651
|
O'Gara M, Adams GM, Gong W, Kobayashi R, Blumenthal RM, Cheng X. Expression, purification, mass spectrometry, crystallization and multiwavelength anomalous diffraction of selenomethionyl PvuII DNA methyltransferase (cytosine-N4-specific). EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1009-18. [PMID: 9288926 DOI: 10.1111/j.1432-1033.1997.01009.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The type II DNA-methyltransferase (cytosine N4-specific) M.PvuII was overexpressed in Escherichia coli, starting from the internal translation initiator at Met14. Selenomethionine was efficiently incorporated into this short form of M.PvuII by a strain prototrophic for methionine. Both native and selenomethionyl M.PvuII were purified to apparent homogeneity by a two-column chromatography procedure. The yield of purified protein was approximately 1.8 mg/g bacterial paste. Mass spectrometry analysis of selenomethionyl M.PvuII revealed three major forms that probably differ in the degree of selenomethionine incorporation and the extent of selenomethionine oxidation. Amino acid sequencing and mass spectrometry analysis of selenomethionine-containing peptides suggests that Met30, Met51, and Met261 were only partially replaced by selenomethionine. Furthermore, amino acid 261 may be preferentially oxidized in both native and selenomethionyl form. Selenomethionyl and native M.PvuII were crystallized separately as binary complexes of the methyl donor S-adenosyl-L-methionine in the monoclinic space group P2(1). Two complexes were present per asymmetric unit. Six out of nine selenium positions (per molecule), including the three that were found to be partially substituted, were identified crystallographically.
Collapse
Affiliation(s)
- M O'Gara
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY, USA
| | | | | | | | | | | |
Collapse
|
652
|
Huang L, Weng X, Hofer F, Martin GS, Kim SH. Three-dimensional structure of the Ras-interacting domain of RalGDS. NATURE STRUCTURAL BIOLOGY 1997; 4:609-15. [PMID: 9253406 DOI: 10.1038/nsb0897-609] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Ras-interacting domains of the the protein-kinase Raf and the Ral guanine nucleotide dissociation stimulator, RalGDS, lack extensive sequence similarity, but their overall three-dimensional structures are very similar to each other. Mutational analysis indicated that three residues in the RalGDS domain are critical for its interaction with Ras.
Collapse
|
653
|
Gong W, O'Gara M, Blumenthal RM, Cheng X. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res 1997; 25:2702-15. [PMID: 9207015 PMCID: PMC146797 DOI: 10.1093/nar/25.14.2702] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.
Collapse
Affiliation(s)
- W Gong
- W.M.Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
654
|
Lima CD, D'Amico KL, Naday I, Rosenbaum G, Westbrook EM, Hendrickson WA. MAD analysis of FHIT, a putative human tumor suppressor from the HIT protein family. Structure 1997; 5:763-74. [PMID: 9261067 DOI: 10.1016/s0969-2126(97)00231-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. It is expressed from a gene located at a fragile site on human chromosome 3, which is commonly disrupted in association with certain cancers. On the basis of the genetic evidence, it has been postulated that the FHIT protein may function as a tumor suppressor, implying a role for the FHIT protein in carcinogenesis. The FHIT protein has dinucleoside polyphosphate hydrolase activity in vitro, thus suggesting that its role in vivo may involve the hydrolysis of a phosphoanhydride bond. The structural analysis of FHIT will identify critical residues involved in substrate binding and catalysis, and will provide insights into the in vivo function of HIT proteins. RESULTS The three-dimensional crystal structures of free and nucleoside complexed FHIT have been determined from multiwavelength anomalous diffraction (MAD) data, and they represent some of the first successful structures to be measured with undulator radiation at the Advanced Photon Source. The structures of FHIT reveal that this protein exists as an intimate homodimer, which is based on a core structure observed previously in another human HIT homolog, protein kinase C interacting protein (PKCI), but has distinctive elaborations at both the N and C termini. Conserved residues within the HIT family, which are involved in the interactions of the proteins with nucleoside and phosphate groups, appear to be relevant for the catalytic activity of this protein. CONCLUSIONS The structure of FHIT, a divergent HIT protein family member, in complex with a nucleotide analog suggests a metal-independent catalytic mechanism for the HIT family of proteins. A structural comparison of FHIT with PKCI and galactose-1-phosphate uridylyltransferase (GaIT) reveals additional implications for the structural and functional evolution of the ubiquitous HIT family of proteins.
Collapse
Affiliation(s)
- C D Lima
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
655
|
Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 1997; 89:951-61. [PMID: 9200613 DOI: 10.1016/s0092-8674(00)80280-9] [Citation(s) in RCA: 519] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The X-ray structure of the eukaryotic translation initiation factor 4E (eIF4E), bound to 7-methyl-GDP, has been determined at 2.2 A resolution. eIF4E recognizes 5' 7-methyl-G(5')ppp(5')N mRNA caps during the rate-limiting initiation step of translation. The protein resembles a cupped hand and consists of a curved, 8-stranded antiparallel beta sheet, backed by three long alpha helices. 7-methyl-GDP binds in a narrow cap-binding slot on the molecule's concave surface, where 7-methyl-guanine recognition is mediated by base sandwiching between two conserved tryptophans, plus formation of three hydrogen bonds and a van der Waals contact between its N7-methyl group and a third conserved tryptophan. The convex dorsal surface of the molecule displays a phylogenetically conserved hydrophobic/acidic portion, which may interact with other translation initiation factors and regulatory proteins.
Collapse
Affiliation(s)
- J Marcotrigiano
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
656
|
Montoya G, Svensson C, Luirink J, Sinning I. Expression, crystallization and preliminary X-ray diffraction study of FtsY, the docking protein of the signal recognition particle of E. coli. Proteins 1997; 28:285-8. [PMID: 9188744 DOI: 10.1002/(sici)1097-0134(199706)28:2<285::aid-prot15>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FtsY is the docking protein or SR alpha homologue in E. coli. It is involved in targeting secretory proteins to the cytoplasmic membrane by interacting with the signal recognition particle, controlled by guanosine 5'-triphosphate. Two different constructs have been used in crystallization studies: the full-length protein and a truncated fragment with a his-tag at the C terminus. Only the second construct resulted in crystals suitable for x-ray diffraction. The crystals belong to the monoclinic space group P2(1) with cell dimensions a = 32.20 A, b = 79.57 A, c = 59.21 A, and beta = 94.45, and contain one molecule per asymmetric unit. At cryogenic temperatures the crystals diffract to a resolution limit of 2.5 A by using a rotating anode, and beyond 1.8 A by using synchrotron radiation.
