651
|
Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nat Commun 2020; 11:908. [PMID: 32075966 PMCID: PMC7031389 DOI: 10.1038/s41467-020-14652-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Cyclic cGMP-AMP synthase (cGAS) is a pattern recognition cytosolic DNA sensor that is essential for cellular senescence. cGAS promotes inflammatory senescence-associated secretory phenotype (SASP) through recognizing cytoplasmic chromatin during senescence. cGAS-mediated inflammation is essential for the antitumor effects of immune checkpoint blockade. However, the mechanism by which cGAS recognizes cytoplasmic chromatin is unknown. Here we show that topoisomerase 1-DNA covalent cleavage complex (TOP1cc) is both necessary and sufficient for cGAS-mediated cytoplasmic chromatin recognition and SASP during senescence. TOP1cc localizes to cytoplasmic chromatin and TOP1 interacts with cGAS to enhance the binding of cGAS to DNA. Retention of TOP1cc to cytoplasmic chromatin depends on its stabilization by the chromatin architecture protein HMGB2. Functionally, the HMGB2-TOP1cc-cGAS axis determines the response of orthotopically transplanted ex vivo therapy-induced senescent cells to immune checkpoint blockade in vivo. Together, these findings establish a HMGB2-TOP1cc-cGAS axis that enables cytoplasmic chromatin recognition and response to immune checkpoint blockade. Here, the authors show that the topoisomerase 1-DNA covalent cleavage complex plays a critical role in mediating cytoplasmic chromatin fragments recognition by cyclic GMP-AMP synthase during senescence. The proposed axis is crucial to promote the inflammatory senescence-associated secretory phenotype and to enable the response to immune checkpoint blockade.
Collapse
|
652
|
Abstract
New immuno-oncology therapies are improving cancer treatments beyond the former standard of care, as evidenced by the recent and continuing clinical approvals for immunotherapies in a broad range of indications. However, a majority of patients (particularly those with immunologically cold tumors) still do not benefit, highlighting the need for rational combination approaches. Oncolytic viruses (OV) both directly kill tumor cells and inflame the tumor microenvironment. While OV spread can be limited by the generation of antiviral immune responses, the initial local tumor cell killing can reverse the immunosuppressive tumor microenvironment, resulting in more effective release of tumor-associated antigens (TAAs), cross-presentation, and antitumoral effector T cell recruitment. Moreover, many OVs can be engineered to express immunomodulatory genes. Rational combination approaches to cancer immunotherapy include the use of OVs in combination with immune checkpoint inhibitors (ICIs) or adoptive T cell therapy (ACT) to promote sustained antitumoral immune responses. OV combinations have additive or synergistic efficacy in preclinical tumor models with ICIs or ACT. Several preclinical studies have confirmed systemic reactivation and proliferation of adoptively transferred antitumoral T cells in conjunction with oncolytic OVs (expressing cytokines or TAAs) resulting from the specific tumor cell killing and immunostimulation of the tumor microenvironment which leads to increased tumor trafficking, activity, and survival. Recent clinical trials combining OVs with ICIs have shown additive effects in melanoma. Additional clinical data in an expanded range of patient indications are eagerly awaited. The relative timings of OV and ICI combination remains under-studied and is an area for continued exploration. Studies systematically exploring the effects of systemic ICIs prior to, concomitantly with, or following OV therapy will aid in the future design of clinical trials to enhance efficacy and increase patient response rates.
Collapse
Affiliation(s)
- Luke Russell
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA
| | - Kah Whye Peng
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephen J Russell
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rosa Maria Diaz
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA.
| |
Collapse
|
653
|
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, Pandey A, Sak K, Varol M, Khan MA, Sethi G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med (Maywood) 2020; 245:486-497. [PMID: 32050794 DOI: 10.1177/1535370220903671] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hesperidin belongs to flavanones class of flavonoids and is known to possess broad-spectrum applicability to prevent dreadful diseases such as cardiovascular disease, neurodegeneration, and cancer. The reported anticancer effects of hesperidin have been found to be associated with its anti-oxidant and anti-inflammatory activities. Hesperidin interacts with numerous recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, evidence has suggested its promising role in inhibiting tumor cell metastasis, angiogenesis, and chemoresistance. The present mini-review highlights the ongoing development to identify hesperidin targets in cancer. Furthermore, the potential of nano technology-based hesperidin combinations and delivery systems will also be discussed. Overall, this review highlights all the possible molecular targets affected by hesperidin in tumor cells on a single platform. Impact statement Experimental findings from numerous studies have demonstrated the anticancer effects of hesperidin (Hesp) to be associated with anti-oxidant and anti-inflammatory activities along with its potential role in inhibiting the tumor cell metastasis and angiogenesis. Additionally, Hesp can also reverse drug resistance of cancer cells, which make it a promising candidate to be used in combination with existing anti-cancer drugs. This review will be helpful for upcoming researchers and scientific community to find out complete capsular package about cancer drug targets of Hesp and its role in modulating various important hallmarks of cancer.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Saumya Srivastava
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | - Anjana Pandey
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
654
|
Garje R, Vaddepally RK, Zakharia Y. PARP Inhibitors in Prostate and Urothelial Cancers. Front Oncol 2020; 10:114. [PMID: 32117762 PMCID: PMC7020773 DOI: 10.3389/fonc.2020.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/22/2020] [Indexed: 01/07/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors targeting DNA repair gene mutations have shown significant clinical benefit in patients with ovarian and breast cancers. In metastatic prostate cancers, the prevalence of DNA repair gene mutations is up to 20%, and early phase studies have shown clinical activity of PARP inhibitors. Numerous clinical trials with either PARP monotherapy or in combination with other therapeutic agents are ongoing in prostate cancer. In this comprehensive review, we provide the rationale, efficacy, and safety data of PARP inhibitors in prostate as well as urothelial cancers.
Collapse
Affiliation(s)
- Rohan Garje
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | | | - Yousef Zakharia
- Division of Hematology, Oncology, and Blood and Marrow Transplant, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
655
|
Sun F, Liu Z, Yang Z, Liu S, Guan W. The emerging role of STING-dependent signaling on cell death. Immunol Res 2020; 67:290-296. [PMID: 30864078 DOI: 10.1007/s12026-019-09073-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
STING is a newly identified adaptor protein for sensing cytosolic nucleic acid. It is well established that STING plays a crucial role in innate immune response via inducing production of type I IFN. Emerging evidence suggests that the activation of STING-dependent signaling is also implicated in the process of cell death, such as apoptosis, pyroptosis, necroptosis, and autophagy. Of note, the pro-death outcome is even predominant in certain cell types, like lymphocytes, myeloid cells, and hepatocytes. Given that STING agonists are being tested for enhancing antitumor immune responses, it is necessary to fully understand the outcome of STING activation. The anti-microorganism response mediated by STING has been well described; therefore, we focus on the role of STING-dependent signaling on cell death in this review.
Collapse
Affiliation(s)
- Feng Sun
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan RD, Nanjing, 210008, China
| | - Zhijian Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan RD, Nanjing, 210008, China
| | - Zhengyang Yang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan RD, Nanjing, 210008, China
| | - Song Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan RD, Nanjing, 210008, China.
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan RD, Nanjing, 210008, China.
| |
Collapse
|
656
|
Carozza JA, Böhnert V, Nguyen KC, Skariah G, Shaw KE, Brown JA, Rafat M, von Eyben R, Graves EE, Glenn JS, Smith M, Li L. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. NATURE CANCER 2020; 1:184-196. [PMID: 33768207 PMCID: PMC7990037 DOI: 10.1038/s43018-020-0028-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
2'3'-cyclic GMP-AMP (cGAMP) is an intracellular second messenger that is synthesized in response to cytosolic double-stranded DNA and activates the innate immune STING pathway. Our previous discovery of its extracellular hydrolase ENPP1 hinted at the existence of extracellular cGAMP. Here, we detected that cGAMP is continuously exported but then efficiently cleared by ENPP1, explaining why it has previously escaped detection. By developing potent, specific, and cell impermeable ENPP1 inhibitors, we found that cancer cells continuously export cGAMP in culture at steady state and at higher levels when treated with ionizing radiation (IR). In mouse tumors, depletion of extracellular cGAMP decreased tumor-associated immune cell infiltration and abolished the curative effect of IR. Boosting extracellular cGAMP with ENPP1 inhibitors synergized with IR to delay tumor growth. In conclusion, extracellular cGAMP is an anti-cancer immunotransmitter that could be harnessed to treat cancers with low immunogenicity.
