701
|
Abstract
Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.
Collapse
Affiliation(s)
- Niraimathi Govindasamy
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Supriya Murthy
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Yashoda Ghanekar
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
702
|
Hindley CJ, Mastrogiovanni G, Huch M. The plastic liver: differentiated cells, stem cells, every cell? J Clin Invest 2014; 124:5099-102. [PMID: 25401467 DOI: 10.1172/jci78372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver is capable of full regeneration following several types and rounds of injury, ranging from hepatectomy to toxin-mediated damage. The source of this regenerative capacity has long been a hotly debated topic. The damage response that occurs when hepatocyte proliferation is impaired is thought to be mediated by oval/dedifferentiated progenitor cells, which replenish the hepatocyte and ductal compartments of the liver. Recently, reports have questioned whether these oval/progenitor cells truly serve as the facultative stem cell of the liver following toxin-mediated damage. In this issue of the JCI, Kordes and colleagues use lineage tracing to follow transplanted rat hepatic stellate cells, a resident liver mesenchymal cell population, in hosts that have suffered liver damage. Transplanted stellate cells repopulated the damaged rat liver by contributing to the oval cell response. These data establish yet another cell type of mesenchymal origin as the progenitor for the oval/ductular response in the rat. The lack of uniformity between different damage models, the extent of the injury to the liver parenchyma, and potential species-specific differences might be at the core of the discrepancy between different studies. Taken together, these data imply a considerable degree of plasticity in the liver, whereby several cell types can contribute to regeneration.
Collapse
|
703
|
Spontaneous regeneration of cochlear supporting cells after neonatal ablation ensures hearing in the adult mouse. Proc Natl Acad Sci U S A 2014; 111:16919-24. [PMID: 25385613 DOI: 10.1073/pnas.1408064111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Supporting cells in the cochlea play critical roles in the development, maintenance, and function of sensory hair cells and auditory neurons. Although the loss of hair cells or auditory neurons results in sensorineural hearing loss, the consequence of supporting cell loss on auditory function is largely unknown. In this study, we specifically ablated inner border cells (IBCs) and inner phalangeal cells (IPhCs), the two types of supporting cells surrounding inner hair cells (IHCs) in mice in vivo. We demonstrate that the organ of Corti has the intrinsic capacity to replenish IBCs/IPhCs effectively during early postnatal development. Repopulation depends on the presence of hair cells and cells within the greater epithelial ridge and is independent of cell proliferation. This plastic response in the neonatal cochlea preserves neuronal survival, afferent innervation, and hearing sensitivity in adult mice. In contrast, the capacity for IBC/IPhC regeneration is lost in the mature organ of Corti, and consequently IHC survival and hearing sensitivity are impaired significantly, demonstrating that there is a critical period for the regeneration of cochlear supporting cells. Our findings indicate that the quiescent neonatal organ of Corti can replenish specific supporting cells completely after loss in vivo to guarantee mature hearing function.
Collapse
|
704
|
Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie Y, Kaneko S, Yao X, Chen X, Cotton JL, Mao J, McCollum D, Jiang J, Czech MP, Xu L, Ip YT. The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 2014; 31:291-304. [PMID: 25453828 PMCID: PMC4254555 DOI: 10.1016/j.devcel.2014.09.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/14/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022]
Abstract
Similar to the mammalian intestine, the Drosophila adult midgut has resident stem cells that support growth and regeneration. How the niche regulates intestinal stem cell activity in both mammals and flies is not well understood. Here, we show that the conserved germinal center protein kinase Misshapen restricts intestinal stem cell division by repressing the expression of the JAK-STAT pathway ligand Upd3 in differentiating enteroblasts. Misshapen, a distant relative to the prototypic Warts activating kinase Hippo, interacts with and activates Warts to negatively regulate the activity of Yorkie and the expression of Upd3. The mammalian Misshapen homolog MAP4K4 similarly interacts with LATS (Warts homolog) and promotes inhibition of YAP (Yorkie homolog). Together, this work reveals that the Misshapen-Warts-Yorkie pathway acts in enteroblasts to control niche signaling to intestinal stem cells. These findings also provide a model in which to study requirements for MAP4K4-related kinases in MST1/2-independent regulation of LATS and YAP.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shuangxi Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian Mana-Capelli
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel J Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura V Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Satoshi Kaneko
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaohao Yao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaochu Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer L Cotton
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dannel McCollum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
705
|
Scheeren FA, Kuo AH, van Weele LJ, Cai S, Glykofridis I, Sikandar SS, Zabala M, Qian D, Lam JS, Johnston D, Volkmer JP, Sahoo D, van de Rijn M, Dirbas FM, Somlo G, Kalisky T, Rothenberg ME, Quake SR, Clarke MF. A cell-intrinsic role for TLR2–MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol 2014; 16:1238-48. [DOI: 10.1038/ncb3058] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
|
706
|
Frede J, Adams DJ, Jones PH. Mutation, clonal fitness and field change in epithelial carcinogenesis. J Pathol 2014; 234:296-301. [PMID: 25046364 DOI: 10.1002/path.4409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Developments in lineage tracing in mouse models have revealed how stem cells maintain normal squamous and glandular epithelia. Here we review recent quantitative studies tracing the fate of individual mutant stem cells which have uncovered how common oncogenic mutations alter cell behaviour, creating clones with a growth advantage that may persist long term. In the intestine this occurs by a mutant clone colonizing an entire crypt, whilst in the squamous oesophagus blocking differentiation creates clones that expand to colonize large areas of epithelium, a phenomenon known as field change. We consider the implications of these findings for early cancer evolution and the cancer stem cell hypothesis, and the prospects of targeted cancer prevention by purging mutant clones from normal-appearing epithelia.