Collapse
Affiliation(s)
- G Montoya
- European Molecular Biology Laboratory, Structural Biology Programme, Heidelberg, Germany
| | | | | | | |
Collapse
|
657
|
Duan X, Gimble FS, Quiocho FA. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 1997; 89:555-64. [PMID: 9160747 DOI: 10.1016/s0092-8674(00)80237-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PI-Scel is a bifunctional yeast protein that propagates its mobile gene by catalyzing protein splicing and site-specific DNA double-strand cleavage. Here, we report the 2.4 A crystal structure of the PI-Scel protein. The structure is composed of two separate domains (I and II) with novel folds and different functions. Domain I, which is elongated and formed largely from seven beta sheets, harbors the N and C termini residues and two His residues that are implicated in protein splicing. Domain II, which is compact and is primarily composed of two similar alpha/beta motifs related by local two-fold symmetry, contains the putative nuclease active site with a cluster of two acidic residues and one basic residue commonly found in restriction endonucleases. This report presents prototypic structures of domains with single endonuclease and protein splicing active sites.
Collapse
Affiliation(s)
- X Duan
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
658
|
Abstract
The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) consists of a complex of gp120 and gp41. gp120 determines viral tropism by binding to target-cell receptors, while gp41 mediates fusion between viral and cellular membranes. Previous studies identified an alpha-helical domain within gp41 composed of a trimer of two interacting peptides. The crystal structure of this complex, composed of the peptides N36 and C34, is a six-helical bundle. Three N36 helices form an interior, parallel coiled-coil trimer, while three C34 helices pack in an oblique, antiparallel manner into highly conserved, hydrophobic grooves on the surface of this trimer. This structure shows striking similarity to the low-pH-induced conformation of influenza hemagglutinin and likely represents the core of fusion-active gp41. Avenues for the design/discovery of small-molecule inhibitors of HIV infection are directly suggested by this structure.
Collapse
Affiliation(s)
- D C Chan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
659
|
Hickman AB, Waninger S, Scocca JJ, Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell 1997; 89:227-37. [PMID: 9108478 DOI: 10.1016/s0092-8674(00)80202-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HP1 integrase promotes site-specific recombination of the HP1 genome into that of Haemophilus influenzae. The isolated C-terminal domain (residues 165-337) of the protein interacts with the recombination site and contains the four catalytic residues conserved in the integrase family. This domain represents a novel fold consisting principally of well-packed alpha helices, a surface beta sheet, and an ordered 17-residue C-terminal tail. The conserved triad of basic residues and the active-site tyrosine are contributed by a single monomer and occupy fixed positions in a defined active-site cleft. Dimers are formed by mutual interactions of the tail of one monomer with an adjacent monomer; this orients active-site clefts antiparallel to each other.
Collapse
Affiliation(s)
- A B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
660
|
Steinbacher S, Miller S, Baxa U, Budisa N, Weintraub A, Seckler R, Huber R. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage. J Mol Biol 1997; 267:865-80. [PMID: 9135118 PMCID: PMC7172399 DOI: 10.1006/jmbi.1997.0922] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tailspike protein of Salmonella phage P22 is a viral adhesion protein with both receptor binding and destroying activities. It recognises the O-antigenic repeating units of cell surface lipopolysaccharide of serogroup A, B and D1 as receptor, but also inactivates its receptor by endoglycosidase (endorhamnosidase) activity. In the final step of bacteriophage P22 assembly six homotrimeric tailspike molecules are non-covalently attached to the DNA injection apparatus, mediated by their N-terminal, head-binding domains. We report the crystal structure of the head-binding domain of P22 tailspike protein at 2.3 A resolution, solved with a recombinant telluromethionine derivative and non-crystallographic symmetry averaging. The trimeric dome-like structure is formed by two perpendicular beta-sheets of five and three strands, respectively in each subunit and caps a three-helix bundle observed in the structure of the C-terminal receptor binding and cleaving fragment, reported here after full refinement at 1.56 A resolution. In the central part of the receptor binding fragment, three parallel beta-helices of 13 complete turns are associated side-by-side, while the three polypeptide strands merge into a single domain towards their C termini, with close interdigitation at the junction to the beta-helix part. Complex structures with receptor fragments from S. typhimurium, S. enteritidis and S. typhi253Ty determined at 1.8 A resolution are described in detail. Insertions into the beta-helix form the O-antigen binding groove, which also harbours the active site residues Asp392, Asp395 and Glu359. In the intact structure of the tailspike protein, head-binding and receptor-binding parts are probably linked by a flexible hinge whose function may be either to deal with shearing forces on the exposed, 150 A long tailspikes or to allow them to bend during the infection process.
Collapse
Affiliation(s)
- S Steinbacher
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
661
|
Tong L, Pav S, White DM, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. NATURE STRUCTURAL BIOLOGY 1997; 4:311-6. [PMID: 9095200 DOI: 10.1038/nsb0497-311] [Citation(s) in RCA: 325] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The crystal structure of human p38 mitogen-activated protein (MAP) kinase in complex with a potent and highly specific pyridinyl-imidazole inhibitor has been determined at 2.0 A resolution. The structure of the kinase, which is in its unphosphorylated state, is similar to that of the closely-related ERK2. The inhibitor molecule is bound in the ATP pocket. A hydrogen bond is made between the pyridyl nitrogen of the inhibitor and the main chain amido nitrogen of residue 109, analogous to the interaction from the N1 atom of ATP. The crystal structure provides possible explanations for the specificity of this class of inhibitors. Other protein kinase inhibitors may achieve their specificity through a similar mechanism. The structure also reveals a possible second binding site for this inhibitor, with currently unknown function.