Collapse
Affiliation(s)
- Jacqueline A Carozza
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Volker Böhnert
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA, USA
| | - Khanh C Nguyen
- Departments of Medicine and Microbiology & Immunology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gemini Skariah
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kelsey E Shaw
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jenifer A Brown
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jeffrey S Glenn
- Departments of Medicine and Microbiology & Immunology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Mark Smith
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Lingyin Li
- Stanford ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
657
|
Ma J, Ramachandran M, Jin C, Quijano-Rubio C, Martikainen M, Yu D, Essand M. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death Dis 2020; 11:48. [PMID: 31969562 PMCID: PMC6976683 DOI: 10.1038/s41419-020-2236-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have the potential to induce immunogenic cell death (ICD) that may provoke potent and long-lasting anti-cancer immunity. Here we aimed to characterize the ICD-inducing ability of wild-type Adenovirus (Ad), Semliki Forest virus (SFV) and Vaccinia virus (VV). We did so by investigating the cell death and immune-activating properties of virus-killed tumor cells. Ad-infection of tumor cells primarily activates autophagy, but also activate events of necroptotic and pyroptotic cell death. SFV infection on the other hand primarily activates immunogenic apoptosis while VV activates necroptosis. All viruses mediated lysis of tumor cells leading to the release of danger-associated molecular patterns, triggering of phagocytosis and maturation of dendritic cells (DCs). However, only SFV-infected tumor cells triggered significant T helper type 1 (Th1)-cytokine release by DCs and induced antigen-specific T-cell activation. Our results elucidate cell death processes activated upon Ad, SFV, and VV infection and their potential to induce T cell-mediated anti-tumor immune responses. This knowledge provides important insight for the choice and design of therapeutically successful virus-based immunotherapies.
Collapse
Affiliation(s)
- Jing Ma
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Clara Quijano-Rubio
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden.,Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Miika Martikainen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden.
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
658
|
Kötzner L, Huck B, Garg S, Urbahns K. Small molecules-Giant leaps for immuno-oncology. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:1-62. [PMID: 32362326 DOI: 10.1016/bs.pmch.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immuno-oncology therapies are revolutionizing the oncology landscape with checkpoint blockade becoming the treatment backbone for many indications. While inspiring, much work remains to increase the number of cancer patients that can benefit from these treatments. Thus, a new era of immuno-oncology research has begun which is focused on identifying novel combination regimes that lead to improved response rates. This review highlights the significance of small molecules in this approach and illustrates the huge progress that has been made to date.
Collapse
Affiliation(s)
- Lisa Kötzner
- Healthcare R&D, Discovery and Development Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Bayard Huck
- Healthcare R&D, Discovery and Development Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sakshi Garg
- Healthcare R&D, Discovery and Development Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Klaus Urbahns
- Healthcare R&D, Discovery and Development Technologies, Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
659
|
Maelfait J, Liverpool L, Rehwinkel J. Nucleic Acid Sensors and Programmed Cell Death. J Mol Biol 2020; 432:552-568. [PMID: 31786265 PMCID: PMC7322524 DOI: 10.1016/j.jmb.2019.11.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Nucleic acids derived from microorganisms are powerful triggers for innate immune responses. Proteins called RNA and DNA sensors detect foreign nucleic acids and, in mammalian cells, include RIG-I, cGAS, and AIM2. On binding to nucleic acids, these proteins initiate signaling cascades that activate host defense responses. An important aspect of this defense program is the production of cytokines such as type I interferons and IL-1β. Studies conducted over recent years have revealed that nucleic acid sensors also activate programmed cell death pathways as an innate immune response to infection. Indeed, RNA and DNA sensors induce apoptosis, pyroptosis, and necroptosis. Cell death via these pathways prevents replication of pathogens by eliminating the infected cell and additionally contributes to the release of cytokines and inflammatory mediators. Interestingly, recent evidence suggests that programmed cell death triggered by nucleic acid sensors plays an important role in a number of noninfectious pathologies. In addition to nonself DNA and RNA from microorganisms, nucleic acid sensors also recognize endogenous nucleic acids, for example when cells are damaged by genotoxic agents and in certain autoinflammatory diseases. This review article summarizes current knowledge on the links between nucleic acid sensing and cell death and explores important open questions for future studies in this area.
Collapse
Affiliation(s)
- Jonathan Maelfait
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Layal Liverpool
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
660
|
Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, Nguyen F, Vuillier C, Dumont A, Moreau-Aubry A, Frapin M, David L, Loussouarn D, Kerdraon O, Campone M, Jézéquel P, Juin PP, Barillé-Nion S. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun 2020; 11:259. [PMID: 31937780 PMCID: PMC6959316 DOI: 10.1038/s41467-019-13689-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023] Open
Abstract
A fascinating but uncharacterized action of antimitotic chemotherapy is to collectively prime cancer cells to apoptotic mitochondrial outer membrane permeabilization (MOMP), while impacting only on cycling cell subsets. Here, we show that a proapoptotic secretory phenotype is induced by activation of cGAS/STING in cancer cells that are hit by antimitotic treatment, accumulate micronuclei and maintain mitochondrial integrity despite intrinsic apoptotic pressure. Organotypic cultures of primary human breast tumors and patient-derived xenografts sensitive to paclitaxel exhibit gene expression signatures typical of type I IFN and TNFα exposure. These cytokines induced by cGAS/STING activation trigger NOXA expression in neighboring cells and render them acutely sensitive to BCL-xL inhibition. cGAS/STING-dependent apoptotic effects are required for paclitaxel response in vivo, and they are amplified by sequential, but not synchronous, administration of BH3 mimetics. Thus anti-mitotic agents propagate apoptotic priming across heterogeneously sensitive cancer cells through cytosolic DNA sensing pathway-dependent extracellular signals, exploitable by delayed MOMP targeting.
Collapse
Affiliation(s)
- Steven Lohard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Nathalie Bourgeois
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Laurent Maillet
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Fabien Gautier
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Aurélie Fétiveau
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Hamza Lasla
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Frédérique Nguyen
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Oniris, site Chantrerie, CS40706, 44307, Cedex 3, Nantes, France
| | - Céline Vuillier
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Alison Dumont
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Agnès Moreau-Aubry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Morgane Frapin
- UMR 1280 PhAN, Université de Nantes, INRA, Nantes, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CRTI, UMR 1064, ITUN, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | | - Olivier Kerdraon
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Mario Campone
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Pascal Jézéquel
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Philippe P Juin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
- SIRIC ILIAD, Nantes, Angers, France.
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France.
| | - Sophie Barillé-Nion
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
- SIRIC ILIAD, Nantes, Angers, France.
| |
Collapse
|
661
|
Padilla-Salinas R, Sun L, Anderson R, Yang X, Zhang S, Chen ZJ, Yin H. Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors. J Org Chem 2020; 85:1579-1600. [PMID: 31829590 DOI: 10.1021/acs.joc.9b02666] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) (cGAS), a cytosolic DNA sensor, plays an important role in the type I interferon response. DNA from either invading microbes or self-origin triggers the enzymatic activity of cGAS. Aberrant activation of cGAS is associated with various autoimmune disorders. Only one selective probe exists for inhibiting cGAS in cells, while others are limited by their poor cellular activity or specificity, which underscores the urgency for discovering new cGAS inhibitors. Here, we describe the development of new small-molecule human cGAS (hcGAS) inhibitors (80 compounds synthesized) with high binding affinity in vitro and cellular activity. Our studies show CU-32 and CU-76 selectively inhibit the DNA pathway in human cells but have no effect on the RIG-I-MAVS or Toll-like receptor pathways. CU-32 and CU-76 represent a new class of hcGAS inhibitors with activity in cells and provide a new chemical scaffold for designing probes to study cGAS function and development of autoimmune therapeutics.
