701
|
Human peripheral blood-derived mesenchymal stem cells with NTRK1 over-expression enhance repairing capability in a rat model of Parkinson's disease. Cytotechnology 2018; 70:1291-1299. [PMID: 29978273 DOI: 10.1007/s10616-017-0175-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
The potency of mesenchymal stem cells (MSCs) for tissue repair and regeneration is mainly based on their ability to secret beneficial molecules. Administration of MSCs has been proposed as an innovative approach and is proved by a number of clinical trials to a certain degree for the therapy of many diseases including Parkinson's disease (PD). However, the efficacy of MSCs alone is not significant. We investigated the effect of neurotrophic tyrosine receptor kinase 1 (NTRK1) overexpressed peripheral blood MSCs (PB-MSCs) on PD rat model. NTRK1 was overexpressed in PB-MSCs, which were then injected into PD rat model, Dopaminergic (DA) neuron regeneration and rotational performance was assessed. We found that DA neuron repair was increased in lesion site, rotational performance was also improved in MSC transplanted PD rat, with most potent effect in NTRK1 overexpressed PB-MSC transplanted PD rat. Our results indicate that overexpression of NTRK1 in MSCs could be an optimized therapeutic way via MSCs for PD treatment.
Collapse
|
702
|
Watanabe H, Tsuchiya T, Shimoyama K, Shimizu A, Akita S, Yukawa H, Baba Y, Nagayasu T. Adipose-derived mesenchymal stem cells attenuate rejection in a rat lung transplantation model. J Surg Res 2018; 227:17-27. [DOI: 10.1016/j.jss.2018.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
703
|
Sukho P, Hesselink JW, Kops N, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Human Mesenchymal Stromal Cell Sheets Induce Macrophages Predominantly to an Anti-Inflammatory Phenotype. Stem Cells Dev 2018; 27:922-934. [DOI: 10.1089/scd.2017.0275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Panithi Sukho
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Nicole Kops
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jolle Kirpensteijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Hill's Pet Nutrition, Inc., Topeka, Kansas
| | - Femke Verseijden
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
704
|
Abbaspanah B, Momeni M, Ebrahimi M, Mousavi SH. Advances in perinatal stem cells research: a precious cell source for clinical applications. Regen Med 2018; 13:595-610. [PMID: 30129876 DOI: 10.2217/rme-2018-0019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Perinatal tissues possess numerous types of stem (stromal) cells, which are considered effective candidates for cell therapy. These tissues possess common characteristics of both embryonic and adult stem cells, and cell therapists have begun to use perinatal stem cells to treat several diseases. Despite their benefits, these cells are considered biological waste and usually discarded after delivery. This review highlights the characteristics and potential clinical applications in regenerative medicine of perinatal stem cell sources - cord blood hematopoietic stem cells, umbilical cord mesenchymal stem cells, amniotic membrane stem cells, amniotic fluid stem cells, amniotic epithelial cells and chorionic mesenchymal stem cells.
Collapse
Affiliation(s)
| | - Maryam Momeni
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
705
|
Datta P, Barui A, Wu Y, Ozbolat V, Moncal KK, Ozbolat IT. Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnol Adv 2018; 36:1481-1504. [PMID: 29909085 DOI: 10.1016/j.biotechadv.2018.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/15/2018] [Accepted: 06/10/2018] [Indexed: 12/17/2022]
Abstract
An increasing demand for directed assembly of biomaterials has inspired the development of bioprinting, which facilitates the assembling of both cellular and acellular inks into well-arranged three-dimensional (3D) structures for tissue fabrication. Although great advances have been achieved in the recent decade, there still exist issues to be addressed. Herein, a review has been systematically performed to discuss the considerations in the entire procedure of bioprinting. Though bioprinting is advancing at a rapid pace, it is seen that the whole process of obtaining tissue constructs from this technique involves multiple-stages, cutting across various technology domains. These stages can be divided into three broad categories: pre-bioprinting, bioprinting and post-bioprinting. Each stage can influence others and has a bearing on the performance of fabricated constructs. For example, in pre-bioprinting, tissue biopsy and cell expansion techniques are essential to ensure a large number of cells are available for mass organ production. Similarly, medical imaging is needed to provide high resolution designs, which can be faithfully bioprinted. In the bioprinting stage, compatibility of biomaterials is needed to be matched with solidification kinetics to ensure constructs with high cell viability and fidelity are obtained. On the other hand, there is a need to develop bioprinters, which have high degrees of freedom of movement, perform without failure concerns for several hours and are compact, and affordable. Finally, maturation of bioprinted cells are governed by conditions provided during the post-bioprinting process. This review, for the first time, puts all the bioprinting stages in perspective of the whole process of bioprinting, and analyzes their current state-of-the art. It is concluded that bioprinting community will recognize the relative importance and optimize the parameter of each stage to obtain the desired outcomes.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah 711103, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah 711103, West Bengal, India
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Veli Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Kazim K Moncal
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
706
|
Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, Ai J, Banafshe HR, Ebrahimi-Barough S. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem 2018; 119:8048-8073. [PMID: 29377241 DOI: 10.1002/jcb.26726] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
Collapse
Affiliation(s)
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid R Banafshe
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
707
|
Fan XL, Zeng QX, Li X, Li CL, Xu ZB, Deng XQ, Shi J, Chen D, Zheng SG, Fu QL. Induced pluripotent stem cell-derived mesenchymal stem cells activate quiescent T cells and elevate regulatory T cell response via NF-κB in allergic rhinitis patients. Stem Cell Res Ther 2018; 9:170. [PMID: 29921316 PMCID: PMC6010028 DOI: 10.1186/s13287-018-0896-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 01/15/2023] Open
Abstract
Background It has been demonstrated previously that induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSCs) have immunosuppressive effects on activated T cells. However, the effects of iPSC-MSCs on quiescent T cells are still unknown. The aim of this study was to identify the immunomodulatory role of iPSC-MSCs on resting peripheral blood mononuclear cells (PBMCs) from allergic rhinitis (AR) patients. Methods PBMCs were cocultured with iPSC-MSCs without any stimulation, following which lymphocyte proliferation, activation of T cells, TH1/TH2 and regulatory T (Treg) cell differentiation, and Treg cell function were analyzed. The roles of soluble factors and cell–cell contact were examined to investigate the mechanisms involved. Results iPSC-MSCs promoted the proliferation of resting lymphocytes, activated CD4+ and CD8+ T cells, and upregulated and activated Treg cells without any additional stimulation. In addition, iPSC-MSCs balanced biased TH1/TH2 cytokine levels. Cell–cell contact was confirmed to be a possible mechanism involved. NF-κB was identified to play an important role in the immunomodulatory effects of iPSC-MSCs on quiescent T cells. Conclusions iPSC-MSCs activate quiescent T cells and elevate regulatory T-cell response in AR patients, suggesting different immunomodulatory functions of iPSC-MSCs according to the phases of diseases. Therefore, iPSC-MSCs are a potential therapeutic candidate for treating allergic airway inflammation. Electronic supplementary material The online version of this article (10.1186/s13287-018-0896-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing-Xiang Zeng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong General Hospital, Guangdong Academy of Medical Science, 106 Zhongshan Road II, Guangzhou, 510080, China
| | - Cheng-Lin Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xue-Quan Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Dong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China. .,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, 500 University Dr. Hershey, PA, 17033, USA.
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
708
|
Ma H, Liu C, Shi B, Zhang Z, Feng R, Guo M, Lu L, Shi S, Gao X, Chen W, Sun L. Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis. EBioMedicine 2018; 32:21-30. [PMID: 29885865 PMCID: PMC6020800 DOI: 10.1016/j.ebiom.2018.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus (SLE) caused by uncontrolled activation of the complement system. Mesenchymal stem cells (MSCs) exhibit clinical efficacy for severe LN in our previous studies, but the underlying mechanisms of MSCs regulating complement activation remain largely unknown. Here we show that significantly elevated C5a and C5b-9 were found in patients with LN, which were notably correlated with proteinuria and different renal pathological indexes of LN. MSCs suppressed systemic and intrarenal activation of C5, increased the plasma levels of factor H (FH), and ameliorated renal disease in lupus mice. Importantly, MSCs transplantation up-regulated the decreased FH in patients with LN. Mechanistically, interferon-α enhanced the secretion of FH by MSCs. These data demonstrate that MSCs inhibit the activation of pathogenic C5 via up-regulation of FH, which improves our understanding of the immunomodulatory mechanisms of MSCs in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Haijun Ma
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chang Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bingyu Shi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhuoya Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruihai Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minghao Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wanjun Chen
- Mucosal Immunology Section, NIDCR, US National Institutes of Health, Bethesda, MD, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
709
|
Soontararak S, Chow L, Johnson V, Coy J, Wheat W, Regan D, Dow S. Mesenchymal Stem Cells (MSC) Derived from Induced Pluripotent Stem Cells (iPSC) Equivalent to Adipose-Derived MSC in Promoting Intestinal Healing and Microbiome Normalization in Mouse Inflammatory Bowel Disease Model. Stem Cells Transl Med 2018; 7:456-467. [PMID: 29635868 PMCID: PMC5980202 DOI: 10.1002/sctm.17-0305] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular therapy with allogeneic or autologous mesenchymal stem cells (MSC) has emerged as a promising new therapeutic strategy for managing inflammatory bowel disease (IBD). However, MSC therapy ideally requires a convenient and relatively homogenous cell source (typically bone marrow or adipose tissues) and the ability to generate cells with stable phenotype and function. An alternative means of generating allogeneic MSC is to derive them from induced pluripotent stem cells (iPSC), which could in theory provide an indefinite supply of MSC with well-defined phenotype and function. Therefore, we compared the effectiveness of iPSC-derived MSC (iMSC) and adipose-derived MSC (adMSC) in a mouse model of IBD (dextran sodium sulfate-induced colitis), and investigated mechanisms of intestinal protection. We found that iMSC were equivalent to adMSC in terms of significantly improving clinical abnormalities in treated mice and reducing lesion scores and inflammation in the gut. Administration of iMSC also stimulated significant intestinal epithelial cell proliferation, increased in the numbers of Lgr5+ intestinal stem cells, and increased intestinal angiogenesis. In addition, the microbiome alterations present in mice with colitis were partially restored to resemble those of healthy mice following treatment with iMSC or adMSC. Thus, iMSC administration improved overall intestinal health and healing with equivalent potency to treatment with adMSC. This therefore is the first report of the effectiveness of iMSC in the treatment of IBD, along with a description of unique mechanisms of action with respect to intestinal healing and microbiome restoration. Stem Cells Translational Medicine 2018;7:456-467.