Collapse
Affiliation(s)
- L Tong
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, USA
| | | | | | | | | | | | | | | |
Collapse
|
662
|
Brünger AT, Adams PD, Rice LM. New applications of simulated annealing in X-ray crystallography and solution NMR. Structure 1997; 5:325-36. [PMID: 9083112 DOI: 10.1016/s0969-2126(97)00190-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A T Brünger
- The Howard Hughes, Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
663
|
Xu RM, Koch C, Liu Y, Horton JR, Knapp D, Nasmyth K, Cheng X. Crystal structure of the DNA-binding domain of Mbp1, a transcription factor important in cell-cycle control of DNA synthesis. Structure 1997; 5:349-58. [PMID: 9083114 DOI: 10.1016/s0969-2126(97)00192-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND During the cell cycle, cells progress through four distinct phases, G1, S, G2 and M; transcriptional controls play an important role at the transition between these phases. MCB-binding factor (MBF), a transcription factor from budding yeast, binds to the so-called MCB (MluI cell-cycle box) elements found in the promoters of many DNA synthesis genes, and activates the transcription of those at the G1-->S phase transition. MBF is comprised of two proteins, Mbp1 and Swi6. RESULTS The three-dimensional structure of the N-terminal DNA-binding domain of Mbp1 has been determined by multiwavelength anomalous diffraction from crystals of the selenomethionyl variant of the protein. The structure is composed of a six-stranded beta sheet interspersed with two pairs of alpha helices. The most conserved core region among Mbp1-related transcription factors folds into a central helix-turn-helix motif with a short N-terminal beta strand and a C-terminal beta hairpin. CONCLUSIONS Despite little sequence similarity, the structure within the core region of the Mbp1 N-terminal domain exhibits a similar fold to that of the DNA-binding domains of other proteins, such as hepatocyte nuclear factor-3gamma and histone H5 from eukaryotes, and the prokaryotic catabolite gene activator. However, the structure outside the core region defines Mbp1 as a larger entity with substructures that stabilize and display the helix-turn-helix motif.
Collapse
Affiliation(s)
- R M Xu
- WM Keck Structural Biology Laboratory Cold Spring Harbor Laboratory Cold Spring Harbor New York, 11724, USA
| | | | | | | | | | | | | |
Collapse
|
664
|
Martínez-Hackert E, Stock AM. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 1997; 5:109-24. [PMID: 9016718 DOI: 10.1016/s0969-2126(97)00170-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The differential expression of the ompF and ompC genes is regulated by two proteins that belong to the two component family of signal transduction proteins: the histidine kinase, EnvZ, and the response regulator, OmpR. OmpR belongs to a subfamily of at least 50 response regulators with homologous C-terminal DNA-binding domains of approximately 98 amino acids. Sequence homology with DNA-binding proteins of known structure cannot be detected, and the lack of structural information has prevented understanding of many of this familys functional properties. RESULTS We have determined the crystal structure of the Escherichia coli OmpR C-terminal domain at 1.95 A resolution. The structure consists of three alpha helices packed against two antiparallel beta sheets. Two helices, alpha2 and alpha3, and the ten residue loop connecting them constitute a variation of the helix-turn-helix (HTH) motif. Helix alpha3 and the loop connecting the two C-terminal beta strands, beta6 and beta7, are probable DNA-recognition sites. Previous mutagenesis studies indicate that the large loop connecting helices alpha2 and alpha3 is the site of interaction with the alpha subunit of RNA polymerase. CONCLUSIONS OmpRc belongs to the family of 'winged helix-turn-helix' DNA-binding proteins. This relationship, and the results from numerous published mutagenesis studies, have helped us to interpret the functions of most of the structural elements present in this protein domain. The structure of OmpRc could be useful in helping to define the positioning of the alpha subunit of RNA polymerase in relation to transcriptional activators that are bound to DNA.
Collapse
Affiliation(s)
- E Martínez-Hackert
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
665
|
Jacobson EM, Li P, Leon-del-Rio A, Rosenfeld MG, Aggarwal AK. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev 1997; 11:198-212. [PMID: 9009203 DOI: 10.1101/gad.11.2.198] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pit-1, a member of the POU domain family of transcription factors, characterized by a bipartite DNA-binding domain, serves critical developmental functions based on binding to diverse DNA elements in its target genes. Here we report a high resolution X-ray analysis of the Pit-1 POU domain bound to a DNA element as a homodimer. This analysis reveals that Pit-1 subdomains bind to perpendicular faces of the DNA, rather than opposite faces of the DNA as in Oct-1. This is accomplished by different spacing and orientation of the POU-specific domain. Contrary to previous predictions, the dimerization interface involves the carboxyl terminus of the DNA recognition helix of the homeodomain, which in an extended conformation interacts with specific residues at the amino terminus of helix alpha1 and in the loop between helices alpha3 and alpha4 of the POU-specific domain of the symmetry related monomer. These features suggest the molecular basis of disease-causing mutations in Pit-1 and provide potential basis for the flexible allostery between protein domains and DNA sites in the activation of target genes.
Collapse
Affiliation(s)
- E M Jacobson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
666
|
Ramakrishnan V, Biou V. [31] Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Methods Enzymol 1997; 276:538-557. [DOI: 10.1016/s0076-6879(97)76077-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
667
|
Kondo H, Nakagawa A, Nishihira J, Nishimura Y, Mizuno T, Tanaka I. Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. NATURE STRUCTURAL BIOLOGY 1997; 4:28-31. [PMID: 8989318 DOI: 10.1038/nsb0197-28] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The C-terminal DNA-binding domain of OmpR, a positive regulator involved in osmoregulation expression of the ompF and ompC genes in Escherichia coli, has a helix-turn-helix variant motif. The 'turn' region, consisting of 11 residues, forms an RNA polymerase contact site.
Collapse
|
668
|
|
669
|
|
670
|
[17] Charge-coupled device-based area detectors. Methods Enzymol 1997; 276:244-268. [DOI: 10.1016/s0076-6879(97)76063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
671
|
Pav S, White DM, Rogers S, Crane KM, Cywin CL, Davidson W, Hopkins J, Brown ML, Pargellis CA, Tong L. Crystallization and preliminary crystallographic analysis of recombinant human P38 MAP kinase. Protein Sci 1997; 6:242-5. [PMID: 9007996 PMCID: PMC2143505 DOI: 10.1002/pro.5560060126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recombinant human p38 MAP kinase has been expressed and purified from both Escherichia coli and SF9 cells, and has been crystallized in two forms by the hanging drop vapor diffusion method using PEG as precipitant. Both crystal forms belong to space group P2(1)2(1)2(1). The cell parameters for crystal form 1 are a = 65.2 A, b = 74.6 A and c = 78.1 A. Those for crystal form 2 are a = 58.3 A, b = 68.3 A and c = 87.9 A. Diffraction data to 2.0 A resolution have been collected on both forms.