Collapse
Affiliation(s)
- Julia Frede
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | | | | |
Collapse
|
707
|
Leedham SJ. Measuring stem cell dynamics in the human colon--where there's a wiggle, there's a way. J Pathol 2014; 234:292-5. [PMID: 25112223 PMCID: PMC4280900 DOI: 10.1002/path.4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
Abstract
The last decade has seen huge improvements in our understanding of intestinal stem cell biology, with major advances arising from the ability to transgenically label, and thus identify, murine stem cells and their progeny. In the human, transgenic labelling is not an available option and stem cell dynamic observations have been based on rare hereditary mutations and polymorphisms. Somatic mitochondrial DNA mutations cause a histochemically detectable, but neutrally selected, change in cytochrome c oxidase (CCO) enzyme activity and when this occurs in an intestinal stem cell, it can be used as an effective clonal marker in both health and disease. The intestinal crypt is the functional unit of the gut. Daughter cells are 'born' in the stem cell niche at the crypt base and proliferate, differentiate, and then apoptose as they migrate along the vertical crypt axis over 5-7 days. This stereotypical architecture provides a historical record of cell dynamics, as the distance travelled along the crypt axis is proportional to the time since the daughter cell was born. By staining, identifying, and carefully reconstructing crypt maps from serial en face sections of partially mutated mtDNA crypts, clonal ribbon images can be generated. 'Wiggles' in the width of the clonal ribbon reflect mtDNA mutated stem cell expansion or contraction events and these biological observations are applied in mathematical models. This clever approach is able to infer temporal evolutionary dynamics from a static, single time point measurement, in both normal and familial adenomatous polyposis tissue. As we have seen in the mouse, the simple ability to identify stem cell progeny can lead to a vast expansion in our understanding of stem cell evolution. The use of these techniques to trace recent stem cell dynamics in the human colon makes some headway into the knowledge gap in our understanding of murine and human intestinal stem cell biology. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simon J Leedham
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of OxfordOxford, OX3 7BN, UK
| |
Collapse
|
708
|
Peregrina K, Houston M, Daroqui C, Dhima E, Sellers RS, Augenlicht LH. Vitamin D is a determinant of mouse intestinal Lgr5 stem cell functions. Carcinogenesis 2014; 36:25-31. [PMID: 25344836 DOI: 10.1093/carcin/bgu221] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lgr5+ intestinal crypt base columnar cells function as stem cells whose progeny populate the villi, and Lgr5+ cells in which Apc is inactivated can give rise to tumors. Surprisingly, these Lgr5+ stem cell properties were abrogated by the lower dietary vitamin D and calcium in a semi-purified diet that promotes both genetically initiated and sporadic intestinal tumors. Inactivation of the vitamin D receptor in Lgr5+ cells established that compromise of Lgr5 stem cell function was a rapid, cell autonomous effect of signaling through the vitamin D receptor. The loss of Lgr5 stem cell function was associated with presence of Ki67 negative Lgr5+ cells at the crypt base. Therefore, vitamin D, a common nutrient and inducer of intestinal cell maturation, is an environmental factor that is a determinant of Lgr5+ stem cell functions in vivo. Since diets used in reports that establish and dissect mouse Lgr5+ stem cell activity likely provided vitamin D levels well above the range documented for human populations, the contribution of Lgr5+ cells to intestinal homeostasis and tumor formation in humans may be significantly more limited, and variable in the population, then suggested by published rodent studies.
Collapse
Affiliation(s)
- Karina Peregrina
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Houston
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cecilia Daroqui
- Clinica Reina Fabiola, Oncativo 1248, Cordoba 5004, Argentina
| | - Elena Dhima
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Leonard H Augenlicht
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
709
|
Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Reports 2014; 3:876-91. [PMID: 25418730 PMCID: PMC4235148 DOI: 10.1016/j.stemcr.2014.09.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/17/2023] Open
Abstract
The recent development of targeted murine reporter alleles as proxies for intestinal stem cell activity has led to significant advances in our understanding of somatic stem cell hierarchies and dynamics. Analysis of these reporters has led to a model in which an indispensable reserve stem cell at the top of the hierarchy (marked by Bmi1 and Hopx reporters) gives rise to active intestinal stem cells (marked by an Lgr5 reporter). Despite these advances, controversy exists regarding the specificity and fidelity with which these alleles distinguish intestinal stem cell populations. Here, we undertake a comprehensive comparison of widely used proxy reporters including both CreERT2 and EGFP cassettes targeted to the Lgr5, Bmi1, and Hopx loci. Single-cell transcriptional profiling of these populations and their progeny reveals that reserve and active intestinal stem cells are molecularly and functionally distinct, supporting a two-stem-cell model for intestinal self-renewal. Proxy intestinal stem cell reporter alleles often mark heterogeneous populations Discrepancies exist between proxy reporter activity and endogenous transcripts Reserve and active intestinal stem cells are molecularly distinct Reserve intestinal stem cells give rise to active stem cells during homeostasis
Collapse
|
710
|
Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 2014; 346:1248012. [PMID: 25278615 DOI: 10.1126/science.1248012] [Citation(s) in RCA: 1015] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, 3584CT Utrecht, Netherlands
| | - Kyle M Loh
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
711
|
Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, Bhatt RG, Stoeck A, Maillard I, Crawford HC, Samuelson LC, Dempsey PJ. ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology 2014; 147:822-834.e13. [PMID: 25038433 PMCID: PMC4176890 DOI: 10.1053/j.gastro.2014.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. METHODS We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. CONCLUSIONS ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Kelli L VanDussen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Eric T Sawey
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Alex W Wade
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Chelsea Kasper
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Sabita Rakshit
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Riha G Bhatt
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Alex Stoeck
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | | | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Peter J Dempsey
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
712
|
Guo H, Nagy T, Pierce M. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apc(min/+) mice through altered Wnt receptor signaling. J Biol Chem 2014; 289:31534-49. [PMID: 25274627 DOI: 10.1074/jbc.m114.602680] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deletion of GnT-V (MGAT5), which synthesizes N-glycans with β(1,6)-branched glycans, reduced the compartment of cancer stem cells (CSC) in the her-2 mouse model of breast cancer, leading to delay of tumor onset. Because GnT-V levels are also commonly up-regulated in colon cancer, we investigated their regulation of colon CSC and adenoma development. Anchorage-independent cell growth and tumor formation induced by injection of colon tumor cells into NOD/SCID mice were positively associated with GnT-V levels, indicating regulation of proliferation and tumorigenicity. Using Apc(min/+) mice with different GnT-V backgrounds, knock-out of GnT-V had no significant effect on the number of adenoma/mouse, but adenoma size was significantly reduced and accompanied increased survival of Apc(min/+) mice with GnT-V deletion (p < 0.01), suggesting an inhibition in the progression of colon adenoma caused by deletion of GnT-V. Decreased expression levels of GnT-V down-regulated the population of colon (intestine) CSC, affecting their ability for self-renewal and tumorigenicity in NOD/SCID mice. Furthermore, altered nuclear translocation of β-catenin and expression of Wnt target genes were positively associated with expression levels of GnT-V, indicating the regulation of canonical Wnt/β-catenin signaling. By overexpressing the Wnt receptor, FZD-7, in colon cancer cells, we found that FZD-7 receptors expressed N-linked β(1,6) branching, indicating that FZD-7 can be modified by GnT-V. The aberrant Wnt signaling observed after modulating GnT-V levels is likely to result from altered N-linked β(1,6) branching on FZD-7, thereby affecting Wnt signaling, the compartment of CSC, and tumor progression.
Collapse
Affiliation(s)
- Huabei Guo
- From the Departments of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center and
| | - Tamas Nagy
- Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Michael Pierce
- From the Departments of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center and
| |
Collapse
|
713
|
Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol 2014; 25:11-20. [PMID: 25242116 DOI: 10.1016/j.tcb.2014.08.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 12/17/2022]
Abstract
Significant progress has been made to identify the cells at the foundation of tumorigenesis, the cancer cell of origin (CCO). The majority of data points towards resident adult stem cells (ASCs) or primitive progenitors as the CCO for those cancers studied, highlighting the importance of stem cells not only as propagators but also as initiators of cancer. Recent data suggest tumor initiation at the CCOs can be regulated through both intrinsic and extrinsic signals and that the identity of the CCOs and their propensity to initiate tumorigenesis is context dependent. In this review, we summarize some of the recent findings regarding CCOs and solid tumor initiation and highlight its relation with bona fide human cancer.
