701
|
Van Gassen G, Annaert W, Van Broeckhoven C. Binding partners of Alzheimer's disease proteins: are they physiologically relevant? Neurobiol Dis 2000; 7:135-51. [PMID: 10860781 DOI: 10.1006/nbdi.2000.0306] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein-protein interactions are a molecular basis for the structural and functional organization within cells. They are mediated by a growing number of protein modules that bind peptide targets. Alterations in binding affinities can have serious consequences for some essential cellular processes. The three proteins identified to have mutations in their corresponding genes leading to presenile Alzheimer dementia (AD)-the amyloid precursor protein (APP) and presenilin 1 and 2-all interact with other proteins. The nature and function of these interacting proteins may contribute to elucidating the proper physiological functions of the AD proteins. APP-interacting proteins are pointing toward a function of APP in cell adhesion and neurite outgrowth and signaling. Proteins interacting with the presenilins however are more diverse in nature linking presenilin function to regulation in different signaling pathways including Wnt and Notch but also in apoptosis and Ca(2+) homeostasis. Further research however is still needed to delineate the exact functional relevance of these interactions with respect to the physiological functions of the AD proteins in particular and the contribution of these proteins to AD pathogenesis in general.
Collapse
Affiliation(s)
- G Van Gassen
- Molecular Genetics Laboratory, University of Antwerp (UIA), Antwerpen, Belgium
| | | | | |
Collapse
|
702
|
McMillan PJ, Leverenz JB, Dorsa DM. Specific downregulation of presenilin 2 gene expression is prominent during early stages of sporadic late-onset Alzheimer's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 78:138-45. [PMID: 10891593 DOI: 10.1016/s0169-328x(00)00086-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations in the presenilin genes PS1 and PS2 cause familial Alzheimer's disease (AD). In a previous study, we reported that PS2 mRNA levels are decreased in the hippocampus, frontal cortex and basal forebrain of subjects with late-onset sporadic AD. In this study, we examined whether this downregulation occurs as the disease progresses from mild to severe stages or whether downregulation of PS2 expression is an early event in AD. We used in situ hybridization histochemistry to quantify the level of expression of PS2 message in the hippocampus of normal subjects and subjects with mild, moderate or severe AD. Several regions of the hippocampus which are sequentially susceptible to AD neuropathology as the disease progresses in severity were analyzed. We demonstrate that specific downregulation of PS2 expression is as severe in subjects with mild AD as it is in subjects in late stages of the disease. In addition, we show that hippocampal regions that are relatively free of AD neuropathology during early stages of the disease exhibit severely compromised PS2 mRNA levels even in mild AD cases. In contrast, PS2 is expressed at normal levels in the cerebellum, a region which succumbs to significantly fewer AD-related insults even at very advanced stages of the disease. These results suggest that the specific downregulation of PS2 gene expression is an early event in sporadic late-onset AD.
Collapse
Affiliation(s)
- P J McMillan
- Department of Psychiatry and Behavioral Sciences, Box 356560, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
703
|
Kulic L, Walter J, Multhaup G, Teplow DB, Baumeister R, Romig H, Capell A, Steiner H, Haass C. Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch. Proc Natl Acad Sci U S A 2000; 97:5913-8. [PMID: 10811883 PMCID: PMC18533 DOI: 10.1073/pnas.100049897] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the genetically inherited Alzheimer's disease cases are caused by mutations in the presenilin genes, PS1 and PS2. PS mutations result in the enhanced production of the highly amyloidogenic 42/43 amino acid variant of amyloid beta-peptide (Abeta). We have introduced arbitrary mutations at position 286 of PS1, where a naturally occurring PS1 mutation has been described (L286V). Introduction of charged amino acids (L286E or L286R) resulted in an increase of Abeta42/43 production, which reached almost twice the level of the naturally occurring PS1 mutation. Although pathological Abeta production was increased, endoproteolysis of Notch and nuclear transport of its cytoplasmic domain was significantly inhibited. These results demonstrate that the biological function of PS proteins in the endoproteolysis of beta-amyloid precursor protein and Notch can be separated.
Collapse
Affiliation(s)
- L Kulic
- Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's Disease Research, Ludwig Maximilians University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
704
|
Huang X, Cuajungco MP, Atwood CS, Moir RD, Tanzi RE, Bush AI. Alzheimer's disease, beta-amyloid protein and zinc. J Nutr 2000; 130:1488S-92S. [PMID: 10801964 DOI: 10.1093/jn/130.5.1488s] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid deposits within the neocortical parenchyma and the cerebrovasculature. The main component of these predominantly extracellular collections, Abeta, which is normally a soluble component of all biological fluids, is cleaved out of a ubiquitously expressed parent protein, the amyloid protein precursor (APP), one of the type 1 integral membrane glycoproteins. Considerable evidence has indicated that there is zinc dyshomeostasis and abnormal cellular zinc mobilization in AD. We have characterized both APP and Abeta as copper/zinc metalloproteins. Zinc, copper and iron have recently been reported to be concentrated to 0.5 to 1 mmol/L in amyloid plaque. In vitro, rapid Abeta aggregation is mediated by Zn(II), promoted by the alpha-helical structure of Abeta, and is reversible with chelation. In addition, Abeta produces hydrogen peroxide in a Cu(II)/Fe(III)-dependent manner, and the hydrogen peroxide formation is quenched by Zn(II). Moreover, zinc preserves the nontoxic properties of Abeta. Although the zinc-binding proteins apolipoprotein E epsilon4 allele and alpha(2)-macroglobulin have been characterized as two genetic risk factors for AD, zinc exposure as a risk factor for AD has not been rigorously studied. Based on our findings, we envisage that zinc may serve twin roles by both initiating amyloid deposition and then being involved in mechanisms attempting to quench oxidative stress and neurotoxicity derived from the amyloid mass. Hence, it remains debatable whether zinc supplementation is beneficial or deleterious for AD until additional studies clarify the issue.
Collapse
Affiliation(s)
- X Huang
- Laboratory for Oxidation Biology, Genetics and Aging Unit, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Charleston, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
705
|
Nakagawa Y, Reed L, Nakamura M, McIntosh TK, Smith DH, Saatman KE, Raghupathi R, Clemens J, Saido TC, Lee VM, Trojanowski JQ. Brain trauma in aged transgenic mice induces regression of established abeta deposits. Exp Neurol 2000; 163:244-52. [PMID: 10785464 DOI: 10.1006/exnr.2000.7375] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) increases susceptibility to Alzheimer's disease (AD), but it is not known if TBI affects the progression of AD. To address this question, we studied the neuropathological consequences of TBI in transgenic (TG) mice with a mutant human Abeta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter resulting in overexpression of mutant APP (V717F), elevated brain Abeta levels, and AD-like amyloidosis. Since brain Abeta deposits first appear in 6-month-old TG (PDAPP) mice and accumulate with age, 2-year-old PDAPP and wild-type (WT) mice were subjected to controlled cortical impact (CCI) TBI or sham treatment. At 1, 9, and 16 weeks after TBI, neuron loss, gliosis, and atrophy were most prominent near the CCI site in PDAPP and WT mice. However, there also was a remarkable regression in the Abeta amyloid plaque burden in the hippocampus ipsilateral to TBI compared to the contralateral hippocampus of the PDAPP mice by 16 weeks postinjury. Thus, these data suggest that previously accumulated Abeta plaques resulting from progressive amyloidosis in the AD brain also may be reversible.