Collapse
Affiliation(s)
- S Pav
- Department of Inflammatory Diseases, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut 06877, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
672
|
[30] Multiwavelength anomalous diffraction phasing of macromolecular structures: Analysis of MAD data as single isomorphous replacement with anomalous scattering data using the MADMRG program. Methods Enzymol 1997; 276:530-537. [DOI: 10.1016/s0076-6879(97)76076-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
673
|
Hendrickson WA, Ogata CM. [28] Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol 1997; 276:494-523. [PMID: 27799111 DOI: 10.1016/s0076-6879(97)76074-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
674
|
Peat TS, Frank EG, McDonald JP, Levine AS, Woodgate R, Hendrickson WA. The UmuD' protein filament and its potential role in damage induced mutagenesis. Structure 1996; 4:1401-12. [PMID: 8994967 DOI: 10.1016/s0969-2126(96)00148-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Damage induced 'SOS mutagenesis' may occur transiently as part of the global SOS response to DNA damage in bacteria. A key participant in this process is the UmuD protein, which is produced in an inactive from but converted to the active form, UmuD', by a RecA-mediated self-cleavage reaction. UmuD', together with UmuC and activated RecA (RecA*), enables the DNA polymerase III holoenzyme to replicate across chemical and UV induced lesions. The efficiency of this reaction depends on several intricate protein-protein interactions. RESULTS Recent X-ray crystallographic analysis shows that in addition to forming molecular dimers, the N- and C-terminal tails of UmuD' extend from a globular beta structure to associate and produce crystallized filaments. We have investigated this phenomenon and find that these filaments appear to relate to biological activity. Higher order oligomers are found in solution with UmuD', but not with UmuD nor with a mutant of UmuD' lacking the extended N terminus. Deletion of the N terminus of UmuD' does not affect its ability to form molecular dimers but does severely compromise its ability to interact with a RecA-DNA filament and to participate in mutagenesis. Mutations in the C terminus of UmuD' result in both gain and loss of function for mutagenesis. CONCLUSIONS The activation of UmuD to UmuD' appears to cause a large conformational change in the protein which allows it to form oligomers in solution at physiologically relevant concentrations. Properties of these oligomers are consistent with the filament structures seen in crystals of UmuD'.
Collapse
Affiliation(s)
- T S Peat
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
675
|
Yamaguchi H, Hendrickson WA. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 1996; 384:484-9. [PMID: 8945479 DOI: 10.1038/384484a0] [Citation(s) in RCA: 379] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Regulation through phosphorylation is a characteristic of signalling pathways and the lymphocyte kinase Lck (p56lck) both performs phosphorylation and is affected by it. Lck is a Src-family tyrosine kinase expressed in T lymphocytes, where it participates in the cellular immune response. Like all Src homologues, it comprises SH3, SH2 and kinase domains. Lck associates through its distinctive amino-terminal segment with the cytoplasmic tails of either T-cell co-receptor, CD4 or CD8-alpha. Activated Lck phosphorylates T-cell receptor zeta-chains, which then recruit the ZAP70 kinase to promote T-cell activation. Lck is activated by autophosphorylation at Tyr 394 in the activation loop and it is inactive when Tyr 505 near the carboxy terminus is phosphorylated and interacts with its own SH2 domain. Here we report the crystal structure of the Lck tyrosine kinase domain (LCKK) in its activated state at 1.7 A resolution. The structure reveals how a phosphoryl group at Tyr 394 generates a competent active site. Comparisons with other kinase structures indicate that tyrosine phophophorylation and ligand binding may in general elicit two distinct hinge-like movements between the kinase subdomains. From modelling studies, we suggest a basis for inhibition by phosphorylation at Tyr 505.
Collapse
Affiliation(s)
- H Yamaguchi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| | | |
Collapse
|
676
|
Cooper SJ, Leonard GA, McSweeney SM, Thompson AW, Naismith JH, Qamar S, Plater A, Berry A, Hunter WN. The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure 1996; 4:1303-15. [PMID: 8939754 DOI: 10.1016/s0969-2126(96)00138-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND [corrected] Aldolases catalyze a variety of condensation and cleavage reactions, with exquisite control on the stereochemistry. These enzymes, therefore, are attractive catalysts for synthetic chemistry. There are two classes of aldolase: class I aldolases utilize Schiff base formation with an active-site lysine whilst class II enzymes require a divalent metal ion, in particular zinc. Fructose-1,6-bisphosphate aldolase (FBP-aldolase) is used in gluconeogenesis and glycolysis; the enzyme controls the condensation of dihydroxyacetone phosphate with glyceraldehyde-3-phosphate to yield fructose-1,6-bisphosphate. Structures are available for class I FBP-aldolases but there is a paucity of detail on the class II enzymes. Characterization is sought to enable a dissection of structure/activity relationships which may assist the construction of designed aldolases for use as biocatalysts in synthetic chemistry. RESULTS The structure of the dimeric class II FBP-aldolase from Escherichia coli has been determined using data to 2.5 A resolution. The asymmetric unit is one subunit which presents a familiar fold, the (alpha/beta)8 barrel. The active centre, at the C-terminal end of the barrel, contains a novel bimetallic-binding site with two metal ions 6.2 A apart. One ion, the identity of which is not certain, is buried and may play a structural or activating role. The other metal ion is zinc and is positioned at the surface of the barrel to participate in catalysis. CONCLUSIONS Comparison of the structure with a class II fuculose aldolase suggests that these enzymes may share a common mechanism. Nevertheless, the class II enzymes should be subdivided into two categories on consideration of subunit size and fold, quaternary structure and metal-ion binding sites.
