651
|
Abstract
We report here a modular approach for the construction of a new class of compounds, the Hangman salophens. In the Hangman motif, an acid-base functionality "hangs" over the face of a redox cofactor. In contrast to more synthetically intractable porphyrin-based Hangman systems, Hangman salophens permit the facile control of their proton and redox properties for the study of the proton-coupled electron transfer (PCET) activation of small molecules. By investigating the catalase-like disproportionation of H2O2, we show that the presence (1) of a strong proton-donating hanging group (i.e., carboxylic acid) and (2) of electron-donating groups on the redox-active salen imparts significant catalytic activity for the O-O bond activation of small molecule substrates. The contribution of the new ligand framework to furthering our understanding of how PCET can be implemented in the design of active/selective catalysts will be discussed.
Collapse
Affiliation(s)
- Shih-Yuan Liu
- Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
652
|
Abstract
Recent investigations have shed much light on the nuclear and electronic factors that control the rates of long-range electron tunneling through molecules in aqueous and organic glasses as well as through bonds in donor-bridge-acceptor complexes. Couplings through covalent and hydrogen bonds are much stronger than those across van der Waals gaps, and these differences in coupling between bonded and nonbonded atoms account for the dependence of tunneling rates on the structure of the media between redox sites in Ru-modified proteins and protein-protein complexes.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
653
|
Sjödin M, Styring S, Wolpher H, Xu Y, Sun L, Hammarström L. Switching the Redox Mechanism: Models for Proton-Coupled Electron Transfer from Tyrosine and Tryptophan. J Am Chem Soc 2005; 127:3855-63. [PMID: 15771521 DOI: 10.1021/ja044395o] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coupling of electron and proton transfer is an important controlling factor in radical proteins, such as photosystem II, ribinucleotide reductase, cytochrome oxidases, and DNA photolyase. This was investigated in model complexes in which a tyrosine or tryptophan residue was oxidized by a laser-flash generated trisbipyridine-Ru(III) moiety in an intramolecular, proton-coupled electron transfer (PCET) reaction. The PCET was found to proceed in a competition between a stepwise reaction, in which electron transfer is followed by deprotonation of the amino acid radical (ETPT), and a concerted reaction, in which both the electron and proton are transferred in a single reaction step (CEP). Moreover, we found that we could analyze the kinetic data for PCET by Marcus' theory for electron transfer. By altering the solution pH, the strength of the Ru(III) oxidant, or the identity of the amino acid, we could induce a switch between the two mechanisms and obtain quantitative data for the parameters that control which one will dominate. The characteristic pH-dependence of the CEP rate (M. Sjodin et al. J. Am. Chem. Soc. 2000, 122, 3932) reflects the pH-dependence of the driving force caused by proton release to the bulk. For the pH-independent ETPT on the other hand, the driving force of the rate-determining ET step is pH-independent and smaller. On the other hand, temperature-dependent data showed that the reorganization energy was higher for CEP, while the pre-exponential factors showed no significant difference between the mechanisms. Thus, the opposing effect of the differences in driving force and reorganization energy determines which of the mechanisms will dominate. Our results show that a concerted mechanism is in general quite likely and provides a low-barrier reaction pathway for weakly exoergonic reactions. In addition, the kinetic isotope effect was much higher for CEP (kH/kD > 10) than for ETPT (kH/kD = 2), consistent with significant changes along the proton reaction coordinate in the rate-determining step of CEP.
Collapse
Affiliation(s)
- Martin Sjödin
- Department of Physical Chemistry, BMC, Uppsala University, PO Box 579, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
654
|
Swain MD, Benson DE. Geometric preferences of crosslinked protein-derived cofactors reveal a high propensity for near-sequence pairs. Proteins 2005; 59:64-71. [PMID: 15696544 DOI: 10.1002/prot.20403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-derived cofactors that are composed of covalently crosslinked amino acid side chains are of increasing importance in protein science. These crosslinked protein-derived cofactors (CPDC) are formed either through direct oxidation by metal/O(2)-derived intermediates or through outer sphere oxidation by highly oxidizing cofactors. CPDCs that are formed by outer sphere oxidation do not require side-chain precursors to be coordinated by a metal center, and therefore are more difficult to identify than those formed by direct oxidation. To better understand the propensity for CPDC formation by outer sphere oxidation, the geometrical preferences of CPDCs were examined. The Dezymer algorithm has been used to identify all putative CPDC-forming mutations in 500 proteins. Geometrically, although chemically unrelated, these CPDCs were found to be similar to disulfide-bonded cysteine pairs. Additionally, the percentage of near-sequence pairs (i and i +1 to i and i + 5) increased as the average C(alpha)-C(alpha) distance between the amino acid pairs increased. This survey also examined the protein databank for proteins with pre-attack conformations for CPDCs, using non-bonded contacts reported by Procheck. A total of 323 unique proteins was identified, with 55 being near-sequence amino acid pairs. The high geometric propensity of near-sequence amino acid pairs for forming CPDCs is significant due to difficulties associated with detection by structural or mass spectrometric methods.