Collapse
Affiliation(s)
- Y Nakagawa
- The Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
706
|
Petanceska SS, Seeger M, Checler F, Gandy S. Mutant presenilin 1 increases the levels of Alzheimer amyloid beta-peptide Abeta42 in late compartments of the constitutive secretory pathway. J Neurochem 2000; 74:1878-84. [PMID: 10800930 DOI: 10.1046/j.1471-4159.2000.0741878.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the presenilin 1 (PS1) gene are associated with autosomal dominant, early-onset, familial Alzheimer's disease and result in increased release of the hyperaggregatable 42-amino acid form of the amyloid beta-peptide (A(beta)42). To determine which subcellular compartments are potential source(s) of released Abeta42, we compared the levels and spatial segregation of intracellular A(beta)40 and A(beta)42 peptides between N2a neuroblastoma cells doubly transfected with the "Swedish" familial Alzheimer's disease-linked amyloid precursor protein variant and either wild-type PS1 (PS1(wt)) or familial Alzheimer's disease-linked delta9 mutant PS1 (PS1delta9). As expected, PS1delta9-expressing cells had dramatically higher levels of intracellular Abeta42 than did cells expressing PS1wt. However, the highest levels of A(beta)42 colocalized not with endoplasmic reticulum or Golgi markers but with rab8, a marker for trans-Golgi network (TGN)-to-plasma membrane (PM) transport vesicles. We show that PS1 mutants are capable of causing accumulation of A(beta)42 in late compartments of the secretory pathway, generating there a readily releasable source of A(beta)42. Our findings indicate that PS1 "bioactivity" localizes to the vicinity of the TGN and/or PM and reconcile the apparent discrepancy between the preponderant concentration of PS1 protein in proximal compartments of the secretory pathway and the recent findings that PS1 "bioactivity" can control gamma-secretase-like processing of another transmembrane substrate, Notch, at or near the PM.
Collapse
Affiliation(s)
- S S Petanceska
- New York University at Nathan Kline Institute, Orangeburg 10962, USA
| | | | | | | |
Collapse
|
707
|
Sudoh S, Hua G, Kawamura Y, Maruyama K, Komano H, Yanagisawa K. Intracellular site of gamma-secretase cleavage for Abeta42 generation in neuro 2a cells harbouring a presenilin 1 mutation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2036-45. [PMID: 10727943 DOI: 10.1046/j.1432-1327.2000.01206.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we reported that mutations in presenilin 1 (PS1) increased the intracellular levels of amyloid beta-protein (Abeta)42. However, it is still not known at which cellular site or how PS1 mutations exert their effect of enhancing Abeta42-gamma-secretase cleavage. In this study, to clarify the molecular mechanisms underlying this enhancement of Abeta42-gamma-secretase cleavage, we focused on determining the intracellular site of the cleavage. To address this issue, we used APP-C100 encoding the C-terminal beta-amyloid precursor protein (APP) fragment truncated at the N terminus of Abeta (C100); C100 requires only gamma-secretase cleavage to yield Abeta. Mutated PS1 (M146L)-induced Neuro 2a cells showed enhanced Abeta1-42 generation from transiently expressed C100 as well as from full-length APP, whereas the generation of Abeta1-40 was not increased. The intracellular generation of Abeta1-42 from transiently expressed C100 in both mutated PS1-induced and wild-type Neuro 2a cells was inhibited by brefeldin A. Moreover, the generation of Abeta1-42 and Abeta1-40 from a C100 mutant containing a di-lysine endoplasmic reticulum retention signal was greatly decreased, indicating that the major intracellular site of gamma-secretase cleavage is not the endoplasmic reticulum. The intracellular generation of Abeta1-42/40 from C100 was not influenced by monensin treatment, and the level of Abeta1-42/40 generated from C100 carrying a sorting signal for the trans-Golgi network was higher than that generated from wild-type C100. These results using PS1-mutation-harbouring and wild-type Neuro 2a cells suggest that Abeta42/40-gamma-secretase cleavages occur in the Golgi compartment and the trans-Golgi network, and that the PS1 mutation does not alter the intracelluar site of Abeta42-gamma-secretase cleavage in the normal APP proteolytic processing pathway.
Collapse
Affiliation(s)
- S Sudoh
- Department of Dementia Research, National Institute for Longevity Sciences, Obu Aichi, Japan
| | | | | | | | | | | |
Collapse
|
708
|
Kim SH, Lah JJ, Thinakaran G, Levey A, Sisodia SS. Subcellular localization of presenilins: association with a unique membrane pool in cultured cells. Neurobiol Dis 2000; 7:99-117. [PMID: 10783294 DOI: 10.1006/nbdi.1999.0280] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the subcellular distribution of presenilin-1 (PS1) and presenilin-2 (PS2) in a variety of mammalian cell lines. In Iodixanol-based density gradients, PS1 derivatives show a biphasic distribution, cofractionating with membranes containing ER-resident proteins and an additional population of membranes with low buoyant density that do not contain markers of the Golgi complex, ERGIC, COP II vesicles, ER exit compartment, COP II receptor, Golgi SNARE, trans-Golgi network, caveolar membranes, or endocytic vesicles. Confocal immunofluorescence and immunoelectron microscopy studies fully supported the fractionation studies. These data suggest that PS1 fragments accumulate in a unique subcompartment(s) of the ER or ER to Golgi trafficking intermediates. Interestingly, the FAD-linked PS1 variants show a marked redistribution toward the heavier region of the gradient. Finally, and in contrast to PS1, PS2 fragments are detected preponderantly in more densely sedimenting membranes, suggesting that the subcellular compartments in which these molecules accumulate are distinct.