Collapse
Affiliation(s)
- S J Cooper
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
677
|
X-ray determination of ‘isoelectronic’ element distribution: A discussion on two- λ versus single-wavelength measurements. Z KRIST-CRYST MATER 1996. [DOI: 10.1524/zkri.1996.211.11.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Partially or fully ordered distributions of two elements on two crystallographically different positions play an increasingly important role in material and earth sciences. As a consequence of the simple principle ‘what can be studied in reciprocal space (or appropriately selected parts of it), does not deserve Fourier mapping in direct space’, we discuss:
1. For determining distributions of elements with similar atomic numbers, a single-wavelength measurement suffices and gives better results than the combination of data measured at two wavelengths providing different anomalous scattering.
2. The least-squares technique or other procedures employing carefully selected reflections are superior to electron counting from Fourier maps. In particular, a two-λ-difference Fourier, being well suited for obtaining qualitative information about element distributions, cannot be recommended for the derivation of quantitative results.
The conclusions are valid under the assumption that the crystal structure is sufficiently well known, except an ‘order parameter’ describing the preference of one of the two elements for one of the two sites.
Collapse
|
678
|
Gassner NC, Baase WA, Matthews BW. A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. Proc Natl Acad Sci U S A 1996; 93:12155-8. [PMID: 8901549 PMCID: PMC37959 DOI: 10.1073/pnas.93.22.12155] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To test whether the structure of a protein is determined in a manner akin to the assembly of a jigsaw puzzle, up to 10 adjacent residues within the core of T4 lysozyme were replaced by methionine. Such variants are active and fold cooperatively with progressively reduced stability. The structure of a seven-methionine variant has been shown, crystallographically, to be similar to wild type and to maintain a well ordered core. The interaction between the core residues is, therefore, not strictly comparable with the precise spatial complementarity of the pieces of a jigsaw puzzle. Rather, a certain amount of give and take in forming the core structure is permitted. A simplified hydrophobic core sequence, imposed without genetic selection or computer-based design, is sufficient to retain native properties in a globular protein.
Collapse
Affiliation(s)
- N C Gassner
- Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403, USA
| | | | | |
Collapse
|
679
|
Malhotra A, Severinova E, Darst SA. Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell 1996; 87:127-36. [PMID: 8858155 DOI: 10.1016/s0092-8674(00)81329-x] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 2.6 A crystal structure of a fragment of the sigma 70 promoter specificity subunit of E. coli RNA polymerase is described. Residues involved in core RNA polymerase binding lie on one face of the structure. On the opposite face, aligned along one helix, are exposed residues that interact with the -10 consensus promoter element (the Pribnow box), including four aromatic residues involved in promoter melting. The structure suggests one way in which DNA interactions may be inhibited in the absence of RNA polymerase and provides a framework for the interpretation of a large number of genetic and biochemical analyses.
Collapse
Affiliation(s)
- A Malhotra
- Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
680
|
Pappa HS, Stewart AE, McDonald NQ. Incorporating anomalous scattering centres into macromolecules. Curr Opin Struct Biol 1996; 6:611-6. [PMID: 8913682 DOI: 10.1016/s0959-440x(96)80026-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The widespread application of multiwavelength anomalous diffraction (MAD) for phase evaluation has been hampered in the past by the small selection of anomalous scattering centres that could be introduced into macromolecules. Recently, the use of chemical modification, protein engineering or biosynthetic labelling has provided suitable tools to overcome the previous limitations, thereby making most structural analyses amenable to a MAD approach.
Collapse
Affiliation(s)
- H S Pappa
- Structural Biology Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | |
Collapse
|
681
|
Tong L, Qian C, Massariol MJ, Bonneau PR, Cordingley MG, Lagacé L. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 1996; 383:272-5. [PMID: 8805706 DOI: 10.1038/383272a0] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (hCMV), a herpesvirus, infects up to 70% of the general population in the United States and can cause morbidity and mortality in immunosuppressed individuals (organ-transplant recipients and AIDS patients) and congenitally infected newborns. hCMV protease is essential for the production of mature infectious virions, as it performs proteolytic processing near the carboxy terminus (M-site) of the viral assembly protein precursor. hCMV protease is a serine protease, although it has little homology to other clans of serine proteases. Here we report the crystal structure of hCMV protease at 2.0 angstroms resolution, and show that it possesses a new polypeptide backbone fold. Ser 132 and His 63 are found in close proximity in the active site, confirming earlier biochemical and mutagenesis studies. The structure suggests that the third member of the triad is probably His 157. A dimer of the protease with an extensive interface is found in the crystal structure. This structure information will help in the design and optimization of inhibitors against herpesvirus proteases.
Collapse
Affiliation(s)
- L Tong
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, USA.
| | | | | | | | | | | |
Collapse
|
682
|
Qu A, Leahy DJ. The role of the divalent cation in the structure of the I domain from the CD11a/CD18 integrin. Structure 1996; 4:931-42. [PMID: 8805579 DOI: 10.1016/s0969-2126(96)00100-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The integrin family of cell-surface receptors mediates a wide variety of cell-cell and cell-extracellular matrix interactions. Integrin-ligand interactions are invariably dependent on the presence of divalent cations, and a subset of integrins contain a approximately 200 amino acid inserted (I) domain that is important for ligand binding activity and contains a single divalent cation binding site. Many integrins are believed to respond to stimuli by undergoing a conformational change that increases their affinity for ligand, and there is a clear difference between two crystal structures of the CD11b I domain with different divalent cations (magnesium and manganese) bound. In addition to the different bound cation, a 'ligand mimetic' crystal lattice interaction in the CD11b I domain structure with bound magnesium has led to the interpretation that the different CD11b I domain structures represent different affinity states of I domains. The influence of the bound cation on I domain structure and function remains incompletely understood, however. The crystal structure of the CD11a I domain bound to manganese is known. We therefore set out to determine whether this structure changes when the metal ion is altered or removed. RESULTS We report here the crystal structures of the CD11a I domain determined in the absence of bound metal ion and with bound magnesium ion. No major structural rearrangements are observed in the metal-binding site of the CD11a I domain in the absence or presence of bound manganese ion. The structures of the CD11a I domain with magnesium or manganese bound are extremely similar. CONCLUSIONS The conformation of the CD11a I domain is not altered by changes in metal ion binding. The cation-dependence of ligand binding thus indicates that the metal ion is either involved in direct interaction with ligand or required to promote a favorable quaternary arrangement of the integrin.