Collapse
|
714
|
Stange DE, Clevers H. Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors. Stem Cells 2014; 31:2287-95. [PMID: 23836510 DOI: 10.1002/stem.1475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
The intestine has developed over the last few years into a prime model system for adult stem cell research. Intestinal cells have an average lifetime of 5 days, moving within this time from the bottom of intestinal crypts to the top of villi. This rapid self-renewal capacity combined with an easy to follow (mostly) unidirectional movement of cells offers an ideal site to conduct adult stem cell research. The delineation of the active pathways in the intestinal epithelium together with the development of molecular techniques to prove stemness laid the grounds for the identification of the intestinal stem cell. In vitro systems and transgenic mouse models broaden our knowledge on the role of the stem cell niche and those cells that reestablish homeostasis after perturbation of the system. These insights expedited also research on the role of normal adult stem cells in cancer initiation and the factors influencing the maintenance of cancer stem cells.
Collapse
Affiliation(s)
- Daniel E Stange
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands; Department of General, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
| | | |
Collapse
|
715
|
Abstract
As stem cells (SCs) in adult organs continue to be identified and characterized, it becomes clear that their survival, quiescence, and activation depend on specific signals in their microenvironment, or niche. Although adult SCs of diverse tissues differ by their developmental origin, cycling activity, and regenerative capacity, there appear to be conserved similarities regarding the cellular and molecular components of the SC niche. Interestingly, many organs house both slow-cycling and fast-cycling SC populations, which rely on the coexistence of quiescent and inductive niches for proper regulation. In this review we present a general definition of adult SC niches in the most studied mammalian systems. We further focus on dissecting their cellular organization and on highlighting recently identified key molecular regulators. Finally, we detail the potential involvement of the SC niche in tissue degeneration, with a particular emphasis on aging and cancer.
Collapse
Affiliation(s)
- Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
716
|
Takahashi T, Ohnishi H, Sugiura Y, Honda K, Suematsu M, Kawasaki T, Deguchi T, Fujii T, Orihashi K, Hippo Y, Watanabe T, Yamagaki T, Yuba S. Non‐neuronal acetylcholine as an endogenous regulator of proliferation and differentiation of Lgr5‐positive stem cells in mice. FEBS J 2014; 281:4672-90. [DOI: 10.1111/febs.12974] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/22/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences Bioorganic Research Institute Osaka Japan
| | - Hiroe Ohnishi
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| | - Yuki Sugiura
- Department of Biochemistry School of Medicine Keio University Tokyo Japan
- Precursory Research for Embryonic Science and Technology Tokyo Japan
| | - Kurara Honda
- Department of Biochemistry School of Medicine Keio University Tokyo Japan
- Precursory Research for Embryonic Science and Technology Tokyo Japan
| | - Makoto Suematsu
- Department of Biochemistry School of Medicine Keio University Tokyo Japan
- Japan Science Technology Agency Exploratory Research for Advanced Technology Suematsu Gas Biology Project Tokyo Japan
| | - Takashi Kawasaki
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| | - Tomonori Deguchi
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| | - Takeshi Fujii
- Department of Pharmacology Faculty of Pharmaceutical Sciences Doshisha Women's College of Liberal Arts Kyoto Japan
| | - Kaoru Orihashi
- Division of Cancer Development System National Cancer Research Institute Tokyo Japan
| | - Yoshitaka Hippo
- Division of Cancer Development System National Cancer Research Institute Tokyo Japan
| | - Takehiro Watanabe
- Suntory Foundation for Life Sciences Bioorganic Research Institute Osaka Japan
| | - Tohru Yamagaki
- Suntory Foundation for Life Sciences Bioorganic Research Institute Osaka Japan
| | - Shunsuke Yuba
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| |
Collapse
|
717
|
Jang W, Chen X, Flis D, Harris M, Schwob JE. Label-retaining, quiescent globose basal cells are found in the olfactory epithelium. J Comp Neurol 2014; 522:731-49. [PMID: 24122672 DOI: 10.1002/cne.23470] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 02/01/2023]
Abstract
The vertebrate olfactory epithelium (OE) is known for its ability to renew itself throughout life as well as to reconstitute after injury. Although this remarkable capacity demonstrates the persistence of stem cells and multipotent progenitor cells, their nature in the OE remains undefined and controversial, as both horizontal basal cells (HBCs) and globose basal cells (GBCs) have features in common with each other and with stem cells in other tissues. Here, we investigate whether some among the population of GBCs satisfy a key feature of stem cells, i.e., mitotic quiescence with retention of thymidine analogue label and activation by injury. Accordingly, we demonstrate that some GBCs express p27(Kip1) , a member of the Kip/Cip family of cyclin-dependent kinase inhibitors. In addition, some GBCs retain bromodeoxyuridine or ethynyldeoxyuridine for an extended period when the pulse is administered in neonates followed by a 1-month chase. Their identity as GBCs was confirmed by electron microscopy. All spared GBCs express Ki-67 in the methyl bromide (MeBr)-lesioned OE initially after lesion, indicating that the label-retaining (LR) GBCs are activated in response to injury. LR-GBCs reappear during the acute recovery period following MeBr exposure, as demonstrated with 2- or 4-week chase periods after labeling. Taken together, our data demonstrate the existence of LR-GBCs that are seemingly activated in response to epithelial injury and then re-established after the initial phase of recovery is completed. In this regard, some among the GBCs satisfy a common criterion for functioning like stem cells.
Collapse
Affiliation(s)
- Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts, 02111
| | | | | | | | | |
Collapse
|
718
|
Abstract
In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells--embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells--in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects.
Collapse
Affiliation(s)
- Wen-Hui Lien
- de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
719
|
Amcheslavsky A, Nie Y, Li Q, He F, Tsuda L, Markstein M, Ip YT. Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila. Development 2014; 141:2621-32. [PMID: 24961799 DOI: 10.1242/dev.106237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intestinal stem cells (ISCs) in the adult Drosophila midgut can respond to tissue damage and support repair. We used genetic manipulation to increase the number of ISC-like cells in the adult midgut and performed gene expression profiling to identify potential ISC regulators. A detailed analysis of one of these potential regulators, the zinc-finger protein Charlatan, was carried out. MARCM clonal analysis and RNAi in precursor cells showed that loss of Chn function caused severe ISC division defects, including loss of EdU incorporation, phosphorylated histone 3 staining and expression of the mitotic protein Cdc2. Loss of Charlatan also led to a much reduced histone acetylation staining in precursor cells. Both the histone acetylation and ISC division defects could be rescued by the simultaneous decrease of the Histone Deacetylase 2. The overexpression of Charlatan blocked differentiation reversibly, but loss of Charlatan did not lead to automatic differentiation. The results together suggest that Charlatan does not simply act as an anti-differentiation factor but instead functions to maintain a chromatin structure that is compatible with stem cell properties, including proliferation.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michele Markstein
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
720
|
Basak O, van de Born M, Korving J, Beumer J, van der Elst S, van Es JH, Clevers H. Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. EMBO J 2014; 33:2057-68. [PMID: 25092767 PMCID: PMC4195772 DOI: 10.15252/embj.201488017] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67− cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.
Collapse
Affiliation(s)
- Onur Basak
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maaike van de Born
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joep Beumer
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Stefan van der Elst
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
721
|
Koo BK, Clevers H. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 2014; 147:289-302. [PMID: 24859206 DOI: 10.1053/j.gastro.2014.05.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/12/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
Since the discovery of LGR5 as a marker of intestinal stem cells, the field has developed explosively and led to many new avenues of research. The inner workings of the intestinal crypt stem cell niche are now well understood. The study of stem cell-enriched genes has uncovered some previously unknown aspects of the Wnt signaling pathway, the major driver of crypt dynamics. LGR5(+) stem cells can now be cultured over long periods in vitro as epithelial organoids or "mini-guts." This technology opens new possibilities of using cultured adult stem cells for drug development, disease modeling, gene therapy, and regenerative medicine. This review describes the rediscovery of crypt base columnar cells as LGR5(+) adult stem cells and summarizes subsequent progress, promises, unresolved issues, and challenges of the field.