Collapse
Affiliation(s)
- S H Kim
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois, 60637, USA
| | | | | | | | | |
Collapse
|
709
|
Capell A, Steiner H, Romig H, Keck S, Baader M, Grim MG, Baumeister R, Haass C. Presenilin-1 differentially facilitates endoproteolysis of the beta-amyloid precursor protein and Notch. Nat Cell Biol 2000; 2:205-11. [PMID: 10783238 DOI: 10.1038/35008626] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the presenilin-1 (PS1) gene are associated with Alzheimer's disease and cause increased secretion of the neurotoxic amyloid-beta peptide (Abeta). Critical intramembraneous aspartates at residues 257 and 385 are required for the function of PS1 protein. Here we investigate the biological function of a naturally occurring PS1 splice variant (PS1 Deltaexon 8), which lacks the critical aspartate 257. Cell lines that stably express PS1 Deltaexon 8 or a PS1 protein in which aspartate residue 257 is mutated secrete significant levels of Abeta, whereas Abeta generation is severely reduced in cells transfected with PS1 containing a mutation of aspartate 385. In contrast, endoproteolytic processing of Notch is almost completely inhibited in cell lines expressing any of the PS1 variants that lack one of the critical aspartates. These data indicate that PS1 may differentially facilitate gamma-secretase-mediated generation of Abeta and endoproteolysis of Notch.
Collapse
Affiliation(s)
- A Capell
- Adolf Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
710
|
Huang TH, Yang DS, Plaskos NP, Go S, Yip CM, Fraser PE, Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J Mol Biol 2000; 297:73-87. [PMID: 10704308 DOI: 10.1006/jmbi.2000.3559] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested that non-fibrillar soluble forms of Abeta peptides possess neurotoxic properties and may therefore play a role in the molecular pathogenesis of Alzheimer's disease. We have identified solution conditions under which two types of soluble oligomers of Abeta40 could be trapped and stabilized for an extended period of time. The first type of oligomers comprises a mixture of dimers/tetramers which are stable at neutral pH and low micromolar concentration, for a period of at least four weeks. The second type of oligomer comprises a narrow distribution of particles that are spherical when examined by electron microscopy and atomic force microscopy. The number average molecular mass of this distribution of particles is 0.94 MDa, and they are are stable at pH 3 for at least four weeks. Circular dichroism studies indicate that the dimers/tetramers possess irregular secondary structure that is not alpha-helix or beta-structure, while the 0.94 MDa particles contain beta-structure. Fluorescence resonance energy transfer experiments indicate that Abeta40 moieties in amyloid fibrils or protofibrils are more similar in structure to those in the 0.94 MDa particles than those in the dimers/tetramers. These findings indicate that soluble oligomeric forms of Abeta peptides can be trapped for extended periods of time, enabling their study by high resolution techniques that would not otherwise be possible.
Collapse
Affiliation(s)
- T H Huang
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | | | |
Collapse
|
711
|
Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 2000. [PMID: 10684867 DOI: 10.1523/jneurosci.20-05-01657.2000] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Progressive cerebral accumulation of amyloid beta-protein (Abeta) is an early and invariant feature of Alzheimer's disease. Little is known about how Abeta, after being secreted, is degraded and cleared from the extracellular space of the brain. Defective Abeta degradation could be a risk factor for the development of Alzheimer's disease in some subjects. We reported previously that microglial cells release substantial amounts of an Abeta-degrading protease that, after purification, is indistinguishable from insulin-degrading enzyme (IDE). Here we searched for and characterized a role for IDE in Abeta degradation by neurons, the principal cell type that produces Abeta. Whole cultures of differentiated pheochromocytoma (PC12) cells and primary rat cortical neurons actively degraded endogenously secreted Abeta via IDE. However, unlike that in microglia, IDE in differentiated neurons was not released but localized to the cell surface, as demonstrated by biotinylation. Undifferentiated PC12 cells released IDE into their medium, whereas after differentiation, IDE was cell associated but still degraded Abeta in the medium. Overexpression of IDE in mammalian cells markedly reduced the steady-state levels of extracellular Abeta(40) and Abeta(42), and the catalytic site mutation (E111Q) abolished this effect. We observed a novel membrane-associated form of IDE that is approximately 5 kDa larger than the known cytosolic form in a variety of cells, including differentiated PC12 cells. Our results support a principal role for membrane-associated and secreted IDE isoforms in the degradation and clearance of naturally secreted Abeta by neurons and microglia.
Collapse
|
712
|
Abstract
The recent broad advance in our understanding of human neurodegenerative diseases is based on the application of a new molecular approach. Through linkage analysis, the genes responsible for Huntington's disease, the spinocerebellar ataxias, and familial forms of Alzheimer's disease and amyotrophic lateral sclerosis (ALS) have been identified and cloned. The characterization of pathogenic mutations in such genes allows the creation of informative transgenic mouse models as, without exception, the genetic forms of adult neurodegenerative disease are due to toxicity of the mutant protein. Transgenic models provide insight into the oxidative mechanisms in ALS pathogenesis, the pathogenicity of expanded polyglutamine tracts in CAG triplet repeat disorders, and amyloidogenesis in Alzheimer's disease. Although such models have their limitations, they currently provide the best entry point for the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- M E Gurney
- CNS Therapeutic Area, Pharmacia and Upjohn, Inc., 301 Henrietta St., Kalamazoo, MI 49007, USA
| |
Collapse
|
713
|
Czech C, Tremp G, Pradier L. Presenilins and Alzheimer's disease: biological functions and pathogenic mechanisms. Prog Neurobiol 2000; 60:363-84. [PMID: 10670705 DOI: 10.1016/s0301-0082(99)00033-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Dementia is associated with massive accumulation of fibrillary aggregates in various cortical and subcortical regions of the brain. These aggregates appear intracellularly as neurofibrillary tangles, extracellularly as amyloid plaques and perivascular amyloid in cerebral blood vessels. The causative factors in AD etiology implicate both, genetic and environmental factors. The large majority of early-onset familial Alzheimer's disease (FAD) cases are linked to mutations in the genes coding for presenilin 1 (PS1) and presenilin 2 (PS2). The corresponding proteins are 467 (PS1) and 448 (PS2) amino-acids long, respectively. Both are membrane proteins with multiple transmembrane regions. Presenilins show a high degree of conservation between species and a presenilin homologue with definite conservation of the hydrophobic structure has been identified even in the plant Arabidopsis thaliana. More than 50 missense mutations in PS1 and two missense mutations in PS2 were identified which are causative for FAD. PS mutations lead to the same functional consequence as mutations on amyloid precursor protein (APP), altering the processing of APP towards the release of the more amyloidogenic form 1-42 of Abeta (Abeta42). In this regard, the physical interaction between APP and presenilins in the endoplasmic reticulum has been demonstrated and might play a key role in Abeta42 production. It was hypothesized that PS1 might directly cleave APP. However, extracellular amyloidogenesis and Abeta production might not be the sole factor involved in AD pathology and several lines of evidence support a role of apoptosis in the massive neuronal loss observed. Presenilins were shown to modify the apoptotic response in several cellular systems including primary neuronal cultures. Some evidence is accumulating which points towards the beta-catenin signaling pathways to be causally involved in presenilin mediated cell death. Increased degradation of beta-catenin has been shown in brain of AD patients with PS1 mutations and reduced beta-catenin signaling increased neuronal vulnerability to apoptosis in cell culture models. The study of presenilin physiological functions and the pathological mechanisms underlying their role in pathogenesis clearly advanced our understanding of cellular mechanisms underlying the neuronal cell death and will contribute to the identification of novel drug targets for the treatment of AD.