Collapse
Affiliation(s)
- A Qu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
683
|
Chayen NE, Boggon TJ, Cassetta A, Deacon A, Gleichmann T, Habash J, Harrop SJ, Helliwell JR, Nieh YP, Peterson MR, Raftery J, Snell EH, Hädener A, Niemann AC, Siddons DP, Stojanoff V, Thompson AW, Ursby T, Wulff M. Trends and challenges in experimental macromolecular crystallography. Q Rev Biophys 1996; 29:227-78. [PMID: 8968112 DOI: 10.1017/s0033583500005837] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macromolecular X-ray crystallography underpins the vigorous field of structural molecular biology having yielded many protein, nucleic acid and virus structures in fine detail. The understanding of the recognition by these macromolecules, as receptors, of their cognate ligands involves the detailed study of the structural chemistry of their molecular interactions. Also these structural details underpin the rational design of novel inhibitors in modern drug discovery in the pharmaceutical industry. Moreover, from such structures the functional details can be inferred, such as the biological chemistry of enzyme reactivity. There is then a vast number and range of types of biological macromolecules that potentially could be studied. The completion of the protein primary sequencing of the yeast genome, and the human genome sequencing project comprising some 105proteins that is underway, raises expectations for equivalent three dimensional structural databases.
Collapse
Affiliation(s)
- N E Chayen
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
684
|
Peat TS, Frank EG, Woodgate R, Hendrickson WA. Production and crystallization of a selenomethionyl variant of UmuD′, an Echerichia coliSOS response protein. Proteins 1996. [DOI: 10.1002/(sici)1097-0134(199608)25:4<506::aid-prot10>3.0.co;2-l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
685
|
Concha NO, Rasmussen BA, Bush K, Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure 1996; 4:823-36. [PMID: 8805566 DOI: 10.1016/s0969-2126(96)00089-5] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The metallo-beta-lactamase from Bacteroides fragilis hydrolyzes a wide range of beta-lactam antibiotics, and is not clinically susceptible to any known beta-lactamase inhibitors. B. fragilis is associated with post-surgery hospital infections, and there has been a recent report of plasmid-mediated dissemination of the enzyme. Effective inhibitors are therefore urgently needed. Knowledge of the three-dimensional structure will aid in the drug design effort. RESULTS The crystal structure of the enzyme has been determined by using multiwavelength anomalous diffraction at the zinc absorption edge and refined to 1.85 A resolution. The structure is a four-layer alpha/beta/beta/alpha molecule. The active site, found at the edge of the beta sandwich contains a binuclear zinc center with several novel features. One zinc is tetrahedrally coordinated, the other has a trigonal bipyramidal coordination; a water/hydroxide molecule serves as a ligand for both metals. The residues that coordinate the two zincs are invariant in all metallo-beta-lactamases that have been sequenced, except for two conservative replacements. Despite the existence of the pattern for binuclear zinc binding, the reported structure of the Bacillus cereus enzyme contains only a single zinc. CONCLUSIONS Structural analysis indicates that affinity for the penta-coordinated zinc can be modulated by neighboring residues, perhaps explaining the absence of the second zinc in the B. cereus structure. Models of bound substrates suggest that the active-site channel can accommodate a wide variety of beta-lactams. We propose that the zinc cluster prepares an hydroxide, probably the hydroxide that ligates both zincs, for nucleophilic attack on the carbonyl carbon atom of the beta-lactam. The resulting negatively charged tetrahedral intermediate implicated in catalysis is stabilized by an oxyanion hole formed by the side chain of the invariant Asn 193 and the tetrahedral zinc.
Collapse
Affiliation(s)
- N O Concha
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | | | |
Collapse
|
686
|
Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 1996; 272:1606-14. [PMID: 8658133 PMCID: PMC5629921 DOI: 10.1126/science.272.5268.1606] [Citation(s) in RCA: 913] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DnaK and other members of the 70-kilodalton heat-shock protein (hsp70) family promote protein folding, interaction, and translocation, both constitutively and in response to stress, by binding to unfolded polypeptide segments. These proteins have two functional units: a substrate-binding portion binds the polypeptide, and an adenosine triphosphatase portion facilitates substrate exchange. The crystal structure of a peptide complex with the substrate-binding unit of DnaK has now been determined at 2.0 angstroms resolution. The structure consists of a beta-sandwich subdomain followed by alpha-helical segments. The peptide is bound to DnaK in an extended conformation through a channel defined by loops from the beta sandwich. An alpha-helical domain stabilizes the complex, but does not contact the peptide directly. This domain is rotated in the molecules of a second crystal lattice, which suggests a model of conformation-dependent substrate binding that features a latch mechanism for maintaining long lifetime complexes.
Collapse
Affiliation(s)
- X Zhu
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
687
|
Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 1996; 85:931-42. [PMID: 8681387 DOI: 10.1016/s0092-8674(00)81276-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystal structure of the conserved core of HIV-1 Nef has been determined in complex with the SH3 domain of a mutant Fyn tyrosine kinase (a single amino acid substitution, Arg-96 to isoleucine), to which Nef binds tightly. The conserved PxxP sequence motif of Nef, known to be important for optimal viral replication, is part of a polyproline type II helix that engages the SH3 domain in a manner resembling closely the interaction of isolated peptides with SH3 domains. The Nef-SH3 structure also reveals how high affinity and specificity in the SH3 interaction is achieved by the presentation of the PxxP motif within the context of the folded structure of Nef.