Collapse
Affiliation(s)
- Bon-Kyoung Koo
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, England; Department of Genetics, University of Cambridge, Cambridge, England
| | - Hans Clevers
- Hubrecht Institute/KNAW, Utrecht, The Netherlands; University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
722
|
Abstract
Limited pools of resident adult stem cells are critical effectors of epithelial renewal in the intestine throughout life. Recently, significant progress has been made regarding the isolation and in vitro propagation of fetal and adult intestinal stem cells in mammals. It is now possible to generate ever-expanding, three-dimensional epithelial structures in culture that closely parallel the in vivo epithelium of the intestine. Growing such organotypic epithelium ex vivo facilitates a detailed description of endogenous niche factors or stem-cell characteristics, as they can be monitored in real time. Accordingly, this technology has already greatly contributed to our understanding of intestinal adult stem-cell renewal and differentiation. Transplanted organoids have also been proven to readily integrate into, and effect the long-term repair of, mouse colonic epithelia in vivo, establishing the organoid culture as a promising tool for adult stem cell/gene therapy. In another exciting development, novel genome-editing techniques have been successfully employed to functionally repair disease loci in cultured intestinal stem cells from human patients with a hereditary defect. It is anticipated that this technology will be instrumental in exploiting the regenerative medicine potential of human intestinal stem cells for treating human disorders in the intestinal tract and for creating near-physiological ex vivo models of human gastrointestinal disease.
Collapse
Affiliation(s)
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
723
|
Gracz AD, Magness ST. Defining hierarchies of stemness in the intestine: evidence from biomarkers and regulatory pathways. Am J Physiol Gastrointest Liver Physiol 2014; 307:G260-73. [PMID: 24924746 PMCID: PMC4121637 DOI: 10.1152/ajpgi.00066.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For decades, the rapid proliferation and well-defined cellular lineages of the small intestinal epithelium have driven an interest in the biology of the intestinal stem cells (ISCs) and progenitors that produce the functional cells of the epithelium. Recent and significant advances in ISC biomarker discovery have established the small intestinal epithelium as a powerful model system for studying general paradigms in somatic stem cell biology and facilitated elegant genetic and functional studies of stemness in the intestine. However, this newfound wealth of ISC biomarkers raises important questions of marker specificity. Furthermore, the ISC field must now begin to reconcile biomarker status with functional stemness, a challenge that is made more complex by emerging evidence that cellular hierarchies in the intestinal epithelium are more plastic than previously imagined, with some progenitor populations capable of dedifferentiating and functioning as ISCs following damage. In this review, we discuss the state of the ISC field in terms of biomarkers, tissue dynamics, and cellular hierarchies, and how these processes might be informed by earlier studies into signaling networks in the small intestine.
Collapse
Affiliation(s)
- A. D. Gracz
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; ,2Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - S. T. Magness
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; ,2Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and ,3Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
724
|
Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 2014; 20:857-69. [PMID: 25100531 DOI: 10.1038/nm.3653] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
Chronic diseases confer tissue and organ damage that reduce quality of life and are largely refractory to therapy. Although stem cells hold promise for treating degenerative diseases by 'seeding' injured tissues, the regenerative capacity of stem cells is influenced by regulatory networks orchestrated by local immune responses to tissue damage, with macrophages being a central component of the injury response and coordinator of tissue repair. Recent research has turned to how cellular and signaling components of the local stromal microenvironment (the 'soil' to the stem cells' seed), such as local inflammatory reactions, contribute to successful tissue regeneration. This Review discusses the basic principles of tissue regeneration and the central role locally acting components may play in the process. Application of seed-and-soil concepts to regenerative medicine strengthens prospects for developing cell-based therapies or for promotion of endogenous repair.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Nadia Rosenthal
- 1] National Heart and Lung Institute, Imperial College London, London, UK. [2] Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
725
|
Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 2014; 32:795-803. [PMID: 25093887 PMCID: PMC4422171 DOI: 10.1038/nbt.2978] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/06/2014] [Indexed: 02/06/2023]
Abstract
The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell-extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell-niche interactions.
Collapse
Affiliation(s)
- Steven W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - David A Williams
- 1] Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| |
Collapse
|
726
|
Kim YM, Kahn M. The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development. ACTA ACUST UNITED AC 2014; 4:1-12. [PMID: 26566491 PMCID: PMC4640466 DOI: 10.2147/rrbc.s53823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor initiating cells are now considered to be the root cause of most if not all cancers, evading treatment and giving rise to disease relapse. They have become a central focus in new drug development. Prospective identification, understanding the key pathways that maintain CSCs, and being able to target CSCs, particularly if the normal stem cell population could be spared, could offer an incredible therapeutic advantage. The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic maintenance of tissues and organs through their respective somatic stem cells and in the CSC/tumor initiating cell population. Aberrant Wnt signaling is associated with a wide array of tumor types. Therefore, the ability to safely target the Wnt signaling pathway offers enormous promise to target CSCs. However, just like the sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis remain ever present. With this in mind, we review recent efforts in modulating the Wnt signaling cascade and critically analyze therapeutic approaches at various stages of development.
Collapse
Affiliation(s)
- Yong-Mi Kim
- Children's Hospital Los Angeles, Division of Hematology and Oncology, Department of Pediatrics and Pathology, Los Angeles, CA, USA
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA ; Norris Comprehensive Cancer Research Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
727
|
Godwin J. The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays 2014; 36:861-71. [DOI: 10.1002/bies.201300144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Godwin
- The Australian Regenerative Medicine Institute (ARMI); Monash University; Clayton Victoria Australia
| |
Collapse
|
728
|
Cordero JB, Ridgway RA, Valeri N, Nixon C, Frame MC, Muller WJ, Vidal M, Sansom OJ. c-Src drives intestinal regeneration and transformation. EMBO J 2014; 33:1474-91. [PMID: 24788409 PMCID: PMC4194090 DOI: 10.1002/embj.201387454] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022] Open
Abstract
The non-receptor tyrosine kinase c-Src, hereafter referred to as Src, is overexpressed or activated in multiple human malignancies. There has been much speculation about the functional role of Src in colorectal cancer (CRC), with Src amplification and potential activating mutations in up to 20% of the human tumours, although this has never been addressed due to multiple redundant family members. Here, we have used the adult Drosophila and mouse intestinal epithelium as paradigms to define a role for Src during tissue homeostasis, damage-induced regeneration and hyperplasia. Through genetic gain and loss of function experiments, we demonstrate that Src is necessary and sufficient to drive intestinal stem cell (ISC) proliferation during tissue self-renewal, regeneration and tumourigenesis. Surprisingly, Src plays a non-redundant role in the mouse intestine, which cannot be substituted by the other family kinases Fyn and Yes. Mechanistically, we show that Src drives ISC proliferation through upregulation of EGFR and activation of Ras/MAPK and Stat3 signalling. Therefore, we demonstrate a novel essential role for Src in intestinal stem/progenitor cell proliferation and tumourigenesis initiation in vivo.