Collapse
Affiliation(s)
- Rosaura Padilla-Salinas
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States
| | - Lijun Sun
- Department of Molecular Biology , Howard Hughes Medical Institute , Department of Immunology , and Animal Resource Center , University of Texas Southwestern Medical Center , Dallas 75390-9148 , Texas , United States
| | - Rachel Anderson
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States
| | - Xikang Yang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| | - Zhijian J Chen
- Department of Molecular Biology , Howard Hughes Medical Institute , Department of Immunology , and Animal Resource Center , University of Texas Southwestern Medical Center , Dallas 75390-9148 , Texas , United States
| | - Hang Yin
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States.,School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| |
Collapse
|
662
|
Hu G, Tu W, Yang L, Peng G, Yang L. ARID1A deficiency and immune checkpoint blockade therapy: From mechanisms to clinical application. Cancer Lett 2020; 473:148-155. [PMID: 31911080 DOI: 10.1016/j.canlet.2020.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
The AT-rich interaction domain 1A (ARID1A, also known as BAF250a) is a chromatin remodeling gene, which frequently mutates across a broad spectrum of cancers with loss expression of the ARID1A protein. Recently, the association between ARID1A deficiency and immune checkpoint blockade (ICB) therapy has been reported. ARID1A deficiency contributes to the high microsatellite instability phenotype, increases tumor mutation burden, elevates expression of programmed cell death ligand 1 (PD-L1), and modulates the immune microenvironment, supporting the view that ARID1A loss might serve as a predictive biomarker for ICB. Furthermore, the therapeutic targeting strategies, which show "synthetic lethality" with ARID1A deficiency, exhibit potential synergy with ICB. We collectively reviewed the mechanisms underlying the correlation between ARID1A deficiency and ICB, the predictive function of ARID1A deficiency for ICB, and potential combined strategies of targeting agents, vulnerable for ARID1A deficiency, with ICB in cancer treatment.
Collapse
Affiliation(s)
- Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Tu
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Liu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
663
|
Dai Y, Liu X, Zhao Z, He J, Yin Q. Stimulator of Interferon Genes-Associated Vasculopathy With Onset in Infancy: A Systematic Review of Case Reports. Front Pediatr 2020; 8:577918. [PMID: 33425809 PMCID: PMC7786402 DOI: 10.3389/fped.2020.577918] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/18/2020] [Indexed: 01/07/2023] Open
Abstract
Objective: To summarize and analyze the manifestations of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI). Methods: A systematic literature review was performed including cases from January 1, 2014, to February 1, 2020, using PubMed, OVID, CNKI, and WanFang. This included all the literature containing comparatively complete clinical data. Statistical analysis was performed using SPSS 20.0 to analyze the difference in age of onset, severity of skin lesions, and respiratory symptoms between SAVI patients with p.N154S and p.V155M mutations. Results: A total of 25 papers were included reporting on 51 individuals, of whom 17 had familiar inheritance of their mutation. Patients included 27 males and 24 females, and 8 fatal cases were observed. A total of 10 mutation sites have been reported in the STING gene, with p.V155M being the most prevalent. We identified SAVI as an early-onset disease with a median age of onset of 3 months after birth. Skin lesions were the most common symptoms of SAVI, found in 94.1% (48/51) of patients, while 76% (19/25) who had undergone a skin biopsy showed vasculopathy. Involvement of the lungs was identified in 68.6% (35/51) of patients, while only 22.2% (4/18) who had undergone a lung biopsy showed vasculopathy. Of 20 patients, 19 had increased immunoglobulin, mainly IgG. Furthermore, 45.1% (23/51) of patients had a positive low titer or were transiently positive for antinuclear antibodies. Of the 18 patients treated with JAK inhibitors, 6 relapsed and 2 died of acute respiratory failure caused by viral infection. Patients with p.N154S mutation had an earlier disease onset (p = 0.002) and more severe skin lesions (p < 0.001) than those patients with p.V155M mutation. Conclusion: SAVI is an early-onset disease accompanied by skin and lung lesions whose clinical presentation varies among patients with different genotypes. Therapeutic effects of JAK inhibitors are unsatisfactory.
Collapse
Affiliation(s)
- YunFan Dai
- Department of Respiratory, National Children's Medical Center, China National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - XiuYun Liu
- Department of Respiratory, National Children's Medical Center, China National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - ZhiPeng Zhao
- Department of Respiratory, National Children's Medical Center, China National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - JianXin He
- Department of Respiratory, National Children's Medical Center, China National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - QingQin Yin
- Department of Respiratory, National Children's Medical Center, China National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
664
|
Su Z, Zhou L, Xue J, Lu Y. Integration of stereotactic radiosurgery or whole brain radiation therapy with immunotherapy for treatment of brain metastases. Chin J Cancer Res 2020; 32:448-466. [PMID: 32963458 PMCID: PMC7491544 DOI: 10.21147/j.issn.1000-9604.2020.04.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The prognosis of brain metastases (BM) is traditionally poor. BM are mainly treated by local radiotherapy, including stereotactic radiosurgery (SRS) or whole brain radiation therapy (WBRT). Recently, immunotherapy (i.e., immune checkpoint inhibitors, ICI) has demonstrated a survival advantage in multiple malignancies commonly associated with BM. Individually, radiotherapy and ICI both treat BM efficiently; hence, their combination seems logical. In this review, we summarize the existing preclinical and clinical evidence that supports the applicability of radiotherapy as a sensitizer of ICI for BM. Further, we discuss the optimal timing at which radiotherapy and ICI should be administered and review the safety of the combination therapy. Data from a few clinical studies suggest that combining SRS or WBRT with ICI simultaneously rather than consecutively potentially enhances brain abscopal-like responses and survival. However, there is a lack of conclusion about the definition of "simultaneous"; the cumulative toxic effect of the combined therapies also requires further study. Thus, ongoing and planned prospective trials are needed to further explore and validate the effect, safety, and optimal timing of the combination of immunotherapy with radiotherapy for patients with BM.
Collapse
Affiliation(s)
- Zhou Su
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang 621000, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
665
|
Current Landscape of Immunotherapy in Genitourinary Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:107-147. [DOI: 10.1007/978-3-030-41008-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
666
|
MicroRNA-24-3p alleviates hepatic ischemia and reperfusion injury in mice through the repression of STING signaling. Biochem Biophys Res Commun 2020; 522:47-52. [PMID: 31735332 DOI: 10.1016/j.bbrc.2019.10.182] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/27/2019] [Indexed: 01/07/2023]
|
667
|
Siegfried G, Descarpentrie J, Evrard S, Khatib AM. Proprotein convertases: Key players in inflammation-related malignancies and metastasis. Cancer Lett 2019; 473:50-61. [PMID: 31899298 PMCID: PMC7115805 DOI: 10.1016/j.canlet.2019.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Many cancers occur from locations of inflammation due to chronic irritation and/or infection. Tumor microenvironment contains various different inflammatory cells and mediators that orchestrate diverse neoplastic processes, including proliferation, survival, adhesion and migration. In parallel, tumor cells have adapted some of the signaling molecules used by inflammatory cells, such as selectins and chemokines as well as their receptors for invasion, extravasation and subsequently metastasis. Expression and/or activation of the majority of these molecules is mediated by the proprotein convertases (PCs); proteases expressed by both tumor cells and inflammatory cells. This review analyzes the potential role of these enzymatic system in inflammation-associated cancer impacting on the malignant and metastatic potential of cancer cells, describing the possible use of PCs as a new anti-inflammatory therapeutic approach to tumor progression and metastasis. Proteins maturation by the proprotein convertases plays important role in inflammation-related cancer and metastasis. Protein precursors require the proprotein convertases for the induction of inflammation. Understanding of the molecular mechanism linking the proprotein convertases to inflammation will allow novel therapies. Inhibitors of the proprotein convertases constitute great potential for cancer treatment.