Collapse
Affiliation(s)
- Sirikul Soontararak
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Lyndah Chow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Valerie Johnson
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Jonathan Coy
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - William Wheat
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Daniel Regan
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Steven Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
710
|
Martin-Rufino JD, Lozano FS, Redondo AM, Villaron EM, Rueda R, Fernandez-Samos R, Sanchez-Guijo F. Sequential intravenous allogeneic mesenchymal stromal cells as a potential treatment for thromboangiitis obliterans (Buerger's disease). Stem Cell Res Ther 2018; 9:150. [PMID: 29848379 PMCID: PMC5977545 DOI: 10.1186/s13287-018-0901-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 03/14/2023] Open
Abstract
Thromboangiitis obliterans (TAO), also known as Buerger’s Disease, is an occlusive vasculitis linked with high morbidity and amputation risk. To date, TAO is deemed incurable due to the lack of a definitive treatment. The immune system and inflammation are proposed to play a central role in TAO pathogenesis. Due to their immunomodulatory effects, mesenchymal stromal cells (MSCs) are the subject of intense research for the treatment of a wide range of immune-mediated diseases. Thus far, local intramuscular injections of autologous or allogeneic MSCs have shown promising results in TAO. However, sequential intravenous allogeneic MSC administration has not yet been explored, which we hypothesized could exert a systemic anti-inflammatory effect in the vasculature and modulate the immune response. Here, we report the first case of a TAO patient at amputation risk treated with four sequential intravenous infusions of bone marrow-derived allogeneic MSCs from a healthy donor. Following administration, there was significant regression of foot skin ulcers and improvements in rest pain, Walking Impairment Questionnaire scores, and quality of life. Sixteen months after the infusion, the patient had not required any further amputations. This report highlights the potential of sequential allogeneic MSC infusions as an effective treatment for TAO, warranting further studies to compare this approach with the more conventionally used intramuscular MSC administration and other cell-based therapies.
Collapse
Affiliation(s)
- Jorge D Martin-Rufino
- Department of Hematology, Cell Therapy Unit, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Faculty of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Francisco S Lozano
- Department of Angiology and Vascular Surgery, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Faculty of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Alba M Redondo
- Department of Hematology, Cell Therapy Unit, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leon, Salamanca, Spain
| | - Eva M Villaron
- Department of Hematology, Cell Therapy Unit, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leon, Salamanca, Spain
| | - Raquel Rueda
- Department of Radiology, Hospital de Leon, Leon, Spain
| | | | - Fermin Sanchez-Guijo
- Department of Hematology, Cell Therapy Unit, IBSAL-Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Faculty of Medicine, Universidad de Salamanca, Salamanca, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leon, Salamanca, Spain.
| |
Collapse
|
711
|
Villares R, Criado G, Juarranz Y, Lopez-Santalla M, García-Cuesta EM, Rodríguez-Frade JM, Leceta J, Lucas P, Pablos JL, Martínez-A C, Garin MI, Gomariz RP, Mellado M. Inhibitory Role of Growth Hormone in the Induction and Progression Phases of Collagen-Induced Arthritis. Front Immunol 2018; 9:1165. [PMID: 29887869 PMCID: PMC5980961 DOI: 10.3389/fimmu.2018.01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Evidence indicates an intimate connection between the neuroendocrine and the immune systems. A number of in vitro and in vivo studies have demonstrated growth hormone (GH) involvement in immune regulation. The GH receptor is expressed by several leukocyte subpopulations, and GH modulates immune cell proliferation and activity. Here, we found that sustained GH expression protected against collagen-induced arthritis (CIA); in GH-transgenic C57BL/6 (GHTg) mice, disease onset was delayed, and its overall severity was decreased. The anti-collagen response was impaired in these mice, as were inflammatory cytokine levels. Compared to control arthritic littermates, immunized GHTg mice showed significantly lower RORγt (retinoic acid receptor-related orphan receptor gamma 2), IL-17, GM-CSF, IL-22, and IFNγ mRNA expression in draining lymph nodes, whereas there were no differences in IL-21, IL-6, or IL-2 mRNA levels. Data thus suggest that Th17/Th1 cell plasticity toward a pathological phenotype is reduced in these mice. Exogenous GH administration in arthritic DBA/1J mice reduced the severity of established CIA as well as the inflammatory environment, which also shows a GH effect on arthritis progression. These results indicate that GH prevents inflammatory joint destruction in CIA. Our findings demonstrate a modulatory GH role in immune system function that contributes to alleviating CIA symptoms and underlines the importance of endocrine regulation of the immune response.
Collapse
Affiliation(s)
- Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Gabriel Criado
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José M Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José Luis Pablos
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
712
|
Fang SB, Zhang HY, Jiang AY, Fan XL, Lin YD, Li CL, Wang C, Meng XC, Fu QL. Human iPSC-MSCs prevent steroid-resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Res Ther 2018; 9:147. [PMID: 29793557 PMCID: PMC5968555 DOI: 10.1186/s13287-018-0897-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cells-derived mesenchymal stem cells (iPSC-MSCs) have been shown to be effective in Type 2 helper T cells (Th2)-dominant eosinophilic allergic airway inflammation. However, the role of iPSC-MSCs in Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation remains poorly studied. Therefore, this study was to explore the effects of iPSC-MSCs on an experimental mouse model of steroid-resistant neutrophilic airway inflammation and further determine the underlying mechanisms. METHODS A mouse model of neutrophilic airway inflammation was established using ovalbumin (OVA) and lipopolysaccharide (LPS). Human iPSC-MSCs were systemically administered, and the lungs or bronchoalveolar lavage fluids (BALF) were collected at 4 h and 48 h post-challenge. The pathology and inflammatory cell infiltration, the T helper cells, T helper cells-associated cytokines, nuclear transcription factors and possible signaling pathways were evaluated. Human CD4+ T cells were polarized to T helper cells and the effects of iPSC-MSCs on the differentiation of T helper cells were determined. RESULTS We successfully induced the mouse model of Th17 dominant neutrophilic airway inflammation. Human iPSC-MSCs but not dexamethasone significantly prevented the neutrophilic airway inflammation and decreased the levels of Th17 cells, IL-17A and p-STAT3. The mRNA levels of Gata3 and RORγt were also decreased with the treatment of iPSC-MSCs. We further confirmed the suppressive effects of iPSC-MSCs on the differentiation of human T helper cells. CONCLUSIONS iPSC-MSCs showed therapeutic potentials in neutrophilic airway inflammation through the regulation on Th17 cells, suggesting that the iPSC-MSCs could be applied in the therapy for the asthma patients with steroid-resistant neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Hong-Yu Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Ai-Yun Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong-Dong Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Cheng-Lin Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Cong Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xiang-Ci Meng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
713
|
Correlation between Therapeutic Efficacy of CD34 + Cell Treatment and Directed In Vivo Angiogenesis in Patients with End-Stage Diffuse Coronary Artery Disease. Stem Cells Int 2018; 2018:9591421. [PMID: 29760742 PMCID: PMC5924973 DOI: 10.1155/2018/9591421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/06/2018] [Accepted: 03/04/2018] [Indexed: 11/17/2022] Open
Abstract
Background This study was aimed at testing the association between the therapeutic efficacy of CD34+ cell treatment in patients with end-stage diffuse coronary artery disease as reflected in angiographic grading and results of directed in vivo angiogenesis assay (DIVAA) on their isolated peripheral blood mononuclear cell- (PBMC-) derived endothelial progenitor cells (EPCs). Methods Angiographic grades (0: <5%; 1: 5–35%; 2: 35–75%; 3: >75%) which presented the improvement of vessel density pre- and post-CD34+ treatment were given to 30 patients with end-stage diffuse coronary artery disease having received CD34+ cell treatment. The patients were categorized into low-score group (angiographic grade 0 or 1, n = 12) and high-score group (angiographic grade 2 or 3, n = 18). The percentages of circulating EPCs with KDR+/CD34+/CD45−, CD133+/CD34+/CD45−, and CD34+ were determined in each patient using flow cytometry. PBMC-derived EPCs from all patients were subjected to DIVAA through a 14-day implantation in nude mice. The DIVAA ratio (i.e., mean fluorescent units in angioreactors with EPCs/mean fluorescent units in angioreactors without EPCs) was obtained for each animal with implanted EPCs from each patient. Results and Conclusions The number of EPCs showed no significant difference among the two groups. The DIVAA ratio in the high-score group was significantly higher than that in the low-score group (p = 0.0178). Logistic regression revealed a significant association between the DIVAA ratio and angiographic grading (OR 3.12, 95% CI: 1.14–8.55, p = 0.027). The area under the ROC curve (AUC) was 0.8519 (p = 0.0013). We proposed that DIVAA may be a reliable tool for assessing coronary vascularization after CD34+ cell treatment.
