651
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
652
|
Alfieri A, Sorokina O, Adrait A, Angelini C, Russo I, Morellato A, Matteoli M, Menna E, Boeri Erba E, McLean C, Armstrong JD, Ala U, Buxbaum JD, Brusco A, Couté Y, De Rubeis S, Turco E, Defilippi P. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders. Front Mol Neurosci 2017; 10:212. [PMID: 28713243 PMCID: PMC5492163 DOI: 10.3389/fnmol.2017.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/21/2023] Open
Abstract
Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD). Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP) and long-term depression (LTD), and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD). p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Annalisa Alfieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Oksana Sorokina
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Annie Adrait
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Michela Matteoli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Menna
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR)Milan, Italy.,Humanitas Clinical and Research Center, IRCCSRozzano, Italy
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale, Université Grenoble AlpesGrenoble, France.,CEA, DSV, IBSGrenoble, France.,Centre National de la Recherche Scientifique, IBSGrenoble, France
| | - Colin McLean
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - J Douglas Armstrong
- The Institute for Adaptive and Neural Computation, School of Informatics, University of EdinburghEdinburgh, United Kingdom
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy.,GenoBiToUS-Genomics and Bioinformatics, Università di TorinoTurin, Italy
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Alfredo Brusco
- Department of Medical Sciences, Università di TorinoTurin, Italy.,Medical Genetics Unit, Azienda Ospedaliera Città della Salute e della Scienza di TorinoTurin, Italy
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGEGrenoble, France.,CEA, iRTSV-BGEGrenoble, France.,Institut National de la Santé et de la Recherche Médicale, BGEGrenoble, France
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università di TorinoTorino, Italy
| |
Collapse
|
653
|
Abstract
Epileptic encephalopathies represent a particularly severe form of epilepsy, associated with cognitive and behavioral deficits, including impaired social-communication and restricted, repetitive behaviors that are the hallmarks of autism spectrum disorder (ASD). With the advent of next-generation sequencing, the genetic landscape of epileptic encephalopathies is growing and demonstrates overlap with genes separately implicated in ASD. However, many questions remain about this connection, including whether epileptiform activity itself contributes to the development of ASD symptomatology. In this review, we compiled a database of genes associated with both epileptic encephalopathy and ASD, limiting our purview to Mendelian disorders not including inborn errors of metabolism, and we focused on the connection between ASD and epileptic encephalopathy rather than epilepsy broadly. Our review has four goals: to (1) discuss the overlapping presentations of ASD and monogenic epileptic encephalopathies; (2) examine the impact of the epilepsy itself on neurocognitive features, including ASD, in monogenic epileptic encephalopathies; (3) outline many of the genetic causes responsible for both ASD and epileptic encephalopathy; (4) provide an illustrative example of a final common pathway that may be implicated in both ASD and epileptic encephalopathy. We demonstrate that autistic features are a common association with monogenic epileptic encephalopathies. Certain epileptic encephalopathy syndromes, like infantile spasms, are especially linked to the development of ASD. The connection between seizures themselves and neurobehavioral deficits in these monogenic encephalopathies remains open to debate. Finally, advances in genetics have revealed many genes that overlap in ties to both ASD and epileptic encephalopathy and that play a role in diverse central nervous system processes. Increased attention to the autistic features of monogenic epileptic encephalopathies is warranted for both researchers and clinicians alike.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
654
|
Asadollahi R, Zweier M, Gogoll L, Schiffmann R, Sticht H, Steindl K, Rauch A. Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. Eur J Med Genet 2017. [PMID: 28645799 DOI: 10.1016/j.ejmg.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A decade after the designation of MED13L as a gene and its link to intellectual disability (ID) and dextro-looped transposition of great arteries in 2003, we previously described a recognizable syndrome due to MED13L haploinsufficiency. Subsequent reports of 22 further patients diagnosed by genome-wide testing further delineated the syndrome with expansion of the phenotypic spectrum and showed reduced penetrance for congenital heart defects. We now report two novel patients identified by whole exome sequencing, one with a de novo MED13L truncating mutation and the other with a de novo missense mutation. The first patient indicates some facial resemblance to Kleefstra syndrome as a novel differential diagnosis, and the second patient shows, for the first time, recurrence of a MED13L missense mutation (p.(Asp860Gly)). Notably, our in silico modelling predicted this missense mutation to decrease the stability of an alpha-helix and thereby affecting the MED13L secondary structure, while the majority of published missense mutations remain variants of uncertain significance. Review of the reported patients with MED13L haploinsufficiency indicates moderate to severe ID and facial anomalies in all patients, as well as severe speech delay and muscular hypotonia in the majority. Further common signs include abnormal MRI findings of myelination defects and abnormal corpus callosum, ataxia and coordination problems, autistic features, seizures/abnormal EEG, or congenital heart defects, present in about 20-50% of the patients. With reference to facial anomalies, the majority of patients were reported to show broad/prominent forehead, low set ears, bitemporal narrowing, upslanting palpebral fissures, depressed/flat nasal bridge, bulbous nose, and abnormal chin, but macroglossia and horizontal eyebrows were also observed in ∼30%. The latter are especially important in the differential diagnosis of 1p36 deletion and Kleefstra syndromes, while the more common facial gestalt shows some resemblance to 22q11.2 deletion syndrome. Despite the fact that MED13L was found to be one of the most common ID genes in the Deciphering Developmental Disorders Study, further detailed patient descriptions are needed to explore the full clinical spectrum, potential genotype-phenotype correlations, as well as the role of missense mutations and potential mutational hotspots along the gene.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
655
|
Suri M, Evers JMG, Laskowski RA, O'Brien S, Baker K, Clayton-Smith J, Dabir T, Josifova D, Joss S, Kerr B, Kraus A, McEntagart M, Morton J, Smith A, Splitt M, Thornton JM, Wright CF. Protein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1. Mol Genet Genomic Med 2017; 5:495-507. [PMID: 28944233 PMCID: PMC5606886 DOI: 10.1002/mgg3.304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 01/07/2023] Open
Abstract
Background Syntaxin‐binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss‐of‐function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype–phenotype correlations. Methods We report 11 patients with pathogenic de novo mutations in STXBP1 identified in the first 4293 trios of the Deciphering Developmental Disorder (DDD) study, including six missense variants. We analyzed the structural locations of the pathogenic missense variants from this study and the literature, as well as population missense variants extracted from Exome Aggregation Consortium (ExAC). Results Pathogenic variants are significantly more likely to occur at highly conserved locations than population variants, and be buried inside the protein domain. Pathogenic mutations are also more likely to destabilize the domain structure compared with population variants, increasing the proportion of (partially) unfolded domains that are prone to aggregation or degradation. We were unable to detect any genotype–phenotype correlation, but unlike previously reported cases, most of the DDD patients with STXBP1 pathogenic variants did not present with very early‐onset or severe epilepsy and encephalopathy, though all have developmental delay with intellectual disability and most display behavioral problems and suffered seizures in later childhood. Conclusion Variants across STXBP1 that cause loss of function can result in severe intellectual disability with or without seizures, consistent with a haploinsufficiency mechanism. Pathogenic missense mutations act through destabilization of the protein domain, making it prone to aggregation or degradation. The presence or absence of early seizures may reflect ascertainment bias in the literature as well as the broad recruitment strategy of the DDD study.
Collapse
Affiliation(s)
- Mohnish Suri
- Nottingham Regional Genetics ServiceNottingham University Hospitals NHS TrustCity Hospital Campus, The Gables, Hucknall RoadNottinghamNG5 1PBUK
| | - Jochem M G Evers
- European Bioinformatics Institute (EMBL-EBI)Wellcome Genome Campus, HinxtonCambridgeCB10 1SDUK
| | - Roman A Laskowski
- European Bioinformatics Institute (EMBL-EBI)Wellcome Genome Campus, HinxtonCambridgeCB10 1SDUK
| | - Sinead O'Brien
- MRC Cognition and Brain Sciences Unit15 Chaucer RoadCambridgeCB2 7EFUK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit15 Chaucer RoadCambridgeCB2 7EFUK.,Department of Medical GeneticsUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0QQUK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterM13 9WLUK
| | - Tabib Dabir
- Northern Ireland Regional Genetics CentreBelfast Health and Social Care TrustBelfast City HospitalLisburn RoadBelfastBT9 7ABUK
| | - Dragana Josifova
- South East Thames Regional Genetics CentreGuy's and St Thomas' NHS Foundation TrustGuy's HospitalGreat Maze PondLondonSE1 9RTUK
| | - Shelagh Joss
- West of Scotland Genetics ServiceQueen Elizabeth University HospitalLaboratory Medicine BuildingGlasgowG51 4TFUK
| | - Bronwyn Kerr
- Manchester Centre for Genomic MedicineSt Mary's Hospital, Central Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterM13 9WLUK
| | - Alison Kraus
- Yorkshire Regional Genetics ServiceDepartment of Clinical GeneticsLeeds Teaching Hospitals NHS TrustChapel Allerton HospitalChapeltown RoadLeedsLS7 4SAUK
| | - Meriel McEntagart
- South West Thames Regional Genetics CentreSt George's Healthcare NHS TrustSt George's University of LondonCranmer TerraceLondonSW17 0REUK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersBirmingham Women's and Children's NHS Foundation TrustBirmingham Women's HospitalMindelsohn Way, EdgbastonBirminghamB15 2TGUK
| | - Audrey Smith
- Yorkshire Regional Genetics ServiceDepartment of Clinical GeneticsLeeds Teaching Hospitals NHS TrustChapel Allerton HospitalChapeltown RoadLeedsLS7 4SAUK
| | - Miranda Splitt
- Northern Genetics ServiceNewcastle upon Tyne Hospitals NHS Foundation TrustInstitute of Human GeneticsInternational Centre for LifeCentral ParkwayNewcastle upon TyneNE1 3BZUK
| | - Janet M Thornton
- European Bioinformatics Institute (EMBL-EBI)Wellcome Genome Campus, HinxtonCambridgeCB10 1SDUK
| | | | - Caroline F Wright
- Wellcome Trust Sanger InstituteWellcome Genome Campus, HinxtonCambridgeCB1 8RQUK.,University of Exeter Medical SchoolRoyal Devon & Exeter HospitalBarrack RoadExeterEX2 5DWUK
| |
Collapse
|
656
|
Altmüller J, Motameny S, Becker C, Thiele H, Chatterjee S, Wollnik B, Nürnberg P. A systematic comparison of two new releases of exome sequencing products: the aim of use determines the choice of product. Biol Chem 2017; 397:791-801. [PMID: 27021259 DOI: 10.1515/hsz-2015-0300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
We received early access to the newest releases of exome sequencing products, namely Agilent SureSelect v6 (Agilent, Santa Clara, CA, USA) and NimbleGen MedExome (Roche NimbleGen, Basel, Switzerland), and we conducted whole exome sequencing (WES) of several DNA samples with each of these products in order to assess their performance. Here, we provide a detailed evaluation of the original, normalized (with respect to the different target sizes), and trimmed data sets and compare them in terms of the amount of duplicates, the reads on target, and the enrichment evenness. In addition to these general statistics, we performed a detailed analysis of the frequently mutated and newly described genes found in 'The Deciphering Developmental Disorders Study' published very recently (Fitzgerald, T.W., Gerety, S.S., Jones, W.D., van Kogelenberg, M., King, D.A., McRae, J., Morley, K.I., Parthiban, V., Al-Turki, S., Ambridge, K., et al. (2015). Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223-228.). In our comparison, the Agilent v6 exome performs better than the NimbleGen's MedExome both in terms of efficiency and evenness of coverage distribution. With its larger target size, it is also more comprehensive, and therefore the better choice in research projects that aim to identify novel disease-associated genes. In contrast, if the exomes are mainly used in a diagnostic setting, we see advantages for the new NimbleGen MedExome. We find a superior coverage here in those genes of high clinical relevance that likely allows for a better detection of relevant, disease-causing mutations.