Collapse
Affiliation(s)
- C Czech
- Rhône-Poulenc Rorer, Research and Development, Vitry sur Seine, France.
| | | | | |
Collapse
|
714
|
Abbenante G, Kovacs DM, Leung DL, Craik DJ, Tanzi RE, Fairlie DP. Inhibitors of beta-amyloid formation based on the beta-secretase cleavage site. Biochem Biophys Res Commun 2000; 268:133-5. [PMID: 10652226 DOI: 10.1006/bbrc.2000.2098] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of inhibitors of beta-amyloid formation have been developed based on the beta-secretase cleavage site (VNL-DA) of the Swedish mutant Amyloid Precursor Protein. A simple tripeptide aldehyde was found to be the most potent (IC(50) = 700 nM) in the series displaying an inhibitory profile which is different from reported inhibitors of beta-amyloid formation.
Collapse
Affiliation(s)
- G Abbenante
- Centre for Drug Design and Development, University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | | | | | | | |
Collapse
|
715
|
Shirotani K, Takahashi K, Araki W, Maruyama K, Tabira T. Mutational analysis of intrinsic regions of presenilin 2 that determine its endoproteolytic cleavage and pathological function. J Biol Chem 2000; 275:3681-6. [PMID: 10652366 DOI: 10.1074/jbc.275.5.3681] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the significance of endoproteolytic processing of presenilin 2 (PS2) on its pathological function, we constructed PS2 cDNAs causing amino acid substitutions or deletions around the cleavage site. We found that a PS2 mutant (Del3) with a 20-amino acid deletion was not endoproteolytically processed, while other PS2s with amino acid substitutions and short deletions were cleaved. Overproduction of all the mutant proteins led to a compensatory decrease of endogenous PS1 fragments, but did not affect the amyloid beta peptide X-42/Abeta X-40 ratio without the familial Alzheimer's disease mutation. The Del3 mutant did not exhibit significant deficits in gamma-secretase activity. The turnover rate of the Del3 holoprotein was the same as that of full-length PS2. These data suggest that the determinants of the PS2 cleavage site reside within a large region and that the pathological function of PS2 is exerted by familial Alzheimer's disease mutations not related to the cleavage of holoproteins. We also found that PS2 with an 18-amino acid deletion at the C-terminal end was not processed. Its overexpression led neither to diminished accumulation of endogenous PS1 fragments nor to increased production of amyloid beta peptide X-42. The C-terminal end of PS2 seems to possess the signal for entry into the processing pathway.
Collapse
Affiliation(s)
- K Shirotani
- Division of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | |
Collapse
|
716
|
Kimberly WT, Xia W, Rahmati T, Wolfe MS, Selkoe DJ. The transmembrane aspartates in presenilin 1 and 2 are obligatory for gamma-secretase activity and amyloid beta-protein generation. J Biol Chem 2000; 275:3173-8. [PMID: 10652302 DOI: 10.1074/jbc.275.5.3173] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The discovery that a deficiency of presenilin 1 (PS1) decreases the production of amyloid beta-protein (Abeta) identified the presenilins as important mediators of the gamma-secretase cleavage of beta-amyloid precursor protein (APP). Recently, we found that two conserved transmembrane (TM) aspartates in PS1 are critical for Abeta production, providing evidence that PS1 either functions as a required diaspartyl cofactor for gamma-secretase or is itself gamma-secretase. Presenilin 2 (PS2) shares substantial sequence and possibly functional homology with PS1. Here, we show that the two TM aspartates in PS2 are also critical for gamma-secretase activity, providing further evidence that PS2 is functionally homologous to PS1. Cells stably co-expressing TM Asp --> Ala mutations in both PS1 and PS2 show further accumulation of the APP-derived gamma-secretase substrates, C83 and C99. The production of Abeta is reduced to undetectable levels in the conditioned media of these cells. Furthermore, endoproteolysis of the exogenous Asp mutant PS2 is absent, and endogenous PS1 C-terminal fragments are diminished to undetectable levels. Therefore, the co-expression of PS1 and PS2 TM Asp --> Ala mutants suppresses the formation of any detectable PS1 or PS2 heterodimeric fragments and essentially abolishes the production of Abeta. These results explain the residual Abeta production seen in PS1-deficient cells and demonstrate the absolute requirement of functional presenilins for Abeta generation. We conclude that presenilins, and their TM aspartates in particular, are attractive targets for lowering Abeta therapeutically to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- W T Kimberly
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
717
|
Abstract
Application of genetic paradigms to Alzheimer's disease (AD) has led to confirmation that genetic factors play a role in this disease. Additionally, researchers now understand that AD is genetically heterogeneous and that some genetic isoforms appear to have similar or related biochemical consequences. Genetic epidemiologic studies indicate that first-degree relatives of AD probands have an age-dependent risk for AD approximately equal to 38% by age 90 years (range 10% to 50%). This incidence strongly suggests that transmission may be more complicated than a simple autosomal dominant trait. Nevertheless, a small proportion of AD cases with unequivocal autosomal dominant transmission have been identified. Studies of these autosomal dominant familial AD (FAD) pedigrees have thus far identified four distinct FAD genes. The beta-amyloid precursor protein (beta APP) gene (on chromosome 21), the presenilin 1 (PS1) gene (on chromosome 14), and the presenilin 2 (PS2) gene (on chromosome 1) gene are all associated with early-onset AD. Missense mutations in these genes cause abnormal beta APP processing with resultant overproduction of A beta 42 peptides. In addition, the epsilon 4 allele of apolipoprotein E (APOE) is associated with a increased risk for late-onset AD. Although attempts to develop symptomatic treatments based on neurotransmitter replacement continue, some laboratories are attempting to design treatments that will modulate production or disposition of A beta peptides.
