
Collapse
|
686
|
Engert F, Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999; 399:66-70. [PMID: 10331391 DOI: 10.1038/19978] [Citation(s) in RCA: 1217] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term enhancement of synaptic efficacy in the hippocampus is an important model for studying the cellular mechanisms of neuronal plasticity, circuit reorganization, and even learning and memory. Although these long-lasting functional changes are easy to induce, it has been very difficult to demonstrate that they are accompanied or even caused by morphological changes on the subcellular level. Here we combined a local superfusion technique with two-photon imaging, which allowed us to scrutinize specific regions of the postsynaptic dendrite where we knew that the synaptic changes had to occur. We show that after induction of long-lasting (but not short-lasting) functional enhancement of synapses in area CA1, new spines appear on the postsynaptic dendrite, whereas in control regions on the same dendrite or in slices where long-term potentiation was blocked, no significant spine growth occurred.
Collapse
Affiliation(s)
- F Engert
- Max-Planck Institute of Neurobiology, München-Martinsried, Germany
| | | |
Collapse
|
687
|
Heidemann SR, Kaech S, Buxbaum RE, Matus A. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J Cell Biol 1999; 145:109-22. [PMID: 10189372 PMCID: PMC2148213 DOI: 10.1083/jcb.145.1.109] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytoskeletal proteins tagged with green fluorescent protein were used to directly visualize the mechanical role of the cytoskeleton in determining cell shape. Rat embryo (REF 52) fibroblasts were deformed using glass needles either uncoated for purely physical manipulations, or coated with laminin to induce attachment to the cell surface. Cells responded to uncoated probes in accordance with a three-layer model in which a highly elastic nucleus is surrounded by cytoplasmic microtubules that behave as a jelly-like viscoelastic fluid. The third, outermost cortical layer is an elastic shell under sustained tension. Adhesive, laminin-coated needles caused focal recruitment of actin filaments to the contacted surface region and increased the cortical layer stiffness. This direct visualization of actin recruitment confirms a widely postulated model for mechanical connections between extracellular matrix proteins and the actin cytoskeleton. Cells tethered to laminin-treated needles strongly resisted elongation by actively contracting. Whether using uncoated probes to apply simple deformations or laminin-coated probes to induce surface-to-cytoskeleton interaction we observed that experimentally applied forces produced exclusively local responses by both the actin and microtubule cytoskeleton. This local accomodation and dissipation of force is inconsistent with the proposal that cellular tensegrity determines cell shape.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824-1101, USA.
| | | | | | | |
Collapse
|
688
|
Lankhorst AJ, Duis SE, ter Laak MP, Joosten EA, Hamers FP, Gispen WH. Functional recovery after central infusion of alpha-melanocyte-stimulating hormone in rats with spinal cord contusion injury. J Neurotrauma 1999; 16:323-31. [PMID: 10225218 DOI: 10.1089/neu.1999.16.323] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Melanocortins, peptides related to alpha-melanocortin-stimulating hormone (alpha MSH) and adrenocorticotropic hormone (ACTH), are known to improve axonal regeneration following peripheral nerve injury and stimulate neurite outgrowth from central nervous system (CNS) neurons both in vitro and in vivo. The neurite outgrowth promoting capacity of alpha MSH has prompted us to investigate the effects of intrathecal application of alpha MSH on functional and electrophysiological recovery in a well-characterized model of spinal cord contusion injury. Different doses of alpha MSH were applied via osmotic minipumps into the cisterna magna for 10 days, thereby delivering the peptide directly into the CNS. Functional recovery was monitored during 8 postoperative weeks by means of the Basso, Beattie, and Bresnahan locomotor rating scale, and the thoracolumbar height test. At the end of the study, electrophysiological analysis of rubrospinal motor evoked potentials as performed. Our data showed that application of 3.75 micrograms/kg/h alpha MSH resulted in a marked functional recovery, accompanied by a decrease in the latency of the rMEP. This study demonstrates that intrathecal application of alpha MSH results in functional recovery after spinal cord contusion injury. These findings may initiate new treatment strategies and/or the use of melanocortins in human spinal cord injury.