Collapse
|
657
|
Dougherty JD, Yang C, Lake AM. Systems biology in the central nervous system: a brief perspective on essential recent advancements. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 3:67-76. [PMID: 29057378 PMCID: PMC5648337 DOI: 10.1016/j.coisb.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As recent advances in human genetics have begun to more rapidly identify the individual genes contributing to risk of psychiatric disease, the spotlight now turns to understanding how disruption of these genes alters the brain, and thus behavior. Compared to other tissues, cellular complexity in the brain provides both a substantial challenge and a significant opportunity for systems biology approaches. Current methods are maturing that will allow for finally defining the 'parts list' for the functioning mouse and human brains, enabling new approaches to defining how the system goes awry in disorders of the CNS. However, the availability of tissue is certainly a challenge for systems biology of neuroscience, compared to systems biology of other tissues, where biopsy is feasible. This challenge is particularly notable for disorders caused by extremely rare genetic variants. Thus computational and systems biology approaches, as well as precise experimental models by way of genome editing, will play key roles in defining mechanisms for disorders, and their individual symptoms, across varied genetic etiologies. Here, we highlight recent progress in neurogenetics, postmortem genomics, cell-type specific profiling, and precision modeling toward defining mechanisms in disease.
Collapse
Affiliation(s)
- Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M. Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
658
|
Bowling KM, Thompson ML, Amaral MD, Finnila CR, Hiatt SM, Engel KL, Cochran JN, Brothers KB, East KM, Gray DE, Kelley WV, Lamb NE, Lose EJ, Rich CA, Simmons S, Whittle JS, Weaver BT, Nesmith AS, Myers RM, Barsh GS, Bebin EM, Cooper GM. Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med 2017; 9:43. [PMID: 28554332 PMCID: PMC5448144 DOI: 10.1186/s13073-017-0433-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/03/2017] [Indexed: 12/30/2022] Open
Abstract
Background Developmental disabilities have diverse genetic causes that must be identified to facilitate precise diagnoses. We describe genomic data from 371 affected individuals, 309 of which were sequenced as proband-parent trios. Methods Whole-exome sequences (WES) were generated for 365 individuals (127 affected) and whole-genome sequences (WGS) were generated for 612 individuals (244 affected). Results Pathogenic or likely pathogenic variants were found in 100 individuals (27%), with variants of uncertain significance in an additional 42 (11.3%). We found that a family history of neurological disease, especially the presence of an affected first-degree relative, reduces the pathogenic/likely pathogenic variant identification rate, reflecting both the disease relevance and ease of interpretation of de novo variants. We also found that improvements to genetic knowledge facilitated interpretation changes in many cases. Through systematic reanalyses, we have thus far reclassified 15 variants, with 11.3% of families who initially were found to harbor a VUS and 4.7% of families with a negative result eventually found to harbor a pathogenic or likely pathogenic variant. To further such progress, the data described here are being shared through ClinVar, GeneMatcher, and dbGaP. Conclusions Our data strongly support the value of large-scale sequencing, especially WGS within proband-parent trios, as both an effective first-choice diagnostic tool and means to advance clinical and research progress related to pediatric neurological disease. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0433-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin M Bowling
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Michelle L Thompson
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Michelle D Amaral
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Candice R Finnila
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Krysta L Engel
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | | | - Kelly M East
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - David E Gray
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Whitley V Kelley
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Neil E Lamb
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Edward J Lose
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Jana S Whittle
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.,University of Alabama in Huntsville, Huntsville, AL, USA
| | - Benjamin T Weaver
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.,University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy S Nesmith
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | | | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.
| |
Collapse
|
659
|
Steward CA, Parker APJ, Minassian BA, Sisodiya SM, Frankish A, Harrow J. Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Med 2017; 9:49. [PMID: 28558813 PMCID: PMC5448149 DOI: 10.1186/s13073-017-0441-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis.
Collapse
Affiliation(s)
- Charles A Steward
- Congenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK. .,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | - Berge A Minassian
- Department of Pediatrics (Neurology), University of Texas Southwestern, Dallas, TX, USA.,Program in Genetics and Genome Biology and Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK
| | - Adam Frankish
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Illumina Inc, Great Chesterford, Essex, CB10 1XL, UK
| |
Collapse
|
660
|
Quintela I, Eirís J, Gómez-Lado C, Pérez-Gay L, Dacruz D, Cruz R, Castro-Gago M, Míguez L, Carracedo Á, Barros F. Copy number variation analysis of patients with intellectual disability from North-West Spain. Gene 2017; 626:189-199. [PMID: 28506748 DOI: 10.1016/j.gene.2017.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Intellectual disability (ID) is a complex and phenotypically heterogeneous neurodevelopmental disorder characterized by significant deficits in cognitive and adaptive skills, debuting during the developmental period. In the last decade, microarray-based copy number variation (CNV) analysis has been proved as a strategy particularly useful in the discovery of loci and candidate genes associated with these phenotypes and is widely used in the clinics with a diagnostic purpose. In this study, we evaluated the usefulness of two genome-wide high density SNP microarrays -Cytogenetics Whole-Genome 2.7M SNP array (n=126 patients; Group 1) and CytoScan High-Density SNP array (n=447 patients; Group 2)- in the detection of clinically relevant CNVs in a cohort of ID patients from Galicia (NW Spain). In 159 (27.7%) patients, we detected 186 rare exonic chromosomal imbalances, that were grouped into the following classes: Clinically relevant (67/186; 36.0%), of unknown clinical significance (93/186; 50.0%) and benign (26/186; 14.0%). The 67 pathogenic CNVs were identified in 64 patients, which means an overall diagnostic yield of 11.2%. Overall, we confirmed that ID is a genetically heterogeneous condition and emphasized the importance of using genome-wide high density SNP microarrays in the detection of its genetic causes. Additionally, we provided clinical and molecular data of patients with pathogenic or likely pathogenic CNVs and discussed the potential implication in neurodevelopmental disorders of genes located within these variants.
Collapse
Affiliation(s)
- Inés Quintela
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain
| | - Jesús Eirís
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Carmen Gómez-Lado
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Laura Pérez-Gay
- Hospital Universitario Lucus Augusti, Unidad de Neurología Pediátrica, Departamento de Pediatría, Lugo, Spain
| | - David Dacruz
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Manuel Castro-Gago
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Luz Míguez
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain; King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah, Saudi Arabia
| | - Francisco Barros
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain.
| |
Collapse
|
661
|
Tatton-Brown K, Loveday C, Yost S, Clarke M, Ramsay E, Zachariou A, Elliott A, Wylie H, Ardissone A, Rittinger O, Stewart F, Temple IK, Cole T, Mahamdallie S, Seal S, Ruark E, Rahman N. Mutations in Epigenetic Regulation Genes Are a Major Cause of Overgrowth with Intellectual Disability. Am J Hum Genet 2017; 100:725-736. [PMID: 28475857 PMCID: PMC5420355 DOI: 10.1016/j.ajhg.2017.03.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/24/2017] [Indexed: 12/04/2022] Open
Abstract
To explore the genetic architecture of human overgrowth syndromes and human growth control, we performed experimental and bioinformatic analyses of 710 individuals with overgrowth (height and/or head circumference ≥+2 SD) and intellectual disability (OGID). We identified a causal mutation in 1 of 14 genes in 50% (353/710). This includes HIST1H1E, encoding histone H1.4, which has not been associated with a developmental disorder previously. The pathogenic HIST1H1E mutations are predicted to result in a product that is less effective in neutralizing negatively charged linker DNA because it has a reduced net charge, and in DNA binding and protein-protein interactions because key residues are truncated. Functional network analyses demonstrated that epigenetic regulation is a prominent biological process dysregulated in individuals with OGID. Mutations in six epigenetic regulation genes—NSD1, EZH2, DNMT3A, CHD8, HIST1H1E, and EED—accounted for 44% of individuals (311/710). There was significant overlap between the 14 genes involved in OGID and 611 genes in regions identified in GWASs to be associated with height (p = 6.84 × 10−8), suggesting that a common variation impacting function of genes involved in OGID influences height at a population level. Increased cellular growth is a hallmark of cancer and there was striking overlap between the genes involved in OGID and 260 somatically mutated cancer driver genes (p = 1.75 × 10−14). However, the mutation spectra of genes involved in OGID and cancer differ, suggesting complex genotype-phenotype relationships. These data reveal insights into the genetic control of human growth and demonstrate that exome sequencing in OGID has a high diagnostic yield.