Collapse
|
714
|
Xue R, Meng Q, Dong J, Li J, Yao Q, Zhu Y, Yu H. Clinical performance of stem cell therapy in patients with acute-on-chronic liver failure: a systematic review and meta-analysis. J Transl Med 2018; 16:126. [PMID: 29747694 PMCID: PMC5946490 DOI: 10.1186/s12967-018-1464-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/27/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stem cell therapy has been applied in the treatment of acute-on-chronic liver failure (ACLF). However, its clinical efficiency is still debatable. The aim of this systematic review and meta-analysis is to evaluate the clinical efficiency of stem cell therapy in the treatment of ACLF. METHODS The Cochrane Library, OVID, EMBASE, and PUBMED were searched to December 2017. Both randomized and non-randomized studies, assessing stem cell therapy in patients with ACLF, were included. The outcome measures were total bilirubin (TBIL), alanine transaminase (ALT), international normalized ratio (INR), albumin (ALB), and the model for end-stage liver disease (MELD) score. The quality of evidence was assessed by GRADEpro. RESULTS Four randomized controlled trials and six non-randomized controlled trials were included. The TBIL levels significantly decreased at 1-, 3-, 12-month after the stem cell therapy (p = 0.0008; p = 0.04; p = 0.007). The ALT levels decreased significantly compared with the control group in the short-term (p < 0.00001). There was no obvious change in the INR level compared with the control groups (p = 0.64). The ALB levels increased markedly as compared with the control groups (p < 0.0001). The significant difference can be found in MELD score between stem cell therapy and control groups (p = 0.008). Further subgroup analysis for 3-month clinical performance according to the stem cell types have also been performed. CONCLUSION This study suggests that the clinical outcomes of stem cell therapy were satisfied in patients with ACLF in the short-term. MSCs may be better than BM-MNCs in the stem cells transplantation of ACLF. However, more attention should focus on clinical trials in large-volume centers.
Collapse
Affiliation(s)
- Ran Xue
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, No. 8, Xi tou tiao, You an men wai Street, Feng tai District, Beijing, 100069 People’s Republic of China
| | - Qinghua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, No. 8, Xi tou tiao, You an men wai Street, Feng tai District, Beijing, 100069 People’s Republic of China
| | - Jinling Dong
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, No. 8, Xi tou tiao, You an men wai Street, Feng tai District, Beijing, 100069 People’s Republic of China
| | - Juan Li
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, No. 8, Xi tou tiao, You an men wai Street, Feng tai District, Beijing, 100069 People’s Republic of China
| | - Qinwei Yao
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, No. 8, Xi tou tiao, You an men wai Street, Feng tai District, Beijing, 100069 People’s Republic of China
| | - Yueke Zhu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, No. 8, Xi tou tiao, You an men wai Street, Feng tai District, Beijing, 100069 People’s Republic of China
| | - Hongwei Yu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, No. 8, Xi tou tiao, You an men wai Street, Feng tai District, Beijing, 100069 People’s Republic of China
| |
Collapse
|
715
|
Moradi SL, Golchin A, Hajishafieeha Z, Khani M, Ardeshirylajimi A. Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds. J Cell Physiol 2018; 233:6509-6522. [DOI: 10.1002/jcp.26606] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sadegh L. Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Hajishafieeha
- Department of Microbiology Qazvin University of Medical Sciences Qazvin Iran
| | - Mohammad‐Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Edward A. Doisy Department of Biochemistry and Molecular Biology Saint Louis University School of Medicine Saint Louis MO
| |
Collapse
|
716
|
Therapeutic Delivery Specifications Identified Through Compartmental Analysis of a Mesenchymal Stromal Cell-Immune Reaction. Sci Rep 2018; 8:6816. [PMID: 29717209 PMCID: PMC5931547 DOI: 10.1038/s41598-018-24971-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Despite widespread preclinical success, mesenchymal stromal cell (MSC) therapy has not reached consistent pivotal clinical endpoints in primary indications of autoinflammatory diseases. Numerous studies aim to uncover specific mechanisms of action towards better control of therapy using in vitro immunomodulation assays. However, many of these immunomodulation assays are imperfectly designed to accurately recapitulate microenvironment conditions where MSCs act. To increase our understanding of MSC efficacy, we herein conduct a systems level microenvironment approach to define compartmental features that can influence the delivery of MSCs' immunomodulatory effect in vitro in a more quantitative manner than ever before. Using this approach, we notably uncover an improved MSC quantification method with predictive cross-study applicability and unveil the key importance of system volume, time exposure to MSCs, and cross-communication between MSC and T cell populations to realize full therapeutic effect. The application of these compartmental analysis can improve our understanding of MSC mechanism(s) of action and further lead to administration methods that deliver MSCs within a compartment for predictable potency.
Collapse
|
717
|
El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, Bellusci S. Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell 2018; 21:166-177. [PMID: 28777943 DOI: 10.1016/j.stem.2017.07.011] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrosis is associated with organ failure and high mortality and is commonly characterized by aberrant myofibroblast accumulation. Investigating the cellular origin of myofibroblasts in various diseases is thus a promising strategy for developing targeted anti-fibrotic treatments. Recent studies using genetic lineage tracing technology have implicated diverse organ-resident perivascular mesenchymal stem cell (MSC)-like cells and bone marrow-MSCs in myofibroblast generation during fibrosis development. In this Review, we give an overview of the emerging role of MSCs and MSC-like cells in myofibroblast-mediated fibrotic disease in the kidney, lung, heart, liver, skin, and bone marrow.
Collapse
Affiliation(s)
- Elie El Agha
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China; Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Medical Faculty RWTH Aachen University, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Saverio Bellusci
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China; Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
718
|
Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev Rep 2018; 14:484-499. [DOI: 10.1007/s12015-018-9817-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
719
|
Kim Y. Can Umbilical Cord Mesenchymal Stem Cells Treatment Be a Hope for Patients with Refractory Crohn's Disease? Gut Liver 2018; 12:5-6. [PMID: 29284220 PMCID: PMC5753678 DOI: 10.5009/gnl17492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Younjoo Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
720
|
Zhu Y, Chen X, Yang X, El-Hashash A. Stem cells in lung repair and regeneration: Current applications and future promise. J Cell Physiol 2018; 233:6414-6424. [PMID: 29271480 DOI: 10.1002/jcp.26414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Lung diseases are major cause of morbidity and mortality worldwide. The progress in regenerative medicine and stem cell research in the lung are currently a fast-growing research topic that can provide solutions to these major health problems. Under normal conditions, the rate of cellular proliferation is relatively low in the lung in vivo, compared to other major organ systems. Lung injury leads to the activation of stem/progenitor cell populations that re-enter the cell cycle. Yet, little is known about stem cells in the lung, despite common thoughts that these cells could play a critical role in the repair of lung injuries. Nor do we fully understand the cellular and architectural complexity of the respiratory tract, and the diverse stem/progenitor cells that are involved in the lung repair and regeneration. In this review, we discuss the conceptual framework of lung stem/progenitor cell biology, and describe lung diseases, in which stem cell manipulations may be physiologically significant. In addition, we highlight the challenges of lung stem cell-based therapy.
Collapse
Affiliation(s)
- Yuqing Zhu
- Centre of Stem cell and Regenerative Medicine, Schools of Medicine and Basic Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Chen
- Centre of Stem cell and Regenerative Medicine, Schools of Medicine and Basic Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xu Yang
- Section of Environmental Biomedicine, School of Life Science, Central China Normal University, Wuhan, Hubei, China
| | - Ahmed El-Hashash
- Centre of Stem cell and Regenerative Medicine, Schools of Medicine and Basic Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,University of Edinburgh-Zhejiang University Institute (UoE-ZJU Institute), Haining, Zhejiang, China.,Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
721
|
Fathollahi A, Gabalou NB, Aslani S. Mesenchymal stem cell transplantation in systemic lupus erythematous, a mesenchymal stem cell disorder. Lupus 2018; 27:1053-1064. [PMID: 29631514 DOI: 10.1177/0961203318768889] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune and inflammatory disorder with involvement of several organs and systems such as the kidney, lung, brain and the hematopoietic system. As the most prevailing organ manifestation, lupus nephritis is the major cause of mortality and morbidity in SLE patients. The most classically and widely administered immunosuppressive medications, namely corticosteroids and cyclophosphamide, have eventuated in a remarkable amelioration in disease complications over the last few years and reduced the progression to end-stage multiorgan failure. Mesenchymal stem cells (MSCs) are considered as non-hematopoietic and multipotential progenitor cells, which are able to differentiate into multiple cell lineages such as chondrocytes, osteoblasts, myoblasts, endothelial cells, adipocytes, neuron-like cells, hepatocytes and cardiomyocytes. MSCs from SLE patients have demonstrated defects such as aberrant cytokine production. Moreover, impaired phenotype, growth and immunomodulatory functions of MSCs from patients with SLE in comparison to healthy controls have been reported. Therefore, it is hypothesized that SLE is potentially an MSC-mediated disease and, as a result, allogeneic rather than autologous MSC transplantation can be argued to be a potentially advantageous therapy for patients with SLE. On the other hand, the MSC senescence phenomenon may meet the current therapeutic approaches with challenges and demand more attention. Here, we discuss MSC transplantations to date in animal models and humans and focus on the MSC senescence complications in SLE patients.