Collapse
Affiliation(s)
- Geraldine Siegfried
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| | - Jean Descarpentrie
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| | - Serge Evrard
- Univ. Bordeaux, 33000, Bordeaux, France; Institut Bergonié, 33076, Bordeaux, France.
| | - Abdel-Majid Khatib
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| |
Collapse
|
668
|
Wong EB, Montoya B, Ferez M, Stotesbury C, Sigal LJ. Resistance to ectromelia virus infection requires cGAS in bone marrow-derived cells which can be bypassed with cGAMP therapy. PLoS Pathog 2019; 15:e1008239. [PMID: 31877196 PMCID: PMC6974301 DOI: 10.1371/journal.ppat.1008239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/21/2020] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Cells sensing infection produce Type I interferons (IFN-I) to stimulate Interferon Stimulated Genes (ISGs) that confer resistance to viruses. During lympho-hematogenous spread of the mouse pathogen ectromelia virus (ECTV), the adaptor STING and the transcription factor IRF7 are required for IFN-I and ISG induction and resistance to ECTV. However, it is unknown which cells sense ECTV and which pathogen recognition receptor (PRR) upstream of STING is required for IFN-I and ISG induction. We found that cyclic-GMP-AMP (cGAMP) synthase (cGAS), a DNA-sensing PRR, is required in bone marrow-derived (BMD) but not in other cells for IFN-I and ISG induction and for resistance to lethal mousepox. Also, local administration of cGAMP, the product of cGAS that activates STING, rescues cGAS but not IRF7 or IFN-I receptor deficient mice from mousepox. Thus, sensing of infection by BMD cells via cGAS and IRF7 is critical for resistance to a lethal viral disease in a natural host. During primary acute systemic viral infections, cells sensing virus through Pathogen Recognition Receptors (PRR) can produce Type I interferons (IFN-I) to induce an anti-viral state that curbs viral spread and protect from viral disease. The dissection of the specific cells, receptors and downstream pathways required for IFN-I production during viral infection in vivo is necessary to improve anti-viral therapies. In this study, we demonstrated that the cytosolic PRR cGAS in hematopoietic cells but not in parenchymal cells is required for protection against ectromelia virus, the archetype for viruses that spread through the lympho-hematogenous route. We also show that cGAS deficiency can be bypassed by local administration of cyclic-GMP-AMP (cGAMP) by inducing IFN-I only in the skin and in the presence of virus. Our study provides novel insights into the cGAS signaling pathway and highlights the potential of cGAMP as an efficient anti-viral treatment.
Collapse
Affiliation(s)
- Eric B. Wong
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Brian Montoya
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Maria Ferez
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Colby Stotesbury
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Sigal
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
669
|
Ajina R, Zahavi DJ, Zhang YW, Weiner LM. Overcoming malignant cell-based mechanisms of resistance to immune checkpoint blockade antibodies. Semin Cancer Biol 2019; 65:28-37. [PMID: 31866479 DOI: 10.1016/j.semcancer.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
Abstract
Traditional cancer treatment approaches have focused on surgery, radiation therapy, and cytotoxic chemotherapy. However, with rare exceptions, metastatic cancers were considered to be incurable by traditional therapy. Over the past 20 years a fourth modality - immunotherapy - has emerged as a potentially curative approach for patients with advanced metastatic cancer. However, in many patients cancer "finds a way" to evade the anti-tumor effects of immunotherapy. Immunotherapy resistance mechanisms can be employed by both cancer cells and the non-cancer elements of tumor microenvironment. This review focuses on the resistance mechanisms that are specifically mediated by cancer cells. In order to extend the impact of immunotherapy to more patients and across all cancer types, and to inhibit the development of acquired resistance, the underlying biology driving immune escape needs to be better understood. Elucidating mechanisms of immune escape may shed light on new therapeutic targets, and lead to successful combination therapeutic strategies.
Collapse
Affiliation(s)
- Reham Ajina
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - David J Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - Yong-Wei Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States.
| |
Collapse
|
670
|
Kwon J, Bakhoum SF. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discov 2019; 10:26-39. [PMID: 31852718 DOI: 10.1158/2159-8290.cd-19-0761] [Citation(s) in RCA: 611] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
The recognition of DNA as an immune-stimulatory molecule is an evolutionarily conserved mechanism to initiate rapid innate immune responses against microbial pathogens. The cGAS-STING pathway was discovered as an important DNA-sensing machinery in innate immunity and viral defense. Recent advances have now expanded the roles of cGAS-STING to cancer. Highly aggressive, unstable tumors have evolved to co-opt this program to drive tumorigenic behaviors. In this review, we discuss the link between the cGAS-STING DNA-sensing pathway and antitumor immunity as well as cancer progression, genomic instability, the tumor microenvironment, and pharmacologic strategies for cancer therapy. SIGNIFICANCE: The cGAS-STING pathway is an evolutionarily conserved defense mechanism against viral infections. Given its role in activating immune surveillance, it has been assumed that this pathway primarily functions as a tumor suppressor. Yet, mounting evidence now suggests that depending on the context, cGAS-STING signaling can also have tumor and metastasis-promoting functions, and its chronic activation can paradoxically induce an immune-suppressive tumor microenvironment.
Collapse
Affiliation(s)
- John Kwon
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
671
|
Ahn J, Barber GN. STING signaling and host defense against microbial infection. Exp Mol Med 2019; 51:1-10. [PMID: 31827069 PMCID: PMC6906460 DOI: 10.1038/s12276-019-0333-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
The first line of host defense against infectious agents involves activation of innate immune signaling pathways that recognize specific pathogen-associated molecular patterns (PAMPs). Key triggers of innate immune signaling are now known to include microbial-specific nucleic acid, which is rapidly detected in the cytosol of the cell. For example, RIG-I-like receptors (RLRs) have evolved to detect viral RNA species and to activate the production of host defense molecules and cytokines that stimulate adaptive immune responses. In addition, host defense countermeasures, including the production of type I interferons (IFNs), can also be triggered by microbial DNA from bacteria, viruses and perhaps parasites and are regulated by the cytosolic sensor, stimulator of interferon genes (STING). STING-dependent signaling is initiated by cyclic dinucleotides (CDNs) generated by intracellular bacteria following infection. CDNs can also be synthesized by a cellular synthase, cGAS, following interaction with invasive cytosolic self-DNA or microbial DNA species. The importance of STING signaling in host defense is evident since numerous pathogens have developed strategies to prevent STING function. Here, we review the relevance of STING-controlled innate immune signaling in host defense against pathogen invasion, including microbial endeavors to subvert this critical process.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
672
|
Zhang H, You QD, Xu XL. Targeting Stimulator of Interferon Genes (STING): A Medicinal Chemistry Perspective. J Med Chem 2019; 63:3785-3816. [DOI: 10.1021/acs.jmedchem.9b01039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Han Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
673
|
Sun MS, Zhang J, Jiang LQ, Pan YX, Tan JY, Yu F, Guo L, Yin L, Shen C, Shu HB, Liu Y. TMED2 Potentiates Cellular IFN Responses to DNA Viruses by Reinforcing MITA Dimerization and Facilitating Its Trafficking. Cell Rep 2019; 25:3086-3098.e3. [PMID: 30540941 DOI: 10.1016/j.celrep.2018.11.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/22/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Mediator of IRF3 activation (MITA), also known as stimulator of interferon genes (STING), plays a vital role in the innate immune responses to cytosolic dsDNA. The trafficking of MITA from the ER to perinuclear vesicles is necessary for its activation of the downstream molecules, which lead to the production of interferons and pro-inflammatory cytokines. However, the exact mechanism of MITA activation remains elusive. Here, we report that transmembrane emp24 protein transport domain containing 2 (TMED2) potentiates DNA virus-induced MITA signaling. The suppression or deletion of TMED2 markedly impairs the production of type I IFNs upon HSV-1 infection. TMED2-deficient cells harbor greater HSV-1 load than the control cells. Mechanistically, TMED2 associates with MITA only upon viral stimulation, and this process potentiates MITA activation by reinforcing its dimerization and facilitating its trafficking. These findings suggest an essential role of TMED2 in cellular IFN responses to DNA viruses.