Collapse
Affiliation(s)
- Julia B Cordero
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| | | | | | - Colin Nixon
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| | - Margaret C Frame
- Edinburgh Cancer Research Centre Institute of Genetics & Molecular Medicine University of Edinburgh, Edinburgh, UK
| | - William J Muller
- Goodman Cancer Research Center McGill University, Montreal, QC, Canada
| | - Marcos Vidal
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Bearsden Glasgow, UK
| |
Collapse
|
729
|
Abstract
Intestinal stem cells (ISCs) and colorectal cancer (CRC) biology are tightly linked in many aspects. It is generally thought that ISCs are the cells of origin for a large proportion of CRCs and crucial ISC-associated signalling pathways are often affected in CRCs. Moreover, CRCs are thought to retain a cellular hierarchy that is reminiscent of the intestinal epithelium. Recent studies offer quantitative insights into the dynamics of ISC behaviour that govern homeostasis and thereby provide the necessary baseline parameters to begin to apply these analyses during the various stages of tumour development.
Collapse
Affiliation(s)
- Louis Vermeulen
- 1] Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. [2] Cancer Research UK - Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK
| | - Hugo J Snippert
- Molecular Cancer Research and Cancer Genomics Netherlands, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
730
|
Schuijers J, van der Flier LG, van Es J, Clevers H. Robust cre-mediated recombination in small intestinal stem cells utilizing the olfm4 locus. Stem Cell Reports 2014; 3:234-41. [PMID: 25254337 PMCID: PMC4175542 DOI: 10.1016/j.stemcr.2014.05.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023] Open
Abstract
The epithelium of the small intestine is the most rapidly self-renewing tissue in mammals. We previously demonstrated the existence of a long-lived pool of cycling stem cells defined by Lgr5 expression at the bottom of intestinal crypts. An Lgr5-eGFP-IRES-CreERT2 knockin allele has been instrumental in characterizing and profiling these cells, yet its low level expression and its silencing in patches of adjacent crypts have not allowed quantitative gene deletion. Olfactomedin-4 (Olfm4) has emerged from a gene signature of Lgr5 stem cells as a robust marker for murine small intestinal stem cells. We observe that Olfm4(null) animals show no phenotype and report the generation of an Olfm4-IRES-eGFPCreERT2 knockin mouse model that allows visualization and genetic manipulation of Lgr5+ stem cells in the epithelium of the small intestine. The eGFPCreERT2 fusion protein faithfully marks all stem cells in the small intestine and induces the activation of a conditional LacZ reporter with robust efficiency.
Collapse
Affiliation(s)
- Jurian Schuijers
- Hubrecht Institute for Developmental Biology and Stem Cells, University Medical Centre Utrecht, University of Utrecht, Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Laurens G van der Flier
- Hubrecht Institute for Developmental Biology and Stem Cells, University Medical Centre Utrecht, University of Utrecht, Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Johan van Es
- Hubrecht Institute for Developmental Biology and Stem Cells, University Medical Centre Utrecht, University of Utrecht, Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cells, University Medical Centre Utrecht, University of Utrecht, Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
731
|
De Mey JR, Freund JN. Understanding epithelial homeostasis in the intestine: An old battlefield of ideas, recent breakthroughs and remaining controversies. Tissue Barriers 2014; 1:e24965. [PMID: 24665395 PMCID: PMC3879175 DOI: 10.4161/tisb.24965] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium constitutes the barrier between the gut lumen and the rest of the body and a very actively renewing cell population. The crypt/villus and crypt/cuff units of the mouse small intestine and colon are its basic functional units. The field is confronted with competing concepts with regard to the nature of the cells that are responsible for all the day-to day cell replacement and those that act to regenerate the tissue upon injury and with two diametrically opposed models for lineage specification. The review revisits groundbreaking pioneering studies to provide non expert readers and crypt watchers with a factual analysis of the origins of the current models deduced from the latest spectacular advances. It also discusses recent progress made by addressing these issues in the crypts of the colon, which need to be better understood, since they are the preferred sites of major pathologies.
Collapse
Affiliation(s)
- Jan R De Mey
- CNRS, UMR 7213; Laboratoire de Biophotonique et Pharmacologie; Illkirch, France ; Université de Strasbourg; Strasbourg, France
| | - Jean-Noël Freund
- Université de Strasbourg; Strasbourg, France ; INSERM_U113; Strasbourg, France ; Fédération de Médecine Translationnelle; Strasbourg, France
| |
Collapse
|
732
|
Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 2014; 344:1242281. [PMID: 24926024 DOI: 10.1126/science.1242281] [Citation(s) in RCA: 431] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tissues rely upon stem cells for homeostasis and repair. Recent studies show that the fate and multilineage potential of epithelial stem cells can change depending on whether a stem cell exists within its resident niche and responds to normal tissue homeostasis, whether it is mobilized to repair a wound, or whether it is taken from its niche and challenged to de novo tissue morphogenesis after transplantation. In this Review, we discuss how different populations of naturally lineage-restricted stem cells and committed progenitors can display remarkable plasticity and reversibility and reacquire long-term self-renewing capacities and multilineage differentiation potential during physiological and regenerative conditions. We also discuss the implications of cellular plasticity for regenerative medicine and for cancer.
Collapse
Affiliation(s)
- Cédric Blanpain
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels B-1070, Belgium. Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université Libre de Bruxelles (ULB), Brussels B-1070, Belgium.
| | - Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
733
|
Maria Cambuli F, Rezza A, Nadjar J, Plateroti M. Brief report: musashi1-eGFP mice, a new tool for differential isolation of the intestinal stem cell populations. Stem Cells 2014; 31:2273-8. [PMID: 23712573 DOI: 10.1002/stem.1428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/24/2013] [Accepted: 04/21/2013] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium self-renews rapidly and continuously throughout life, due to the presence of crypt stem cells. Two pools of these cells have been identified in the small intestine, which differ in position ("+4" or the bottom of the crypts), expression of specific markers (Bmi1/mTert or Lgr5/Ascl2), and cell cycle characteristics. Interestingly, the RNA-binding protein Musashi1 is expressed in both populations and therefore a potential marker for both stem cell types. In order to locate, isolate, and study Musashi1-expressing cells within the intestinal epithelium, we generated transgenic mice expressing GFP fluorescent protein under the control of a 7-kb Msi1 promoter. The expression pattern of GFP in the intestinal crypts of both small and large intestines completely overlapped that of Musashi1, validating our model. By using fluorescence-activated cell sorting, cellular, and molecular analyses, we showed that GFP-positive Msi1-expressing cells are divided into two major pools corresponding to the Lgr5- and mTert-expressing stem cells. Interestingly, monitoring the cell cycle activity of the two sorted populations reveals that they are both actively cycling, although differences in cell cycle length were confirmed. Altogether, our new reporter mouse model based upon Musashi1 expression is a useful tool to isolate and study stem cells of the intestinal epithelium. Moreover, these mice uniquely enable the concomitant study of two pools of intestinal stem cells within the same animal model.