Collapse
Affiliation(s)
- Marla D Swain
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
655
|
Burdinski D, Cheng K, Lippard SJ. Synthesis of a constrained ligand comprising carboxylate and amine donor groups via direct 1,8-functionalization of positionally protected fluorene. Tetrahedron 2005. [DOI: 10.1016/j.tet.2004.10.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
656
|
Kolberg M, Logan DT, Bleifuss G, Pötsch S, Sjöberg BM, Gräslund A, Lubitz W, Lassmann G, Lendzian F. A new tyrosyl radical on Phe208 as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant R2-Y122H. Combined x-ray diffraction and EPR/ENDOR studies. J Biol Chem 2005; 280:11233-46. [PMID: 15634667 DOI: 10.1074/jbc.m414634200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2 protein subunit of class I ribonucleotide reductase (RNR) belongs to a structurally related family of oxygen bridged diiron proteins. In wild-type R2 of Escherichia coli, reductive cleavage of molecular oxygen by the diferrous iron center generates a radical on a nearby tyrosine residue (Tyr122), which is essential for the enzymatic activity of RNR, converting ribonucleotides into deoxyribonucleotides. In this work, we characterize the mutant E. coli protein R2-Y122H, where the radical site is substituted with a histidine residue. The x-ray structure verifies the mutation. R2-Y122H contains a novel stable paramagnetic center which we name H, and which we have previously proposed to be a diferric iron center with a strongly coupled radical, Fe(III)Fe(III)R.. Here we report a detailed characterization of center H, using 1H/2H -14N/15N- and 57Fe-ENDOR in comparison with the Fe(III)Fe(IV) intermediate X observed in the iron reconstitution reaction of R2. Specific deuterium labeling of phenylalanine residues reveals that the radical results from a phenylalanine. As Phe208 is the only phenylalanine in the ligand sphere of the iron site, and generation of a phenyl radical requires a very high oxidation potential, we propose that in Y122H residue Phe208 is hydroxylated, as observed earlier in another mutant (R2-Y122F/E238A), and further oxidized to a phenoxyl radical, which is coordinated to Fe1. This work demonstrates that small structural changes can redirect the reactivity of the diiron site, leading to oxygenation of a hydrocarbon, as observed in the structurally similar methane monoxygenase, and beyond, to formation of a stable iron-coordinated radical.
Collapse
Affiliation(s)
- Matthias Kolberg
- Max-Volmer-Laboratory, Institute for Chemistry, PC 14, Technical University Berlin, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
657
|
Cai P, Li MX, Duan CY, Lu F, Guo D, Meng QJ. Syntheses, crystal structure and electrochemical properties of dinuclear ruthenium complexes containing saturated and unsaturated spacers. NEW J CHEM 2005. [DOI: 10.1039/b502656c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
658
|
Bosio G, Criado S, Massad W, Rodríguez Nieto FJ, Gonzalez MC, García NA, Mártire DO. Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan. Photochem Photobiol Sci 2005; 4:840-6. [PMID: 16189561 DOI: 10.1039/b507856c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanism of the oxidation of Glycine (Gly), Alanine (Ala), Tyrosine (Tyr), Tryptophan (Trp) and some di-(Gly-Gly, Ala-Ala, Gly-Ala, Gly-Trp, Trp-Gly, Gly-Tyr, Tyr-Gly), tri-(Gly-Gly-Gly, Ala-Gly-Gly) and tetrapeptides (Gly-Gly-Gly-Gly) mediated by sulfate (SO(4) (-)) and hydrogen phosphate (HPO(4) (-)) radicals was studied, employing the flash-photolysis technique. The substrates were found to react with sulfate radicals (SO(4) (-), produced by photolysis of the S(2)O(8)(2-)) faster than with hydrogen phosphate radicals (HPO(4) (-), generated by photolysis of P(2)O(8)(4-) at pH = 7.1). The reactions of the zwitterions of the aliphatic amino acids and peptides with SO(4) (-) radicals take place by electron transfer from the carboxylate moiety to the inorganic radical, whereas those of the HPO(4) (-) proceed by H-abstraction from the alpha carbon atom. The phenoxyl radical of Tyr-Gly and Gly-Tyr are formed as intermediate species of the oxidation of these peptides by the inorganic radicals. The radical cations of Gly-Trp and Trp-Gly (at pH = 4.2) and their corresponding deprotonated forms (at pH = 7) were detected as intermediates species of the oxidation of these peptides with SO(4) (-) and HPO(4) (-). Reaction mechanisms which account for the observed intermediates are proposed.
Collapse
Affiliation(s)
- Gabriela Bosio
- Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
659
|
Chang MCY, Yee CS, Nocera DG, Stubbe J. Site-Specific Replacement of a Conserved Tyrosine in Ribonucleotide Reductase with an Aniline Amino Acid: A Mechanistic Probe for a Redox-Active Tyrosine. J Am Chem Soc 2004; 126:16702-3. [PMID: 15612690 DOI: 10.1021/ja044124d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An aniline-based amino acid provides a powerful mechanistic probe for redox-active tyrosines, affording a general method for elucidating the sequence of proton and electron transfer events during side-chain oxidation in biological systems. Intein technology allows Y356 to be site-specifically replaced with p-aminophenylalanine (PheNH2) on the R2 subunit of the class I ribonucleotide reductase. Analysis of the pH rate profile of Y356PheNH2-R2 strongly suggests that the mechanism of long-distance intrasubunit radical transfer through position 356 proceeds with electron transfer prior to proton transfer. In addition, we propose that radical transfer through position 356 only becomes rate-limiting upon raising the reduction potential of the residue at that location and is not affected by protonation state of either the ground state or oxidized amino acid.