Collapse
Affiliation(s)
- C H Lee
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
688
|
Thygesen J, Weinstein S, Franceschi F, Yonath A. The suitability of multi-metal clusters for phasing in crystallography of large macromolecular assemblies. Structure 1996; 4:513-8. [PMID: 8736550 DOI: 10.1016/s0969-2126(96)00057-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Thygesen
- Max-Planck Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | |
Collapse
|
689
|
Lee YH, Ogata C, Pflugrath JW, Levitt DG, Sarma R, Banaszak LJ, Pilkis SJ. Crystal structure of the rat liver fructose-2,6-bisphosphatase based on selenomethionine multiwavelength anomalous dispersion phases. Biochemistry 1996; 35:6010-9. [PMID: 8634242 DOI: 10.1021/bi9600613] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystal structure of the recombinant fructose-2,6-bisphosphatase domain, which covers the residues between 251 and 440 of the rat liver bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, was determined by multiwavelength anomalous dispersion phasing and refined at 2.5 A resolution. The selenomethionine-substituted protein was induced in the methionine auxotroph, Escherichia coli DL41DE3, purified, and crystallized in a manner similar to that of the native protein. Phase information was calculated using the multiwavelength anomalous dispersion data collected at the X-ray wavelengths near the absorption edge of the K-shell alpha electrons of selenium. The fructose-2,6-bisphosphatase domain has a core alpha/beta structure which consists of six stacked beta-strands, four parallel and two antiparallel. The core beta-sheet is surrounded by nine alpha-helices. The catalytic site, as defined by a bound phosphate ion, is positioned near the C-terminal end of the beta-sheet and close to the N-terminal end of an alpha-helix. The active site pocket is funnel-shaped. The narrow opening of the funnel is wide enough for a water molecule to pass. The key catalytic residues, including His7, His141, and Glu76, are near each other at the active site and probably function as general acids and/or bases during a catalytic cycle. The inorganic phosphate molecule is bound to an anion trap formed by Arg6, His7, Arg56, and His141. The core structure of the Fru-2,6-P2ase is similar to that of the yeast phosphoglycerate mutase and the rat prostatic acid phosphatase. However, the structure of one of the loops near the active site is completely different from the other family members, perhaps reflecting functional differences and the nanomolar range affinity of Fru-2,6-P2ase for its substrate. The imidazole rings of the two key catalytic residues, His7 and His141, are not parallel as in the yeast phosphoglycerate mutase. The crystal structure is used to interpret the existing chemical data already available for the bisphosphatase domain. In addition, the crystal structure is compared with two other proteins that belong to the histidine phosphatase family.
Collapse
Affiliation(s)
- Y H Lee
- Department of Biochemistry, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
690
|
Peat TS, Frank EG, McDonald JP, Levine AS, Woodgate R, Hendrickson WA. Structure of the UmuD' protein and its regulation in response to DNA damage. Nature 1996; 380:727-30. [PMID: 8614470 DOI: 10.1038/380727a0] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For life to be sustained, mistakes in DNA repair must be tolerated when damage obscures the genetic information. In bacteria such as Escherichia coli, DNA damage elicits the well regulated 'SOS response'. For the extreme case of damage that cannot be repaired by conventional enzymes, there are proteins that allow the replication of DNA through such lesions, but with a reduction in the fidelity of replication. Essential proteins in this mutagenic process are RecA, DNA polymerase III, UmuD, UmuD' and UmuC (umu: UV mutagenesis). Regulation of this response involves a RecA-mediated self-cleavage of UmuD to produce UmuD'. To understand this system in more detail, we have determined the crystal structure of the E. coli UmuD' mutagenesis protein at 2.5 A resolution. Globular heads folded in an unusual Beta-structure associate to form molecular dimers, and extended amino-terminal tails associate to produce crystallized filaments. The structure provides insight into the mechanism of the self-cleavage reaction that UmuD-like proteins undergo as part of the global SOS response.
Collapse
Affiliation(s)
- T S Peat
- Deparment of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
691
|
Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y, Burley SK. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 1996; 380:316-22. [PMID: 8598927 DOI: 10.1038/380316a0] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A complex of two TFIID TATA box-binding protein-associated factors (TA FIIs) is described at 2.0A resolution. The amino-terminal portions of dTAFII42 and dTAFII62 from Drosophila adopt the canonical histone fold, consisting of two short alpha-helices flanking a long central alpha-helix. Like histones H3 and H4, dTAFII42 and dTAFII62 form an intimate heterodimer by extensive hydrophobic contacts between the paired molecules. In solution and in the crystalline state, the dTAFII42/dTAFII62 complex exists as a heterotetramer, resembling the (H3/H4)2 heterotetrameric core of the histone octamer, suggesting that TFIID contains a histone octamer-like substructure.
Collapse
Affiliation(s)
- X Xie
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
692
|
Jacobson EM, Li P, Rosenfeld MG, Aggarwal AK. Crystallization and preliminary X-ray analysis of Pit-1 POU domain complexed to a 28 base pair DNA element. Proteins 1996; 24:263-5. [PMID: 8820493 DOI: 10.1002/(sici)1097-0134(199602)24:2<263::aid-prot14>3.0.co;2-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The POU domain, representing an approximately 150 amino acid conserved region, serves as the DNA-recognition domain for a large number of eukaryotic transcription factors. Bipartite in nature, the POU domain is comprised of a N-terminal POU-specific domain connected by a linker of variable length to a C-terminal homeodomain. We report here co-crystals of pituitary-specific factor Pit-1 POU domain bound as a dimer to a 28 bp DNA fragment. The crystals diffract to at least 2.3 angstroms in resolution and belong to space group P1 with unit cell dimensions of a = 42.5 angstroms, b = 50.1 angstroms, c = 55.8 angstroms, alpha = 76.7 degrees, beta = 79.3 degrees, and gamma = 67.2 degrees.
Collapse
Affiliation(s)
- E M Jacobson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
693
|
Karnbrock W, Weyher E, Budisa N, Huber R, Moroder L. A New Efficient Synthesis of Acetyltelluro- and Acetylselenomethionine and Their Use in the Biosynthesis of Heavy-Atom Protein Analogs. J Am Chem Soc 1996. [DOI: 10.1021/ja953222j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Nediljko Budisa
- Max-Planck-Institut für Biochemie 82152 Martinsried, Germany
| | - Robert Huber
- Max-Planck-Institut für Biochemie 82152 Martinsried, Germany
| | - Luis Moroder
- Max-Planck-Institut für Biochemie 82152 Martinsried, Germany
| |
Collapse
|
694
|
Abstract
With the recent demonstration that multiwavelength anomalous dispersion (MAD) can provide accurate experimental phases at high resolution, crystallographers have gained a tool with which to study solvation and flexibility in proteins, and a test-bed for the development of crystallographic methods.