Collapse
Affiliation(s)
- Francesca Maria Cambuli
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard, Lyon 1, France
| | | | | | | |
Collapse
|
734
|
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets. Sci Rep 2014; 4:5199. [PMID: 24903657 PMCID: PMC4047531 DOI: 10.1038/srep05199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/16/2014] [Indexed: 01/23/2023] Open
Abstract
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Collapse
|
735
|
Fujii M, Sato T. Culturing intestinal stem cells: applications for colorectal cancer research. Front Genet 2014; 5:169. [PMID: 24926316 PMCID: PMC4046163 DOI: 10.3389/fgene.2014.00169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 12/18/2022] Open
Abstract
Recent advance of sequencing technology has revealed genetic alterations in colorectal cancer (CRC). The biological function of recurrently mutated genes has been intensively investigated through mouse genetic models and CRC cell lines. Although these experimental models may not fully reflect biological traits of human intestinal epithelium, they provided insights into the understanding of intestinal stem cell self-renewal, leading to the development of novel human intestinal organoid culture system. Intestinal organoid culture enabled to expand normal or tumor epithelial cells in vitro retaining their stem cell self-renewal and multiple differentiation. Gene manipulation of these cultured cells may provide an attractive tool for investigating genetic events involved in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Gastroenterology, School of Medicine, Keio University Tokyo, Japan
| | - Toshiro Sato
- Department of Gastroenterology, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
736
|
Sánchez Alvarado A, Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 2014; 157:110-9. [PMID: 24679530 DOI: 10.1016/j.cell.2014.02.041] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/30/2022]
Abstract
Cell differentiation is an essential process for the development, growth, reproduction, and longevity of all multicellular organisms, and its regulation has been the focus of intense investigation for the past four decades. The study of natural and induced stem cells has ushered an age of re-examination of what it means to be a stem or a differentiated cell. Past and recent discoveries in plants and animals, as well as novel experimental manipulations, are beginning to erode many of these established concepts and are forcing a re-evaluation of the experimental systems and paradigms presently being used to explore these and other biological process.
Collapse
Affiliation(s)
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| |
Collapse
|
737
|
Chivukula RR, Shi G, Acharya A, Mills EW, Zeitels LR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Maitra A, Mendell JT. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 2014; 157:1104-16. [PMID: 24855947 PMCID: PMC4175516 DOI: 10.1016/j.cell.2014.03.055] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/24/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
Abstract
Downregulation of the miR-143/145 microRNA (miRNA) cluster has been repeatedly reported in colon cancer and other epithelial tumors. In addition, overexpression of these miRNAs inhibits tumorigenesis, leading to broad consensus that they function as cell-autonomous epithelial tumor suppressors. We generated mice with deletion of miR-143/145 to investigate the functions of these miRNAs in intestinal physiology and disease in vivo. Although intestinal development proceeded normally in the absence of these miRNAs, epithelial regeneration after injury was dramatically impaired. Surprisingly, we found that miR-143/145 are expressed and function exclusively within the mesenchymal compartment of intestine. Defective epithelial regeneration in miR-143/145-deficient mice resulted from the dysfunction of smooth muscle and myofibroblasts and was associated with derepression of the miR-143 target Igfbp5, which impaired IGF signaling after epithelial injury. These results provide important insights into the regulation of epithelial wound healing and argue against a cell-autonomous tumor suppressor role for miR-143/145 in colon cancer.
Collapse
Affiliation(s)
- Raghu R Chivukula
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guanglu Shi
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric W Mills
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren R Zeitels
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joselin L Anandam
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abier A Abdelnaby
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Glen C Balch
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John C Mansour
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam C Yopp
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anirban Maitra
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
738
|
Abstract
The intestinal epithelium is permanently renewed during homoeostasis. Stable function of its stem cells is ensured by interaction with a specific tissue compartment, the so-called ‘intestinal stem cell niche’. The essential regulatory principles of this niche are still under debate. In order to approach this question, we have introduced several single cell-based models of the spatiotemporal stem cell organization in murine intestinal crypts and organoids. In the present article, we provide a brief review of these models. Starting with pedigree models reproducing cell kinetics, over the last few years, we have successively improved these models by refining the biomechanical representation of the system and introducing environmentally controlled lineage specification. Our current models of the intestinal crypt are capable of linking a broad spectrum of experimental observations encompassing spatially confined cell proliferation, directed cell migration, multiple cell lineage decisions and clonal competition. Our model of intestinal organoids provides for the first time a description of a self-organizing intestinal stem cell niche. It suggests that this niche is established by secretory activity of specified cells and in addition requires a defined spatial organization, which sensitively depends on tissue biomechanics.
Collapse
|
739
|
Honing J, Pavlov KV, Meijer C, Smit JK, Boersma-van Ek W, Karrenbeld A, Burgerhof JGM, Kruyt FAE, Plukker JTM. Loss of CD44 and SOX2 Expression is Correlated with a Poor Prognosis in Esophageal Adenocarcinoma Patients. Ann Surg Oncol 2014; 21 Suppl 4:S657-64. [DOI: 10.1245/s10434-014-3763-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 12/13/2022]
|
740
|
Gracz AD, Fuller MK, Wang F, Li L, Stelzner M, Dunn JCY, Martin MG, Magness ST. Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells 2014; 31:2024-30. [PMID: 23553902 DOI: 10.1002/stem.1391] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 02/24/2013] [Indexed: 12/27/2022]
Abstract
Recent seminal studies have rapidly advanced the understanding of intestinal epithelial stem cell (IESC) biology in murine models. However, the lack of techniques suitable for isolation and subsequent downstream analysis of IESCs from human tissue has hindered the application of these findings toward the development of novel diagnostics and therapies with direct clinical relevance. This study demonstrates that the cluster of differentiation genes CD24 and CD44 are differentially expressed across LGR5 positive "active" stem cells as well as HOPX positive "facultative" stem cells. Fluorescence-activated cell sorting enables differential enrichment of LGR5 (CD24-/CD44+) and HOPX (CD24+/CD44+) cells for gene expression analysis and culture. These findings provide the fundamental methodology and basic cell surface signature necessary for isolating and studying intestinal stem cell populations in human physiology and disease.
Collapse
Affiliation(s)
- Adam D Gracz
- Department of Medicine Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
741
|
Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells 2014; 31:992-1000. [PMID: 23377989 DOI: 10.1002/stem.1338] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/21/2012] [Indexed: 12/31/2022]
Abstract
Until recently, reliable markers for adult stem cells have been lacking for many regenerative mammalian tissues. Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5) has been identified as a marker for adult stem cells in intestine, stomach, and hair follicle; Lgr5-expressing cells give rise to all types of cells in these tissues. Taste epithelium also regenerates constantly, yet the identity of adult taste stem cells remains elusive. In this study, we found that Lgr5 is strongly expressed in cells at the bottom of trench areas at the base of circumvallate (CV) and foliate taste papillae and weakly expressed in the basal area of taste buds and that Lgr5-expressing cells in posterior tongue are a subset of K14-positive epithelial cells. Lineage-tracing experiments using an inducible Cre knockin allele in combination with Rosa26-LacZ and Rosa26-tdTomato reporter strains showed that Lgr5-expressing cells gave rise to taste cells, perigemmal cells, along with self-renewing cells at the bottom of trench areas at the base of CV and foliate papillae. Moreover, using subtype-specific taste markers, we found that Lgr5-expressing cell progeny include all three major types of adult taste cells. Our results indicate that Lgr5 may mark adult taste stem or progenitor cells in the posterior portion of the tongue.