Collapse
Affiliation(s)
- Katrina Tatton-Brown
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK; South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Chey Loveday
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Shawn Yost
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Matthew Clarke
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Emma Ramsay
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Anna Zachariou
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Anna Elliott
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Harriet Wylie
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Anna Ardissone
- Child Neurology Unit, Foundation IRCCS C Besta Neurological Institute, Milan 20133, Italy
| | - Olaf Rittinger
- Landeskrankenanstalten Salzburg, Kinderklinik Department of Pediatrics, Klinische Genetik, Salzburg 5020, Austria
| | - Fiona Stewart
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast BT9 7AB, Northern Ireland
| | - I Karen Temple
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; Wessex Clinical Genetics Service, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Trevor Cole
- West Midlands Regional Genetics Service, Birmingham Women's Hospital NHS Foundation Trust and University of Birmingham, Birmingham Health Partners, Birmingham B15 2TG, UK
| | - Shazia Mahamdallie
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Sheila Seal
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Elise Ruark
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK; Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK.
| |
Collapse
|
662
|
Willsey AJ, Fernandez TV, Yu D, King RA, Dietrich A, Xing J, Sanders SJ, Mandell JD, Huang AY, Richer P, Smith L, Dong S, Samocha KE, Neale BM, Coppola G, Mathews CA, Tischfield JA, Scharf JM, State MW, Heiman GA. De Novo Coding Variants Are Strongly Associated with Tourette Disorder. Neuron 2017; 94:486-499.e9. [PMID: 28472652 PMCID: PMC5769876 DOI: 10.1016/j.neuron.2017.04.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/30/2022]
Abstract
Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- A Jeremy Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Thomas V Fernandez
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dongmei Yu
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert A King
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, 9713GZ Groningen, the Netherlands
| | - Jinchuan Xing
- Rutgers, the State University of New Jersey, Department of Genetics and the Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey D Mandell
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alden Y Huang
- Department of Neurology, University of California Los Angeles, Los Angeles, California, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Petra Richer
- Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Sewanee: The University of the South, Sewanee, TN 37383, USA
| | - Louw Smith
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin M Neale
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Giovanni Coppola
- Department of Neurology, University of California Los Angeles, Los Angeles, California, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carol A Mathews
- Department of Psychiatry, University of Florida School of Medicine, Gainesville, FL 32611, USA
| | - Jay A Tischfield
- Rutgers, the State University of New Jersey, Department of Genetics and the Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Jeremiah M Scharf
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Gary A Heiman
- Rutgers, the State University of New Jersey, Department of Genetics and the Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
663
|
Mullegama SV, Klein S, Mulatinho MV, Senaratne T, Singh K, UCLA Clinical Genomics Center, Nguyen D, Gallant N, Strom S, Ghahremani S, Rao PN, Martinez-Agosto JA. De novo loss-of-function variants in STAG2 are associated with developmental delay, microcephaly, and congenital anomalies. Am J Med Genet A 2017; 173:1319-1327. [PMID: 28296084 PMCID: PMC7033032 DOI: 10.1002/ajmg.a.38207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/26/2022]
Abstract
The cohesin complex is an evolutionarily conserved multi-subunit protein complex which regulates sister chromatid cohesion during mitosis and meiosis. Additionally, the cohesin complex regulates DNA replication, DNA repair, and transcription. The core of the complex consists of four subunits: SMC1A, SMC3, RAD21, and STAG1/2. Loss-of-function mutations in many of these proteins have been implicated in human developmental disorders collectively termed "cohesinopathies." Through clinical exome sequencing (CES) of an 8-year-old girl with a clinical history of global developmental delay, microcephaly, microtia with hearing loss, language delay, ADHD, and dysmorphic features, we describe a heterozygous de novo variant (c.205C>T; p.(Arg69*)) in the integral cohesin structural protein, STAG2. This variant is associated with decreased STAG2 protein expression. The analyses of metaphase spreads did not exhibit premature sister chromatid separation; however, delayed sister chromatid cohesion was observed. To further support the pathogenicity of STAG2 variants, we identified two additional female cases from the DECIPHER research database with mutations in STAG2 and phenotypes similar to our patient. Interestingly, the clinical features of these three cases are remarkably similar to those observed in other well-established cohesinopathies. Herein, we suggest that STAG2 is a dosage-sensitive gene and that heterozygous loss-of-function variants lead to a cohesinopathy.
Collapse
Affiliation(s)
- S. V. Mullegama
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - S. Klein
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - M. V. Mulatinho
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - T.N. Senaratne
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - K. Singh
- Division of Genetic and Genomic Medicine, University of California, Irvine, California, USA, and Miller Children’s and Women’s Hospital Long Beach, Long Beach, California, USA
| | - UCLA Clinical Genomics Center
- UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - D.C. Nguyen
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - N.M. Gallant
- Division of Genetic and Genomic Medicine, University of California, Irvine, California, USA, and Miller Children’s and Women’s Hospital Long Beach, Long Beach, California, USA
| | - S.P. Strom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - S. Ghahremani
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - P. N. Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - J. A. Martinez-Agosto
- UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
664
|
Ghosh A, Urquhart J, Daly S, Ferguson A, Scotcher D, Morris AAM, Clayton-Smith J. Phenotypic Heterogeneity in a Congenital Disorder of Glycosylation Caused by Mutations in STT3A. J Child Neurol 2017; 32:560-565. [PMID: 28424003 DOI: 10.1177/0883073817696816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
STT3A encodes the catalytic subunit of the oligosaccharyltransferase complex. A congenital disorder of glycosylation caused by mutations in STT3A has only been reported in one family to date, associated with a Type I congenital disorder of glycosylation pattern of transferrin glycoforms. The authors describe a further 5 related individuals with a likely pathogenic variant in STT3A, 2 of whom also had variants in TUSC3. Common phenotypic features in all symptomatic individuals include developmental delay, intellectual disability, with absent speech and seizures. Two individuals also developed episodic hypothermia and altered consciousness. The family were investigated by autozygosity mapping, which revealed both a homozygous region containing STT3A and, in addition, a homozygous deletion of TUSC3 in one child. A likely pathogenic variant in STT3A was confirmed on Sanger sequencing of all affected individuals: the authors discuss the molecular findings in detail and further delineate the clinical phenotype of this rare disorder.
Collapse
Affiliation(s)
- Arunabha Ghosh
- 1 Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,2 School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jill Urquhart
- 3 Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Daly
- 3 Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Anne Ferguson
- 4 Community Paediatrics, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Diana Scotcher
- 3 Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew A M Morris
- 1 Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jill Clayton-Smith
- 3 Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,5 Institute of Evolution, Systems and Genomics, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
665
|
Chakravorty S, Hegde M. Gene and Variant Annotation for Mendelian Disorders in the Era of Advanced Sequencing Technologies. Annu Rev Genomics Hum Genet 2017; 18:229-256. [PMID: 28415856 DOI: 10.1146/annurev-genom-083115-022545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comprehensive annotations of genetic and noncoding regions and corresponding accurate variant classification for Mendelian diseases are the next big challenge in the new genomic era of personalized medicine. Progress in the development of faster and more accurate pipelines for genome annotation and variant classification will lead to the discovery of more novel disease associations and candidate therapeutic targets. This ultimately will facilitate better patient recruitment in clinical trials. In this review, we describe the trends in research at the intersection of basic and clinical genomics that aims to increase understanding of overall genomic complexity, complex inheritance patterns of disease, and patient-phenotype-specific genomic associations. We describe the emerging field of translational functional genomics, which integrates other functional "-omics" approaches that support next-generation sequencing genomic data in order to facilitate personalized diagnostics, disease management, biomarker discovery, and medicine. We also discuss the utility of this integrated approach for diagnostic clinics and medical databases and its role in the future of personalized medicine.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322;
| |
Collapse
|
666
|
Takenouchi T, Miwa T, Sakamoto Y, Sakaguchi Y, Uehara T, Takahashi T, Kosaki K. Further evidence that a blepharophimosis syndrome phenotype is associated with a specific class of mutation in the ADNP gene. Am J Med Genet A 2017; 173:1631-1634. [PMID: 28407407 DOI: 10.1002/ajmg.a.38126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 11/08/2022]
Abstract
Heterozygous truncating mutations in ADNP are associated with a syndromic form of intellectual disability known as Helsmoortel-van der Aa syndrome. Among 17 previously reported patients with Helsmoortel-van der Aa syndrome, one patient exhibited blepharophimosis. Whether blepharophimosis represents a phenotypic expression of the ADNP mutation spectrum or a chance association remains unclear. Herein, we report another patient with a de novo truncating mutation in ADNP who exhibited a combination of blepharophimosis and epicanthal folds. In our retrospective re-evaluation of six originally reported patients whose facial photographs were available, at least one patient indeed had blepharophimosis and epicanthal folds. Furthermore, all three patients with blepharophimosis and epicanthal folds, including the presently reported patient, had truncating mutations at the same specific portion of the protein, that is the bipartite nuclear localization signal. We suggest that this specific class of ADNP mutation is likely associated with a blepharophimosis syndrome phenotype. From a clinical standpoint, a differential diagnosis of patients with blepharophimosis should include ADNP mutations in addition to blepharophimosis ptosis epicanthus inversus syndrome, especially when intellectual disability is present.
Collapse
Affiliation(s)
- Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoru Miwa
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Sakamoto
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuri Sakaguchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
667
|
De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome. Am J Hum Genet 2017; 100:650-658. [PMID: 28343630 DOI: 10.1016/j.ajhg.2017.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/03/2017] [Indexed: 12/30/2022] Open
Abstract
Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.
Collapse
|
668
|
Gupta AR, Westphal A, Yang DYJ, Sullivan CAW, Eilbott J, Zaidi S, Voos A, Vander Wyk BC, Ventola P, Waqar Z, Fernandez TV, Ercan-Sencicek AG, Walker MF, Choi M, Schneider A, Hedderly T, Baird G, Friedman H, Cordeaux C, Ristow A, Shic F, Volkmar FR, Pelphrey KA. Neurogenetic analysis of childhood disintegrative disorder. Mol Autism 2017; 8:19. [PMID: 28392909 PMCID: PMC5379515 DOI: 10.1186/s13229-017-0133-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Childhood disintegrative disorder (CDD) is a rare form of autism spectrum disorder (ASD) of unknown etiology. It is characterized by late-onset regression leading to significant intellectual disability (ID) and severe autism. Although there are phenotypic differences between CDD and other forms of ASD, it is unclear if there are neurobiological differences. METHODS We pursued a multidisciplinary study of CDD (n = 17) and three comparison groups: low-functioning ASD (n = 12), high-functioning ASD (n = 50), and typically developing (n = 26) individuals. We performed whole-exome sequencing (WES), copy number variant (CNV), and gene expression analyses of CDD and, on subsets of each cohort, non-sedated functional magnetic resonance imaging (fMRI) while viewing socioemotional (faces) and non-socioemotional (houses) stimuli and eye tracking while viewing emotional faces. RESULTS We observed potential differences between CDD and other forms of ASD. WES and CNV analyses identified one or more rare de novo, homozygous, and/or hemizygous (mother-to-son transmission on chrX) variants for most probands that were not shared by unaffected sibling controls. There were no clearly deleterious variants or highly recurrent candidate genes. Candidate genes that were found to be most conserved at variant position and most intolerant of variation, such as TRRAP, ZNF236, and KIAA2018, play a role or may be involved in transcription. Using the human BrainSpan transcriptome dataset, CDD candidate genes were found to be more highly expressed in non-neocortical regions than neocortical regions. This expression profile was similar to that of an independent cohort of ASD probands with regression. The non-neocortical regions overlapped with those identified by fMRI as abnormally hyperactive in response to viewing faces, such as the thalamus, cerebellum, caudate, and hippocampus. Eye-tracking analysis showed that, among individuals with ASD, subjects with CDD focused on eyes the most when shown pictures of faces. CONCLUSIONS Given that cohort sizes were limited by the rarity of CDD, and the challenges of conducting non-sedated fMRI and eye tracking in subjects with ASD and significant ID, this is an exploratory study designed to investigate the neurobiological features of CDD. In addition to reporting the first multimodal analysis of CDD, a combination of fMRI and eye-tracking analyses are being presented for the first time for low-functioning individuals with ASD. Our results suggest differences between CDD and other forms of ASD on the neurobiological as well as clinical level.