Collapse
|
718
|
Palacino JJ, Berechid BE, Alexander P, Eckman C, Younkin S, Nye JS, Wolozin B. Regulation of amyloid precursor protein processing by presenilin 1 (PS1) and PS2 in PS1 knockout cells. J Biol Chem 2000; 275:215-22. [PMID: 10617607 DOI: 10.1074/jbc.275.1.215] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presenilin 1 (PS1) and PS2 proteins are thought to play roles in processing of amyloid precursor protein (APP), but the nature of this role is not fully understood. Recent studies have shown that PS1 is necessary for cleavage of APP at the gamma-secretase site. We now show that PS1 and PS2 participate in other aspects of APP processing. Fibroblasts generated from PS1 knockout mice have increased levels of the APP cleavage products, secreted APP (APPs), and APP C-terminal fragments, but lower secretion of APPs and Abeta. We have also observed that loss of PS1 prevents protein kinase C or extracellular regulated kinase from increasing production of the APP cleavage products, APPs, and APP C-terminal fragments. Transfection of PS1 -/- cells with PS1 restores the responsiveness of APP processing to protein kinase C and extracellular regulated kinase. This suggests that the changes in APP processing in PS1 -/- cells result strictly from the absence of PS1. Transfection of PS1 -/- cells with PS2 is also able to correct the deficits in APP secretion, which suggests that the PS2 also has the ability to regulate APP processing. Finally, transfection of the truncated PS2 construct, Alg3, into cells lacking PS1 increases APP C-terminal fragments. This suggests that Alg3 can interfere with the processing of APP by PS2. These data point to roles for both PS1 and PS2 in regulating APP processing and suggest that the role of these proteins also includes coupling APP to signal transduction pathways.
Collapse
Affiliation(s)
- J J Palacino
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | |
Collapse
|
719
|
C terminus of presenilin is required for overproduction of amyloidogenic Abeta42 through stabilization and endoproteolysis of presenilin. J Neurosci 2000. [PMID: 10594046 DOI: 10.1523/jneurosci.19-24-10627.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in presenilin (PS) genes cause early onset familial Alzheimer's disease (FAD) by increasing production of the amyloidogenic form of amyloid beta peptides ending at residue 42 (Abeta42). To identify a PS subdomain responsible for overproduction of Abeta42, we analyzed neuro2a cell lines expressing modified forms of PS2 that harbor an N141I FAD mutation. Deletion or addition of amino acids at the C terminus and Ile448 substitution in PS2 with the N141I FAD mutation abrogated the increase in Abeta42 secretion, and Abeta42 overproduction was dependent on the stabilization and endoproteolysis of PS2. The same C-terminal modifications in PS1 produced similar effects. Hence, we suggest that the C terminus of PS plays a crucial role in the overproduction of Abeta42 through stabilization of endoproteolytic PS derivatives and that these derivatives may be the pathologically active species of PS that cause FAD.
Collapse
|
720
|
Holcomb LA, Gordon MN, Benkovic SA, Morgan DG. A beta and perlecan in rat brain: glial activation, gradual clearance and limited neurotoxicity. Mech Ageing Dev 2000; 112:135-52. [PMID: 10690926 DOI: 10.1016/s0047-6374(99)00086-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A beta1-40 and perlecan (A beta + perlecan) were infused into rat hippocampus for 1 week via osmotic pumps. At the end of the infusion a deposit of A beta immunoreactive material was found surrounding the infusion site. No neurons could be identified within this A beta deposit. The neuron-free area resulting from A beta + perlecan was significantly larger than that found after infusions of A beta40-1 and perlecan (reverse A beta + perlecan), perlecan alone or phosphate-buffered saline vehicle. Following infusion of A beta + perlecan, the glial cells segregated in a manner similar to that associated with compacted amyloid plaques in Alzheimer's disease (AD). Activated microglia/macrophages were prevalent within the A beta deposit while the perimeter of the deposit was delimited by reactive astrocytes. Thioflavin S and Congo red staining indicated a beta-pleated sheet conformation of the A beta deposits, implying formation of fibrils. Intact, apparently healthy neurons were found immediately adjacent to the A beta + perlecan deposit. In contrast, reverse A beta peptide did not form congophilic deposits despite the presence of perlecan. Apoptotic profiles visualized with bisbenzamide or TUNEL staining of fragmented DNA were not seen at any of the infusion sites, yet were readily seen in hippocampal sections from animals treated with kainic acid. At 8 weeks, A beta immunoreactivity, Thioflavin S and Congo red staining was reduced, indicating that A beta was being cleared. There also was no evidence of neuron loss by Nissl or TUNEL staining. The zone of apparent necrosis did not expand between 1 and 8 weeks, and in some instances appeared to contract. The consistency of the A beta + perlecan infusion method in producing reliable A beta amyloid deposits permits estimates of the rate at which fibrillar A beta amyloid can be removed from the brain, and may provide a useful model to study this process in vivo. However, the absence of clearly identifiable degenerating/dying neurons at the 1 or 8 week survival times suggests that either fibrillar A beta + perlecan slowly displaced the brain parenchyma during infusion, or neurons were killed very gradually during the process of clearing the A beta.
Collapse
Affiliation(s)
- L A Holcomb
- Department of Pharmacology and Therapeutics, University of South Florida, Tampa 33612-4799, USA
| | | | | | | |
Collapse
|
721
|
Abstract
Normal ageing and Alzheimer's disease (AD) have many features in common and, in many respects, both conditions only differ by quantitative criteria. A variety of genetic, medical and environmental factors modulate the ageing-related processes leading the brain into the devastation of AD. In accordance with the concept that AD is a metabolic disease, these risk factors deteriorate the homeostasis of the Ca(2+)-energy-redox triangle and disrupt the cerebral reserve capacity under metabolic stress. The major genetic risk factors (APP and presenilin mutations, Down's syndrome, apolipoprotein E4) are associated with a compromise of the homeostatic triangle. The pathophysiological processes leading to this vulnerability remain elusive at present, while mitochondrial mutations can be plausibly integrated into the metabolic scenario. The metabolic leitmotif is particularly evident with medical risk factors which are associated with an impaired cerebral perfusion, such as cerebrovascular diseases including stroke, cardiovascular diseases, hypo- and hypertension. Traumatic brain injury represents another example due to the persistent metabolic stress following the acute event. Thyroid diseases have detrimental sequela for cerebral metabolism as well. Furthermore, major depression and presumably chronic stress endanger susceptible brain areas mediated by a host of hormonal imbalances, particularly the HPA-axis dysregulation. Sociocultural and lifestyle factors like education, physical activity, diet and smoking may also modulate the individual risk affecting both reserve capacity and vulnerability. The pathophysiological relevance of trace metals, including aluminum and iron, is highly controversial; at any rate, they may adversely affect cellular defences, antioxidant competence in particular. The relative contribution of these factors, however, is as individual as the pattern of the factors. In familial AD, the genetic factors clearly drive the sequence of events. A strong interaction of fat metabolism and apoE polymorphism is suggested by intercultural epidemiological findings. In cultures, less plagued by the 'blessings' of the 'cafeteria diet-sedentary' Western lifestyle, apoE4 appears to be not a risk factor for AD. This intriguing evidence suggests that, analogous to cardiovascular diseases, apoE4 requires a hyperlipidaemic lifestyle to manifest as AD risk factor. Overall, the etiology of AD is a key paradigm for a gene-environment interaction. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
722
|
Abstract
Segmentation of the paraxial mesoderm into somites requires a strategy distinct from the division of a preexisting field of cells, as seen in the segmentation of the vertebrate hindbrain into rhombomeres and the formation of the body plan of invertebrates. Each new somite forms from the anterior end of the segmental plate; therefore, the conditions for establishing the anterior-posterior boundary must be re-created prior to the formation of the next somite. It has been established that regulation of this process is native to the anterior end of the segmental plate, however, the components of a genetic pathway are poorly understood. A growing library of candidate genes has been generated from hybridization screens and sequence homology searches, which include cell adhesion molecules, cell surface receptors, growth factors, and transcription factors. With the increasing accessibility of gene knockout technology, many of these genes have been tested for their role in regulating somitogenesis. In this chapter, we will review the significant advances in our understanding of segmentation based on these experiments.