Collapse
Affiliation(s)
- Michelle C Y Chang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
660
|
Kubo T, Ohashi M, Miyazaki K, Ichimura A, Nakasuji K. Synthesis, Structure, and Cooperative Proton−Electron Transfer Reaction of Bis(5,6-diethylpyrazinedithiolato)metal Complexes (M = Ni, Pd, Pt). Inorg Chem 2004; 43:7301-7. [PMID: 15530079 DOI: 10.1021/ic049621+] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New proton and electron donors, M(II)(HL)(2) (M = Ni, Pd, Pt; L = 5,6-diethylpyradzinedithiolate), as well as a proton and electron acceptor, Pt(IV)(L)(2), were prepared and characterized. The pH-dependent cyclic voltammetry of the M(II)(HL)(2) complexes revealed a favorable Gibbs free energy (K(com) > 1) for the proton and electron transfer reactions from M(II)(HL)(2) to M(IV)(L)(2); i.e., the equilibrium for the following reaction lies to the right: M(II)(HL)(2) + M(IV)(L)(2) <==>2M(III)(HL)(L).
Collapse
Affiliation(s)
- Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
661
|
Tu SL, Gunn A, Toney MD, Britt RD, Lagarias JC. Biliverdin reduction by cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates. J Am Chem Soc 2004; 126:8682-93. [PMID: 15250720 DOI: 10.1021/ja049280z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the four electron reduction of biliverdin IXalpha (BV) to phycocyanobilin, a key step in the biosynthesis of the linear tetrapyrrole (bilin) prosthetic groups of cyanobacterial phytochromes and the light-harvesting phycobiliproteins. Using an anaerobic assay protocol, optically detected bilin-protein intermediates, produced during the PcyA catalytic cycle, were shown to correlate well with the appearance and decay of an isotropic g approximately 2 EPR signal measured at low temperature. Absorption spectral simulations of biliverdin XIIIalpha reduction support a mechanism involving direct electron transfers from ferredoxin to protonated bilin:PcyA complexes.
Collapse
Affiliation(s)
- Shih-Long Tu
- Section of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
662
|
Ciofini I, Adamo C, Barone V. Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: Glycyl radical as a case study. J Chem Phys 2004; 121:6710-8. [PMID: 15473726 DOI: 10.1063/1.1791031] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An integrated quantum mechanical approach for the structural and magnetic characterization of flexible free radicals in solution has been applied to a model of the glycyl radical engaged in peptidic chains. The hyperfine couplings computed using hybrid density functionals and purposely tailored basis sets are in good agreement with experiment when vibrational averaging effects from low frequency motions and solvent effects (both direct H bonding and bulk) are taken into the proper account. The g tensor shows a smaller dependence on the specific form of the density functional, the extension of the basis set over a standard double-zeta+polarization level, vibrational averaging, and bulk solvent effects. However, hydrogen bridges with solvent molecules belonging to the first solvation shell play a significant role. Together with their intrinsic interest, our results show that a comprehensive and reliable computational approach is becoming available for the complete characterization of open-shell systems of biological interest in their natural environment.
Collapse
Affiliation(s)
- Ilaria Ciofini
- Laboratoire d'Electrochimie et Chimie Analytique, UMR CNRS-ENSCP 7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France
| | | | | |
Collapse
|
663
|
Chang CH, Svedruzic D, Ozarowski A, Walker L, Yeagle G, Britt RD, Angerhofer A, Richards NGJ. EPR spectroscopic characterization of the manganese center and a free radical in the oxalate decarboxylase reaction: identification of a tyrosyl radical during turnover. J Biol Chem 2004; 279:52840-9. [PMID: 15475346 DOI: 10.1074/jbc.m402345200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several molecular mechanisms for cleavage of the oxalate carbon-carbon bond by manganese-dependent oxalate decarboxylase have recently been proposed involving high oxidation states of manganese. We have examined the oxalate decarboxylase from Bacillus subtilis by electron paramagnetic resonance in perpendicular and parallel polarization configurations to test for the presence of such species in the resting state and during enzymatic turnover. Simulation and the position of the half-field Mn(II) line suggest a nearly octahedral metal geometry in the resting state. No spectroscopic signature for Mn(III) or Mn(IV) is seen in parallel mode EPR for samples frozen during turnover, consistent either with a large zero-field splitting in the oxidized metal center or undetectable levels of these putative high-valent intermediates in the steady state. A narrow, featureless g = 2.0 species was also observed in perpendicular mode in the presence of substrate, enzyme, and dioxygen. Additional splittings in the signal envelope became apparent when spectra were taken at higher temperatures. Isotopic editing resulted in an altered line shape only when tyrosine residues of the enzyme were specifically deuterated. Spectral processing confirmed multiple splittings with isotopically neutral enzyme that collapsed to a single prominent splitting in the deuterated enzyme. These results are consistent with formation of an enzyme-based tyrosyl radical upon oxalate exposure. Modestly enhanced relaxation relative to abiological tyrosyl radicals was observed, but site-directed mutagenesis indicated that conserved tyrosine residues in the active site do not host the unpaired spin. Potential roles for manganese and a peripheral tyrosyl radical during steady-state turnover are discussed.