Collapse
Affiliation(s)
- Abha R. Gupta
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut USA
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Alexander Westphal
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut USA
| | - Daniel Y. J. Yang
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | | | - Jeffrey Eilbott
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Samir Zaidi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut USA
| | - Avery Voos
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | | | - Pam Ventola
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Zainulabedin Waqar
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut USA
| | - Thomas V. Fernandez
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut USA
| | | | - Michael F. Walker
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Murim Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut USA
| | - Allison Schneider
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Tammy Hedderly
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ Trust, Kings Health Partners AHSC, London, UK
| | - Gillian Baird
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ Trust, Kings Health Partners AHSC, London, UK
| | - Hannah Friedman
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Cara Cordeaux
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Alexandra Ristow
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Frederick Shic
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Fred R. Volkmar
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| | - Kevin A. Pelphrey
- Child Study Center, Yale School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
669
|
Human Y chromosome copy number variation in the next generation sequencing era and beyond. Hum Genet 2017; 136:591-603. [PMID: 28378101 PMCID: PMC5418319 DOI: 10.1007/s00439-017-1788-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/25/2017] [Indexed: 11/16/2022]
Abstract
The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.
Collapse
|
670
|
Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, Kvarnung M, Gerdts J, Trinh S, Cosemans N, Vives L, Lin J, Turner TN, Santen G, Ruivenkamp C, Kriek M, van Haeringen A, Aten E, Friend K, Liebelt J, Barnett C, Haan E, Shaw M, Gecz J, Anderlid BM, Nordgren A, Lindstrand A, Schwartz C, Kooy RF, Vandeweyer G, Helsmoortel C, Romano C, Alberti A, Vinci M, Avola E, Giusto S, Courchesne E, Pramparo T, Pierce K, Nalabolu S, Amaral D, Scheffer IE, Delatycki MB, Lockhart PJ, Hormozdiari F, Harich B, Castells-Nobau A, Xia K, Peeters H, Nordenskjöld M, Schenck A, Bernier RA, Eichler EE. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet 2017; 49:515-526. [PMID: 28191889 PMCID: PMC5374041 DOI: 10.1038/ng.3792] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022]
Abstract
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
Collapse
Affiliation(s)
| | - Bo Xiong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of forensic medicine and Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tianyun Wang
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michaela Fenckova
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Sandy Trinh
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Nele Cosemans
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Laura Vives
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janice Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tychele N. Turner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gijs Santen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marjolein Kriek
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Kathryn Friend
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Christopher Barnett
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Eric Haan
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Marie Shaw
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
| | - Jozef Gecz
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | - Stefania Giusto
- Unit of Neurology, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | | | | | - Karen Pierce
- UCSD, Autism Center of Excellence, La Jolla, CA, USA
| | | | - David Amaral
- MIND Institute and the University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ingrid E. Scheffer
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Martin B. Delatycki
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Paul J. Lockhart
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Annette Schenck
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
671
|
Miller KA, Twigg SRF, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KEM, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JAC, Swagemakers SMA, Mathijssen IMJ, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JEV, Sweeney E, Weber A, Wilson LC, Wilkie AOM. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet 2017; 54:260-268. [PMID: 27884935 PMCID: PMC5366069 DOI: 10.1136/jmedgenet-2016-104215] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/26/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing. METHODS We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative. RESULTS We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). CONCLUSIONS This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.
Collapse
Affiliation(s)
- Kerry A Miller
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon J McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Julie M Phipps
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Aimée L Fenwick
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Noons
- Department of Craniofacial Surgery, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Katie E M Rees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elizabeth A Tidey
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judith Craft
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Helen Lord
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tracy Lester
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noina Abid
- Department of Paediatric Endocrinology, The Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Deirdre Cilliers
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jane A Hurst
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jenny E V Morton
- Clinical Genetics Unit, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, UK
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
672
|
Helbig KL, Mroske C, Moorthy D, Sajan SA, Velinov M. Biallelic loss-of-function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability. Clin Genet 2017; 92:430-433. [PMID: 28195318 DOI: 10.1111/cge.12995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/30/2022]
Abstract
DOCK3 encodes the dedicator of cytokinesis 3 protein, a member of the DOCK180 family of proteins that are characterized by guanine-nucleotide exchange factor activity. DOCK3 is expressed exclusively in the central nervous system and plays an important role in axonal outgrowth and cytoskeleton reorganization. Dock3 knockout mice exhibit motor deficiencies with abnormal ataxic gait and impaired learning. We report 2 siblings with biallelic loss-of-function variants in DOCK3. Diagnostic whole-exome sequencing (WES) and chromosomal microarray were performed on a proband with severe developmental disability, hypotonia, and ataxic gait. Testing was also performed on the proband's similarly affected brother. A paternally inherited 458 kb deletion in chromosomal region 3p21.2 disrupting the DOCK3 gene was identified in both affected siblings. WES identified a nonsense variant c.382C>G (p.Gln128*) in the DOCK3 gene (NM_004947) on the maternal allele in both siblings. Common features in both affected individuals include severe developmental disability, ataxic gait, and severe hypotonia, which recapitulates the Dock3 knockout mouse phenotype. We show that complete DOCK3 deficiency in humans leads to developmental disability with significant hypotonia and gait ataxia, probably due to abnormal axonal development.
Collapse
Affiliation(s)
- K L Helbig
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - C Mroske
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - D Moorthy
- The George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - S A Sajan
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - M Velinov
- The George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
673
|
Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders. Eur J Hum Genet 2017; 25:669-679. [PMID: 28327575 PMCID: PMC5477361 DOI: 10.1038/ejhg.2017.32] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/15/2016] [Accepted: 12/24/2016] [Indexed: 01/12/2023] Open
Abstract
Over 150 different proteins attach to the plasma membrane using glycosylphosphatidylinositol (GPI) anchors. Mutations in 18 genes that encode components of GPI-anchor biogenesis result in a phenotypic spectrum that includes learning disability, epilepsy, microcephaly, congenital malformations and mild dysmorphic features. To determine the incidence of GPI-anchor defects, we analysed the exome data from 4293 parent–child trios recruited to the Deciphering Developmental Disorders (DDD) study. All probands recruited had a neurodevelopmental disorder. We searched for variants in 31 genes linked to GPI-anchor biogenesis and detected rare biallelic variants in PGAP3, PIGN, PIGT (n=2), PIGO and PIGL, providing a likely diagnosis for six families. In five families, the variants were in a compound heterozygous configuration while in a consanguineous Afghani kindred, a homozygous c.709G>C; p.(E237Q) variant in PIGT was identified within 10–12 Mb of autozygosity. Validation and segregation analysis was performed using Sanger sequencing. Across the six families, five siblings were available for testing and in all cases variants co-segregated consistent with them being causative. In four families, abnormal alkaline phosphatase results were observed in the direction expected. FACS analysis of knockout HEK293 cells that had been transfected with wild-type or mutant cDNA constructs demonstrated that the variants in PIGN, PIGT and PIGO all led to reduced activity. Splicing assays, performed using leucocyte RNA, showed that a c.336-2A>G variant in PIGL resulted in exon skipping and p.D113fs*2. Our results strengthen recently reported disease associations, suggest that defective GPI-anchor biogenesis may explain ~0.15% of individuals with developmental disorders and highlight the benefits of data sharing.
Collapse
|
674
|
Zweier M, Peippo MM, Pöyhönen M, Kääriäinen H, Begemann A, Joset P, Oneda B, Rauch A. The HHID syndrome of hypertrichosis, hyperkeratosis, abnormal corpus callosum, intellectual disability, and minor anomalies is caused by mutations in ARID1B. Am J Med Genet A 2017; 173:1440-1443. [PMID: 28323383 PMCID: PMC5413807 DOI: 10.1002/ajmg.a.38143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | | | - Minna Pöyhönen
- Department of Clinical Genetics, Helsinki University Central Hospital and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland.,Radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland.,Radiz-Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
675
|
Bassett AR. Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mamm Genome 2017; 28:348-364. [PMID: 28303292 PMCID: PMC5569153 DOI: 10.1007/s00335-017-9684-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
The advent of human-induced pluripotent stem cell (hiPSC) technology has provided a unique opportunity to establish cellular models of disease from individual patients, and to study the effects of the underlying genetic aberrations upon multiple different cell types, many of which would not normally be accessible. Combining this with recent advances in genome editing techniques such as the clustered regularly interspaced short palindromic repeat (CRISPR) system has provided an ability to repair putative causative alleles in patient lines, or introduce disease alleles into a healthy “WT” cell line. This has enabled analysis of isogenic cell pairs that differ in a single genetic change, which allows a thorough assessment of the molecular and cellular phenotypes that result from this abnormality. Importantly, this establishes the true causative lesion, which is often impossible to ascertain from human genetic studies alone. These isogenic cell lines can be used not only to understand the cellular consequences of disease mutations, but also to perform high throughput genetic and pharmacological screens to both understand the underlying pathological mechanisms and to develop novel therapeutic agents to prevent or treat such diseases. In the future, optimising and developing such genetic manipulation technologies may facilitate the provision of cellular or molecular gene therapies, to intervene and ultimately cure many debilitating genetic disorders.
Collapse
Affiliation(s)
- Andrew R Bassett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
676
|
|
677
|
Abstract
The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year.
Collapse
|
678
|
Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants. Hum Genet 2017; 136:409-420. [PMID: 28213671 DOI: 10.1007/s00439-017-1767-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
Abstract
Smith-Magenis syndrome (SMS), a neurodevelopmental disorder characterized by dysmorphic features, intellectual disability (ID), and sleep disturbances, results from a 17p11.2 microdeletion or a mutation in the RAI1 gene. We performed exome sequencing on 6 patients with SMS-like phenotypes but without chromosomal abnormalities or RAI1 variants. We identified pathogenic de novo variants in two cases, a nonsense variant in IQSEC2 and a missense variant in the SAND domain of DEAF1, and candidate de novo missense variants in an additional two cases. One candidate variant was located in an alpha helix of Necdin (NDN), phased to the paternally inherited allele. NDN is maternally imprinted within the 15q11.2 Prader-Willi Syndrome (PWS) region. This can help clarify NDN's role in the PWS phenotype. No definitive pathogenic gene variants were detected in the remaining SMS-like cases, but we report our findings for future comparison. This study provides information about the inheritance pattern and recurrence risk for patients with identified variants and demonstrates clinical and genetic overlap of neurodevelopmental disorders. Identification and characterization of ID-related genes that assist in development of common developmental pathways and/or gene-networks, may inform disease mechanism and treatment strategies.