Collapse
Affiliation(s)
- A J Lankhorst
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
689
|
Reg1ulatory role and molecular interactions of a cell-surface heparan sulfate proteoglycan (N-syndecan) in hippocampal long-term potentiation. J Neurosci 1999. [PMID: 9952400 DOI: 10.1523/jneurosci.19-04-01226.1999] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular mechanisms responsible for synaptic plasticity involve interactions between neurons and the extracellular matrix. Heparan sulfates (HSs) constitute a group of glycosaminoglycans that accumulate in the beta-amyloid deposits in Alzheimer's disease and influence the development of neuron-target contacts by interacting with other cell surface and matrix molecules. However, the contribution of HSs to brain function is unknown. We found that HSs play a crucial role in long-term potentiation (LTP), a finding that is consistent with the idea that converging molecular mechanisms are used in the development of neuron-target contacts and in activity-induced synaptic plasticity in adults. Enzymatic cleavage of HS by heparitinase as well as addition of soluble heparin-type carbohydrates prevented expression of LTP in response to 100 Hz/1 sec stimulation of Schaffer collaterals in rat hippocampal slices. A prominent carrier protein for the type of glycans implicated in LTP regulation in the adult hippocampus was identified as N-syndecan (syndecan-3), a transmembrane proteoglycan that was expressed at the processes of the CA1 pyramidal neurons in an activity-dependent manner. Addition of soluble N-syndecan into the CA1 dendritic area prevented tetanus-induced LTP. A major substrate of src-type kinases, cortactin (p80/85), and the tyrosine kinase fyn copurified with N-syndecan from hippocampus. Moreover, association of both cortactin and fyn to N-syndecan was rapidly increased after induction of LTP. N-syndecan may thus act as an important regulator in the activity-dependent modulation of neuronal connectivity by transmitting signals between extracellular heparin-binding factors and the fyn signaling pathway.
Collapse
|
690
|
McKinney RA, Capogna M, Dürr R, Gähwiler BH, Thompson SM. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 1999; 2:44-9. [PMID: 10195179 DOI: 10.1038/4548] [Citation(s) in RCA: 421] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the influence of synaptically released glutamate on postsynaptic structure by comparing the effects of deafferentation, receptor antagonists and blockers of glutamate release in hippocampal slice cultures. CA1 pyramidal cell spine density and length decreased after transection of Schaffer collaterals and after application of AMPA receptor antagonists or botulinum toxin to unlesioned cultures. Loss of spines induced by lesion or by botulinum toxin was prevented by simultaneous AMPA application. Tetrodotoxin did not affect spine density. Synaptically released glutamate thus exerts a trophic effect on spines by acting at AMPA receptors. We conclude that AMPA receptor activation by spontaneous vesicular glutamate release is sufficient to maintain dendritic spines.
Collapse
Affiliation(s)
- R A McKinney
- Brain Research Institute, University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
691
|
Andersen P, Soleng AF. A thorny question: how does activity maintain dendritic spines? Nat Neurosci 1999; 2:5-7. [PMID: 10195170 DOI: 10.1038/4506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
692
|
Abstract
Neuronal degeneration and cell death can result from excessive activation of receptors for the excitatory neurotransmitter glutamate; however, the very earliest changes in cytoskeletal organization have not been well documented. We have used an in vitro model system to examine the early consequences of intense glutamate receptor activation on dendritic spine synapses. Cultured hippocampal neurons exposed to NMDA for as little as 5 min exhibited a rapid and extensive loss of dendritic spines. Staining for the presynaptic marker synapsin 1 and the postsynaptic density proteins PSD-95 and the NR1 subunit of NMDA receptors remained intact. The disappearance of spines was accompanied by a selective loss of filamentous actin staining at synapses. The NMDA-induced loss of spine actin was time- and concentration-dependent and blocked by NMDA receptor antagonists. The effect was mimicked by L-glutamate, AMPA, and ionomycin but not by agonists of L-type calcium channels or of metabotropic glutamate receptors. The effect of NMDA on local actin assembly was strongly attenuated by pretreatment with an actin stabilizing compound or by an antagonist of the calcium-dependent protein phosphatase calcineurin. Immunoreactivity for calcineurin was enriched at synapses together with F-actin. These results indicate that the actin-mediated stability of synaptic structure is disrupted by intense glutamate receptor activity and that calcineurin blockers may be useful in preventing such destabilization.
Collapse
|
693
|
Job C, Lagnado L. Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells. J Cell Biol 1998; 143:1661-72. [PMID: 9852158 PMCID: PMC2132988 DOI: 10.1083/jcb.143.6.1661] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 +/- 0.1 in the dark to 2.1 +/- 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark. Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 micrometer from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+. To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.