Collapse
Affiliation(s)
- Ming-Shun Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Li-Qun Jiang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Xi Pan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao-Yi Tan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chao Shen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Bing Shu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu Liu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
674
|
Wu J, Zhao L, Hu H, Li W, Li Y. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Med Res Rev 2019; 40:1117-1141. [DOI: 10.1002/med.21649] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jun‐Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Lang Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Hong‐Guo Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Wen‐Hao Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Yan‐Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
- Beijing Institute for Brain Disorders Beijing China
- Center for Synthetic and Systems BiologyTsinghua University Beijing China
| |
Collapse
|
675
|
Morris MJ, Corey E, Guise TA, Gulley JL, Kevin Kelly W, Quinn DI, Scholz A, Sgouros G. Radium-223 mechanism of action: implications for use in treatment combinations. Nat Rev Urol 2019; 16:745-756. [PMID: 31712765 PMCID: PMC7515774 DOI: 10.1038/s41585-019-0251-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The targeted alpha therapy radium-223 (223Ra) can prolong survival in men with castration-resistant prostate cancer (CRPC) who have symptomatic bone metastases and no known visceral metastases. Preclinical studies demonstrate that 223Ra preferentially incorporates into newly formed bone matrix within osteoblastic metastatic lesions. The emitted high-energy alpha particles induce DNA double-strand breaks that might be irreparable and lead to cell death in nearby exposed tumour cells, osteoblasts and osteoclasts. Consequently, tumour growth and abnormal bone formation are inhibited by these direct effects and by the disruption of positive-feedback loops between tumour cells and the bone microenvironment. 223Ra might also modulate immune responses within the bone. The clinical utility of 223Ra has encouraged the development of other anticancer targeted alpha therapies. A thorough understanding of the mechanism of action could inform the design of new combinatorial treatment strategies that might be more efficacious than monotherapy. On the basis of the current mechanistic knowledge and potential clinical benefits, combination therapies of 223Ra with microtubule-stabilizing cytotoxic drugs and agents targeting the androgen receptor axis, immune checkpoint receptors or DNA damage response proteins are being explored in patients with CRPC and metastatic bone disease.
Collapse
Affiliation(s)
- Michael J Morris
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA.
| | - Eva Corey
- Department of Urology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Theresa A Guise
- Indiana University, School of Medicine, Indianapolis, IN, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - William Kevin Kelly
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - David I Quinn
- Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Arne Scholz
- Bayer AG, Drug Discovery, Pharmaceuticals, Berlin, Germany
| | - George Sgouros
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
676
|
Preeclamptic patient-derived circulating cell-free DNA activates the production of inflammatory cytokines via toll-like receptor 9 signalling in the human placenta. J Hypertens 2019; 37:2452-2460. [DOI: 10.1097/hjh.0000000000002208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
677
|
Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. MEDCHEMCOMM 2019; 10:1999-2023. [PMID: 32206239 PMCID: PMC7069516 DOI: 10.1039/c8md00555a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
The cyclic dinucleotide-cGAS-STING axis plays important roles in host immunity. Activation of this signaling pathway, via cytosolic sensing of bacterial-derived c-di-GMP/c-di-AMP or host-derived cGAMP, leads to the production of inflammatory interferons and cytokines that help resolve infection. Small molecule activators of the cGAS-STING axis have the potential to augment immune response against various pathogens or cancer. The aberrant activation of this pathway, due to gain-of-function mutations in any of the proteins that are part of the signaling axis, could lead to various autoimmune diseases. Inhibiting various nodes of the cGAS-STING axis could provide relief to patients with autoimmune diseases. Many excellent reviews on the cGAS-STING axis have been published recently, and these have mainly focused on the molecular details of the cGAS-STING pathway. This review however focuses on small molecules that can be used to modulate various aspects of the cGAS-STING pathway, as well as other parallel inflammatory pathways.
Collapse
Affiliation(s)
- Herman O Sintim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Institute for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Purdue Institute of Inflammation and Infectious Diseases , Purdue University , West Lafayette , IN 47907 , USA
| | - Clinton G Mikek
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Modi Wang
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Moloud A Sooreshjani
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| |
Collapse
|
678
|
Novotná B, Vaneková L, Zavřel M, Buděšínský M, Dejmek M, Smola M, Gutten O, Tehrani ZA, Pimková Polidarová M, Brázdová A, Liboska R, Štěpánek I, Vavřina Z, Jandušík T, Nencka R, Rulíšek L, Bouřa E, Brynda J, Páv O, Birkuš G. Enzymatic Preparation of 2'-5',3'-5'-Cyclic Dinucleotides, Their Binding Properties to Stimulator of Interferon Genes Adaptor Protein, and Structure/Activity Correlations. J Med Chem 2019; 62:10676-10690. [PMID: 31715099 DOI: 10.1021/acs.jmedchem.9b01062] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclic dinucleotides are second messengers in the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which plays an important role in recognizing tumor cells and viral or bacterial infections. They bind to the STING adaptor protein and trigger expression of cytokines via TANK binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and inhibitor of nuclear factor-κB (IκB) kinase (IKK)/nuclear factor-κB (NFκB) signaling cascades. In this work, we describe an enzymatic preparation of 2'-5',3'-5'-cyclic dinucleotides (2'3'CDNs) with use of cyclic GMP-AMP synthases (cGAS) from human, mouse, and chicken. We profile substrate specificity of these enzymes by employing a small library of nucleotide-5'-triphosphate (NTP) analogues and use them to prepare 33 2'3'CDNs. We also determine affinity of these CDNs to five different STING haplotypes in cell-based and biochemical assays and describe properties needed for their optimal activity toward all STING haplotypes. Next, we study their effect on cytokine and chemokine induction by human peripheral blood mononuclear cells (PBMCs) and evaluate their cytotoxic effect on monocytes. Additionally, we report X-ray crystal structures of two new CDNs bound to STING protein and discuss structure-activity relationship by using quantum and molecular mechanical (QM/MM) computational modeling.
Collapse
Affiliation(s)
- Barbora Novotná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic.,Faculty of Science , Charles University , Prague 110 00 , Czech Republic
| | - Lenka Vaneková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic.,Faculty of Science , Charles University , Prague 110 00 , Czech Republic
| | - Martin Zavřel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Miroslav Smola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Zahra Aliakbar Tehrani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Markéta Pimková Polidarová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic.,Faculty of Science , Charles University , Prague 110 00 , Czech Republic
| | - Andrea Brázdová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Radek Liboska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Ivan Štěpánek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Zdeněk Vavřina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic.,Faculty of Science , Charles University , Prague 110 00 , Czech Republic
| | - Tomáš Jandušík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic.,Faculty of Food and Biochemical Technology , University of Chemistry and Technology , Prague 166 28 , Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Ondřej Páv
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences and Gilead Sciences Research Centre at IOCB , Flemingovo nam. 2 , Prague 16610 , Czech Republic
| |
Collapse
|
679
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
680
|
Youle RJ. Mitochondria-Striking a balance between host and endosymbiont. Science 2019; 365:365/6454/eaaw9855. [PMID: 31416937 DOI: 10.1126/science.aaw9855] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are organelles with their own genome that arose from α-proteobacteria living within single-celled Archaea more than a billion years ago. This step of endosymbiosis offered tremendous opportunities for energy production and metabolism and allowed the evolution of fungi, plants, and animals. However, less appreciated are the downsides of this endosymbiosis. Coordinating gene expression between the mitochondrial genomes and the nuclear genome is imprecise and can lead to proteotoxic stress. The clonal reproduction of mitochondrial DNA requires workarounds to avoid mutational meltdown. In metazoans that developed innate immune pathways to thwart bacterial and viral infections, mitochondrial components can cross-react with pathogen sensors and invoke inflammation. Here, I focus on the numerous and elegant quality control processes that compensate for or mitigate these challenges of endosymbiosis.
Collapse
Affiliation(s)
- Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
681
|
Lian Y, Duffy KJ, Yang J. STING Activation and its Application in Immuno-Oncology. Curr Top Med Chem 2019; 19:2205-2227. [DOI: 10.2174/1568026619666191010155903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Recent regulatory approval of several immune checkpoint inhibitors has ushered in a new era
of cancer immunotherapies with the promise of achieving a durable response. This represents a paradigm
shift in cancer treatment from directly targeting tumor cells to harnessing the power of a patient’s
own immune system to destroy them. The cGAS-STING pathway is the major cytosolic dsDNA sensing
pathway that plays a pivotal role in the innate antitumor immune response. With a fundamentally different
mode of action (MOA) than immune checkpoint modulators, STING activation can potentially enhance
tumor immunogenicity and improve patient responses as a single agent or by synergizing with
existing anti-cancer drugs. Therefore, there has been intense interest from the pharmaceutical industry
and academic institutions in the search for potent STING agonists as immunotherapies in oncology. In
this article, we review briefly the cGAS-STING pathway and STING agonists that are in the clinical and
preclinical studies, summarize recently disclosed patent applications and published journal articles in the
field and cover both cyclic dinucleotide (CDN) analogs and non-nucleic acid derived STING agonists.