Collapse
Affiliation(s)
- Christopher H Chang
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | | | | | |
Collapse
|
664
|
Rhile IJ, Mayer JM. One-Electron Oxidation of a Hydrogen-Bonded Phenol Occurs by Concerted Proton-Coupled Electron Transfer. J Am Chem Soc 2004; 126:12718-9. [PMID: 15469234 DOI: 10.1021/ja031583q] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrogen-bonded phenol 2-(aminodiphenylmethyl)-4,6-di-tert-butylphenol (HOAr-NH2) was prepared and oxidized in MeCN by a series of one-electron oxidants. The product is the phenoxyl radical in which the phenolic proton has transferred to the amine, *OAr-NH3+. The reaction of HOAr-NH2 and tris(p-tolyl)aminium ([N(tol)3]*+) to give *OAr-NH3+ + N(tol)3 has Keq = 2.0 +/- 0.5, follows second-order kinetics with k = (1.1 +/- 0.2) x 105 M-1 s-1 (DeltaG = 11 kcal mol-1), and has a primary isotope effect kH/kD = 2.4 +/- 0.4. Oxidation of HOAr-NH2 with [N(C6H4Br)3]*+ is faster, with k congruent with 4 x 107 M-1 s-1. The isotope effect, thermochemical arguments, and the dependence of the rate on driving force (DeltaDeltaG/DeltaDeltaG degrees = 0.53) all indicate that electron transfer from HOAr-NH2 must occur concerted with intramolecular proton transfer from the phenol to the amine (proton-coupled electron transfer, PCET). The data rule out stepwise paths that involve initial electron transfer to form the phenol radical cation *+HOAr-NH2 or that involve initial proton transfer to give the zwitterion -OAr-NH3+. The dependence of the electron-transfer rate constants on driving force can be fit with the adiabatic Marcus equation, yielding a large intrinsic barrier: lambda = 34 kcal mol-1 for reactions of HOAr-NH2 with NAr3*+.
Collapse
Affiliation(s)
- Ian J Rhile
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | | |
Collapse
|
665
|
Abstract
Proton-coupled electron transfer (PCET) reactions involve the concerted transfer of an electron and a proton. Such reactions play an important role in many areas of chemistry and biology. Concerted PCET is thermochemically more favorable than the first step in competing consecutive processes involving stepwise electron transfer (ET) and proton transfer (PT), often by >=1 eV. PCET reactions of the form X-H + Y X + H-Y can be termed hydrogen atom transfer (HAT). Another PCET class involves outersphere electron transfer concerted with deprotonation by another reagent, Y+ + XH-B Y + X-HB+. Many PCET/HAT rate constants are predicted well by the Marcus cross relation. The cross-relation calculation uses rate constants for self-exchange reactions to provide information on intrinsic barriers. Intrinsic barriers for PCET can be comparable to or larger than those for ET. These properties are discussed in light of recent theoretical treatments of PCET.
Collapse
Affiliation(s)
- James M Mayer
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, Washington 98195-1700, USA.
| |
Collapse
|
666
|
Gray TG, Veige AS, Nocera DG. Cooperative Bimetallic Reactivity: Hydrogen Activation in Two-Electron Mixed-Valence Compounds. J Am Chem Soc 2004; 126:9760-8. [PMID: 15291579 DOI: 10.1021/ja0491432] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversible dihydrogen uptake by a two-electron mixed-valence di-iridium complex is examined with nonlocal density-functional calculations. Optimized metrics compare favorably with crystal structures of isolated species, and the calculated activation enthalpy of acetonitrile exchange is accurate within experimental error. Dihydrogen attacks the Ir(2) core at Ir(II); the Ir(0) center is electronically saturated and of incorrect orbital parity to interact with H(2). Isomeric eta(2)-H(2) complexes have been located, and harmonic frequency calculations confirm these to be potential energy minima. A transition state links one such complex with the final dihydride; calculated atomic charges suggest a heterolytic H(2) bond scission within the di-iridium coordination sphere. This investigation also establishes a ligand-design criterion for attaining cooperative bimetallic reactivity, namely, that the supporting ligand framework has sufficient mechanical flexibility so that the target complex can accommodate the nuclear reorganizations that accompany substrate activation.
Collapse
Affiliation(s)
- Thomas G Gray
- Department of Chemistry 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
667
|
Högbom M, Stenmark P, Voevodskaya N, McClarty G, Gräslund A, Nordlund P. The Radical Site in Chlamydial Ribonucleotide Reductase Defines a New R2 Subclass. Science 2004; 305:245-8. [PMID: 15247479 DOI: 10.1126/science.1098419] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribonucleotide reductase (RNR) synthesizes the deoxyribonucleotides for DNA synthesis. The R2 protein of normal class I ribonucleotide reductases contains a diiron site that produces a stable tyrosyl free radical, essential for enzymatic activity. Structural and electron paramagnetic resonance studies of R2 from Chlamydia trachomatis reveal a protein lacking a tyrosyl radical site. Instead, the protein yields an iron-coupled radical upon reconstitution. The coordinating structure of the diiron site is similar to that of diiron oxidases/monoxygenases and supports a role for this radical in the RNR mechanism. The specific ligand pattern in the C. trachomatis R2 metal site characterizes a new group of R2 proteins that so far has been found in eight organisms, three of which are human pathogens.