Collapse
Affiliation(s)
- C Job
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
694
|
The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 1998. [PMID: 9786982 DOI: 10.1523/jneurosci.18-21-08751.1998] [Citation(s) in RCA: 481] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of transporters in shaping the glutamate concentration in the extracellular space after synaptic release is controversial because of their slow cycling and because diffusion alone gives a rapid removal. The transporter densities have been measured electrophysiologically, but these data are from immature brains and do not give precise information on the concentrations of the individual transporter subtypes. Here we show by quantitative immunoblotting that the numbers of the astroglial glutamate transporters GLAST (EAAT1) and GLT (EAAT2) are 3200 and 12,000 per micrometer3 tissue in the stratum radiatum of adult rat hippocampus (CA1) and 18,000 and 2800 in the cerebellar molecular layer, respectively. The total astroglial cell surface is 1.4 and 3.8 m2/cm3 in the two regions, respectively, implying average densities of GLAST and GLT molecules in the membranes around 2300 and 8500 micrometer-2 in the former and 4700 and 740 micrometer-2 in the latter region. The total concentration of glial glutamate transporters in both regions corresponds to three to five times the estimated number of glutamate molecules in one synaptic vesicle from each of all glutamatergic synapses. However, the role of glial glutamate transporters in limiting synaptic spillover is likely to vary between the two regions because of differences in the distribution of astroglia. Synapses are completely ensheathed and separated from each other by astroglia in the cerebellar molecular layer. In contrast, synapses in hippocampus (stratum radiatum) are only contacted by astroglia and are often found side by side without intervening glial processes.
Collapse
|
695
|
Kutzleb C, Sanders G, Yamamoto R, Wang X, Lichte B, Petrasch-Parwez E, Kilimann MW. Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J Biophys Biochem Cytol 1998; 143:795-813. [PMID: 9813098 PMCID: PMC2148134 DOI: 10.1083/jcb.143.3.795] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the identification and initial characterization of paralemmin, a putative new morphoregulatory protein associated with the plasma membrane. Paralemmin is highly expressed in the brain but also less abundantly in many other tissues and cell types. cDNAs from chicken, human, and mouse predict acidic proteins of 42 kD that display a pattern of sequence cassettes with high inter-species conservation separated by poorly conserved linker sequences. Prenylation and palmitoylation of a COOH-terminal cluster of three cysteine residues confers hydrophobicity and membrane association to paralemmin. Paralemmin is also phosphorylated, and its mRNA is differentially spliced in a tissue-specific and developmentally regulated manner. Differential splicing, lipidation, and phosphorylation contribute to electrophoretic heterogeneity that results in an array of multiple bands on Western blots, most notably in brain. Paralemmin is associated with the cytoplasmic face of the plasma membranes of postsynaptic specializations, axonal and dendritic processes and perikarya, and also appears to be associated with an intracellular vesicle pool. It does not line the neuronal plasmalemma continuously but in clusters and patches. Its molecular and morphological properties are reminiscent of GAP-43, CAP-23, and MARCKS, proteins implicated in plasma membrane dynamics. Overexpression in several cell lines shows that paralemmin concentrates at sites of plasma membrane activity such as filopodia and microspikes, and induces cell expansion and process formation. The lipidation motif is essential for this morphogenic activity. We propose a function for paralemmin in the control of cell shape, e.g., through an involvement in membrane flow or in membrane-cytoskeleton interaction.
Collapse
Affiliation(s)
- C Kutzleb
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
696
|
Affiliation(s)
- R Llinás
- New York University School of Medicine, Department of Physiology & Neuroscience, New York City 10016, USA
| | | |
Collapse
|
697
|
Kost B, Spielhofer P, Chua NH. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:393-401. [PMID: 9881160 DOI: 10.1046/j.1365-313x.1998.00304.x] [Citation(s) in RCA: 430] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The C-terminus of mouse talin (amino acids 2345-2541) is responsible for all of the protein's f-actin binding capacity. Unlike full-length talin, the C-terminal f-actin binding domain is unable to nucleate actin polymerization. We have found that transient and stable expression of the talin actin-binding domain fused to the C-terminus of the green fluorescent protein (GFP-mTn) can visualize the actin cytoskeleton in different types of living plant cells without affecting cell morphology or function. Transiently expressed GFP-mTn co-localized with rhodamine-phalloidin in permeabilized tobacco BY-2 suspension cells, showing that the fusion protein can specifically label the plant actin cytoskeleton. Constitutive expression of GFP-mTn in transgenic Arabidopsis thaliana plants visualized actin filaments in all examined tissues with no apparent effects on plant morphology or development at any stage during the life cycle. This demonstrates that in a number of different cell types GFP-mTn can serve as a non-invasive marker for the actin cytoskeleton. Confocal imaging of GFP-mTn labeled actin filaments was employed to reveal novel information on the in vivo organization of the actin cytoskeleton in transiently transformed, normally elongating tobacco pollen tubes.