Collapse
|
679
|
Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K, Lek M, Karczewski KJ, Cutler DJ, Devlin B, Roeder K, Buxbaum JD, Neale BM, MacArthur DG, Wall DP, Robinson EB, Daly MJ. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet 2017; 49:504-510. [PMID: 28191890 PMCID: PMC5496244 DOI: 10.1038/ng.3789] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022]
Abstract
Recent research has uncovered an important role for de novo variation in neurodevelopmental disorders. Using aggregated data from 9,246 families with autism spectrum disorder, intellectual disability, or developmental delay, we found that ∼1/3 of de novo variants are independently present as standing variation in the Exome Aggregation Consortium's cohort of 60,706 adults, and these de novo variants do not contribute to neurodevelopmental risk. We further used a loss-of-function (LoF)-intolerance metric, pLI, to identify a subset of LoF-intolerant genes containing the observed signal of associated de novo protein-truncating variants (PTVs) in neurodevelopmental disorders. LoF-intolerant genes also carry a modest excess of inherited PTVs, although the strongest de novo-affected genes contribute little to this excess, thus suggesting that the excess of inherited risk resides in lower-penetrant genes. These findings illustrate the importance of population-based reference cohorts for the interpretation of candidate pathogenic variants, even for analyses of complex diseases and de novo variation.
Collapse
Affiliation(s)
- Jack A Kosmicki
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, Massachusetts, USA.,Program in Genetics and Genomics, Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaitlin E Samocha
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Program in Genetics and Genomics, Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Howrigan
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Stephan J Sanders
- Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA
| | - Kamil Slowikowski
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, Massachusetts, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts, USA
| | - Monkol Lek
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kathryn Roeder
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Dennis P Wall
- Departments of Pediatrics (Systems Medicine), Biomedical Data Science, and Psychiatry (by courtesy), Stanford University, Stanford, California, USA
| | - Elise B Robinson
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
680
|
Symonds JD, Joss S, Metcalfe KA, Somarathi S, Cruden J, Devlin AM, Donaldson A, DiDonato N, Fitzpatrick D, Kaiser FJ, Lampe AK, Lees MM, McLellan A, Montgomery T, Mundada V, Nairn L, Sarkar A, Schallner J, Pozojevic J, Parenti I, Tan J, Turnpenny P, Whitehouse WP, Zuberi SM. Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: Detailed phenotyping of 10 new cases. Epilepsia 2017; 58:565-575. [PMID: 28166369 DOI: 10.1111/epi.13669] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. METHOD Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. RESULTS Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. SIGNIFICANCE Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males.
Collapse
Affiliation(s)
- Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Queen Elizabeth University Hospitals, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, Glasgow, United Kingdom
| | - Kay A Metcalfe
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Division of Evolution and Genomic sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Suresh Somarathi
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Jamie Cruden
- Department of Paediatrics, Victoria Infirmary, Kirkcaldy, United Kingdom
| | - Anita M Devlin
- Paediatric Neurology, Great North Children's Hospital, Newcastle Acute Hospitals NHS Trust, Newcastle-upon-Tyne, United Kingdom
| | | | | | - David Fitzpatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Frank J Kaiser
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | - Anne K Lampe
- South East Scotland Clinical Genetic Service, Edinburgh, United Kingdom
| | - Melissa M Lees
- Clinical Genetics, Great Ormond Street Hospital, London, United Kingdom
| | - Ailsa McLellan
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Tara Montgomery
- Institute of Genetic Medicine, Newcastle-upon-Tyne, United Kingdom
| | - Vivek Mundada
- Paediatric Neurology Royal London Hospital, London, United Kingdom
| | - Lesley Nairn
- Department of Paediatrics, Royal Alexandra Hospital, Paisley, United Kingdom
| | - Ajoy Sarkar
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Jens Schallner
- Carl Gustav Carus Hospital, at the TU Dresden, Dresden, Germany
| | - Jelena Pozojevic
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | - Ilaria Parenti
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | - Jeen Tan
- Paediatric Neurology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | | | - William P Whitehouse
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | -
- The Deciphering Developmental Disorders study, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Queen Elizabeth University Hospitals, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
681
|
Bengani H, Handley M, Alvi M, Ibitoye R, Lees M, Lynch SA, Lam W, Fannemel M, Nordgren A, Malmgren H, Kvarnung M, Mehta S, McKee S, Whiteford M, Stewart F, Connell F, Clayton-Smith J, Mansour S, Mohammed S, Fryer A, Morton J, Grozeva D, Asam T, Moore D, Sifrim A, McRae J, Hurles ME, Firth HV, Raymond FL, Kini U, Nellåker C, Ddd Study, FitzPatrick DR. Clinical and molecular consequences of disease-associated de novo mutations in SATB2. Genet Med 2017; 19:900-908. [PMID: 28151491 PMCID: PMC5548934 DOI: 10.1038/gim.2016.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/01/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability. METHODS Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production. Subcellular localization and mobility of wild-type and mutant SATB2 were assessed using fluorescently tagged protein. RESULTS Recurrent clinical features included neurodevelopmental impairment (19/19), absent/near absent speech (16/19), normal somatic growth (17/19), cleft palate (9/19), drooling (12/19), and dental anomalies (8/19). Six of eight missense variants clustered in the first CUT domain. Sibling recurrence due to gonadal mosaicism was seen in one family. A nonsense mutation in the last exon resulted in production of a truncated protein retaining all three DNA-binding domains. SATB2 nuclear mobility was mutation-dependent; p.Arg389Cys in CUT1 increased mobility and both p.Gly515Ser in CUT2 and p.Gln566Lys between CUT2 and HOX reduced mobility. The clinical features in individuals with missense variants were indistinguishable from those with loss of function. CONCLUSION SATB2 haploinsufficiency is a common cause of syndromic intellectual disability. When mutant SATB2 protein is produced, the protein appears functionally inactive with a disrupted pattern of chromatin or matrix association.Genet Med advance online publication 02 February 2017.
Collapse
Affiliation(s)
- Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mark Handley
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mohsan Alvi
- Avdeling for Medisinsk Genetikk, Oslo Universitetssykehus, Oslo, Norway
| | - Rita Ibitoye
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Melissa Lees
- North East Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Sally Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - Wayne Lam
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
| | | | - Ann Nordgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - H Malmgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - M Kvarnung
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sarju Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Margo Whiteford
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Fiona Stewart
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Fiona Connell
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Sahar Mansour
- Department of Clinical Genetics, St Georges Hospital, Tooting, UK
| | - Shehla Mohammed
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alan Fryer
- Cheshire &Merseyside Regional Genetics Service, Liverpool Women's NHS foundation Trust, Liverpool, UK
| | - Jenny Morton
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | | | - Detelina Grozeva
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Tara Asam
- South-East Scotland Regional Genetics Laboratories, Western General Hospital, Edinburgh, UK
| | - David Moore
- South-East Scotland Regional Genetics Laboratories, Western General Hospital, Edinburgh, UK
| | - Alejandro Sifrim
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jeremy McRae
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK.,Spires Cleft Centre, John Radcliffe Hospital, Oxford, UK
| | - Christoffer Nellåker
- Nuffield Department of Obstetrics &Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.,Department of Engineering Science, University of Oxford, Institute of Biomedical Engineering, Oxford, UK.,Big Data Institute, University of Oxford, Oxford, UK
| | - Ddd Study
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
682
|
Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. Am J Hum Genet 2017; 100:267-280. [PMID: 28132688 DOI: 10.1016/j.ajhg.2017.01.004] [Citation(s) in RCA: 725] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022] Open
Abstract
In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published updated standards and guidelines for the clinical interpretation of sequence variants with respect to human diseases on the basis of 28 criteria. However, variability between individual interpreters can be extensive because of reasons such as the different understandings of these guidelines and the lack of standard algorithms for implementing them, yet computational tools for semi-automated variant interpretation are not available. To address these problems, we propose a suite of methods for implementing these criteria and have developed a tool called InterVar to help human reviewers interpret the clinical significance of variants. InterVar can take a pre-annotated or VCF file as input and generate automated interpretation on 18 criteria. Furthermore, we have developed a companion web server, wInterVar, to enable user-friendly variant interpretation with an automated interpretation step and a manual adjustment step. These tools are especially useful for addressing severe congenital or very early-onset developmental disorders with high penetrance. Using results from a few published sequencing studies, we demonstrate the utility of InterVar in significantly reducing the time to interpret the clinical significance of sequence variants.
Collapse
|
683
|
Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SG, Pulice JL, Chory EJ, Crabtree GR. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet 2017; 49:213-222. [PMID: 27941796 PMCID: PMC5285326 DOI: 10.1038/ng.3734] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The opposition between Polycomb repressive complexes (PRCs) and BAF (mSWI/SNF) complexes has a critical role in both development and disease. Mutations in the genes encoding BAF subunits contribute to more than 20% of human malignancies, yet the underlying mechanisms remain unclear, owing largely to a lack of assays to assess BAF function in living cells. To address this, we have developed a widely applicable recruitment assay system through which we find that BAF opposes PRC by rapid, ATP-dependent eviction, leading to the formation of accessible chromatin. The reversal of this process results in reassembly of facultative heterochromatin. Surprisingly, BAF-mediated PRC eviction occurs in the absence of RNA polymerase II (Pol II) occupancy, transcription, and replication. Further, we find that tumor-suppressor and oncogenic mutant BAF complexes have different effects on PRC eviction. The results of these studies define a mechanistic sequence underlying the resolution and formation of facultative heterochromatin, and they demonstrate that BAF opposes PRC on a minute-by-minute basis to provide epigenetic plasticity.
Collapse
Affiliation(s)
- Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert T. Williams
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Joseph P. Calarco
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erik L. Miller
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M. Weber
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Simon G. Braun
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - John L. Pulice
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emma J. Chory
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald R. Crabtree
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
684
|
Evers JM, Laskowski RA, Bertolli M, Clayton-Smith J, Deshpande C, Eason J, Elmslie F, Flinter F, Gardiner C, Hurst JA, Kingston H, Kini U, Lampe AK, Lim D, Male A, Naik S, Parker MJ, Price S, Robert L, Sarkar A, Straub V, Woods G, Thornton JM, the DDD Study, Wright CF. Structural analysis of pathogenic mutations in the DYRK1A gene in patients with developmental disorders. Hum Mol Genet 2017; 26:519-526. [PMID: 28053047 PMCID: PMC5409128 DOI: 10.1093/hmg/ddw409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism. Furthermore, there is some correlation between the magnitude of the change and the severity of the resultant phenotype. A comparison of the distribution of the pathogenic mutations along the length of DYRK1A with that of natural variants, as found in the ExAC database, confirms that mutations in the N-terminal end of the kinase domain are more disruptive of protein function. In particular, pathogenic mutations occur in significantly closer proximity to the ATP and the substrate peptide than the natural variants. Overall, we suggest that de novo dominant mutations in DYRK1A account for nearly 0.5% of severe developmental disorders due to substantially reduced kinase function.