Collapse
Affiliation(s)
- Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Roslagstullsbacken 15, Albanova University Center, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
668
|
Wei PP, Skulan AJ, Mitić N, Yang YS, Saleh L, Bollinger JM, Solomon EI. Electronic and spectroscopic studies of the non-heme reduced binuclear iron sites of two ribonucleotide reductase variants: comparison to reduced methane monooxygenase and contributions to O2 reactivity. J Am Chem Soc 2004; 126:3777-88. [PMID: 15038731 DOI: 10.1021/ja0374731] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD have been used to probe the biferrous active site of two variants of ribonucleotide reductase. The aspartate to glutamate substitution (R2-D84E) at the binuclear iron site modifies the endogenous ligand set of ribonucleotide reductase to match that of the binuclear center in the hydroxylase component of methane monooxygenase (MMOH). The crystal structure of chemically reduced R2-D84E suggests that the active-site structure parallels that of MMOH. However, CD, MCD, and VTVH MCD data combined with spin-Hamiltonian analysis of reduced R2-D84E indicate a different coordination environment relative to reduced MMOH, with no mu-(1,1)(eta(1),eta(2)) carboxylate bridge. To further understand the variations in geometry of the active site, which lead to differences in reactivity, density functional theory (DFT) calculations have been carried out to identify active-site structures for R2-wt and R2-D84E consistent with these spectroscopic data. The effects of varying the ligand set, positions of bound and free waters, and additional protein constraints on the geometry and energy of the binuclear site of both R2-wt and variant R2s are also explored to identify the contributions to their structural differences and their relation to reduced MMOH.
Collapse
Affiliation(s)
- Pin-Pin Wei
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
669
|
Yu H, Kwon OH, Jang DJ. Migration of Protons during the Excited-State Tautomerization of Aqueous 3-Hydroxyquinoline. J Phys Chem A 2004. [DOI: 10.1021/jp031293w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hyunung Yu
- School of Chemistry, Seoul National University, NS60, Seoul 151-742, Korea
| | - Oh-Hoon Kwon
- School of Chemistry, Seoul National University, NS60, Seoul 151-742, Korea
| | - Du-Jeon Jang
- School of Chemistry, Seoul National University, NS60, Seoul 151-742, Korea
| |
Collapse
|
670
|
Kasrayan A, Birgander PL, Pappalardo L, Regnström K, Westman M, Slaby A, Gordon E, Sjöberg BM. Enhancement by effectors and substrate nucleotides of R1-R2 interactions in Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 2004; 279:31050-7. [PMID: 15145955 DOI: 10.1074/jbc.m400693200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductases are a family of essential enzymes that catalyze the reduction of ribonucleotides to their corresponding deoxyribonucleotides and provide cells with precursors for DNA synthesis. The different classes of ribonucleotide reductase are distinguished based on quaternary structures and enzyme activation mechanisms, but the components harboring the active site region in each class are evolutionarily related. With a few exceptions, ribonucleotide reductases are allosterically regulated by nucleoside triphosphates (ATP and dNTPs). We have used the surface plasmon resonance technique to study how allosteric effects govern the strength of quaternary interactions in the class Ia ribonucleotide reductase from Escherichia coli, which like all class I enzymes has a tetrameric alpha(2) beta(2) structure. The component alpha(2)called R1 harbors the active site and two types of binding sites for allosteric effector nucleotides, whereas the beta(2) component called R2 harbors the tyrosyl radical necessary for catalysis. Our results show that only the known allosteric effector nucleotides, but not non-interacting nucleotides, promote a specific interaction between R1 and R2. Interestingly, the presence of substrate together with allosteric effector nucleotide strengthens the complex 2-3 times with a similar free energy change as the mutual allosteric effects of substrate and effector nucleotide binding to protein R1 in solution experiments. The dual allosteric effects of dATP as positive allosteric effector at low concentrations and as negative allosteric effector at high concentrations coincided with an almost 100-fold stronger R1-R2 interaction. Based on the experimental setup, we propose that the inhibition of enzyme activity in the E. coli class Ia enzyme occurs in a tight 1:1 complex of R1 and R2. Most intriguingly, we also discovered that thioredoxin, one of the physiological reductants of ribonucleotide reductases, enhances the R1-R2 interaction 4-fold.
Collapse
Affiliation(s)
- Alex Kasrayan
- Department of Molecular Biology & Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
671
|
van Gastel M, Lubitz W, Lassmann G, Neese F. Electronic structure of the cysteine thiyl radical: a DFT and correlated ab initio study. J Am Chem Soc 2004; 126:2237-46. [PMID: 14971960 DOI: 10.1021/ja038813l] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structure and the unusual EPR parameters of sulfur-centered alkyl thiyl radical from cysteine are investigated by density functional theory (DFT) and correlated ab initio calculations. Three geometry-optimized, staggered conformations of the radical are found that lie within 630 cm(-1) in energy. The EPR g-values are sensitive to the energy difference between the nearly-degenerate singly occupied orbital and one of the lone-pair orbitals (excitation energies of 1732, 1083, and 3429 cm(-1) from Multireference Configuration Interaction calculations for the structures corresponding to the three minima), both of which are almost pure sulfur 3p orbitals. Because of the near degeneracy, the second order correction to the g tensor, which is widely used to analyze g-values of paramagnetic systems, is insufficient to obtain accurate g-values of the cysteine thiyl radical. Instead, an expression for the g tensor must be used in which third order corrections are taken into account. The near-degeneracy can be affected to roughly equal extents by changes in the structure of the radical and by hydrogen bonds to the sulfur. The magnitude of the hyperfine coupling constants for the beta protons of the cysteine thiyl radical is found to depend on the structure of the radical. On the basis of a detailed comparison between experimental and calculated g-values and hyperfine coupling constants an attempt is made to identify the structure of thiyl radicals and the number of hydrogen bonds to the sulfur.