Collapse
Affiliation(s)
- Karen K Yee
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
742
|
Piscaglia AC. Intestinal stem cells and celiac disease. World J Stem Cells 2014; 6:213-229. [PMID: 24772248 PMCID: PMC3999779 DOI: 10.4252/wjsc.v6.i2.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/07/2014] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cells (SCs) are the key to tissue genesis and regeneration. Given their central role in homeostasis, dysfunctions of the SC compartment play a pivotal role in the development of cancers, degenerative disorders, chronic inflammatory pathologies and organ failure. The gastrointestinal tract is constantly exposed to harsh mechanical and chemical conditions and most of the epithelial cells are replaced every 3 to 5 d. According to the so-called Unitarian hypothesis, this renewal is driven by a common intestinal stem cell (ISC) residing within the crypt base at the origin of the crypt-to-villus hierarchical migratory pattern. Celiac disease (CD) can be defined as a chronic immune-mediated disease that is triggered and maintained by dietary proteins (gluten) in genetically predisposed individuals. Many advances have been achieved over the last years in understanding of the pathogenic interactions among genetic, immunological and environmental factors in CD, with a particular emphasis on intestinal barrier and gut microbiota. Conversely, little is known about ISC modulation and deregulation in active celiac disease and upon a gluten-free diet. Nonetheless, bone marrow-derived SC transplantation has become an option for celiac patients with complicated or refractory disease. This manuscript summarizes the “state of the art” regarding CD and ISCs, their niche and potential role in the development and treatment of the disease.
Collapse
|
743
|
Makarev E, Gorivodsky M. Islet1 and its co-factor Ldb1 are expressed in quiescent cells of mouse intestinal epithelium. PLoS One 2014; 9:e95256. [PMID: 24755910 PMCID: PMC3995853 DOI: 10.1371/journal.pone.0095256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 03/26/2014] [Indexed: 01/06/2023] Open
Abstract
Islet1 belongs to Lim homeobox (Lhx) gene family which encodes transcription factors that have been conserved in evolution. They form complexes with other transcriptional regulators, among them obligatory co-factors encoded by Ldb genes. Isl1 (Islet1), Lhx and Ldb1 genes play a crucial role in organ patterning, cell fate determination and cell differentiation in both embryonic and adult tissues. In this study we analyzed expression pattern of Isl1 and its co-factor Ldb1 in small intestine. We also studied the biological role of Ldb1 in gut endoderm. Quantitative PCR analysis revealed a relatively high level of expression of Lhx1, Isl1, Isl2, Lmx1a, Ldb1 and Ldb2 mRNAs in the gut tissue as compared to the level of less abundant detectable Lmx1b mRNA. Immunohistochemical studies demonstrated a unique pattern of Ldb1 and Islet1 proteins in the crypt compartment. Ldb1 is produced at a low level in majority of crypt cells; but, its abundant expression was demonstrated for some single cells. Islet1 is also expressed in single cells of the crypt. Double staining experiments with Ldb1 and Isl1 antibodies showed that both genes are co-expressed in certain cells of the crypt. Further analysis revealed the Ldb1-expressing cells in the gut are both of endodermal and mesodermal origin. Proliferation studies using antibodies to phospho-histone H3 and Ki-67 antigens, as well as long-term BrdU labeling, showed that cells prominently expressing Ldb1/Islet1 are quiescent but do not belong to any known terminally differentiated cell lineages. They may represent a group of stem-like cells in the crypt. Further experiments by cell lineage tracing should be performed to better characterize this cell population. Functional studies of mice with Ldb1 gene ablated in gut endoderm revealed no specific role of Ldb1 in that tissue.
Collapse
Affiliation(s)
- Evgeny Makarev
- Section on Mammalian Molecular Genetics, Laboratory of Mammalian Genes and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Marat Gorivodsky
- Section on Mammalian Molecular Genetics, Laboratory of Mammalian Genes and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
744
|
Mathonnet M, Perraud A, Christou N, Akil H, Melin C, Battu S, Jauberteau MO, Denizot Y. Hallmarks in colorectal cancer: Angiogenesis and cancer stem-like cells. World J Gastroenterol 2014; 20:4189-4196. [PMID: 24764657 PMCID: PMC3989955 DOI: 10.3748/wjg.v20.i15.4189] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/26/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
Carcinogenesis is a multistep process that requires the accumulation of various genetic and epigenetic aberrations to drive the progressive malignant transformation of normal human cells. Two major hallmarks of carcinogenesis that have been described are angiogenesis and the stem cell characteristic of limitless replicative potential. These properties have been targeted over the past decade in the development of therapeutic treatments for colorectal cancer (CRC), one of the most commonly diagnosed and lethal cancers worldwide. The treatment of solid tumor cancers such as CRC has been challenging due to the heterogeneity of the tumor itself and the chemoresistance of the malignant cells. Furthermore, the same microenvironment that maintains the pool of intestinal stem cells that contribute to the continuous renewal of the intestinal epithelia also provides the necessary conditions for proliferative growth of cancer stem-like cells. These cancer stem-like cells are responsible for the resistance to therapy and cancer recurrence, though they represent less than 2.5% of the tumor mass. The stromal environment surrounding the tumor cells, referred to as the tumor niche, also supports angiogenesis, which supplies the oxygen and nutrients needed for tumor development. Anti-angiogenic therapy, such as with bevacizumab, a monoclonal antibody against vascular-endothelial growth factor, significantly prolongs the survival of metastatic CRC patients. However, such treatments are not completely curative, and a large proportion of patient tumors retain chemoresistance or show recurrence. This article reviews the current knowledge regarding the molecular phenotype of CRC cancer cells, as well as discusses the mechanisms contributing to their maintenance. Future personalized therapeutic approaches that are based on the interaction of the carcinogenic hallmarks, namely angiogenic and proliferative attributes, could improve survival and decrease adverse effects induced by unnecessary chemotherapy.
Collapse
|
745
|
Modeling colorectal cancer as a 3-dimensional disease in a dish: the case for drug screening using organoids, zebrafish, and fruit flies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e73-81. [PMID: 24050233 DOI: 10.1016/j.ddtec.2012.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review discusses recent shifts in the understanding of colorectal cancer as a stem cell based disease, based on findings that tie patient prognosis to the presence of cancer stem cells in colorectal tumors. Currently no drugs specifically target CSCs in colorectal tumors. However, recent advances in the culturing of colorectal stem cells using mammalian organoids, zebrafish, and Drosophila offer promising avenues for anti-CSC drug discovery.