Collapse
Affiliation(s)
- Jochem M.G. Evers
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Roman A. Laskowski
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marta Bertolli
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, St Marys Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, USA
| | - Charu Deshpande
- Clinical Genetics Department, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
| | - Jacqueline Eason
- Nottingham Regional Genetics Service, City Hospital Campus, Nottingham University Hospitals NHS Trust, The Gables, Hucknall Road, Nottingham, UK
| | - Frances Elmslie
- South West Thames Regional Genetics Centre, St George’s Healthcare NHS Trust, St George’s, University of London, Cranmer Terrace, London, UK
| | - Frances Flinter
- Clinical Genetics Department, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
| | - Carol Gardiner
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute Of Medical Genetics, Yorkhill Hospital, Glasgow, UK
| | - Jane A. Hurst
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Helen Kingston
- Manchester Centre for Genomic Medicine, St Marys Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, USA
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, The Churchill Old Road, Oxford, UK
| | - Anne K. Lampe
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, UK
| | - Derek Lim
- West Midlands Regional Genetics Service, Birmingham Women’s NHS Foundation Trust, Birmingham Women’s Hospital, Edgbaston, Birmingham, UK
| | - Alison Male
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Swati Naik
- West Midlands Regional Genetics Service, Birmingham Women’s NHS Foundation Trust, Birmingham Women’s Hospital, Edgbaston, Birmingham, UK
| | - Michael J. Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, UK
| | - Sue Price
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, The Churchill Old Road, Oxford, UK
| | - Leema Robert
- Clinical Genetics Department, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, UK
| | - Ajoy Sarkar
- Nottingham Regional Genetics Service, City Hospital Campus, Nottingham University Hospitals NHS Trust, The Gables, Hucknall Road, Nottingham, UK
| | - Volker Straub
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Geoff Woods
- East Anglian Medical Genetics Service, Box 134, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK and
| | - Janet M. Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - the DDD Study
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Caroline F. Wright
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
685
|
Zhang C, Shen Y. A Cell Type-Specific Expression Signature Predicts Haploinsufficient Autism-Susceptibility Genes. Hum Mutat 2017; 38:204-215. [PMID: 27860035 PMCID: PMC5865588 DOI: 10.1002/humu.23147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/12/2016] [Accepted: 11/13/2016] [Indexed: 12/22/2022]
Abstract
Recent studies have identified many genes with rare de novo mutations in autism, but a limited number of these have been conclusively established as disease-susceptibility genes due to the lack of recurrence and confounding background mutations. Such extreme genetic heterogeneity severely limits recurrence-based statistical power even in studies with a large sample size. Here, we use cell-type specific expression profiles to differentiate mutations in autism patients from those in unaffected siblings. We report a gene expression signature in different neuronal cell types shared by genes with likely gene-disrupting (LGD) mutations in autism cases. This signature reflects haploinsufficiency of risk genes enriched in transcriptional and post-transcriptional regulators, with the strongest positive associations with specific types of neurons in different brain regions, including cortical neurons, cerebellar granule cells, and striatal medium spiny neurons. When used to prioritize genes with a single LGD mutation in cases, a D-score derived from the signature achieved a precision of 40% as compared with the 15% baseline with a minimal loss in sensitivity. An ensemble model combining D-score with mutation intolerance metrics from Exome Aggregation Consortium further improved the precision to 60%, resulting in 117 high-priority candidates. These prioritized lists can facilitate identification of additional autism-susceptibility genes.
Collapse
Affiliation(s)
- Chaolin Zhang
- Department of Systems Biology, Columbia University, New York NY
10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia
University, New York NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University,
New York NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York NY
10032, USA
- Department of Biomedical Informatics, Columbia University, New York
NY 10032, USA
- JP Sulzberger Genome Center, Columbia University, New York NY 10032,
USA
| |
Collapse
|
686
|
Martin-Vilchez S, Whitmore L, Asmussen H, Zareno J, Horwitz R, Newell-Litwa K. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development. PLoS One 2017; 12:e0170464. [PMID: 28114311 PMCID: PMC5256999 DOI: 10.1371/journal.pone.0170464] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development.
Collapse
Affiliation(s)
- Samuel Martin-Vilchez
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Leanna Whitmore
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Hannelore Asmussen
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jessica Zareno
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Karen Newell-Litwa
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
687
|
Balasubramanian M, Willoughby J, Fry AE, Weber A, Firth HV, Deshpande C, Berg JN, Chandler K, Metcalfe KA, Lam W, Pilz DT, Tomkins S. Delineating the phenotypic spectrum of Bainbridge-Ropers syndrome: 12 new patients with de novo, heterozygous, loss-of-function mutations in ASXL3 and review of published literature. J Med Genet 2017; 54:537-543. [PMID: 28100473 DOI: 10.1136/jmedgenet-2016-104360] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bainbridge-Ropers syndrome (BRPS) is a recently described developmental disorder caused by de novo truncating mutations in the additional sex combs like 3 (ASXL3) gene. To date, there have been fewer than 10 reported patients. OBJECTIVES Here, we delineate the BRPS phenotype further by describing a series of 12 previously unreported patients identified by the Deciphering Developmental Disorders study. METHODS Trio-based exome sequencing was performed on all 12 patients included in this study, which found a de novo truncating mutation in ASXL3. Detailed phenotypic information and patient images were collected and summarised as part of this study. RESULTS By obtaining genotype:phenotype data, we have been able to demonstrate a second mutation cluster region within ASXL3. This report expands the phenotype of older patients with BRPS; common emerging features include severe intellectual disability (11/12), poor/ absent speech (12/12), autistic traits (9/12), distinct face (arched eyebrows, prominent forehead, high-arched palate, hypertelorism and downslanting palpebral fissures), (9/12), hypotonia (11/12) and significant feeding difficulties (9/12) when young. DISCUSSION Similarities in the patients reported previously in comparison with this cohort included their distinctive craniofacial features, feeding problems, absent/limited speech and intellectual disability. Shared behavioural phenotypes include autistic traits, hand-flapping, rocking, aggressive behaviour and sleep disturbance. CONCLUSIONS This series expands the phenotypic spectrum of this severe disorder and highlights its surprisingly high frequency. With the advent of advanced genomic screening, we are likely to identify more variants in this gene presenting with a variable phenotype, which this study will explore.
Collapse
Affiliation(s)
- M Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - J Willoughby
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - A E Fry
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, UK.,Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - A Weber
- Clinical Genetics Department, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - H V Firth
- East Anglian Medical Genetics Service, Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | - C Deshpande
- Department of Clinical Genetics, Guy's & St. Thomas' Hospital NHS Trust, London, UK
| | - J N Berg
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - K Chandler
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK.,Division of Evolution and Genomic sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - K A Metcalfe
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK.,Division of Evolution and Genomic sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - W Lam
- Clinical Genetics Unit, Western General Hospital, Edinburgh, UK
| | - D T Pilz
- West of Scotland Genetics Service, Glasgow, UK
| | - S Tomkins
- Clinical Genetics Service, University Hospitals of Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
688
|
Sleven H, Welsh SJ, Yu J, Churchill ME, Wright CF, Henderson A, Horvath R, Rankin J, Vogt J, Magee A, McConnell V, Green A, King MD, Cox H, Armstrong L, Lehman A, Nelson TN, Williams J, Clouston P, Hagman J, Németh AH, Hagman J, Németh AH. De Novo Mutations in EBF3 Cause a Neurodevelopmental Syndrome. Am J Hum Genet 2017; 100:138-150. [PMID: 28017370 DOI: 10.1016/j.ajhg.2016.11.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
Early B cell factor 3 (EBF3) is an atypical transcription factor that is thought to influence the laminar formation of the cerebral cortex. Here, we report that de novo mutations in EBF3 cause a complex neurodevelopmental syndrome. The mutations were identified in two large-scale sequencing projects: the UK Deciphering Developmental Disorders (DDD) study and the Canadian Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study. The core phenotype includes moderate to severe intellectual disability, and many individuals exhibit cerebellar ataxia, subtle facial dysmorphism, strabismus, and vesicoureteric reflux, suggesting that EBF3 has a widespread developmental role. Pathogenic de novo variants identified in EBF3 include multiple loss-of-function and missense mutations. Structural modeling suggested that the missense mutations affect DNA binding. Functional analysis of mutant proteins with missense substitutions revealed reduced transcriptional activities and abilities to form heterodimers with wild-type EBF3. We conclude that EBF3, a transcription factor previously unknown to be associated with human disease, is important for brain and other organ development and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - James Hagman
- Program in Molecular Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Windmill Road, Headington, Oxford OX3 7HE, UK.
| |
Collapse
|
689
|
Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. Am J Hum Genet 2017; 100:75-90. [PMID: 28041643 DOI: 10.1016/j.ajhg.2016.12.003] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.
Collapse
|
690
|
Scott DA, Hernandez-Garcia A, Azamian MS, Jordan VK, Kim BJ, Starkovich M, Zhang J, Wong LJ, Darilek SA, Breman AM, Yang Y, Lupski JR, Jiwani AK, Das B, Lalani SR, Iglesias AD, Rosenfeld JA, Xia F. Congenital heart defects and left ventricular non-compaction in males with loss-of-function variants in NONO. J Med Genet 2017; 54:47-53. [PMID: 27550220 DOI: 10.1136/jmedgenet-2016-104039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 07/23/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The non-POU domain containing octamer-binding gene (NONO) is located on chromosome Xq13.1 and encodes a member of a small family of RNA-binding and DNA-binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Loss-of-function variants in NONO have been described as a cause of intellectual disability in males but have not been described in association with congenital heart defects or cardiomyopathy. In this article, we seek to further define the phenotypic consequences of NONO depletion in human subjects. METHODS We searched a clinical database of over 6000 individuals referred for exome sequencing and over 60 000 individuals referred for CNV analysis. RESULTS We identified two males with atrial and ventricular septal defects, left ventricular non-compaction (LVNC), developmental delay and intellectual disability, who harboured de novo, loss-of-function variants in NONO. We also identified a male infant with developmental delay, congenital brain anomalies and severe LVNC requiring cardiac transplantation, who inherited a single-gene deletion of NONO from his asymptomatic mother. CONCLUSIONS We conclude that in addition to global developmental delay and intellectual disability, males with loss-of-function variants in NONO may also be predisposed to developing congenital heart defects and LVNC with the penetrance of these cardiac-related problems being influenced by genetic, epigenetic, environmental or stochastic factors. Brain imaging of males with NONO deficiency may reveal structural defects with abnormalities of the corpus callosum being the most common. Although dysmorphic features vary between affected individuals, relative macrocephaly is a common feature.