Collapse
Affiliation(s)
- A Rawls
- Department of Biology, Arizona State University, Tempe 85287, USA
| | | | | |
Collapse
|
723
|
Jacobsen H, Reinhardt D, Brockhaus M, Bur D, Kocyba C, Kurt H, Grim MG, Baumeister R, Loetscher H. The influence of endoproteolytic processing of familial Alzheimer's disease presenilin 2 on abeta42 amyloid peptide formation. J Biol Chem 1999; 274:35233-9. [PMID: 10575009 DOI: 10.1074/jbc.274.49.35233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutant presenilins (PS) contribute to the pathogenesis of familial Alzheimer's disease (FAD) by enhancing the production of Abeta42 from beta-amyloid precursor protein. Presenilins are endoproteolytically processed to N-terminal and C-terminal fragments, which together form a stable 1:1 complex. We have mapped the cleavage site in the PS2 protein by direct sequencing of its C-terminal fragment isolated from mouse liver. Three different N-terminal residues were identified starting at Val-299, Thr-301, and Leu-307 that correspond closely to the previously described N termini of the C-terminal fragment of human PS1. Mutational analysis of the PS2 cleavage site indicates that the principal endoproteolytic cleavage occurs at residues Met-298/Val-299 and that the N terminus is subsequently modified by secondary proteolytic cleavages. We have generated cleavage defective PS2 constructs, which accumulate exclusively as full-length polypeptides in transfected Neuro2a cells. Functional analysis of such cleavage defective PS2 carrying the FAD mutation Asn-141 --> Ile showed that its Abeta42 producing activity was strongly reduced compared with cleavage-competent FAD PS2. In contrast, cleavage defective PS2 was active in rescuing the egg-laying defect of a sel-12 mutant in Caenorhabditis elegans. We conclude that PS2 endoproteolytic cleavage is not an absolute requirement for its activities but may rather selectively enhance or stabilize its functions.
Collapse
Affiliation(s)
- H Jacobsen
- Pharma Division, Preclinical Central Nervous System Research, CH-4070 Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
724
|
Satoh J, Kuroda Y. Constitutive and cytokine-regulated expression of presenilin-1 and presenilin-2 genes in human neural cell lines. Neuropathol Appl Neurobiol 1999; 25:492-503. [PMID: 10632899 DOI: 10.1046/j.1365-2990.1999.00209.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the role of pleiotropic neuronal and glial cytokines in the regulation of presenilin (PS) gene expression in human neural cells, both presenilin-1 (PS1) and presenilin-2 (PS2) mRNA levels were analysed by Northern blotting in SK-N-SH neuroblastoma, IMR-32 neuroblastoma, NTera2 teratocarcinoma-derived differentiated neurones (NTera2-N) and U-373MG astrocytoma cells following exposure to proinflammatory cytokines (TNF-alpha, IFN-gamma, or IL-1beta), anti-inflammatory cytokines (IL-10 or TGF-beta1), dibutyryl cyclic AMP or phorbol 12-myristate 13-acetate (PMA). The constitutive expression of PS1 (3.0 kb) and PS2 (2.3 kb) mRNA was identified in all these cell lines, in which PS1 mRNA levels were unaltered following treatment with any cytokines and factors examined. By contrast, PS2 mRNA expression was upregulated substantially in SK-N-SH cells by exposure to TNF-alpha and in U-373MG cells by treatment with IFN-gamma, whereas it was downregulated in both NTera2-N and U-373 MG cells following exposure to IL-1beta or PMA. The levels of PS2 mRNA remained unchanged in IMR-32 cells after these treatments. These results indicate that PS1 and PS2 genes are expressed constitutively in a panel of human neural cell lines where PS2 mRNA expression is affected by a distinct set of cytokines via cell type-specific mechanisms that do not alter PS1 mRNA levels, suggesting the existence of separated regulatory systems controlling the expression of PS1 and PS2 genes in human neural cells.
Collapse
Affiliation(s)
- J Satoh
- Division of Neurology, Department of Internal Medicine, Saga Medical School, Saga, Japan.
| | | |
Collapse
|
725
|
Affiliation(s)
- G Thinakaran
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Knapp R212, 924 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
726
|
Steiner H, Romig H, Pesold B, Philipp U, Baader M, Citron M, Loetscher H, Jacobsen H, Haass C. Amyloidogenic function of the Alzheimer's disease-associated presenilin 1 in the absence of endoproteolysis. Biochemistry 1999; 38:14600-5. [PMID: 10545183 DOI: 10.1021/bi9914210] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is characterized by the invariant accumulation of senile plaques predominantly composed of the pathologically relevant 42-amino acid amyloid beta-peptide (Abeta42). The presenilin (PS) proteins play a key role in Abeta generation. FAD-associated mutations in PS1 and PS2 enhance the production of Abeta42, and PS1 is required for physiological Abeta production, since a gene knockout of PS1 and dominant negative mutations of PS1 abolish Abeta generation. PS proteins undergo endoproteolytic processing, and current evidence indicates that fragment formation may be required for the amyloidogenic function of PS. We have now determined the sequence requirements for endoproteolysis of PS1. Mutagenizing amino acids at the previously determined major cleavage site (amino acid 298) had no effect on PS1 endoproteolysis. In contrast, mutations or deletions at the additional cleavage site around amino acid 292 blocked endoproteolysis. The uncleavable PS1 derivatives accumulated as full-length proteins and replaced the endogenous PS1 proteins. In contrast to the previously described aspartate mutations within transmembrane domains 6 and 7, the uncleaved PS1 variants do not act as dominant negative inhibitors of Abeta production. Moreover, when a FAD-associated mutation (M146L) was combined with a mutation blocking endoproteolysis, Abeta42 production still reached pathological levels. These data therefore demonstrate that endoproteolysis of presenilins is not an absolute prerequisite for the amyloidogenic function of PS1. These data also show that accumulation of the PS1 holoprotein is not associated with the pathological activity of PS1 mutations as suggested previously.