Collapse
Affiliation(s)
- B Kost
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021-6399, USA
| | | | | |
Collapse
|
698
|
Yoon M, Moir RD, Prahlad V, Goldman RD. Motile properties of vimentin intermediate filament networks in living cells. J Cell Biol 1998; 143:147-57. [PMID: 9763427 PMCID: PMC2132819 DOI: 10.1083/jcb.143.1.147] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The motile properties of intermediate filament (IF) networks have been studied in living cells expressing vimentin tagged with green fluorescent protein (GFP-vimentin). In interphase and mitotic cells, GFP-vimentin is incorporated into the endogenous IF network, and accurately reports the behavior of IF. Time-lapse observations of interphase arrays of vimentin fibrils demonstrate that they are constantly changing their configurations in the absence of alterations in cell shape. Intersecting points of vimentin fibrils, or foci, frequently move towards or away from each other, indicating that the fibrils can lengthen or shorten. Fluorescence recovery after photobleaching shows that bleach zones across fibrils rapidly recover their fluorescence. During this recovery, bleached zones frequently move, indicating translocation of fibrils. Intriguingly, neighboring fibrils within a cell can exhibit different rates and directions of movement, and they often appear to extend or elongate into the peripheral regions of the cytoplasm. In these same regions, short filamentous structures are also seen actively translocating. All of these motile properties require energy, and the majority appear to be mediated by interactions of IF with microtubules and microfilaments.
Collapse
Affiliation(s)
- M Yoon
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
699
|
Choidas A, Jungbluth A, Sechi A, Murphy J, Ullrich A, Marriott G. The suitability and application of a GFP-actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur J Cell Biol 1998; 77:81-90. [PMID: 9840457 DOI: 10.1016/s0171-9335(98)80075-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The product of a GFP-actin gene fusion, permanently or transiently transfected in diverse mammalian cell lines, was shown to be a suitable, intrinsic probe of both the organization and dynamics of the actin cytoskeleton. In live Swiss 3T3 and NIH 3T3 cells, the fusion protein was found to accumulate in lamellipodia, filopodia, focal contacts and stress fibers. Furthermore, comparisons of fluorescence images of GFP-actin and Cy3.5-phalloidin, an independent marker of F-actin, in permeabilized cells showed a complete overlap of the two fluorescence signals. In GFP-actin-transfected Hela cells that had been infected with Listeria monocytogenes, the fluorescence of the fusion protein was shown to dynamically associate in the F-actin rich comet tail that formed behind a motile bacterium. In stable transfectants of PC12 cells, GFP-actin constituted on the average 5% of the total actin - these cells exhibited normal growth behavior and responded to treatment with nerve growth factor by extending neurite-like extensions, the filopodia-like tips of which were densely packed with filamentous GFP-actin. Finally, the photobleaching decay time of GFP-actin in live cells of 63 seconds was much longer than that of fluorescein-labeled actin conjugates and little or no damage to the cytoskeleton was found during the photobleaching of GFP-actin. Having shown the suitability of GFP-actin as a probe of the cytoskeleton, its fluorescence was used in long-term imaging studies aimed at documenting changes in the cytoskeleton of rat bladder NBT-II carcinoma cells during the 24-hour growth factor-mediated epithelia to mesenchyme transformation. The intrinsic fluorescent probe was also used to investigate the organization of the actin cytoskeleton and behavior of individual mesenchyme NBT-II cells slowly migrating through a colony of epithelia cells.
Collapse
Affiliation(s)
- A Choidas
- Department of Molecular Biology, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
700
|
Allen KM, Gleeson JG, Bagrodia S, Partington MW, MacMillan JC, Cerione RA, Mulley JC, Walsh CA. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 1998; 20:25-30. [PMID: 9731525 DOI: 10.1038/1675] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonsyndromic X-linked mental retardation (MRX) syndromes are clinically homogeneous but genetically heterogeneous disorders, whose genetic bases are largely unknown. Affected individuals in a multiplex pedigree with MRX (MRX30), previously mapped to Xq22, show a point mutation in the PAK3 (p21-activated kinase) gene, which encodes a serine-threonine kinase. PAK proteins are crucial effectors linking Rho GTPases to cytoskeletal reorganization and to nuclear signalling. The mutation produces premature termination, disrupting kinase function. MRI analysis showed no gross defects in brain development. Immunofluorescence analysis showed that PAK3 protein is highly expressed in postmitotic neurons of the developing and postnatal cerebral cortex and hippocampus. Signal transduction through Rho GTPases and PAK3 may be critical for human cognitive function.
Collapse
Affiliation(s)
- K M Allen
- Division of Neurogenetics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|