Collapse
Affiliation(s)
- R J Read
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| |
Collapse
|
695
|
Davies C, White SW, Ramakrishnan V. The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. Structure 1996; 4:55-66. [PMID: 8805509 DOI: 10.1016/s0969-2126(96)00009-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Detailed structural information on ribosomal proteins has increased our understanding of the structure, function and evolution of the ribosome. L14 is one of the most conserved ribosomal proteins and appears to have a central role in the ribonucleoprotein complex. Studies have indicated that L14 occupies a central location between the peptidyl transferase and GTPase regions of the large ribosomal subunit. RESULTS The crystal structure of L14 from Bacillus stearothermophilus has been solved using a combination of isomorphous replacement and multiwavelength anomalous dispersion (MAD) methods. The structure comprises a five-stranded beta-barrel, a C-terminal loop region that contains two small alpha-helices, and a beta-ribbon that projects from the beta-barrel. An analysis of the structure and the conserved amino acids reveals three surface patches that probably mediate L14-RNA and L14-protein interactions within the ribosome. CONCLUSIONS The accepted role of ribosomal proteins is to promote the folding and stabilization of ribosomal RNA. The L14 structure is consistent with this notion, and it suggests that the RNA binds in two sites. One RNA-binding site appears to recognize a distinct region of ribosomal RNA during particle assembly. The second site is smaller and may become occupied during the later compaction of the RNA. The surface hydrophobic patch is a likely site of protein-protein interaction, possibly with L19.
Collapse
Affiliation(s)
- C Davies
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
696
|
Leahy DJ, Aukhil I, Erickson HP. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 1996; 84:155-64. [PMID: 8548820 DOI: 10.1016/s0092-8674(00)81002-8] [Citation(s) in RCA: 524] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have determined the 2.0 A crystal structure of a fragment of human fibronectin encompassing the seventh through the RGD-containing tenth type III repeats (FN7-10). The structure reveals an extended rod-like molecule with a long axis of approximately 140 A and highly variable relationships between adjacent domains. An unusually small rotation between domains 9 and 10 creates a distinctive binding site, in which the RGD loop from domain 10 and the "synergy" region from domain 9 are on the same face of FN7-10 and thus easily accessible to a single integrin molecule. The cell-binding RGD loop is well-ordered in this structure and extends approximately 10 A away from the FN7-10 core.
Collapse
Affiliation(s)
- D J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
697
|
Burling FT, Weis WI, Flaherty KM, Brünger AT. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 1996; 271:72-7. [PMID: 8539602 DOI: 10.1126/science.271.5245.72] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A complete and accurate set of experimental crystallographic phases to a resolution of 1.8 angstroms was obtained for a 230-residue dimeric fragment of rat mannose-binding protein A with the use of multiwavelength anomalous dispersion (MAD) phasing. An accurate image of the crystal structure could thus be obtained without resort to phases calculated from a model. Partially reduced disulfide bonds, local disorder, and differences in the mobility of chemically equivalent molecules are apparent in the experimental electron density map. A solvation layer is visible that includes well-ordered sites of hydration around polar and charged protein atoms, as well as diffuse, partially disordered solvent shells around exposed hydrophobic groups. Because the experimental phases and the resulting electron density map are free from the influence of a model, they provide a stringent test of theoretical models of macromolecular solvation, motion, and conformational heterogeneity.
Collapse
Affiliation(s)
- F T Burling
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
698
|
Application of synchrotron radiation in X-ray diffraction studies of crystal structures. J Mol Struct 1996. [DOI: 10.1016/0022-2860(95)08988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
699
|
Athappilly FK, Hendrickson WA. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure 1995; 3:1407-19. [PMID: 8747466 DOI: 10.1016/s0969-2126(01)00277-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Acetyl-coenzyme A carboxylase catalyzes the first committed step of fatty acid biosynthesis. Universally, this reaction involves three functional components all related to a carboxybiotinyl intermediate. A biotinyl domain shuttles its covalently attached biotin prosthetic group between the active sites of a biotin carboxylase and a carboxyl transferase. In Escherichia coli, the three components reside in separate subunits: a biotinyl domain is the functional portion of one of these, biotin carboxy carrier protein (BCCP). RESULTS We have expressed natural and selenomethionyl (Se-met) BCCP from E. coli as biotinylated recombinant proteins, proteolyzed them with subtilisin Carlsberg to produce the biotinyl domains BCCP and Se-met BCCPsc, determined the crystal structure of Se-met BCCPsc using a modified version of the multiwavelength anomalous diffraction (MAD) phasing protocol, and refined the structure for the natural BCCPsc at 1.8 A resolution. The structure may be described as a capped beta sandwich with quasi-dyad symmetry. Each half contains a characteristic hammerhead motif. The biotinylated lysin is located at a hairpin beta turn which connects the two symmetric halves of the molecule, and its biotinyl group interacts with a non-symmetric protrusion from the core. CONCLUSIONS This first crystal structure of a biotinyl domain helps to unravel the central role of such domains in reactions catalyzed by biotin-dependent carboxylases. The hammerhead structure observed twice in BCCPsc may be regarded as the basic structural motif of biotinyl and lipoyl domains of a superfamily of enzymes. The new MAD phasing techniques developed in the course of determining this structure enhance the power of the MAD method.
Collapse
Affiliation(s)
- F K Athappilly
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
700
|
Hall TM, Porter JA, Beachy PA, Leahy DJ. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 1995; 378:212-6. [PMID: 7477329 DOI: 10.1038/378212a0] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Within the past few years, members of the hedgehog (hh) family of secreted signalling proteins have emerged as the primary signals generated by certain embryonic patterning centres. In vertebrate embryos, for example, sonic hedgehog expression in the notochord appears to be responsible for the local and long-range induction of ventral cell types within the neural tube and somites (reviewed in refs 1, 2). Protein products encoded by hh family members are synthesized as precursors that undergo autoprocessing to generate an amino-terminal domain that appears to be responsible for both local and long-range signalling activities, and a carboxy-terminal domain that contains the autoprocessing activity. As part of an effort to understand how hh family members participate in cell-to-cell signalling, we have determined and report here the crystal structure at 1.7 A of the amino-terminal domain of murine Sonic hedgehog (Shh-N). The structure revealed a tetrahedrally coordinated zinc ion that appears to be structurally analogous to the zinc coordination sites of zinc hydrolases, such as thermolysin and carboxypeptidase A. This previously unsuspected catalytic site represents a distinct activity from the autoprocessing activity that resides in the carboxy-terminal domain.
Collapse
Affiliation(s)
- T M Hall
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|