Collapse
Affiliation(s)
- Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Molly Starkovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jinglan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Sandra A Darilek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Amyn K Jiwani
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Bibhuti Das
- Department of Pediatrics, Children's Medical Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alejandro D Iglesias
- Department of Pediatrics, Division of Medical Genetics, Columbia University, New York, New York, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
691
|
Intellectual Disability & Rare Disorders: A Diagnostic Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1031:39-54. [PMID: 29214565 DOI: 10.1007/978-3-319-67144-4_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rare disorders constitute a large and heterogeneous group of diagnoses of which many cause chronic disabilities with significant impact on the lives of affected individuals and their families as well as on the health-care system. Each individual disorder is rare, but when considered as a group, rare disorders are common with a total prevalence of approximately 6-8%. The clinical presentation of these disorders includes a broad diversity of symptoms and signs, often involving the nervous system and resulting in symptoms such as intellectual disability, neuropsychiatric disorders, epilepsy and motor dysfunction. The methods for establishing an etiological diagnosis in patients with rare disorders have improved dramatically during recent years. With the introduction of genomic screening methods, it has been shown that the cause is genetic in the majority of the patients and many will receive an etiological diagnosis in a clinical setting. However, there are a lot of challenges in diagnosing these disorders and despite recent years' advances, a large number of patients with rare disorders still go without an etiological diagnosis. In this chapter we will review the etiology of rare disorders with focus on intellectual disability and what has been learned from massive parallel sequencing studies in deciphering the genetic basis. Furthermore, we will discuss challenges in the etiological diagnostics of these disorders including issues that regard interpretation of the numerous genetic variants detected by genomic screening methods and challenges in the translation of massive parallel sequencing technologies into clinical practice.
Collapse
|
692
|
Balasubramanian M, Hurst J, Brown S, Bishop NJ, Arundel P, DeVile C, Pollitt RC, Crooks L, Longman D, Caceres JF, Shackley F, Connolly S, Payne JH, Offiah AC, Hughes D, Parker MJ, Hide W, Skerry TM. Compound heterozygous variants in NBAS as a cause of atypical osteogenesis imperfecta. Bone 2017; 94:65-74. [PMID: 27789416 PMCID: PMC6067660 DOI: 10.1016/j.bone.2016.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI), the commonest inherited bone fragility disorder, affects 1 in 15,000 live births resulting in frequent fractures and reduced mobility, with significant impact on quality of life. Early diagnosis is important, as therapeutic advances can lead to improved clinical outcome and patient benefit. REPORT Whole exome sequencing in patients with OI identified, in two patients with a multi-system phenotype, compound heterozygous variants in NBAS (neuroblastoma amplified sequence). Patient 1: NBAS c.5741G>A p.(Arg1914His); c.3010C>T p.(Arg1004*) in a 10-year old boy with significant short stature, bone fragility requiring treatment with bisphosphonates, developmental delay and immunodeficiency. Patient 2: NBAS c.5741G>A p.(Arg1914His); c.2032C>T p.(Gln678*) in a 5-year old boy with similar presenting features, bone fragility, mild developmental delay, abnormal liver function tests and immunodeficiency. DISCUSSION Homozygous missense NBAS variants cause SOPH syndrome (short stature; optic atrophy; Pelger-Huet anomaly), the same missense variant was found in our patients on one allele and a nonsense variant in the other allele. Recent literature suggests a multi-system phenotype. In this study, patient fibroblasts have shown reduced collagen expression, compared to control cells and RNAseq studies, in bone cells show that NBAS is expressed in osteoblasts and osteocytes of rodents and primates. These findings provide proof-of-concept that NBAS mutations have mechanistic effects in bone, and that NBAS variants are a novel cause of bone fragility, which is distinguishable from 'Classical' OI. CONCLUSIONS Here we report on variants in NBAS, as a cause of bone fragility in humans, and expand the phenotypic spectrum associated with NBAS. We explore the mechanism underlying NBAS and the striking skeletal phenotype in our patients.
Collapse
Affiliation(s)
- M Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, UK; Highly Specialised Service for Severe, Complex and Atypical OI, UK.
| | - J Hurst
- NE Thames Clinical Genetics Service, Great Ormond Street Hospital, UK
| | - S Brown
- Sheffield RNAi Screening Facility, Department of Biomedical Sciences, University of Sheffield, UK
| | - N J Bishop
- Highly Specialised Service for Severe, Complex and Atypical OI, UK; Academic Unit of Child Health, University of Sheffield, UK
| | - P Arundel
- Highly Specialised Service for Severe, Complex and Atypical OI, UK
| | - C DeVile
- Highly Specialised Service for Severe, Complex and Atypical OI, UK
| | - R C Pollitt
- Academic Unit of Child Health, University of Sheffield, UK; Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, UK
| | - L Crooks
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, UK; Department of Biosciences and Chemistry, Sheffield Hallam University, UK
| | - D Longman
- MRC Human Genetics Unit, IGMM, University of Edinburgh, UK
| | - J F Caceres
- MRC Human Genetics Unit, IGMM, University of Edinburgh, UK
| | - F Shackley
- Department of Paediatric Immunology, Sheffield Children's NHS Foundation Trust, UK
| | - S Connolly
- Department of Paediatric Hepatology, Sheffield Children's NHS Foundation Trust, UK
| | - J H Payne
- Department of Paediatric Haematology, Sheffield Children's NHS Foundation Trust, UK
| | - A C Offiah
- Highly Specialised Service for Severe, Complex and Atypical OI, UK; Academic Unit of Child Health, University of Sheffield, UK
| | - D Hughes
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - M J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, UK
| | - W Hide
- Centre for Computational Biology, Sheffield Institute of Translational Neuroscience, University of Sheffield, UK
| | - T M Skerry
- Mellanby Bone Research Centre, Department of Oncology & Metabolism, University of Sheffield, UK
| |
Collapse
|
693
|
Gozes I, Patterson MC, Van Dijck A, Kooy RF, Peeden JN, Eichenberger JA, Zawacki-Downing A, Bedrosian-Sermone S. The Eight and a Half Year Journey of Undiagnosed AD: Gene Sequencing and Funding of Advanced Genetic Testing Has Led to Hope and New Beginnings. Front Endocrinol (Lausanne) 2017; 8:107. [PMID: 28579975 PMCID: PMC5437153 DOI: 10.3389/fendo.2017.00107] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 05/02/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Activity-dependent neuroprotective protein (ADNP) is one of the most prevalent de novo mutated genes in syndromic autism spectrum disorders, driving a general interest in the gene and the syndrome. AIM The aim of this study was to provide a detailed developmental case study of ADNP p.Tyr719* mutation toward improvements in (1) diagnostic procedures, (2) phenotypic scope, and (3) interventions. METHODS Longitudinal clinical and parental reports. RESULTS AD (currently 11-year-old) had several rare congenital anomalies including imperforate anus that was surgically repaired at 2 days of age. Her findings were craniofacial asymmetries, global developmental delay, autistic behaviors (loss of smile and inability to make eye contact at the age of 15 months), and slow thriving as she gradually matures. Comprehensive diagnostic procedures at 3 years resulted in no definitive diagnosis. With parental persistence, AD began walking at 3.5 years (skipping crawling). At the age of 8.5 years, AD was subjected to whole exome sequencing, compared to the parents and diagnosed as carrying an ADNP p.Tyr719* mutation, a causal recurring mutation in ADNP (currently ~17/80 worldwide). Brain magnetic resonance imaging demonstrated mild generalized cerebral volume loss with reduced posterior white matter. AD is non-verbal, communicating with signs and word approximations. She continues to make slow but forward developmental progress, and her case teaches newly diagnosed children within the ADNP Kids Research Foundation. CONCLUSION This case study emphasizes the importance of diagnosis and describes, for the first time, early motor intervention therapies. Detailed developmental profile of selected cases leads to better treatments.
Collapse
Affiliation(s)
- Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Illana Gozes,
| | - Marc C. Patterson
- Division of Child and Adolescent Neurology, Pediatrics and Medical Genetics, Mayo Clinic Children’s Center Rochester, Rochester, MN, USA
| | - Anke Van Dijck
- Cognitive Genetics Group, Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - R. Frank Kooy
- Cognitive Genetics Group, Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Joseph N. Peeden
- Diagnostic Clinic, East Tennessee Children’s Hospital and Clinical Assistant Professor of Medicine at the University of Tennessee, Knoxville, TN, USA
| | - Jacob A. Eichenberger
- Physician Informaticist, Children’s Hospital of Georgia at Augusta University, Augusta, GA, USA
| | | | | |
Collapse
|
694
|
Sajan SA, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Glaze DG, Kaufmann WE, Skinner SA, Anese F, Friez MJ, Jane L, Percy AK, Neul JL. Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2. Genet Med 2017; 19:13-19. [PMID: 27171548 PMCID: PMC5107176 DOI: 10.1038/gim.2016.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by de novo mutations in MECP2 and sometimes in CDKL5 and FOXG1. However, some RTT patients lack mutations in these genes. METHODS Twenty-two RTT patients without apparent MECP2, CDKL5, and FOXG1 mutations were subjected to both whole-exome sequencing and single-nucleotide polymorphism array-based copy-number variant (CNV) analyses. RESULTS Three patients had MECP2 mutations initially missed by clinical testing. Of the remaining 19, 17 (89.5%) had 29 other likely pathogenic intragenic mutations and/or CNVs (10 patients had 2 or more). Interestingly, 13 patients had mutations in a gene/region previously reported in other neurodevelopmental disorders (NDDs), thereby providing a potential diagnostic yield of 68.4%. These mutations were significantly enriched in chromatin regulators (corrected P = 0.0068) and moderately enriched in postsynaptic cell membrane molecules (corrected P = 0.076), implicating glutamate receptor signaling. CONCLUSION The genetic etiology of RTT without MECP2, CDKL5, and FOXG1 mutations is heterogeneous, overlaps with other NDDs, and complicated by a high mutation burden. Dysregulation of chromatin structure and abnormal excitatory synaptic signaling may form two common pathological bases of RTT.Genet Med 19 1, 13-19.
Collapse
Affiliation(s)
- Samin A. Sajan
- Section of Child Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R. Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Daniel G. Glaze
- Section of Child Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Walter E. Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Fran Anese
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Lane Jane
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alan K. Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey L. Neul
- Section of Child Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
695
|
Ceramide Transport from the Endoplasmic Reticulum to the Trans Golgi Region at Organelle Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:69-81. [PMID: 28815522 DOI: 10.1007/978-981-10-4567-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lipids are the major constituents of all cell membranes and play dynamic roles in organelle structure and function. Although the spontaneous transfer of lipids between different membranes rarely occurs, lipids are appropriately transported between different organelles for their metabolism and to exert their functions in living cells. Proteins that have the biochemical capability to catalyze the intermembrane transfer of lipids are called lipid transfer proteins (LTPs). All organisms possess many types of LTPs. Recent studies revealed that LTPs are key players in the interorganelle transport of lipids at organelle membrane contact sites (MCSs). This chapter depicts how LTPs rationally operate at MCSs by using the ceramide transport protein CERT as a typical model for the LTP-mediated interorganelle transport of lipids.