Collapse
Affiliation(s)
- Maurice van Gastel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470, Muelheim on the Ruhr, Germany.
| | | | | | | |
Collapse
|
672
|
Chang MCY, Yee CS, Stubbe J, Nocera DG. Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Proc Natl Acad Sci U S A 2004; 101:6882-7. [PMID: 15123822 PMCID: PMC406436 DOI: 10.1073/pnas.0401718101] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms, providing the monomeric precursors required for DNA replication and repair. The class I RNRs are composed of two subunits; the R1 subunit contains the active site for nucleotide reduction and allosteric effector binding sites, whereas the R2 subunit houses the essential diirontyrosyl (Y.) radical cofactor. A major unresolved issue is the mechanism by which the tyrosyl radical on R2 (Y122, Escherichia coli numbering) reversibly generates the transient thiyl radical (S.) on R1 that initiates nucleotide reduction. This intersubunit radical initiation is postulated to occur through a defined pathway involving conserved aromatic amino acids (R2: Y122, W48, Y356; R1: Y731, Y730) over a long distance of 35 A. A 20-mer peptide identical to the C-terminal tail of R2 (356-375) and containing Y356 is a competitive inhibitor with respect to R2, and it effectively blocks nucleotide reduction. We now report that a 21-mer peptide, in which a tryptophan has been incorporated at the N terminus of the 20th mer, can replace the R2 subunit and initiate nucleotide reduction by photoinitiated radical generation. The deoxynucleotide generated depends on the presence of allosteric effector and is pathway-dependent. Replacement of Y731 of R2 with phenylalanine prevents deoxynucleotide formation. These results provide direct evidence for the chemical competence of aromatic amino acid radicals and the importance of Y356 in R2 in the radical initiation process of the class I RNRs.
Collapse
Affiliation(s)
- Michelle C Y Chang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | | | | | | |
Collapse
|
673
|
Autissier V, Clegg W, Harrington RW, Henderson RA. Proton Transfer to Nickel−Thiolate Complexes. 1. Protonation of [Ni(SC6H4R-4)2(Ph2PCH2CH2PPh2)] (R = Me, MeO, H, Cl, or NO2). Inorg Chem 2004; 43:3098-105. [PMID: 15132615 DOI: 10.1021/ic030322e] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of the equilibrium reaction between [Ni(SC(6)H(4)R-4)(2)(dppe)] (R= MeO, Me, H, Cl, or NO(2); dppe = Ph(2)PCH(2)CH(2)PPh(2)) and mixtures of [lutH](+) and lut (lut = 2,6-dimethylpyridine) in MeCN to form [Ni(SHC(6)H(4)R-4)(SC(6)H(4)R-4)(dppe)](+) have been studied using stopped-flow spectrophotometry. The kinetics for the reactions with R = MeO, Me, H, or Cl are consistent with a single-step equilibrium reaction. Investigation of the temperature dependence of the reactions shows that DeltaG = 13.6 +/- 0.3 kcal mol(-)(1) for all the derivatives but the values of DeltaH and DeltaS vary with R (R = MeO, DeltaH() = 8.5 kcal mol(-)(1), DeltaS = -16 cal K(-)(1) mol(-)(1); R = Me, DeltaH() = 10.8 kcal mol(-)(1), DeltaS = -9.5 cal K(-)(1) mol(-)(1); R = Cl, DeltaH = 23.7 kcal mol(-)(1), DeltaS = +33 cal K(-)(1) mol(-)(1)). With [Ni(SC(6)H(4)NO(2)-4)(2)(dppe)] a more complicated rate law is observed consistent with a mechanism in which initial hydrogen-bonding of [lutH](+) to the complex precedes intramolecular proton transfer. It seems likely that all the derivatives operate by this mechanism, but only with R = NO(2) (the most electron-withdrawing substituent) does the intramolecular proton transfer step become sufficiently slow to result in the change in kinetics. Studies with [lutD](+) show that the rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] (R = Me or Cl) are associated with negligible kinetic isotope effect. The possible reasons for this are discussed. The rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] vary with the 4-R-substituent, and the Hammett plot is markedly nonlinear. This unusual behavior is attributable to the electronic influence of R which affects the electron density at the sulfur.
Collapse
Affiliation(s)
- Valerie Autissier
- Chemistry, School of Natural Sciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU UK
| | | | | | | |
Collapse
|
674
|
Schwarzenbacher R, Stenner-Liewen F, Liewen H, Robinson H, Yuan H, Bossy-Wetzel E, Reed JC, Liddington RC. Structure of the Chlamydia protein CADD reveals a redox enzyme that modulates host cell apoptosis. J Biol Chem 2004; 279:29320-4. [PMID: 15087448 DOI: 10.1074/jbc.m401268200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Chlamydia protein CADD (Chlamydia protein associating with death domains) has been implicated in the modulation of host cell apoptosis via binding to the death domains of tumor necrosis factor family receptors. Transfection of CADD into mammalian cells induces apoptosis. Here we present the CADD crystal structure, which reveals a dimer of seven-helix bundles. Each bundle contains a di-iron center adjacent to an internal cavity, forming an active site similar to that of methane mono-oxygenase hydrolase. We further show that CADD mutants lacking critical metal-coordinating residues are substantially less effective in inducing apoptosis but retain their ability to bind to death domains. We conclude that CADD is a novel redox protein toxin unique to Chlamydia species and propose that both its redox activity and death domain binding ability are required for its biological activity.