Collapse
Affiliation(s)
- Yiqian Lian
- Department of Medicinal Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Kevin J. Duffy
- Department of Medicinal Chemistry, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| | - Jingsong Yang
- Immuno-Oncology and Combinations Research Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, United States
| |
Collapse
|
682
|
Zhong F, Liang S, Zhong Z. Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends Immunol 2019; 40:1120-1133. [PMID: 31744765 DOI: 10.1016/j.it.2019.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation benefits the host by promoting the elimination of invading pathogens and clearance of cellular debris after tissue injury. Inflammation also stimulates tissue repair and regeneration to restore homeostasis and organismal health. Emerging evidence suggests that mitochondrial DNA (mtDNA), the only form of non-nuclear DNA in eukaryotic cells, is a major activator of inflammation when leaked out from stressed mitochondria. Here, we review the current understanding on the role of mtDNA in innate immunity, discussing how dysregulated mtDNA metabolism can promote chronic inflammation and disease progression.
Collapse
Affiliation(s)
- Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology and College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei 071000, China
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
683
|
Cui X, Zhang R, Cen S, Zhou J. STING modulators: Predictive significance in drug discovery. Eur J Med Chem 2019; 182:111591. [PMID: 31419779 PMCID: PMC7172983 DOI: 10.1016/j.ejmech.2019.111591] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) - stimulator of interferon genes (STING) signaling pathway plays the critical role in the immune response to DNA. Pharmacological modulation of the STING pathway has been well characterized both from structural and functional perspectives, which paves the way for the drug design of small modulators by medicinal chemists. Here, we outline recent progress in studies on the STING pathway, the structure and biological function of STING, the STING related disease, as well as the rationale and progress in the development of STING modulators. Our review demonstrates that STING is a promising drug target, and providing clues for the discovery of novel STING agonists and antagonists for the potential treatment of various disease including microbial infectious diseases, cancer, and autoimmune disease.
Collapse
Affiliation(s)
- Xiangling Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China,Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China,Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
684
|
Abstract
The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon (IFN-α), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and IFN-α together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein κBα (IκBα). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and IFN-α as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hyun Sook Hwang
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea
| | - Mi Hyun Lee
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea
| | - Min Ha Choi
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea
| |
Collapse
|
685
|
Abstract
Over the past decade, preclinical and clinical research have confirmed the essential role of interferons for effective host immunological responses to malignant cells. Type I interferons (IFNα and IFNβ) directly regulate transcription of >100 downstream genes, which results in a myriad of direct (on cancer cells) and indirect (through immune effector cells and vasculature) effects on the tumour. New insights into endogenous and exogenous activation of type I interferons in the tumour and its microenvironment have given impetus to drug discovery and patient evaluation of interferon-directed strategies. When combined with prior observations or with other effective modalities for cancer treatment, modulation of the interferon system could contribute to further reductions in cancer morbidity and mortality. This Review discusses new interferon-directed therapeutic opportunities, ranging from cyclic dinucleotides to genome methylation inhibitors, angiogenesis inhibitors, chemoradiation, complexes with neoantigen-targeted monoclonal antibodies, combinations with other emerging therapeutic interventions and associations of interferon-stimulated gene expression with patient prognosis - all of which are strategies that have or will soon enter translational clinical evaluation.
Collapse
|
686
|
An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat Commun 2019; 10:5108. [PMID: 31704921 PMCID: PMC6841721 DOI: 10.1038/s41467-019-13094-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence suggests that the tumor microenvironment is profoundly immunosuppressive. Thus, mitigating tumor immunosuppression is crucial for inducing sustained antitumor immunity. Whereas previous studies involved intratumoral injection, we report here an inhalable nanoparticle-immunotherapy system targeting pulmonary antigen presenting cells (APCs) to enhance anticancer immunity against lung metastases. Inhalation of phosphatidylserine coated liposome loaded with STING agonist cyclic guanosine monophosphate–adenosine monophosphate (NP-cGAMP) in mouse models of lung metastases enables rapid distribution of NP-cGAMP to both lungs and subsequent uptake by APCs without causing immunopathology. NP-cGAMP designed for enhanced cytosolic release of cGAMP stimulates STING signaling and type I interferons production in APCs, resulting in the pro-inflammatory tumor microenvironment in multifocal lung metastases. Furthermore, fractionated radiation delivered to one tumor-bearing lung synergizes with inhaled NP-cGAMP, eliciting systemic anticancer immunity, controlling metastases in both lungs, and conferring long-term survival in mice with lung metastases and with repeated tumor challenge. Successful anticancer immunotherapy should induce robust systemic immunity against metastases. Here, the authors engineer an inhalable nano-STING agonist, which synergizes with fractionated radiation to control lung metastases and confers long-term systemic antitumor immunity in mice.
Collapse
|
687
|
Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle. Mol Cancer 2019; 18:152. [PMID: 31679519 PMCID: PMC6827255 DOI: 10.1186/s12943-019-1087-y] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/10/2019] [Indexed: 02/21/2023] Open
Abstract
The aberrant appearance of DNA in the cytoplasm triggers the activation of cGAS-cGAMP-STING signaling and induces the production of type I interferons, which play critical roles in activating both innate and adaptive immune responses. Recently, numerous studies have shown that the activation of STING and the stimulation of type I IFN production are critical for the anticancer immune response. However, emerging evidence suggests that STING also regulates anticancer immunity in a type I IFN-independent manner. For instance, STING has been shown to induce cell death and facilitate the release of cancer cell antigens. Moreover, STING activation has been demonstrated to enhance cancer antigen presentation, contribute to the priming and activation of T cells, facilitate the trafficking and infiltration of T cells into tumors and promote the recognition and killing of cancer cells by T cells. In this review, we focus on STING and the cancer immune response, with particular attention to the roles of STING activation in the cancer-immunity cycle. Additionally, the negative effects of STING activation on the cancer immune response and non-immune roles of STING in cancer have also been discussed.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xiang An
- Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Xiao Zhang
- Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Yu Qiao
- Department of Histology and Embryology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
688
|
Maekawa H, Inagi R. Pathophysiological Role of Organelle Stress/Crosstalk in AKI-to-CKD Transition. Semin Nephrol 2019; 39:581-588. [DOI: 10.1016/j.semnephrol.2019.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
689
|
Kang TH, Mao CP, Kim YS, Kim TW, Yang A, Lam B, Tseng SH, Farmer E, Park YM, Hung CF. TLR9 acts as a sensor for tumor-released DNA to modulate anti-tumor immunity after chemotherapy. J Immunother Cancer 2019; 7:260. [PMID: 31619293 PMCID: PMC6794732 DOI: 10.1186/s40425-019-0738-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment exists in a state of dynamic equilibrium, in which a balance of agonist and antagonist signals govern the anti-tumor immune responses. Previous studies have shown that chemotherapy could shift this balance in favor of agonistic signals for the anti-tumor immune responses mounted by CD8+ cytotoxic T lymphocytes (CTL), providing sufficiently high antigen density within the tumor. We undertook the current study to characterize the anti-tumor immune response following chemotherapy and its underlying mechanisms. We show that this 'adjuvant effect' of chemotherapy is, at least partially, mediated by the release of tumor DNA and acts through the Toll-like receptor 9 (TLR9) pathway. We found that tumor-released DNA causes accumulation, antigen uptake, and maturation of dendritic cells (DCs) in the tumor in a TLR9-dependent manner. These DCs subsequently migrate into the draining lymph nodes and prime tumor-specific CTLs. Our study provides novel insights to the molecular and cellular mechanisms by which chemotherapy converts the tumor microenvironment into a site permissive for the activation of a potent tumor-specific adaptive immune response.
Collapse
Affiliation(s)
- Tae Heung Kang
- Department of Immunology, College of Medicine, Konkuk University, 268, Chungju, South Korea
| | - Chih-Ping Mao
- MD-PhD Program, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Graduate Program in Immunology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Young Seob Kim
- Department of Immunology, College of Medicine, Konkuk University, 268, Chungju, South Korea
| | - Tae Woo Kim
- Division of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Andrew Yang
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- MD-PhD Program, Baylor College of Medicine, Houston, TX, USA
| | - Brandon Lam
- Graduate Program in Immunology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Emily Farmer
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yeong-Min Park
- Department of Immunology, College of Medicine, Konkuk University, 268, Chungju, South Korea.