Collapse
Affiliation(s)
- A Fathollahi
- 1 Department of Medical Immunology, School of Medicine, 48486 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - N B Gabalou
- 2 Department of Genetics, 441802 Islamic Azad University, Ahar Branch , Ahar, Iran
| | - S Aslani
- 3 Department of Immunology and Biology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
722
|
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells Int 2018; 2018:9652897. [PMID: 29765429 PMCID: PMC5911321 DOI: 10.1155/2018/9652897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Preponderance of proinflammatory signals is a characteristic feature of all acute and resulting long-term morbidities of the preterm infant. The proinflammatory actions are best characterized for bronchopulmonary dysplasia (BPD) which is the chronic lung disease of the preterm infant with lifelong restrictions of pulmonary function and severe consequences for psychomotor development and quality of life. Besides BPD, the immature brain, eye, and gut are also exposed to inflammatory injuries provoked by infection, mechanical ventilation, and oxygen toxicity. Despite the tremendous progress in the understanding of disease pathologies, therapeutic interventions with proven efficiency remain restricted to a few drug therapies with restricted therapeutic benefit, partially considerable side effects, and missing option of applicability to the inflamed brain. The therapeutic potential of mesenchymal stromal cells (MSCs)—also known as mesenchymal stem cells—has attracted much attention during the recent years due to their anti-inflammatory activities and their secretion of growth and development-promoting factors. Based on a molecular understanding, this review summarizes the positive actions of exogenous umbilical cord-derived MSCs on the immature lung and brain and the therapeutic potential of reprogramming resident MSCs. The pathomechanistic understanding of MSC actions from the animal model is complemented by the promising results from the first phase I clinical trials testing allogenic MSC transplantation from umbilical cord blood. Despite all the enthusiasm towards this new therapeutic option, the caveats and outstanding issues have to be critically evaluated before a broad introduction of MSC-based therapies.
Collapse
|
723
|
Genç D, Zibandeh N, Nain E, Gökalp M, Özen AO, Göker MK, Akkoç T. Dental follicle mesenchymal stem cells down-regulate Th2-mediated immune response in asthmatic patients mononuclear cells. Clin Exp Allergy 2018; 48:663-678. [PMID: 29498435 DOI: 10.1111/cea.13126] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease in which inflammatory responses have the polarisation of CD4+ T cells to Th2 cells. Dental follicle mesenchymal stem cells (DFSCs) have strong anti-inflammatory properties comparable to other mesenchymal stem cells. OBJECTIVE We investigated the immunomodulatory effects of DFSCs on CD4+ T helper cell responses of asthmatic patients and compared the results with those obtained with asthmatic subjects on immunotherapy and with healthy individuals. METHOD Peripheral blood mononuclear cells (PBMC) were isolated from immunotherapy naïve asthmatics, asthmatics on subcutaneous Der p1 immunotherapy and from healthy individuals. PBMC were pre-conditioned with anti-CD3/anti-CD28 mAbs, Der p1 or IFN-γ in the presence and absence of DFSCs and analysed for T cell viability and proliferation, CD4+ CD25+ FOXP3+ regulatory T cell frequencies, cytokine expression, and GATA3, T bet and FoxP3 expressions. Neutralisation of TGF-β and blockade of IDO and PGE2 pathways were performed to determine suppressive signalling pathways of DFSCs. RESULTS Dental follicle mesenchymal stem cells suppressed proliferative responses of CD4+ T lymphocytes and increased the frequency of Treg cells. DFSCs decreased effector and effector memory CD4+ T cell phenotypes in favour of naïve T cell markers. DFSCs decreased IL-4 and GATA3 expression and increased IFN-γ, T-bet and IL-10 expression in asthmatics. Costimulatory molecules were suppressed in monocytes with DFSCs in the cocultures. DFSCs down-regulated inflammatory responses via IDO and TGF-β pathways in asthmatic patients. CONCLUSION Dental follicle mesenchymal stem cells suppressed allergen-induced Th2-cell polarisation in favour of Th1 responses and attenuated antigen-presenting cell co-stimulatory activities. These studies suggest that DFSC-based cell therapy may provide pro-tolerogenic immunomodulation relevant to allergic diseases such as asthma.
Collapse
Affiliation(s)
- D Genç
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - N Zibandeh
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - E Nain
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - M Gökalp
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - A O Özen
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - M K Göker
- Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - T Akkoç
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| |
Collapse
|
724
|
La A, Tranquillo RT. Shear Conditioning of Adipose Stem Cells for Reduced Platelet Binding to Engineered Vascular Grafts. Tissue Eng Part A 2018; 24:1242-1250. [PMID: 29448915 DOI: 10.1089/ten.tea.2017.0475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Conferring antithrombogenicity to tissue-engineered vascular grafts remains a major challenge, especially for urgent bypass grafting that excludes approaches based on expanding autologous endothelial cells (ECs) that requires weeks of cell culture. Adipose-derived stem cells (ASCs) are available from most patients in sufficient number for coronary bypass graft seeding and may be effective as allogeneic cells. We thus compared the adhesion and platelet binding of human ASCs that were shear conditioned with constant and pulsatile shear stress (SS) after seeding the cells on a biologically engineered matrix suitable for arterial grafts. A monolayer of cells was maintained up to 15 dyn/cm2 constant SS and up to 15 dyn/cm2 mean pulsatile SS for 6 days of shear flow. Platelet binding was reduced from 83% to 6% of surface area and nitric oxide production was increased 23-fold with 7.5-15 dyn/cm2 constant SS, but not pulsatile SS, relative to cells cultured statically on the matrix for 6 days. The reduction in platelet binding varied from no reduction to maximum reduction over a constant shear range of ∼2 to 4 dyn/cm2, respectively. Collectively, the study supports the potential use of ASCs to seed the luminal surface of a vascular graft made from this biologically engineered matrix to confer an antithrombogenic surface during the development of an endothelium from the seeded cells or the surrounding blood and tissue.
Collapse
Affiliation(s)
- Anh La
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Robert T Tranquillo
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota.,2 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
725
|
Najar M, Fayyad-Kazan M, Raicevic G, Fayyad-Kazan H, Meuleman N, Bron D, Lagneaux L. Advanced Glycation End-Products-, C-Type Lectin- and Cysteinyl/ Leukotriene-Receptors in Distinct Mesenchymal Stromal Cell Populations: Differential Transcriptional Profiles in Response to Inflammation. CELL JOURNAL 2018; 20:250-258. [PMID: 29633603 PMCID: PMC5893297 DOI: 10.22074/cellj.2018.5104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We aimed at characterizing the transcription profiles of immunological receptors associated with the biology of mesenchymal stromal cells (MSCs). MATERIALS AND METHODS In this experimental study, quantitative real time-polymerase chain reaction (qRTPCR) was performed to establish the transcription profiles of advanced glycation end-products (RAGE) receptor, C-type lectin receptors (CLRs, including DECTIN-1, DECTIN-2 and MINCLE), leukotriene B4 (LTB4) receptors (BLT1 and BLT2) and cysteinyl leukotrienes (CysLTs) receptors (CYSLTR1 and CYSLTR2) in distinct populations of MSCs grown under basic or inflammatory conditions. RESULTS MSCs derived from adipose tissue (AT), foreskin (FSK), Wharton's jelly (WJ) and bone marrow (BM) exhibited significantly different transcription levels for these genes. Interestingly, these transcription profiles substantially changed following exposure of MSCs to inflammatory signals. CONCLUSIONS Collectively, for the first time, our data highlights that MSCs depending on their tissue-source, present several relevant receptors potentially involved in the regulation of inflammatory and immunological responses. Understanding the roles of these receptors within MSCs immunobiology will incontestably improve the efficiency of utilization of MSCs during cell-based therapies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium
| | - Mohammad Fayyad-Kazan
- Institute of Molecular Biology and Medicine, Free University of Brussels, Gosselies, Belgium
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium.,Experimental Hematology, Institute of Jules Bordet, Free University of Brussels, Waterloo Street, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium.,Experimental Hematology, Institute of Jules Bordet, Free University of Brussels, Waterloo Street, Brussels, Belgium
| | - Laurence Lagneaux
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
726
|
Abstract
From its discovery in the late nineteenth century, as a 'complement' to the cellular immune response, the complement system has been widely affirmed as a powerful controller of innate and adaptive immune responses. In recent decades however, new roles for complement have been discovered, with multiple complement proteins now known to function in a broad array of non-immune systems. This includes during development, where complement exerts control over stem cell populations from fertilization and implantation throughout embryogenesis and beyond post-natal development. It is involved in processes as diverse as cell localisation, tissue morphogenesis, and the growth and refinement of the brain. Such physiological actions of complement have also been described in adult stem cell populations, with roles in proliferation, differentiation, survival, and regeneration. With such a broad range of complement functions now described, it is likely that current research only describes a fraction of the full reach of complement proteins. Here, we review how complement control of physiological cell processes has been harnessed in stem cell populations throughout both development and in adult physiology.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Liam G Coulthard
- School of Clinical Medicine, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Susanna Mantovani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia.