Collapse
Affiliation(s)
- H Steiner
- Department of Molecular Biology, Central Institute of Mental Health, J5, 68159 Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
727
|
Yan SD, Roher A, Schmidt AM, Stern DM. Cellular cofactors for amyloid beta-peptide-induced cell stress. Moving from cell culture to in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1403-11. [PMID: 10550293 PMCID: PMC1866992 DOI: 10.1016/s0002-9440(10)65452-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/1999] [Indexed: 11/22/2022]
Affiliation(s)
- S D Yan
- Department of Pathology, Columbia University, New York, New York, USA.
| | | | | | | |
Collapse
|
728
|
Vanderhoeven I, Cras P, Martin JJ, Van Broeckhoven C, De Jonghe C. Proteolytic processing of presenilin-1 in human lymphoblasts is not affected by the presence of the I143T and G384A mutations. Neurosci Lett 1999; 274:183-6. [PMID: 10548420 DOI: 10.1016/s0304-3940(99)00722-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Presenilin-1 (PSEN1) mutations I143T and G384A give rise to severe early onset Alzheimers's disease in two extensively studied Belgian families, AD/A and AD/B. In this study we investigated the influence of the I143T and G384A mutations on PSEN1 proteolytic processing. Hereto we analyzed PSEN1 processing in lymphoblasts by immunodetection with PSEN1-specific antibodies and densitometric analysis of the immunoreactive banding pattern. No differences were observed between presymptomatic mutation carriers, patients or escapees, demonstrating that the PSEN1 mutations I143T and G384A do not alter PSEN1 proteolytic processing in lymphoblasts.
Collapse
Affiliation(s)
- I Vanderhoeven
- Flanders Interuniversity Institute for Biotechnology, Department of Biochemistry, University of Antwerp, Belgium
| | | | | | | | | |
Collapse
|
729
|
Annaert WG, Levesque L, Craessaerts K, Dierinck I, Snellings G, Westaway D, George-Hyslop PS, Cordell B, Fraser P, De Strooper B. Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J Cell Biol 1999; 147:277-94. [PMID: 10525535 PMCID: PMC2174229 DOI: 10.1083/jcb.147.2.277] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations of presenilin 1 (PS1) causing Alzheimer's disease selectively increase the secretion of the amyloidogenic betaA4(1-42), whereas knocking out the gene results in decreased production of both betaA4(1-40) and (1-42) amyloid peptides (De Strooper et al. 1998). Therefore, PS1 function is closely linked to the gamma-secretase processing of the amyloid precursor protein (APP). Given the ongoing controversy on the subcellular localization of PS1, it remains unclear at what level of the secretory and endocytic pathways PS1 exerts its activity on APP and on the APP carboxy-terminal fragments that are the direct substrates for gamma-secretase. Therefore, we have reinvestigated the subcellular localization of endogenously expressed PS1 in neurons in vitro and in vivo using confocal microscopy and fine-tuned subcellular fractionation. We show that uncleaved PS1 holoprotein is recovered in the nuclear envelope fraction, whereas the cleaved PS fragments are found mainly in post-ER membranes including the intermediate compartment (IC). PS1 is concentrated in discrete sec23p- and p58/ERGIC-53-positive patches, suggesting its localization in subdomains involved in ER export. PS1 is not found to significant amounts beyond the cis-Golgi. Surprisingly, we found that APP carboxy-terminal fragments also coenrich in the pre-Golgi membrane fractions, consistent with the idea that these fragments are the real substrates for gamma-secretase. Functional evidence that PS1 exerts its effects on gamma-secretase processing of APP in the ER/IC was obtained using a series of APP trafficking mutants. These mutants were investigated in hippocampal neurons derived from transgenic mice expressing PS1wt or PS1 containing clinical mutations (PS1(M146L) and PS1(L286V)) at physiologically relevant levels. We demonstrate that the APP-London and PS1 mutations have additive effects on the increased secretion of betaA4(1-42) relative to betaA4(1-40), indicating that both mutations operate independently. Overall, our data clearly establish that PS1 controls gamma(42)-secretase activity in pre-Golgi compartments. We discuss models that reconcile this conclusion with the effects of PS1 deficiency on the generation of betaA4(1-40) peptide in the late biosynthetic and endocytic pathways.
Collapse
Affiliation(s)
| | - Lyne Levesque
- Center for Research in Neurodegenerative Diseases, Department of Medical Biophysics and Medicine (Neurology), University of Toronto, Ontario, Canada, M5S 3H2
| | | | - Inge Dierinck
- CME/VIB4/KULeuven, Gasthuisberg, B-3000 Leuven, Belgium
| | | | - David Westaway
- Center for Research in Neurodegenerative Diseases, Department of Medical Biophysics and Medicine (Neurology), University of Toronto, Ontario, Canada, M5S 3H2
| | - Peter St. George-Hyslop
- Center for Research in Neurodegenerative Diseases, Department of Medical Biophysics and Medicine (Neurology), University of Toronto, Ontario, Canada, M5S 3H2
| | | | - Paul Fraser
- Center for Research in Neurodegenerative Diseases, Department of Medical Biophysics and Medicine (Neurology), University of Toronto, Ontario, Canada, M5S 3H2
| | | |
Collapse
|
730
|
Leimer U, Lun K, Romig H, Walter J, Grünberg J, Brand M, Haass C. Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 1999; 38:13602-9. [PMID: 10521267 DOI: 10.1021/bi991453n] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by the invariable accumulation of senile plaques composed of amyloid beta-peptide (Abeta). Mutations in three genes are known to cause familial Alzheimer's disease (FAD). The mutations occur in the genes encoding the beta-amyloid precursor protein (betaAPP) and presenilin (PS1) and PS2 and cause the increased secretion of the pathologically relevant 42 amino acid Abeta42. We have now cloned the zebrafish (Danio rerio) PS1 homologue (zf-PS1) to study its function in amyloidogenesis and to prove the critical requirement of an unusual aspartate residue within the seventh putative transmembrane domain. In situ hybridization and reverse PCR reveal that zf-PS1 is maternally inherited and ubiquitously expressed during embryogenesis, suggesting an essential housekeeping function. zf-PS1 is proteolytically processed to produce a C-terminal fragment (CTF) of approximately 24 kDa similar to human PS proteins. Surprisingly, wt zf-PS1 promotes aberrant Abeta42 secretion like FAD associated human PS1 mutations. The unexpected pathologic activity of wt zf-PS1 may be due to several amino acid exchanges at positions where FAD-associated mutations have been observed. The amyloidogenic function of zf-PS1 depends on the conserved aspartate residue 374 within the seventh putative transmembrane domain. Mutagenizing this critical aspartate residue abolishes endoproteolysis of zf-PS1 and inhibits Abeta secretion in human cells. Inhibition of Abeta secretion is accompanied by the accumulation of C-terminal fragments of betaAPP, suggesting a defect in gamma-secretase activity. These data provide further evidence that PS proteins are directly involved in the proteolytic cleavage of betaAPP and demonstrate that this function is evolutionarily conserved.