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
690
|
Su T, Zhang Y, Valerie K, Wang XY, Lin S, Zhu G. STING activation in cancer immunotherapy. Theranostics 2019; 9:7759-7771. [PMID: 31695799 PMCID: PMC6831454 DOI: 10.7150/thno.37574] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy modulates and leverages the host immune system to treat cancer. The past decade has witnessed historical advancement of cancer immunotherapy. A myriad of approaches have been explored to elicit or augment anticancer innate immunity and/or adaptive immunity. Recently, activation of stimulator of interferon (IFN) genes (STING), an intracellular receptor residing in the endoplasmic reticulum, has shown great potential to enhance antitumor immunity through the induction of a variety of pro-inflammatory cytokines and chemokines, including type I IFNs. A number of natural and synthetic STING agonists have been discovered or developed, and tested in preclinical models and in the clinic for the immunotherapy of diseases such as cancer and infectious diseases. Cyclic dinucleotides (CDNs), such as cyclic dimeric guanosine monophosphate (c-di-GMP), cyclic dimeric adenosine monophosphate (c-di-AMP), and cyclic GMP-AMP (cGAMP), are a class of STING agonists that can elicit immune responses. However, natural CDNs are hydrophilic small molecules with negative charges and are susceptible to enzymatic degradation, leading to low bioavailability in target tissues yet unwanted toxicities and narrow therapeutic windows. Drug delivery systems, coupled with nucleic acid chemistry, have been exploited to address these challenges. Here, we will discuss the underlying immunological mechanisms and approaches to STING activation, with a focus on the delivery of STING agonists, for cancer immunotherapy.
Collapse
Affiliation(s)
- Ting Su
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Richmond, VA, 23298, USA
| | - Yu Zhang
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Richmond, VA, 23298, USA
| | - Kristoffer Valerie
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Xiang-Yang Wang
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Shuibin Lin
- Department of Rehabilitation Medicine, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
691
|
Li J, Van Valkenburgh J, Hong X, Conti PS, Zhang X, Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019; 9:7849-7871. [PMID: 31695804 PMCID: PMC6831453 DOI: 10.7150/thno.37218] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
With further research into the molecular mechanisms and roles linking immune suppression and restraint of (pre)malignancies, immunotherapies have revolutionized clinical strategies in the treatment of cancer. However, nearly 70% of patients who received immune checkpoint therapeutics showed no response. Complementary and/or synergistic effects may occur when extracellular checkpoint antibody blockades combine with small molecules targeting intracellular signal pathways up/downstream of immune checkpoints or regulating the innate and adaptive immune response. After radiolabeling with radionuclides, small molecules can also be used for estimating treatment efficacy of immune checkpoint blockades. This review not only highlights some significant intracellular pathways and immune-related targets such as the kynurenine pathway, purinergic signaling, the kinase signaling axis, chemokines, etc., but also summarizes some attractive and potentially immunosuppression-related small molecule agents, which may be synergistic with extracellular immune checkpoint blockade. In addition, opportunities for small molecule-based theranostics in cancer immunology will be discussed.
Collapse
Affiliation(s)
- Jindian Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| |
Collapse
|
692
|
|
693
|
Rose KN, Barlock BJ, DaSilva NA, Johnson SL, Liu C, Ma H, Nelson R, Akhlaghi F, Seeram NP. Anti-neuroinflammatory effects of a food-grade phenolic-enriched maple syrup extract in a mouse model of Alzheimer’s disease. Nutr Neurosci 2019; 24:710-719. [DOI: 10.1080/1028415x.2019.1672009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kenneth N. Rose
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Benjamin J. Barlock
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Nicholas A. DaSilva
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Shelby L. Johnson
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Robert Nelson
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
694
|
Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, Hirokawa N, Nangaku M, Inagi R. Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Rep 2019; 29:1261-1273.e6. [DOI: 10.1016/j.celrep.2019.09.050] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/01/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
|
695
|
Agrawal S, Kandimalla ER. Intratumoural immunotherapy: activation of nucleic acid sensing pattern recognition receptors. ACTA ACUST UNITED AC 2019; 3:15-23. [PMID: 35757301 PMCID: PMC9216656 DOI: 10.1016/j.iotech.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, it has become clear that the tumour microenvironment (TME) is important in cancer immunotherapy. While immune checkpoint inhibitors are effective for some patients, the heterogeneous nature and status of the TME (‘cold’ tumours) play a critical role in suppressing antitumour immunity in non-responding patients. Converting ‘cold’ to ‘hot’ tumours through modulation of the TME may enable expansion of the therapeutic efficacy of immunotherapy to a broader patient population. This paper describes advances in intratumoural immunotherapy, specifically activation of nucleic acid sensing pattern recognition receptors to modulate the TME. Intratumoural immunotherapy to modulate the tumour microenvironment. Use of novel immunostimulatory agents which activate nucleic acid sensing pattern recognition receptors. Harnessing innate and adaptive immunity induced by receptor-mediated immune cascade. Intratumoural therapy leads to local and anenestic tumour responses.
Collapse
Affiliation(s)
- Sudhir Agrawal
- University of Massachusetts Medical School, Department of Medicine, Worcester, USA
- ARNAY Sciences LLC, Shrewsbury, USA
- Corresponding author. Sudhir Agrawal, University of Massachusetts Medical School, Department of Medicine, 55 N Lake Ave, Worcester, MA 01655, USA.
| | | |
Collapse
|
696
|
Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, Shi Y, Sadtler K, Gao W, Lin J, Doloff JC, Langer R, Anderson DG. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol 2019; 37:1174-1185. [PMID: 31570898 DOI: 10.1038/s41587-019-0247-3] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Therapeutic messenger RNA vaccines enable delivery of whole antigens, which can be advantageous over peptide vaccines. However, optimal efficacy requires both intracellular delivery, to allow antigen translation, and appropriate immune activation. Here, we developed a combinatorial library of ionizable lipid-like materials to identify mRNA delivery vehicles that facilitate mRNA delivery in vivo and provide potent and specific immune activation. Using a three-dimensional multi-component reaction system, we synthesized and evaluated the vaccine potential of over 1,000 lipid formulations. The top candidate formulations induced a robust immune response, and were able to inhibit tumor growth and prolong survival in melanoma and human papillomavirus E7 in vivo tumor models. The top-performing lipids share a common structure: an unsaturated lipid tail, a dihydroimidazole linker and cyclic amine head groups. These formulations induce antigen-presenting cell maturation via the intracellular stimulator of interferon genes (STING) pathway, rather than through Toll-like receptors, and result in limited systemic cytokine expression and enhanced anti-tumor efficacy.