| |
Collapse
|
727
|
Ding Y, Liang X, Zhang Y, Yi L, Shum HC, Chen Q, Chan BP, Fan H, Liu Z, Tergaonkar V, Qi Z, Tse HF, Lian Q. Rap1 deficiency-provoked paracrine dysfunction impairs immunosuppressive potency of mesenchymal stem cells in allograft rejection of heart transplantation. Cell Death Dis 2018; 9:386. [PMID: 29515165 PMCID: PMC5842217 DOI: 10.1038/s41419-018-0414-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Immunomodulatory activity of mesenchymal stem cells (MSCs) is largely mediated by paracrine factors. Our previous studies showed that activation of nuclear factor-kappa B (NF-κB) regulates cytokine/growth factor secretion by MSCs. This study aimed to elucidate the role of Rap1 (repressor/activator protein), a novel modulator involved in the NF-κB pathway, in regulating the immunomodulatory potency of MSCs in acute allograft rejection of heart transplantation. The immunosuppressive potency of wild-type MSCs (WT-MSCs) or Rap1-deficient MSCs (Rap1-/--MSCs) was examined in mice with acute allograft rejection following heart transplantation. With a combination of immunosuppressant rapamycin at a dose of 1 mg/kg/d, WT-MSCs notably prolonged the survival of the transplanted heart compared with Rap1-/--MSCs. Rap1-/--MSCs displayed a marked insensitivity to inhibit the mixed lymphocyte reaction (MLR) due to impaired cytokine production and a significantly reduced activity of NF-κB signaling in vitro. Finally, transplantation of encapsulated WT-MSCs greatly prolonged the survival of the heart allograft compared with encapsulated Rap1-/--MSCs. Our results indicate that Rap1 is essential to maintain the immunomodulatory function of MSCs. Deletion of Rap1 results in impaired immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Yue Ding
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Organ Transplantation Institute of Xiamen University, Xiamen, Fujian Province, China
| | - Xiaoting Liang
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuelin Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Yi
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Qiulan Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Barbara P Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Huimin Fan
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology, Biopolis, Singapore
| | - Zhongquan Qi
- Organ Transplantation Institute of Xiamen University, Xiamen, Fujian Province, China.
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Qizhou Lian
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Peking University Shenzhen Hospital, Shenzhen, China.
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
728
|
Hosseini SM, Sani M, Haider KH, Dorvash M, Ziaee SM, Karimi A, Namavar MR. Concomitant use of mesenchymal stem cells and neural stem cells for treatment of spinal cord injury: A combo cell therapy approach. Neurosci Lett 2018; 668:138-146. [PMID: 29317311 DOI: 10.1016/j.neulet.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
with neural stem cells (NSCs) provides a hope to recover the neural damage and compensate for the lost neural structures for restoration of interrupted neural communications above and below the site of injury. However, cell-based therapy approach suffers from many biological barriers and technical caveats which severely hamper the prognosis. The biochemically-rich microenvironment at the site of spinal cord injury (SCI), the continuing neuro-degenerative process and infiltrating immune cells offer a serious barrier to the donor cells. We hypothesized that mesenchymal stem cells (MSCs) concomitantly delivered with NSCs would significantly enhance the effectiveness of cell-based therapy for SCI. In a rodent model of SCI (n = 15 animals/group), MSCs labeled with PKH67 (green fluorescence dye) were delivered on day1 after SCI whereas the same animals were treated with NSCs during the subacute phase on day3 (group-5). In comparison with untreated control (group-1), sham group (without cell treatment; group-2), MSCs alone (group-3) and NSCs alone treated animals (group-4), the combined cell treated animals (group-5) showed significantly higher homing of cells at the site of injury during in vivo imaging. Caspase-3 activity was lower in group-5 (P < 0.05 vs all groups) with concomitant reduction in the pro-inflammatory cytokines IL-1β and IL-6 (P < 0.05 vs all groups). All cell therapy groups showed significant improvement in neurological function as compared to group-2, however, it was highest in group-5 (P < 0.05 vs all groups). In conclusion, combined treatment with (NSCs + MSCs) enhances NSCs survival and functional recovery in SCI and is superior to the treatment with either of NSCs or MSCs alone.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahsa Sani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mohammadreza Dorvash
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Mohyeddin Ziaee
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aliasghar Karimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohmmad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
729
|
Hidalgo-Garcia L, Galvez J, Rodriguez-Cabezas ME, Anderson PO. Can a Conversation Between Mesenchymal Stromal Cells and Macrophages Solve the Crisis in the Inflamed Intestine? Front Pharmacol 2018; 9:179. [PMID: 29559912 PMCID: PMC5845680 DOI: 10.3389/fphar.2018.00179] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the gastrointestinal tract characterized by an exacerbated mucosal immune response. Macrophages play pivotal roles in the maintenance of gut homeostasis but they are also implicated in the pathogenesis of IBD. They are highly plastic cells and their activation state depends on the local environment. In the healthy intestine, resident macrophages display an M2 phenotype characterized by inflammatory energy, while inflammatory M1 macrophages dominate in the inflamed intestinal mucosa. In this regard, modifying the balance of macrophage populations into an M2 phenotype has emerged as a new therapeutic approach in IBD. Multipotent mesenchymal stromal cells (MSCs) have been proposed as a promising cell-therapy for the treatment of IBD, considering their immunomodulatory and tissue regenerative potential. Numerous preclinical studies have shown that MSCs can induce immunomodulatory macrophages and have demonstrated that their therapeutic efficacy in experimental colitis is mediated by macrophages with an M2-like phenotype. However, some issues have not been clarified yet, including the importance of MSC homing to the inflamed colon and/or lymphoid organs, their optimal route of administration or whether they are effective as living or dead cells. In contrast, the mechanisms behind the effect of MSCs in human IBD are not known and more data are needed regarding the effect of MSCs on macrophage polarization that would support the observation reported in the experimental models. Nevertheless, MSCs have emerged as a novel method to treat IBD that has already been proven safe and with clinical benefits that could be administered in combination with the currently used pharmacological treatments.
Collapse
Affiliation(s)
- Laura Hidalgo-Garcia
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - Julio Galvez
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - M Elena Rodriguez-Cabezas
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - Per O Anderson
- Stromal Cells and Immunology Group, Pfizer, University of Granada, Andalusian Regional Government Centre of Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
730
|
Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry. Sci Rep 2018; 8:3907. [PMID: 29500387 PMCID: PMC5834600 DOI: 10.1038/s41598-018-22326-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source to develop cell therapy for many diseases. Human platelet lysate (PLT) is increasingly used as an alternative to foetal calf serum (FCS) for clinical-scale MSC production. To date, the global surface protein expression of PLT-expended MSCs (MSC-PLT) is not known. To investigate this, paired MSC-PLT and MSC-FCS were analysed in parallel using high-throughput flow cytometry for the expression of 356 cell surface proteins. MSC-PLT showed differential surface protein expression compared to their MSC-FCS counterpart. Higher percentage of positive cells was observed in MSC-PLT for 48 surface proteins, of which 13 were significantly enriched on MSC-PLT. This finding was validated using multiparameter flow cytometry and further confirmed by quantitative staining intensity analysis. The enriched surface proteins are relevant to increased proliferation and migration capacity, as well as enhanced chondrogenic and osteogenic differentiation properties. In silico network analysis revealed that these enriched surface proteins are involved in three distinct networks that are associated with inflammatory responses, carbohydrate metabolism and cellular motility. This is the first study reporting differential cell surface protein expression between MSC-PLT and MSC-FSC. Further studies are required to uncover the impact of those enriched proteins on biological functions of MSC-PLT.