Collapse
|
696
|
Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, Erichsen HC, Forbes LR, Gu S, Yuan B, Jhangiani SN, Muzny DM, Rødningen OK, Sheng Y, Nicholas SK, Noroski LM, Seeborg FO, Davis CM, Canter DL, Mace EM, Vece TJ, Allen CE, Abhyankar HA, Boone PM, Beck CR, Wiszniewski W, Fevang B, Aukrust P, Tjønnfjord GE, Gedde-Dahl T, Hjorth-Hansen H, Dybedal I, Nordøy I, Jørgensen SF, Abrahamsen TG, Øverland T, Bechensteen AG, Skogen V, Osnes LTN, Kulseth MA, Prescott TE, Rustad CF, Heimdal KR, Belmont JW, Rider NL, Chinen J, Cao TN, Smith EA, Caldirola MS, Bezrodnik L, Lugo Reyes SO, Espinosa Rosales FJ, Guerrero-Cursaru ND, Pedroza LA, Poli CM, Franco JL, Trujillo Vargas CM, Aldave Becerra JC, Wright N, Issekutz TB, Issekutz AC, Abbott J, Caldwell JW, Bayer DK, Chan AY, Aiuti A, Cancrini C, Holmberg E, West C, Burstedt M, Karaca E, Yesil G, Artac H, Bayram Y, Atik MM, Eldomery MK, Ehlayel MS, Jolles S, Flatø B, Bertuch AA, Hanson IC, Zhang VW, Wong LJ, Hu J, Walkiewicz M, Yang Y, Eng CM, Boerwinkle E, Gibbs RA, Shearer WT, Lyle R, Orange JS, Lupski JR. Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol 2017; 139:232-245. [PMID: 27577878 PMCID: PMC5222743 DOI: 10.1016/j.jaci.2016.05.042] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/10/2016] [Accepted: 05/13/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. OBJECTIVE We sought to investigate the ability of whole-exome screening methods to detect disease-causing variants in patients with PIDDs. METHODS Patients with PIDDs from 278 families from 22 countries were investigated by using whole-exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. RESULTS A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD-causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. CONCLUSION This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes; permitted detection of low-grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.
Collapse
Affiliation(s)
- Asbjørg Stray-Pedersen
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Norwegian National Unit for Newborn Screening, Oslo University Hospital, Oslo, Norway; Department of Pediatrics, Oslo University Hospital, Oslo, Norway.
| | - Hanne Sørmo Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pubudu Samarakoon
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tomasz Gambin
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Ivan K Chinn
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Zeynep H Coban Akdemir
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | | | - Lisa R Forbes
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Shen Gu
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Bo Yuan
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Shalini N Jhangiani
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Donna M Muzny
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sarah K Nicholas
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Lenora M Noroski
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Filiz O Seeborg
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Carla M Davis
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Debra L Canter
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Emily M Mace
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Timothy J Vece
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Carl E Allen
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex; Texas Children's Cancer and Hematology Center, Department of Pediatrics, Center for Cell and Gene Therapy, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Harshal A Abhyankar
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex; Texas Children's Cancer and Hematology Center, Department of Pediatrics, Center for Cell and Gene Therapy, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Philip M Boone
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Christine R Beck
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Wojciech Wiszniewski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Børre Fevang
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Geir E Tjønnfjord
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Hematology, Oslo University Hospital, Oslo, Norway
| | | | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Ingvild Nordøy
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Silje F Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tore G Abrahamsen
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Vegard Skogen
- Department of Infectious Diseases, Medical Clinic, University Hospital of North-Norway, Tromsø, Norway
| | - Liv T N Osnes
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trine E Prescott
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ketil R Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Nicholas L Rider
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Javier Chinen
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Tram N Cao
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Eric A Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Tex
| | - Maria Soledad Caldirola
- Immunology Service, Ricardo Gutierrez Children's Hospital, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Immunology Service, Ricardo Gutierrez Children's Hospital, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Coyoacan, Mexico City, Mexico
| | | | | | | | - Cecilia M Poli
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Hospital Roberto del Rio, Universidad de Chile, Santiago, Chile
| | - Jose L Franco
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Claudia M Trujillo Vargas
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | | | - Nicola Wright
- Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Thomas B Issekutz
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Andrew C Issekutz
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Jordan Abbott
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Jason W Caldwell
- Section of Pulmonary, Critical Care, Allergic and Immunological Diseases, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC
| | - Diana K Bayer
- Department of Pediatrics, Division of Pediatric Allergy/Immunology and Pulmonology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Alice Y Chan
- Department of Pediatrics, University of California, San Francisco, Calif
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and Vita-Salute San Raffaele University, Milan, Italy
| | - Caterina Cancrini
- University Department of Pediatrics, DPUO, Bambino Gesù Children's Hospital, and Tor Vergata University, Rome, Italy
| | - Eva Holmberg
- Department of Clinical Genetics, University Hospital of Umeå, Umeå, Sweden
| | - Christina West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Magnus Burstedt
- Department of Clinical Genetics, University Hospital of Umeå, Umeå, Sweden
| | - Ender Karaca
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Gözde Yesil
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Medical Genetics, Bezmi Alem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Hasibe Artac
- Department of Pediatric Immunology and Allergy, Selcuk University Medical Faculty, Alaeddin Keykubat Kampusu, Konya, Turkey
| | - Yavuz Bayram
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mehmed Musa Atik
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mohammad K Eldomery
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mohammad S Ehlayel
- Department of Pediatrics, Section of Pediatric Allergy and Immunology, Hamad Medical Corporation, Doha, Department of Paediatrics, Weill Cornell Medical College, Ar-Rayyan, Qatar
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, Wales
| | - Berit Flatø
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex
| | - I Celine Hanson
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Victor W Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Jianhong Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Eric Boerwinkle
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Human Genetics Center, University of Texas School of Public Health, Houston, Tex
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - William T Shearer
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordan S Orange
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex.
| | - James R Lupski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
697
|
Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat Genet 2016; 49:223-237. [PMID: 27992417 DOI: 10.1038/ng.3740] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023]
Abstract
Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.
Collapse
|
698
|
Delahaye-Duriez A, Srivastava P, Shkura K, Langley SR, Laaniste L, Moreno-Moral A, Danis B, Mazzuferi M, Foerch P, Gazina EV, Richards K, Petrou S, Kaminski RM, Petretto E, Johnson MR. Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biol 2016; 17:245. [PMID: 27955713 PMCID: PMC5154105 DOI: 10.1186/s13059-016-1097-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The relationship between monogenic and polygenic forms of epilepsy is poorly understood and the extent to which the genetic and acquired epilepsies share common pathways is unclear. Here, we use an integrated systems-level analysis of brain gene expression data to identify molecular networks disrupted in epilepsy. RESULTS We identified a co-expression network of 320 genes (M30), which is significantly enriched for non-synonymous de novo mutations ascertained from patients with monogenic epilepsy and for common variants associated with polygenic epilepsy. The genes in the M30 network are expressed widely in the human brain under tight developmental control and encode physically interacting proteins involved in synaptic processes. The most highly connected proteins within the M30 network were preferentially disrupted by deleterious de novo mutations for monogenic epilepsy, in line with the centrality-lethality hypothesis. Analysis of M30 expression revealed consistent downregulation in the epileptic brain in heterogeneous forms of epilepsy including human temporal lobe epilepsy, a mouse model of acquired temporal lobe epilepsy, and a mouse model of monogenic Dravet (SCN1A) disease. These results suggest functional disruption of M30 via gene mutation or altered expression as a convergent mechanism regulating susceptibility to epilepsy broadly. Using the large collection of drug-induced gene expression data from Connectivity Map, several drugs were predicted to preferentially restore the downregulation of M30 in epilepsy toward health, most notably valproic acid, whose effect on M30 expression was replicated in neurons. CONCLUSIONS Taken together, our results suggest targeting the expression of M30 as a potential new therapeutic strategy in epilepsy.
Collapse
Affiliation(s)
- Andree Delahaye-Duriez
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.
- MRC Clinical Sciences Centre, Imperial College London, London, UK.
- Université Paris 13, Sorbonne Paris Cité, UFR de Santé, Médecine et Biologie Humaine, Paris, France.
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Prashant Srivastava
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Sarah R Langley
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Liisi Laaniste
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Aida Moreno-Moral
- MRC Clinical Sciences Centre, Imperial College London, London, UK
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Bénédicte Danis
- Neuroscience TA, UCB Pharma, S.A, Allée de la Recherche, 60, 1070, Brussels, Belgium
| | - Manuela Mazzuferi
- Neuroscience TA, UCB Pharma, S.A, Allée de la Recherche, 60, 1070, Brussels, Belgium
| | - Patrik Foerch
- Neuroscience TA, UCB Pharma, S.A, Allée de la Recherche, 60, 1070, Brussels, Belgium
| | - Elena V Gazina
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Kay Richards
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
- The Centre for Neural Engineering, The Department of Electrical Engineering, The University of Melbourne, Parkville, Victoria, 3052, Australia
- The Australian Research Council Centre of Excellence for Integrative Brain Function, Parkville, Victoria, 3052, Australia
| | - Rafal M Kaminski
- Neuroscience TA, UCB Pharma, S.A, Allée de la Recherche, 60, 1070, Brussels, Belgium
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Imperial College London, London, UK.
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore.
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.
| |
Collapse
|
699
|
Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat Genet 2016; 49:282-288. [PMID: 27941795 DOI: 10.1038/ng.3735] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022]
Abstract
Trithorax-group proteins and their mammalian homologs, including those in BAF (mSWI/SNF) complexes, are known to oppose the activity of Polycomb repressive complexes (PRCs). This opposition underlies the tumor-suppressive role of BAF subunits and is expected to contribute to neurodevelopmental disorders. However, the mechanisms underlying opposition to Polycomb silencing are poorly understood. Here we report that recurrent disease-associated mutations in BAF subunits induce genome-wide increases in PRC deposition and activity. We show that point mutations in SMARCA4 (also known as BRG1) mapping to the ATPase domain cause loss of direct binding between BAF and PRC1 that occurs independently of chromatin. Release of this direct interaction is ATP dependent, consistent with a transient eviction mechanism. Using a new chemical-induced proximity assay, we find that BAF directly evicts Polycomb factors within minutes of its occupancy, thereby establishing a new mechanism for the widespread BAF-PRC opposition underlying development and disease.
Collapse
|
700
|
Godard P, Page M. PCAN: phenotype consensus analysis to support disease-gene association. BMC Bioinformatics 2016; 17:518. [PMID: 27923364 PMCID: PMC5142268 DOI: 10.1186/s12859-016-1401-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/01/2016] [Indexed: 11/12/2022] Open
Abstract
Background Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and biologically interpret genes underlying disease traits of interest. Results We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity of phenotypes in a candidate gene’s signaling neighborhood. We demonstrate that significant phenotype consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes. Conclusions We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN to the community as an R package (http://bioconductor.org/packages/PCAN/) to allow flexible configuration, extension and standalone use or integration to supplement existing gene prioritization workflows. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1401-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrice Godard
- Clarivate Analytics (formerly the IP & Science business of Thomson Reuters), 5901 Priestly Dr., #200, Carlsbad, CA, 92008, USA
| | - Matthew Page
- Translational Bioinformatics, UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK.
| |
Collapse
|