Collapse
|
675
|
Chang CJ, Chang MCY, Damrauer NH, Nocera DG. Proton-coupled electron transfer: a unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:13-28. [PMID: 15100012 DOI: 10.1016/j.bbabio.2003.08.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Accepted: 08/08/2003] [Indexed: 10/26/2022]
Abstract
Redox-driven proton pumps, radical initiation and propagation in biology, and small-molecule activation processes all involve the coupling of electron transfer to proton transport. A mechanistic framework in which to interpret these processes is being developed by examining proton-coupled electron transfer (PCET) in model and natural systems. Specifically, PCET investigations are underway on the following three fronts: (1) the elucidation of the PCET reaction mechanism by time-resolved laser spectroscopy of electron donors and acceptors juxtaposed by a proton transfer interface; (2) the role of amino acid radicals in biological catalysis with the radical initiation and transport processes of E. coli ribonucleotide reductase (RNR) as a focal point; and (3) the application of PCET towards small-molecule activation with emphasis on biologically relevant bond-breaking and bond-making processes involving oxygen and water. A review of recent developments in each of these areas is discussed.
Collapse
Affiliation(s)
- Christopher J Chang
- Department of Chemistry, 6-335, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | | | | | | |
Collapse
|
676
|
Baldwin J, Krebs C, Saleh L, Stelling M, Huynh BH, Bollinger JM, Riggs-Gelasco P. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli. Biochemistry 2004; 42:13269-79. [PMID: 14609338 DOI: 10.1021/bi035198p] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diiron(II) cluster in the R2 subunit of Escherichia coli ribonucleotide reductase (RNR) activates oxygen to generate a mu-oxodiiron(III) cluster and the stable tyrosyl radical that is critical for the conversion of ribonucleotides to deoxyribonucleotides. Like those in other diiron carboxylate proteins, such as methane monooxygenase (MMO), the R2 diiron cluster is proposed to activate oxygen by formation of a peroxodiiron(III) intermediate followed by an oxidizing high-valent cluster. Substitution of key active site residues results in perturbations of the normal oxygen activation pathway. Variants in which the active site ligand, aspartate (D) 84, is changed to glutamate (E) are capable of accumulating a mu-peroxodiiron(III) complex in the reaction pathway. Using rapid freeze-quench techniques, this intermediate in a double variant, R2-W48A/D84E, was trapped for characterization by Mössbauer and X-ray absorption spectroscopy. These samples contained 70% peroxodiiron(III) intermediate and 30% diferrous R2. An Fe-Fe distance of 2.5 A was found to be associated with the peroxo intermediate. As has been proposed for the structures of the higher valent intermediates in both R2 and MMO, carboxylate shifts to a mu-(eta(1),eta(2)) or a mu-1,1 conformation would most likely be required to accommodate the short 2.5 A Fe-Fe distance. In addition, the diferrous form of the enzyme present in the reacted sample has a longer Fe-Fe distance (3.5 A) than does a sample of anaerobically prepared diferrous R2 (3.4 A). Possible explanations for this difference in detected Fe-Fe distance include an O(2)-induced conformational change prior to covalent chemistry or differing O(2) reactivity among multiple diiron(II) forms of the cluster.
Collapse
Affiliation(s)
- Jeffrey Baldwin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
677
|
Miller JE, Grădinaru C, Crane BR, Di Bilio AJ, Wehbi WA, Un S, Winkler JR, Gray HB. Spectroscopy and reactivity of a photogenerated tryptophan radical in a structurally defined protein environment. J Am Chem Soc 2004; 125:14220-1. [PMID: 14624538 DOI: 10.1021/ja037203i] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Near-UV irradiation of structurally characterized [Re(I)(CO)3(1,10-phenanthroline)(Q107H)](W48F/Y72F/H83Q/Y108W)AzM(II) [Az = Pseudomonas aeruginosa azurin, M = Cu, Zn]/[Co(NH3)5Cl]Cl2 produces a tryptophan radical (W108*) with unprecedented kinetic stability. After rapid formation (k = 2.8 x 106 s-1), the radical persists for more than 5 h at room temperature in the folded ReAzM(II) structure. The absorption spectrum of ReAz(W108*)M(II) exhibits maxima at 512 and 536 nm. Oxidation of K4[Mo(CN)8] by ReAz(W108*)Zn(II) places the W108*/W108 reduction potential in the protein above 0.8 V vs NHE.