Collapse
|
731
|
La A, Tranquillo RT. Hemocompatible tissue-engineered vascular grafts using adult mesenchymal stem cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:66-73. [DOI: 10.1016/j.cobme.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
732
|
Timaner M, Letko-Khait N, Kotsofruk R, Benguigui M, Beyar-Katz O, Rachman-Tzemah C, Raviv Z, Bronshtein T, Machluf M, Shaked Y. Therapy-Educated Mesenchymal Stem Cells Enrich for Tumor-Initiating Cells. Cancer Res 2018; 78:1253-1265. [PMID: 29301792 PMCID: PMC5924870 DOI: 10.1158/0008-5472.can-17-1547] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/06/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
Stromal cells residing in the tumor microenvironment contribute to the development of therapy resistance. Here we show that chemotherapy-educated mesenchymal stem cells (MSC) promote therapy resistance via cross-talk with tumor-initiating cells (TIC), a resistant tumor cell subset that initiates tumorigenesis and metastasis. In response to gemcitabine chemotherapy, MSCs colonized pancreatic adenocarcinomas in large numbers and resided in close proximity to TICs. Furthermore, gemcitabine-educated MSCs promoted the enrichment of TICs in vitro and enhance tumor growth in vivo These effects were dependent on the secretion of CXCL10 by gemcitabine-educated MSCs and subsequent activation of the CXCL10-CXCR3 axis in TICs. In an orthotopic pancreatic tumor model, targeting TICs using nanovesicles (called nanoghosts) derived from MSC membranes and loaded with a CXCR3 antagonist enhanced therapy outcome and delayed tumor regrowth when administered in combination with gemcitabine. Overall, our results establish a mechanism through which MSCs promote chemoresistance, and propose a novel drug delivery system to target TICs and overcome this resistance.Significance: These results establish a mechanism by which mesenchyme stem cells in the tumor microenvironment promote chemoresistance, and they propose a novel drug delivery system to overcome this challenge. Cancer Res; 78(5); 1253-65. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Communication
- Cell Proliferation
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, SCID
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Gemcitabine
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Michael Timaner
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nitzan Letko-Khait
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ruslana Kotsofruk
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofrat Beyar-Katz
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Chen Rachman-Tzemah
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tomer Bronshtein
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Marcelle Machluf
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
733
|
Grünberg JR, Elvin J, Paul A, Hedjazifar S, Hammarstedt A, Smith U. CCN5/WISP2 and metabolic diseases. J Cell Commun Signal 2018; 12:309-318. [PMID: 29247377 PMCID: PMC5842198 DOI: 10.1007/s12079-017-0437-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Obesity and type 2 diabetes increase worldwide at an epidemic rate. It is expected that by the year 2030 around 500 million people will have diabetes; predominantly type 2 diabetes. The CCN family of proteins has become of interest in both metabolic and other common human diseases because of their effects on mesenchymal stem cell (MSCs) proliferation and differentiation as well as being important regulators of fibrosis. We here review current knowledge of the WNT1 inducible signaling pathway protein 2 (CCN5/WISP2). It has been shown to be an important regulator of both these processes through effects on both the canonical WNT and the TGFβ pathways. It is also under normal regulation by the adipogenic commitment factor BMP4, in contrast to conventional canonical WNT ligands, and allows MSCs to undergo normal adipose cell differentiation. CCN5/WISP2 is highly expressed in, and secreted by, MSCs and is an important regulator of MSCs growth. In a transgenic mouse model overexpressing CCN5/WISP2 in the adipose tissue, we have shown that it is secreted and circulating in the blood, the mice develop hypercellular white and brown adipose tissue, have increased lean body mass and enlarged hypercellular hearts. Obese transgenic mice had improved insulin sensitivity. Interestingly, the anti-fibrotic effect of CCN5/WISP2 is protective against heart failure by inhibition of the TGFβ pathway. Understanding how CCN5/WISP2 is regulated and signals is important and may be useful for developing new treatment strategies in obesity and metabolic diseases and it can also be a target in regenerative medicine.
Collapse
Affiliation(s)
- John R Grünberg
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Johannes Elvin
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Shahram Hedjazifar
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Ann Hammarstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|
734
|
Smolar J, Horst M, Sulser T, Eberli D. Bladder regeneration through stem cell therapy. Expert Opin Biol Ther 2018; 18:525-544. [DOI: 10.1080/14712598.2018.1439013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jakub Smolar
- Department of Urology, University Hospital Zurich, Schlieren, Switzerland
| | - Maya Horst
- Department of Urology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Tulio Sulser
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
735
|
Atkinson SP. A Preview of Selected Articles - April 2018. Stem Cells 2018; 36:471-473. [PMID: 29464818 DOI: 10.1002/stem.2807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/09/2022]
|
736
|
The genes involved in asthma with the treatment of human embryonic stem cell-derived mesenchymal stem cells. Mol Immunol 2018; 95:47-55. [PMID: 29407576 DOI: 10.1016/j.molimm.2018.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/29/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Asthma is affecting more than 300 million people worldwide, which represents the most common chronic disease among children. We previously found that mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) modulated the immune response on Th2-mediated asthma in vivo and in vitro. This study further evaluated the immunomodulatory effects of MSCs from human embryonic stem cells (hESCs) on asthma. METHODS Multipotent hESC-MSCs were obtained using a feeder-free method. The hESC-MSCs were analysed for the expression of stem cell surface markers by flow cytometry, their differentiation potentials were analysed using in vitro trilineage differentiation methods hESC-MSCs were transplanted into the murine model with ovalbumin (OVA)-induced airway allergic inflammation. The expression levels of allergic related genes were measured by the mRNA PCR arrays. RESULTS The hESC-MSCs expressed classical MSC markers and held the capability of differentiation into multiple mesoderm-type cell lineages. hESC-MSCs were able to suppress allergic inflammation by modulating Th2 cells and eosinophils in the mice, and reversed the reduction of regulatory T cells. By using PCR array, 5 mRNAs- chemokine (C-C motif) ligand 11 (Ccl11), Ccl24, interleukin13 (Il13), Il33 and eosinophil-associated, ribonuclease A family, member 11 (Ear11) were identified the most relevant in murine airway allergic inflammation and hESC-MSCs treatment. CONCLUSIONS The therapeutic effects of hESC-MSCs were identified in the murine model of airway allergic inflammation with key mRNAs involved. This study will provide a better understanding regarding the mechanisms underlying hESC-MSCs therapeutic application in airway allergic inflammation.
Collapse
|
737
|
Borriello A, Caldarelli I, Bencivenga D, Stampone E, Perrotta S, Oliva A, Della Ragione F. Tyrosine kinase inhibitors and mesenchymal stromal cells: effects on self-renewal, commitment and functions. Oncotarget 2018; 8:5540-5565. [PMID: 27750212 PMCID: PMC5354929 DOI: 10.18632/oncotarget.12649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
The hope of selectively targeting cancer cells by therapy and eradicating definitively malignancies is based on the identification of pathways or metabolisms that clearly distinguish “normal” from “transformed” phenotypes. Some tyrosine kinase activities, specifically unregulated and potently activated in malignant cells, might represent important targets of therapy. Consequently, tyrosine kinase inhibitors (TKIs) might be thought as the “vanguard” of molecularly targeted therapy for human neoplasias. Imatinib and the successive generations of inhibitors of Bcr-Abl1 kinase, represent the major successful examples of TKI use in cancer treatment. Other tyrosine kinases have been selected as targets of therapy, but the efficacy of their inhibition, although evident, is less definite. Two major negative effects exist in this therapeutic strategy and are linked to the specificity of the drugs and to the role of the targeted kinase in non-malignant cells. In this review, we will discuss the data available on the TKIs effects on the metabolism and functions of mesenchymal stromal cells (MSCs). MSCs are widely distributed in human tissues and play key physiological roles; nevertheless, they might be responsible for important pathologies. At present, bone marrow (BM) MSCs have been studied in greater detail, for both embryological origins and functions. The available data are evocative of an unexpected degree of complexity and heterogeneity of BM-MSCs. It is conceivable that this grade of intricacy occurs also in MSCs of other organs. Therefore, in perspective, the negative effects of TKIs on MSCs might represent a critical problem in long-term cancer therapies based on such inhibitors.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ilaria Caldarelli
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Debora Bencivenga
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Emanuela Stampone
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and of General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Adriana Oliva
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Fulvio Della Ragione
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
738
|
TGF- α Overexpression in Breast Cancer Bone Metastasis and Primary Lesions and TGF- α Enhancement of Expression of Procancer Metastasis Cytokines in Bone Marrow Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6565393. [PMID: 29581982 PMCID: PMC5822790 DOI: 10.1155/2018/6565393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Bone metastasis (BM) is the advanced complication of breast cancer, while bone marrow-derived mesenchymal stem cells (BMSCs) in the microenvironment unclearly contribute to cancer metastasis. This study investigated potential roles of transforming growth factor- (TGF-) α in the interaction between breast cancer and BMSCs in BM. Clinical cases of breast cancer with bone metastasis (BMBC), breast cancer without bone metastasis (Non-BM-BC), and benign fibroadenoma (Benign) were enlisted in a retrospective study. TGF-α was found obviously overexpressed in BM lesion of BMBC compared to primary lesion of both BMBC and Non-BM-BC (P < 0.01), and TGF-α was higher in primary lesion of both BMBC and Non-BM-BC (P < 0.01) than Benign group. Interestingly, TGF-α in nontumor tissues of both BMBC and Non-BM-BC was at a higher level than Benign group (P < 0.01), and numbers of macrophages in nontumor tissues of both BMBC and Non-BM-BC (P < 0.01) were higher than Benign group. Furthermore, in cultured human BMSCs, TGF-α stimulated production of procancer cytokines including IL-6, VEGF, FGF10, FGF17, and TGF-β1 in a dose-dependent manner. Thus, TGF-α in BC could potentially be an important signal of carcinogenesis and metastasis. Macrophages in the nontumor tissue of BC may not be protective but could promote cancer metastasis.