Collapse
Affiliation(s)
- Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linxian Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Yuxuan Huang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Derfogail Delcassian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.,Division of Regenerative Medicine and Cellular Therapy, University of Nottingham, Nottingham, UK
| | - Jasdave Chahal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinsong Han
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Yunhua Shi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaitlyn Sadtler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Wenting Gao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiaqi Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.,Departments of Biomedical & Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
697
|
Ozasa K, Temizoz B, Kusakabe T, Kobari S, Momota M, Coban C, Ito S, Kobiyama K, Kuroda E, Ishii KJ. Cyclic GMP-AMP Triggers Asthma in an IL-33-Dependent Manner That Is Blocked by Amlexanox, a TBK1 Inhibitor. Front Immunol 2019; 10:2212. [PMID: 31616416 PMCID: PMC6775192 DOI: 10.3389/fimmu.2019.02212] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023] Open
Abstract
Extracellular host-derived DNA, as one of damage associated molecular patterns (DAMPs), is associated with allergic type 2 immune responses. Immune recognition of such DNA generates the second messenger cyclic GMP-AMP (cGAMP) and induces type-2 immune responses; however, its role in allergic diseases, such as asthma, has not been fully elucidated. This study aimed to determine whether cGAMP could induce asthma when used as an adjuvant. We intranasally sensitized mice with cGAMP together with house dust mite antigen (HDM), followed by airway challenge with HDM. We then assessed the levels of eosinophils in the broncho-alveolar lavage fluid (BALF) and serum HDM-specific antibodies. cGAMP promoted HDM specific allergic asthma, characterized by significantly increased HDM specific IgG1 and total IgE in the serum and infiltration of eosinophils in the BALF. cGAMP stimulated lung fibroblast cells to produce IL-33 in vitro, and mice deficient for IL-33 or IL-33 receptor (ST2) failed to develop asthma enhancement by cGAMP. Not only Il-33 -/- mice, but also Sting -/-, Tbk1 -/-, and Irf3 -/- Irf7 -/- mice which lack the cGAMP-mediated innate immune activation failed to increase eosinophils in the BALF than that from wild type mice. Consistently, intranasal and oral administration of amlexanox, a TBK1 inhibitor, decreased cGAMP-induced lung allergic inflammation. Thus, cGAMP functions as a type 2 adjuvant in the lung and can promote allergic asthma in manners that dependent on the intracellular STING/TBK1/IRF3/7 signaling pathway and the resultant intercellular signaling pathway via IL-33 and ST2 might be a novel therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Koji Ozasa
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Burcu Temizoz
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takato Kusakabe
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Mock-Up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Shingo Kobari
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Mock-Up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cevayir Coban
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Malaria Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsushi Kuroda
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Mock-Up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
698
|
Gholamin S, Youssef OA, Rafat M, Esparza R, Kahn S, Shahin M, Giaccia AJ, Graves EE, Weissman I, Mitra S, Cheshier SH. Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma. Innate Immun 2019; 26:130-137. [PMID: 31547758 PMCID: PMC7016411 DOI: 10.1177/1753425919876690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Irradiation and temozolomide (TMZ) chemotherapy are the current standard treatments for glioblastoma multiforme (GBM), but they are associated with toxicity and limited efficacy. Recently, these standard therapies have been used to enhance immunotherapy against GBM. Immunotherapy using the anti-CD47 (immune checkpoint inhibitor) treatment has shown promise in treating multiple tumor types, including GBM. The goal of this current work was to test whether irradiation or TMZ chemotherapy could enhance anti-CD47 treatment against GBM. Our results showed that irradiation and TMZ each significantly enhanced anti-CD47-mediated phagocytosis of GBM cells in vitro. Furthermore, mice engrafted with human GBM that received anti-CD47 combined with focal irradiation or TMZ treatment showed a significant increase in the survival rate compared to those that received a single treatment. The tumor growth in mice that received both anti-CD47 and irradiation was significantly less than that of groups that received either anti-CD47 or focal irradiation. The results from this study may support future use of anti-CD47 treatment in combination with irradiation or chemotherapy to enhance the therapeutic efficacy of GBM treatment.
Collapse
Affiliation(s)
- Sharareh Gholamin
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Stanford Ludwig Cancer Center, Stanford University School of Medicine, USA
| | - Osama A Youssef
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, School of Medicine, University of Utah, USA
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University, USA
| | - Rogelio Esparza
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, USA
| | - Suzana Kahn
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Stanford Ludwig Cancer Center, Stanford University School of Medicine, USA
| | - Maryam Shahin
- Department of Radiation Oncology, Stanford University, USA
| | | | | | - Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Stanford Ludwig Cancer Center, Stanford University School of Medicine, USA
| | - Siddhartha Mitra
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Stanford Ludwig Cancer Center, Stanford University School of Medicine, USA
- Department of Pediatrics, Hematology/Oncology/Bone Marrow Transplant Research Laboratories, Children’s Hospital Colorado, University of Colorado, School of Medicine, USA
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children’s Hospital, Stanford University School of Medicine, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Stanford Ludwig Cancer Center, Stanford University School of Medicine, USA
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, School of Medicine, University of Utah, USA
- Samuel H Cheshier, Division of Pediatric Neurosurgery, Department of Neurosurgery, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84113, USA.
| |
Collapse
|
699
|
Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, Sohn J, Sung P, Gekara NO. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 2019; 38:e102718. [PMID: 31544964 PMCID: PMC6826206 DOI: 10.15252/embj.2019102718] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
DNA repair via homologous recombination (HR) is indispensable for genome integrity and cell survival but if unrestrained can result in undesired chromosomal rearrangements. The regulatory mechanisms of HR are not fully understood. Cyclic GMP-AMP synthase (cGAS) is best known as a cytosolic innate immune sensor critical for the outcome of infections, inflammatory diseases, and cancer. Here, we report that cGAS is primarily a chromatin-bound protein that inhibits DNA repair by HR, thereby accelerating genome destabilization, micronucleus generation, and cell death under conditions of genomic stress. This function is independent of the canonical STING-dependent innate immune activation and is physiologically relevant for irradiation-induced depletion of bone marrow cells in mice. Mechanistically, we demonstrate that inhibition of HR repair by cGAS is linked to its ability to self-oligomerize, causing compaction of bound template dsDNA into a higher-ordered state less amenable to strand invasion by RAD51-coated ssDNA filaments. This previously unknown role of cGAS has implications for understanding its involvement in genome instability-associated disorders including cancer.
Collapse
Affiliation(s)
- Hui Jiang
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.,Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Swarupa Panda
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ajinkya Kawale
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Richard M Hooy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.,Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nelson O Gekara
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
700
|
Li K, Liu Y, Xu Z, Zhang Y, Luo D, Gao Y, Qian Y, Bao C, Liu C, Zhang Y, Qi X, Cui H, Wang Y, Gao L, Wang X. Avian oncogenic herpesvirus antagonizes the cGAS-STING DNA-sensing pathway to mediate immune evasion. PLoS Pathog 2019; 15:e1007999. [PMID: 31539404 PMCID: PMC6799934 DOI: 10.1371/journal.ppat.1007999] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/18/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
The cellular DNA sensor cGMP-AMP synthase (cGAS) detects cytosolic viral DNA via the stimulator of interferon genes (STING) to initiate innate antiviral response. Herpesviruses are known to target key immune signaling pathways to persist in an immune-competent host. Marek’s disease virus (MDV), a highly pathogenic and oncogenic herpesvirus of chickens, can antagonize host innate immune responses to achieve persistent infection. With a functional screen, we identified five MDV proteins that blocked beta interferon (IFN-β) induction downstream of the cGAS-STING pathway. Specifically, the MDV major oncoprotein Meq impeded the recruitment of TANK-binding kinase 1 and IFN regulatory factor 7 (IRF7) to the STING complex, thereby inhibiting IRF7 activation and IFN-β induction. Meq overexpression markedly reduced antiviral responses stimulated by cytosolic DNA, whereas knockdown of Meq heightened MDV-triggered induction of IFN-β and downstream antiviral genes. Moreover, Meq-deficient MDV induced more IFN-β production than wild-type MDV. Meq-deficient MDV also triggered a more robust CD8+ T cell response than wild-type MDV. As such, the Meq-deficient MDV was highly attenuated in replication and lymphoma induction compared to wild-type MDV. Taken together, these results revealed that MDV evades the cGAS-STING DNA sensing pathway, which underpins the efficient replication and oncogenesis. These findings improve our understanding of the virus-host interaction in MDV-induced lymphoma and may contribute to the development of novel vaccines against MDV infection. Marek’s disease virus (MDV) is an avian oncogenic herpesvirus that causes a fatal disease in poultry worldwide. Chickens infected with MDV become more susceptible to secondary viral or bacterial infections. However, the mechanisms of MDV-induced immunosuppression and tumorigenesis remain largely unknown. The cGAS-STING pathway is crucial for innate immune responses against both microbial pathogens and intrinsic tumors. Here we identified the MDV oncoprotein, Meq, as an inhibitor of the cGAS-STING DNA-sensing pathway. Mechanistically, Meq interacted with STING and IRF7, and impaired the recruitment of TBK1 and IRF7 to the STING complex, thus inhibiting IRF7 activation and IFN-β induction. Loss of Meq potently enhanced innate immune response, while impaired the replication and oncogenesis of MDV in chickens. Our findings reveal an important mechanism of immune evasion of MDV, instructing us on the virus-host interaction in MDV-induced lymphoma and potential new means to develop MDV vaccine.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zengkun Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dan Luo
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenyi Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqiang Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (LG); (XW)
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (LG); (XW)
| |
Collapse
|