Collapse
Affiliation(s)
- Jeremiah E Miller
- Beckman Institute, California Institute of Technology, CA 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
678
|
Sjödin M, Ghanem R, Polivka T, Pan J, Styring S, Sun L, Sundström V, Hammarström L. Tuning proton coupled electron transfer from tyrosine: A competition between concerted and step-wise mechanisms. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407383e] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
679
|
Kuzelka J, Farrell JR, Lippard SJ. Modeling the Syn Disposition of Nitrogen Donors at the Active Sites of Carboxylate-Bridged Diiron Enzymes. Enforcing Dinuclearity and Kinetic Stability with a 1,2-Diethynylbenzene-Based Ligand. Inorg Chem 2003; 42:8652-62. [PMID: 14686842 DOI: 10.1021/ic034928e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syn coordination of histidine residues at the active sites of several carboxylate-rich non-heme diiron enzymes has been difficult to reproduce with small molecule model compounds. In this study, ligands derived from 1,8-naphthyridine, phthalazine, and 1,2-diethynylbenzene were employed to mimic this geometric feature. The preassembled diiron(II) complex [Fe(2)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(THF)(2)] (1), where Ar(Tol)CO(2)(-) is the sterically hindered carboxylate 2,6-di(p-tolyl)benzoate, served as a convenient starting material for the preparation of iron(II) complexes, all of which were crystallographically characterized. Use of the ligand 2,7-dimethyl-1,8-naphthyridine (Me(2)-napy) afforded the mononuclear complex [Fe(O(2)CAr(Tol))(2)(Me(2)-napy)] (2), whereas dinuclear [Fe(2)(micro-DMP)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(THF)] (3) resulted when 1,4-dimethylphthalazine (DMP) was employed. The dinuclear core of compound 3 is kinetically labile, as evidenced by the formation of [Fe(O(2)CAr(Tol))(2)(vpy)(2)] (4) upon addition of 2-vinylpyridine (vpy). The diiron analogue of 4, [Fe(2)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(vpy)(2)] (5), was prepared directly from 1. When the sterically more demanding ligand 2,6-di(4-tert-butylphenyl)benzoate (Ar(4-tBuPh)CO(2)(-)) was used, mononuclear [Fe(O(2)CAr(4)(-)(tBuPh))(2)(THF)(2)] (6) and [Fe(O(2)CAr(4)(-)(tBuPh))(2)(DMP)(2)] (7) formed. The difficulty in stabilizing a dinuclear core with these simple (N)(2)-donor ligands was circumvented by preparing a family of 1,2-diethynylbenzene-based ligands, from which were readily assembled the complexes [Fe(2)(Et(2)BCQEB(Et))(micro-O(2)CAr(Tol))(3)](OTf) (15) and [Cu(2)(Et(2)BCQEB(Et))(micro-I)(2)] (16), where Et(2)BCQEB(Et) is 1,2-bis(3-ethynyl-8-carboxylatequinoline)benzene ethyl ester. The Et(2)BCQEB(Et) framework provides both structural flexibility and the desired syn nitrogen donor geometry, thus serving as a good first-generation ligand in this class.
Collapse
Affiliation(s)
- Jane Kuzelka
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
680
|
Yee CS, Seyedsayamdost MR, Chang MCY, Nocera DG, Stubbe J. Generation of the R2 Subunit of Ribonucleotide Reductase by Intein Chemistry: Insertion of 3-Nitrotyrosine at Residue 356 as a Probe of the Radical Initiation Process. Biochemistry 2003; 42:14541-52. [PMID: 14661967 DOI: 10.1021/bi0352365] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates. The enzyme is composed of two subunits: R1 and R2. R1 contains the active site for nucleotide reduction and the allosteric effector sites that regulate the specificity and turnover rate. R2 contains the diferric-tyrosyl (Y(*)) radical cofactor that initiates nucleotide reduction by a putative long-range proton-coupled electron transfer (PCET) pathway over 35 A. This pathway is thought to involve specific amino acid radical intermediates (Y122 to W48 to Y356 within R2 to Y731 to Y730 to C439 within R1). In an effort to study radical initiation, R2 (375 residues) has been synthesized semisynthetically. R2 (residues 1-353), attached to an intein and a chitin binding domain, was constructed, and the protein was expressed (construct 1). This construct was then incubated with Fe(2+) and O(2) to generate the diferric-Y(*) cofactor, and the resulting protein was purified using a chitin affinity column. Incubation of construct 1 with 2-mercaptoethanesulfonic acid (MESNA) resulted in the MESNA thioester of R2 (1-353) (construct 2). A peptide containing residues 354-375 of R2 was generated using solid-phase peptide synthesis where 354, a serine in the wild-type (wt) R2, was replaced by a cysteine. Construct 2 and this peptide were ligated, and the resulting full-length R2 was separated from truncated R2 by anion-exchange chromatography. The purified protein had a specific activity of 350 nmol min(-1) mg(-1), identical to the same protein generated by site-directed mutagenesis when normalized for Y(*). As a first step in studying the radical initiation by PCET, R2 was synthesized with Y356 replaced by 3-nitrotyrosine (NO(2)Y). The protein is inactive (specific activity 1 x 10(-4) that of wt-R2), which permitted a determination of the pK(a) of the NO(2)Y in the R1/R2 complex in the presence of substrate and effectors. Under all conditions, the pK(a) was minimally perturbed. This has important mechanistic implications for the radical initiation process.
Collapse
Affiliation(s)
- Cyril S Yee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
681
|
Yee CS, Chang MCY, Ge J, Nocera DG, Stubbe J. 2,3-difluorotyrosine at position 356 of ribonucleotide reductase R2: a probe of long-range proton-coupled electron transfer. J Am Chem Soc 2003; 125:10506-7. [PMID: 12940718 DOI: 10.1021/ja036242r] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli class I ribonucleotide reductase catalyzes the conversion of ribonucleotides to deoxyribonucleotides and consists of two subunits: R1 and R2. R1 possesses the active site, while R2 harbors the essential diferric-tyrosyl radical (Y*) cofactor. The Y* on R2 is proposed to generate a transient thiyl radical on R1, 35 A distant, through amino acid radical intermediates. To study the putative long-range proton-coupled electron transfer (PCET), R2 (375 residues) was prepared semisynthetically using intein technology. Y356, a putative intermediate in the pathway, was replaced with 2,3-difluorotyrosine (F2Y, pKa = 7.8). pH rate profiles (pH 6.5-9.0) of wild-type and F2Y-R2 were very similar. Thus, a proton can be lost from the putative PCET pathway without affecting nucleotide reduction. The current model involving H* transfer is thus unlikely.
Collapse
Affiliation(s)
- Cyril S Yee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|