Collapse
|
739
|
Shin SC, Seo Y, Park HY, Jung DW, Shin TH, Son H, Kim YK, Lee JC, Sung ES, Jang JY, Kim HS, Lee BJ. Regenerative potential of tonsil mesenchymal stem cells on surgical cutaneous defect. Cell Death Dis 2018; 9:183. [PMID: 29416004 PMCID: PMC5833728 DOI: 10.1038/s41419-017-0248-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/03/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022]
Abstract
As tissue engineering and regenerative medicine have evolved recently, stem cell therapy has been investigated in the field of impaired wound healing. Several studies have reported that mesenchymal stem cells derived from various tissues including bone marrow and adipose tissue can exert the regenerative efficacy in the wound healing. Previously, we have demonstrated the isolation and characterization of tonsil-derived mesenchymal stem cells (TMSCs) with excellent proliferative property. In the present study, we aimed to evaluate the regenerative efficacy of TMSCs in the wound healing process. Two distinct cutaneous surgical defects were generated in the dorsum of mice. Each wound was treated with TMSCs or phosphate-buffered saline (PBS), respectively. After sacrifice, the skin and subcutaneous tissues around the surgical defect were harvested and assessed for inflammation, re-epithelialization, dermal regeneration, and granulation tissue formation. The administration of TMSCs into wound beds significantly promoted the repair of surgical defects in mice. Especially, TMSCs efficiently contributed to the attenuation of excessive inflammation in the surgical lesion, as well as the augmentation of epidermal and dermal regeneration. To elucidate the underlying mechanisms, TMSCs were analyzed for their potency in immunomodulatory ability on immune cells, stimulatory effect on the proliferation of keratinocytes, and fibroblasts, as well as the regulation of fibroblast differentiation. TMSCs inhibited the non-specific or T-cell-specific proliferation of peripheral blood mononuclear cells, as well as the M1 polarization of macrophage-like cells. Moreover, TMSCs augmented the proliferation of skin-constituting fibroblasts and keratinocytes while they suppressed the differentiation of fibroblasts into myofibroblasts. Taken together, our findings demonstrate the regenerative potential of TMSCs in wound healing process through the regulation on inflammation, proliferation, and remodeling of various skin cells, implying that TMSCs can be a promising alternative for wound repair.
Collapse
Affiliation(s)
- Sung-Chan Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Yoojin Seo
- Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hee Young Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Da-Woon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Tae-Hoon Shin
- Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Haejin Son
- Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Young Keum Kim
- Department of Pathology, Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Jin-Choon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan Pusan National University Hospital, Yangsan, Republic of Korea
| | - Eui-Suk Sung
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Yangsan Pusan National University Hospital, Yangsan, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyung-Sik Kim
- Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea.
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea.
| |
Collapse
|
740
|
Damania A, Jaiman D, Teotia AK, Kumar A. Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury. Stem Cell Res Ther 2018; 9:31. [PMID: 29409540 PMCID: PMC5801895 DOI: 10.1186/s13287-017-0752-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are an attractive therapeutic agent in regenerative medicine. Recently, there has been a paradigm shift from differentiation of MSCs to their paracrine effects at the injury site. Several reports elucidate the role of trophic factors secreted by MSCs toward the repair of injured tissues. We hypothesize that fractionating the MSC secretome will enrich exosomes containing soluble bioactive molecules, improving its therapeutic potential for liver failure. METHODS Rat bone marrow MSCs were isolated and the conditioned media filtered, concentrated and ultracentrifuged to generate fractionated secretome. This secretome was characterized for the presence of exosomes and recovery from liver injury assessed in in-vitro liver injury models. The results were further validated in vivo. RESULTS Studies on in-vitro liver injury models using acetaminophen and hydrogen peroxide show better cell recovery and reduced cytotoxicity in the presence of fractionated as opposed to unfractionated secretome. Further, the cells showed reduced oxidative stress in the presence of fractionated secretome, suggesting a potential antioxidative effect. These results were further validated in vivo in liver failure models, wherein improved liver regeneration in the presence of fractionated secretome (0.819 ± 0.035) was observed as compared to unfractionated secretome (0.718 ± 0.042). CONCLUSIONS The work presented is a proof of concept that fractionating the secretome enriches certain bioactive molecules involved in the repair and recovery of injured liver tissue. Exosome enriched mesenchymal stromal cell-derived fractionated secretome potentiates recovery upon injection in injured liver.
Collapse
Affiliation(s)
- Apeksha Damania
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP India
| | - Deepika Jaiman
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP India
| | - Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP India
| |
Collapse
|
741
|
Kiernan CH, Wolvius EB, Brama PA, Farrell E. The Immune Response to Allogeneic Differentiated Mesenchymal Stem Cells in the Context of Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:75-83. [DOI: 10.1089/ten.teb.2017.0175] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caoimhe H. Kiernan
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Eppo B. Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Pieter A.J. Brama
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin, Ireland
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
742
|
Fayyad-Kazan M, Fayyad-Kazan H, Lagneaux L, Najar M. The potential of mesenchymal stromal cells in immunotherapy. Immunotherapy 2018; 8:839-42. [PMID: 27381681 DOI: 10.2217/imt-2016-0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology & Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
743
|
Roux C, Saviane G, Pini J, Belaïd N, Dhib G, Voha C, Ibáñez L, Boutin A, Mazure NM, Wakkach A, Blin-Wakkach C, Rouleau M. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo. Front Immunol 2018; 8:1991. [PMID: 29422893 PMCID: PMC5788894 DOI: 10.3389/fimmu.2017.01991] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.
Collapse
Affiliation(s)
- Clémence Roux
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France.,Service d'Hématologie Clinique, CHU de Nice, Hôpital de l'Archet, Nice, France
| | - Gaëlle Saviane
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Jonathan Pini
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Nourhène Belaïd
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Gihen Dhib
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Christine Voha
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France.,Pôle d'Odontologie, CHU de Nice, Hôpital Saint-Roch, Nice, France
| | - Lidia Ibáñez
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Antoine Boutin
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Nathalie M Mazure
- Université Nice-Sophia Antipolis, Nice, France.,Institute for Research on Cancer and Aging of Nice, CNRS-UMR 7284-INSERM U108, Centre Antoine Lacassagne, Nice, France
| | - Abdelilah Wakkach
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Claudine Blin-Wakkach
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| | - Matthieu Rouleau
- LP2M, CNRS-UMR 7370, Faculty of Medicine, Nice, France.,Université Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
744
|
Feng Z, Zhai Y, Zheng Z, Yang L, Luo X, Dong X, Han Q, Jin J, Chen ZN, Zhu P. Loss of A20 in BM-MSCs regulates the Th17/Treg balance in Rheumatoid Arthritis. Sci Rep 2018; 8:427. [PMID: 29323140 PMCID: PMC5765124 DOI: 10.1038/s41598-017-18693-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multi-potent cells that are self-renewable and possess the potential to differentiate into multiple lineages. Several studies demonstrated that MSCs could regulate a Th17/Treg balance and could be a potential therapeutic target for Rheumatoid Arthritis (RA). A20 is highly expressed in many cell types after the stimulation of TNF-α, where it may inhibit pro-inflammatory cytokine secretion. However, the expression of A20 in BM-MSCs in RA is not fully understood. In our study, we found that A20 was decreased in RA patients’ bone marrow MSCs (BM-MSCs), and with more IL-6 secretion, the balance of Th17/Treg was broken. In CIA mice, we found a moderate A20 decrease in mice MSCs as compared with those of control group in mRNA and protein levels. However, the IL-6 expression was increased. After umbilical cord MSCs treatment, A20 and IL-6 expressions were equal to the control group. Thus, our study indicates that loss of A20 in MSCs regulates the Th17/Treg balance in RA and the regulatory role of A20 in pro-inflammatory IL-6 production could be a potential target for the transfer of MSCs in RA adoptive therapy.
Collapse
Affiliation(s)
- Zhuan Feng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Yue Zhai
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Lijie Yang
- Department of hematology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China
| | - Xing Luo
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Xiwen Dong
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Qing Han
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Jin Jin
- Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Zhi-Nan Chen
- Department of Cell Biology, Fourth Military Medical University, Xi'an, China. .,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China.