Collapse
|
746
|
Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K, Blutt SE, Hyser JM, Zeng XL, Crawford SE, Broughman JR, Estes MK, Donowitz M. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood) 2014; 239:1124-34. [PMID: 24719375 DOI: 10.1177/1535370214529398] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Currently, 9 out of 10 experimental drugs fail in clinical studies. This has caused a 40% plunge in the number of drugs approved by the US Food and Drug Administration (FDA) since 2005. It has been suggested that the mechanistic differences between human diseases modeled in animals (mostly rodents) and the pathophysiology of human diseases might be one of the critical factors that contribute to drug failure in clinical trials. Rapid progress in the field of human stem cell technology has allowed the in-vitro recreation of human tissue that should complement and expand upon the limitations of cell and animal models currently used to study human diseases and drug toxicity. Recent success in the identification and isolation of human intestinal epithelial stem cells (Lgr5(+)) from the small intestine and colon has led to culture of functional intestinal epithelial units termed organoids or enteroids. Intestinal enteroids are comprised of all four types of normal epithelial cells and develop a crypt-villus differentiation axis. They demonstrate major intestinal physiologic functions, including Na(+) absorption and Cl(-) secretion. This review discusses the recent progress in establishing human enteroids as a model of infectious diarrheal diseases such as cholera, rotavirus, and enterohemorrhagic Escherichia coli, and use of the enteroids to determine ways to correct the diarrhea-induced ion transport abnormalities via drug therapy.
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Broughman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
747
|
Guezguez A, Paré F, Benoit YD, Basora N, Beaulieu JF. Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway. Exp Cell Res 2014; 322:355-364. [PMID: 24534551 DOI: 10.1016/j.yexcr.2014.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
Abstract
The small intestine consists of two histological compartments composed of the crypts and the villi. The function of the adult small intestinal epithelium is mediated by four different types of mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the crypts and produce these four types of mature cells. The niche-related Wnt and Bmp signaling pathways have been suggested to be involved in the regulation and maintenance of the stem cell microenvironment. In our laboratory, we isolated the first normal human intestinal epithelial crypt (HIEC) cell model from the human fetal intestine and in this study we investigated the expression of a panel of intestinal stem cell markers in HIEC cells under normal culture parameters as well as under conditions that mimic the stem cell microenvironment. The results showed that short term stimulation of HIEC cells with R-spondin 1 and Wnt-3a±SB-216763, a glycogen synthase kinase 3β (GSK3β) inhibitor, induced β-catenin/TCF activity and expression of the WNT target genes, cyclin D2 and LGR5. Treatment of HIEC cells with noggin, an antagonist of BMP signaling, abolished SMAD2/5/8 phosphorylation. Inducing a switch from inactive WNT/active BMP toward active WNT/inactive BMP pathways was sufficient to trigger a robust intestinal primordial stem-like cell signature with predominant LGR5, PHLDA1, PROM1, SMOC2 and OLFM4 expression. These findings demonstrate that even fully established cultures of intestinal cells can be prompted toward a CBC stem cell-like phenotype. This model should be useful for studying the regulation of human intestinal stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Amel Guezguez
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Fréderic Paré
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Yannick D Benoit
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Nuria Basora
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| |
Collapse
|
748
|
Nakata S, Phillips E, Goidts V. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells. Cancer Manag Res 2014; 6:171-80. [PMID: 24711713 PMCID: PMC3969255 DOI: 10.2147/cmar.s57846] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The concept of cancer stem cells has gained considerable interest in the last few decades, partly because of their potential implication in therapy resistance. However, the lack of specific cellular surface markers for these cells has impeded their isolation, making the characterization of this cellular subpopulation technically challenging. Recent studies have indicated that leucine-rich repeat-containing G-protein-coupled receptor 4 and 5 (LGR4 and LGR5) expression in multiple organs may represent a global marker of adult stem cells. This review aims to give an overview of LGR4 and LGR5 as cancer stem cell markers and their function in development.
Collapse
Affiliation(s)
- Susumu Nakata
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Emma Phillips
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Violaine Goidts
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
749
|
Nakaya T, Ogawa S, Manabe I, Tanaka M, Sanada M, Sato T, Taketo MM, Nakao K, Clevers H, Fukayama M, Kuroda M, Nagai R. KLF5 regulates the integrity and oncogenicity of intestinal stem cells. Cancer Res 2014; 74:2882-91. [PMID: 24626089 DOI: 10.1158/0008-5472.can-13-2574] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intestinal epithelium maintains homeostasis by a self-renewal process involving resident stem cells, including Lgr5(+) crypt-base columnar cells, but core mechanisms and their contributions to intestinal cancer are not fully defined. In this study, we examined a hypothesized role for KLF5, a zinc-finger transcription factor that is critical to maintain the integrity of embryonic and induced pluripotent stem cells, in intestinal stem-cell integrity and cancer in the mouse. Klf5 was indispensable for the integrity and oncogenic transformation of intestinal stem cells. In mice, inducible deletion of Klf5 in Lgr5(+) stem cells suppressed their proliferation and survival in a manner associated with nuclear localization of β-catenin (Catnb), generating abnormal apoptotic cells in intestinal crypts. Moreover, production of lethal adenomas and carcinomas by specific expression of an oncogenic mutant of β-catenin in Lgr5(+) stem cells was suppressed completely by Klf5 deletion in the same cells. Given that activation of the Wnt/β-catenin pathway is the most frequently altered pathway in human colorectal cancer, our results argue that KLF5 acts as a fundamental core regulator of intestinal oncogenesis at the stem-cell level, and they suggest KLF5 targeting as a rational strategy to eradicate stem-like cells in colorectal cancer.
Collapse
Affiliation(s)
- Takeo Nakaya
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the NetherlandsAuthors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the NetherlandsAuthors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke
| | - Seishi Ogawa
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Ichiro Manabe
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Masami Tanaka
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the NetherlandsAuthors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Masashi Sanada
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Toshiro Sato
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Makoto M Taketo
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Kazuki Nakao
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the NetherlandsAuthors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Hans Clevers
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Masashi Fukayama
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Masahiko Kuroda
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| | - Ryozo Nagai
- Authors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the NetherlandsAuthors' Affiliations: Department of Molecular Pathology and Translational Research Unit, Tokyo Medical University; Cancer Genomics Project; Departments of Pathology, and Cardiovascular Medicine; Animal Resources, Graduate School of Medicine, University of Tokyo; Honeybee Science Research Center, Tamagawa University; Department of Gastroenterology, School of Medicine, Keio University, Tokyo; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe; Jichi Medical University, Shimotsuke, Tochigi, Japan; and Hubrecht Institute and KNAW, Utrecht, the Netherlands
| |
Collapse
|
750
|
Januschke J, Näthke I. Stem cell decisions: a twist of fate or a niche market? Semin Cell Dev Biol 2014; 34:116-23. [PMID: 24613913 PMCID: PMC4169664 DOI: 10.1016/j.semcdb.2014.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/28/2022]
Abstract
Extrinsic and intrinsic cues that impact on stem cell biology. The importance to establish methods that allow to compare spindle orientation measurements. Mechanisms of centrosome segregation in asymmetrically dividing cells.
Establishing and maintaining cell fate in the right place at the right time is a key requirement for normal tissue maintenance. Stem cells are at the core of this process. Understanding how stem cells balance self-renewal and production of differentiating cells is key for understanding the defects that underpin many diseases. Both, external cues from the environment and cell intrinsic mechanisms can control the outcome of stem cell division. The role of the orientation of stem cell division has emerged as an important mechanism for specifying cell fate decisions. Although, the alignment of cell divisions can dependent on spatial cues from the environment, maintaining stemness is not always linked to positioning of stem cells in a particular microenvironment or `niche'. Alternate mechanisms that could contribute to cellular memory include differential segregation of centrosomes in asymmetrically dividing cells.
Collapse
Affiliation(s)
- Jens Januschke
- Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Inke Näthke
- Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|