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China. .,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China.
| |
Collapse
|
745
|
De la Rosa MB, Kozik EM, Sakaguchi DS. Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:41-71. [PMID: 30151648 DOI: 10.1007/5584_2018_254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injuries (PNI) occur as the result of sudden trauma and can lead to life-long disability, reduced quality of life, and heavy economic and social burdens. Although the peripheral nervous system (PNS) has the intrinsic capacity to regenerate and regrow axons to a certain extent, current treatments frequently show incomplete recovery with poor functional outcomes, particularly for large PNI. Many surgical procedures are available to halt the propagation of nerve damage, and the choice of a procedure depends on the extent of the injury. In particular, recovery from large PNI gaps is difficult to achieve without any therapeutic intervention or some form of tissue/cell-based therapy. Autologous nerve grafting, considered the "gold standard" is often implemented for treatment of gap formation type PNI. Although these surgical procedures provide many benefits, there are still considerable limitations associated with such procedures as donor site morbidity, neuroma formation, fascicle mismatch, and scarring. To overcome such restrictions, researchers have explored various avenues to improve post-surgical outcomes. The most commonly studied methods include: cell transplantation, growth factor delivery to stimulate regenerating axons and implanting nerve guidance conduits containing replacement cells at the site of injury. Replacement cells which offer maximum benefits for the treatment of PNI, are Schwann cells (SCs), which are the peripheral glial cells and in part responsible for clearing out debris from the site of injury. Additionally, they release growth factors to stimulate myelination and axonal regeneration. Both primary SCs and genetically modified SCs enhance nerve regeneration in animal models; however, there is no good source for extracting SCs and the only method to obtain SCs is by sacrificing a healthy nerve. To overcome such challenges, various cell types have been investigated and reported to enhance nerve regeneration.In this review, we have focused on cell-based strategies aimed to enhance peripheral nerve regeneration, in particular the use of mesenchymal stem cells (MSCs). Mesenchymal stem cells are preferred due to benefits such as autologous transplantation, routine isolation procedures, and paracrine and immunomodulatory properties. Mesenchymal stem cells have been transplanted at the site of injury either directly in their native form (undifferentiated) or in a SC-like form (transdifferentiated) and have been shown to significantly enhance nerve regeneration. In addition to transdifferentiated MSCs, some studies have also transplanted ex-vivo genetically modified MSCs that hypersecrete growth factors to improve neuroregeneration.
Collapse
Affiliation(s)
- Metzere Bierlein De la Rosa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,Veterinary Specialty Center, Buffalo Grove, IL, USA
| | - Emily M Kozik
- Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Donald S Sakaguchi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA. .,Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Neuroscience Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
746
|
Immunomodulatory Behavior of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:73-84. [DOI: 10.1007/5584_2018_255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
747
|
Photoresponsive Hydrogels with Photoswitchable Stiffness: Emerging Platforms to Study Temporal Aspects of Mesenchymal Stem Cell Responses to Extracellular Stiffness Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:53-69. [PMID: 30456642 DOI: 10.1007/5584_2018_293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An extensive number of cell-matrix interaction studies have identified matrix stiffness as a potent regulator of cellular properties and behaviours. Perhaps most notably, matrix stiffness has been demonstrated to regulate mesenchymal stem cell (MSC) phenotype and lineage commitment. Given the therapeutic potential for MSCs in regenerative medicine, significant efforts have been made to understand the molecular mechanisms involved in stiffness regulation. These efforts have predominantly focused on using stiffness-defined polyacrylamide (PA) hydrogels to culture cells in 2D and have enabled elucidation of a number of mechano-sensitive signalling pathways. However, despite proving to be a valuable tool, these stiffness-defined hydrogels do not reflect the dynamic nature of living tissues, which are subject to continuous remodelling during processes such as development, ageing, disease and regeneration. Therefore, in order to study temporal aspects of stiffness regulation, researchers have developed and exploited novel hydrogel substrates with in situ tuneable stiffness. In particular, photoresponsive hydrogels with photoswitchable stiffness are emerging as exciting platforms to study MSC stiffness regulation. This chapter provides an introduction to the use of PA hydrogel substrates, the molecular mechanisms of mechanotransduction currently under investigation and the development of these emerging photoresponsive hydrogel platforms.
Collapse
|
748
|
Wang B, Lin Y, Hu Y, Shan W, Liu S, Xu Y, Zhang H, Cai S, Yu X, Cai Z, Huang H. mTOR inhibition improves the immunomodulatory properties of human bone marrow mesenchymal stem cells by inducing COX-2 and PGE 2. Stem Cell Res Ther 2017; 8:292. [PMID: 29287601 PMCID: PMC5747167 DOI: 10.1186/s13287-017-0744-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 01/20/2023] Open
Abstract
Background Bone marrow mesenchymal stem cells (MSCs) are promising candidates for the treatment of various inflammatory disorders due to their profound immunomodulatory properties. However, the immunosuppressive capacity of MSCs needs activation by an inflammatory microenvironment, which may negatively impact the therapeutic effect because of increased immunogenicity. Here we explore the role of mammalian target of rapamycin (mTOR) signaling on the immunosuppressive capacity of MSCs, and its impact on immunogenicity in the inflammatory microenvironment. Methods Human bone marrow MSCs were cocultured with activated human peripheral blood mononuclear cells, CD4+ T cells, and mouse splenocytes to evaluate the immunosuppressive function. Immunosuppressive factors were assessed by quantitative real-time polymerase chain reaction (PCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). The expression of major histocompatibility complex (MHC) was detected by flow cytometry. Short hairpin (sh)RNA was used to downregulate tuberous sclerosis complex (TSC)2, TSC1, and cyclooxygenase (COX)-2 in MSCs. Results Inhibition of mTOR signaling using rapamycin enhanced the immunosuppressive functions of MSCs, while prolonged exposure to rapamycin did not. The enhancement of the immunosuppressive function was independent of the inflammatory microenvironment, and occurred mainly through the upregulation of COX-2 and prostaglandin-E2 (PGE2) expression. Furthermore, mTOR inhibition did not impact the immunogenicity of MSCs. However, the upregulated expression of MHC class II molecules by interferon (IFN)-γ was attenuated by mTOR inhibition, whereas TSC2 knockdown had the opposite effect. Conclusions These results reveal that the mTOR signaling pathway regulates MSC immunobiology, and short-term exposure to rapamycin could be a novel approach to improve the MSC-based therapeutic effect. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0744-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Yu Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Senquan Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Hao Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
749
|
IFN-γ and TNF-α Pre-licensing Protects Mesenchymal Stromal Cells from the Pro-inflammatory Effects of Palmitate. Mol Ther 2017; 26:860-873. [PMID: 29352647 DOI: 10.1016/j.ymthe.2017.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stromal cell (MSC) therapy for the treatment of type 2 diabetes (T2D) and T2D complications is promising; however, the investigation of MSC function in the setting of T2D has not been thoroughly explored. In our current study, we investigated the phenotype and function of MSCs in a simulated in vitro T2D environment. We show that palmitate, but not glucose, exposure impairs MSC metabolic activity with moderate increases in apoptosis, while drastically affecting proliferation and morphology. In co-culture with peripheral blood mononuclear cells (PBMCs), we found that MSCs not only lose their normal suppressive ability in high levels of palmitate, but actively support and enhance inflammation, resulting in elevated PBMC proliferation and pro-inflammatory cytokine release. The pro-inflammatory effect of MSCs in palmitate was partially reversed via palmitate removal and fully reversed through pre-licensing MSCs with interferon-gamma and tumor necrosis factor alpha. Thus, palmitate, a specific metabolic factor enriched within the T2D environment, is a potent modulator of MSC immunosuppressive function, which may in part explain the depressed potency observed in MSCs isolated from T2D patients. Importantly, we have also identified a robust and durable pre-licensing regimen that protects MSC immunosuppressive function in the setting of T2D.
Collapse
|
750
|
Bertolo A, Pavlicek D, Gemperli A, Baur M, Pötzel T, Stoyanov J. Increased motility of mesenchymal stem cells is correlated with inhibition of stimulated peripheral blood mononuclear cells in vitro. J Stem Cells Regen Med 2017. [PMID: 29391751 PMCID: PMC5786648 DOI: 10.46582/jsrm.1302010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunomodulatory properties of mesenchymal stem cells (MSC) are key components of their successful applications in clinical setting. However, treatments based on MSC immunomodulation need understanding of cell characteristics before cell transplantation. We used live-imaging to test the suitability of the MSC motility as a parameter for quick prediction of the immunomodulatory potential of human MSC in regulating the activity of stimulated peripheral blood mononuclear cells (PBMC) in vitro. Bone marrow MSC, from various donors and in vitro passages, were cultured with or without stimulated PBMC. After seven days, immunomodulation was assessed by measuring PBMC proliferation, IgG production and cytokine secretion in MSC and PBMC monocultures and co-cultures, and results were correlated to MSC motility. In co-culture, we observed that MSC successfully inhibited PBMC activity, reducing PBMC proliferation and IgG production compared to PBMC monoculture. MSC modulated PBMC to reduce the secretion of TNFα and IL-10, increase IL-6, G-CSF and MCP-1, while GM-CSF was not affected. By live-imaging tracking of cell trajectories, we observed that fast moving MSC were inhibiting more efficiently stimulated PBMC compared to slow ones. In co-culture, fast MSC were more effective in inhibiting IgG production (˜30% less IgG), and secreted higher levels of IL-10 (˜10% increase) and GM-CSF (˜20% increase) compared to slower cells. Furthermore, fast MSC in monocultures produced 2.3-fold more IL-6, 1.5-fold MCP-1 and 1.2-fold G-CSF in comparison to slower cells. In conclusion, live-imaging cell tracking allowed us to develop an indicative assay of the immune-regulatory potential of MSC prior to in vivo administration. Key Words: Human mesenchymal stem cells, Immunomodulatory potential, In vitro cell motility, Stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Armin Gemperli
- Swiss Paraplegic Research, Nottwil, Switzerland.,Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland
| | - Martin Baur
- Cantonal Hospital of Lucerne, Lucerne, Switzerland.,Swiss Paraplegic Centre, Nottwil, Switzerland
| | | | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland.,Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|