Collapse
Affiliation(s)
- U Leimer
- Department of Molecular Biology, Central Institute of Mental Health, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
731
|
Steiner H, Duff K, Capell A, Romig H, Grim MG, Lincoln S, Hardy J, Yu X, Picciano M, Fechteler K, Citron M, Kopan R, Pesold B, Keck S, Baader M, Tomita T, Iwatsubo T, Baumeister R, Haass C. A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J Biol Chem 1999; 274:28669-73. [PMID: 10497236 DOI: 10.1074/jbc.274.40.28669] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilin-1 (PS1) facilitates gamma-secretase cleavage of the beta-amyloid precursor protein and the intramembraneous cleavage of Notch1. Although Alzheimer's disease-associated mutations in the homologous presenilin (PS2) gene elevate amyloid beta-peptide (Abeta42) production like PS1 mutations, here we demonstrate that a gene ablation of PS2 (unlike that of PS1) in mice does not result in a severe phenotype resembling that of Notch-ablated animals. To investigate the amyloidogenic function of PS2 more directly, we mutagenized a conserved aspartate at position 366 to alanine, because the corresponding residue of PS1 is known to be required for its amyloidogenic function. Cells expressing the PS2 D366A mutation exhibit significant deficits in proteolytic processing of beta-amyloid precursor protein indicating a defect in gamma-secretase activity. The reduced gamma-secretase activity results in the almost complete inhibition of Abeta and p3 production in cells stably expressing PS2 D366A, whereas cells overexpressing the wild-type PS2 cDNA produce robust levels of Abeta and p3. Using highly sensitive in vivo assays, we demonstrate that the PS2 D366A mutation not only blocks gamma-secretase activity but also inactivates PS2 activity in Notch signaling by inhibiting the proteolytic release of the cytoplasmic Notch1 domain. These data suggest that PS2 is functionally involved in Abeta production and Notch signaling by facilitating similar proteolytic cleavages.
Collapse
Affiliation(s)
- H Steiner
- Central Institute of Mental Health, Department of Molecular Biology, J5, 68159 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
732
|
Annaert W, De Strooper B. Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 1999; 22:439-43. [PMID: 10481190 DOI: 10.1016/s0166-2236(99)01455-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mis-sense mutations of presenilin 1 increase the release of amyloidogenic peptide from amyloid precursor protein (APP) and are a major cause of familial Alzheimer's Disease. Loss-of-function mutations of presenilins in the mouse, Caenorhabditis elegans and Drosophila result in severe developmental defects caused by disturbed Notch signalling. Recent studies suggest that the diverse biological roles of presenilin 1 can be explained at the molecular level by its role in the proteolytic cleavage of the integral membrane domains of Notch and APP. This cleavage is a central switch in Notch signalling, while, for APP, its physiological role remains elusive. Evidence that presenilin 1 itself has catalytic properties could explain many of the biological and biochemical alterations caused by presenilin-1 deficiency or clinical mutations in presenilin 1. However, as presenilins reside in the endoplasmic reticulum and the cleavage of Notch and APP is believed to occur close to the cell membrane, the scientific field now faces a 'spatial paradox'.
Collapse
Affiliation(s)
- W Annaert
- Neuronal Cell Biology and Gene Transfer Laboratory, Centre for Human Genetics, Flanders Interuniversitary, Institute for Biotechnology (VIB4), Gasthuisberg, KULeuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
733
|
Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A 1999; 96:11049-53. [PMID: 10500121 PMCID: PMC34239 DOI: 10.1073/pnas.96.20.11049] [Citation(s) in RCA: 349] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major constituent of senile plaques in Alzheimer's disease is a 42-aa peptide, referred to as beta-amyloid (Abeta). Abeta is generated from a family of differentially spliced, type-1 transmembrane domain (TM)-containing proteins, called APP, by endoproteolytic processing. The major, relatively ubiquitous pathway of APP metabolism in cell culture involves cleavage by alpha-secretase, which cleaves within the Abeta sequence, thus precluding Abeta formation and deposition. An alternate secretory pathway, enriched in neurons and brain, leads to cleavage of APP at the N terminus of the Abeta peptide by beta-secretase, thus generating a cell-associated beta-C-terminal fragment (beta-CTF). A pathogenic mutation at codons 670/671 in APP (APP "Swedish") leads to enhanced cleavage at the beta-secretase scissile bond and increased Abeta formation. An inhibitor of vacuolar ATPases, bafilomycin, selectively inhibits the action of beta-secretase in cell culture, suggesting a requirement for an acidic intracellular compartment for effective beta-secretase cleavage of APP. beta-CTF is cleaved in the TM domain by gamma-secretase(s), generating both Abeta 1-40 (90%) and Abeta 1-42 (10%). Pathogenic mutations in APP at codon 717 (APP "London") lead to an increased proportion of Abeta 1-42 being produced and secreted. Missense mutations in PS-1, localized to chromosome 14, are pathogenic in the majority of familial Alzheimer's pedigrees. These mutations also lead to increased production of Abeta 1-42 over Abeta 1-40. Knockout of PS-1 in transgenic animals leads to significant inhibition of production of both Abeta 1-40 and Abeta 1-42 in primary cultures, indicating that PS-1 expression is important for gamma-secretase cleavages. Peptide aldehyde inhibitors that block Abeta production by inhibiting gamma-secretase cleavage of beta-CTF have been discovered.
Collapse
Affiliation(s)
- S Sinha
- Elan Pharmaceuticals, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
734
|
Larson J, Lynch G, Games D, Seubert P. Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 1999; 840:23-35. [PMID: 10517949 DOI: 10.1016/s0006-8993(99)01698-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synaptic transmission and plasticity were studied in the CA1 field of hippocampal slices from young and aged transgenic mice over-expressing a mutant form of the human amyloid precursor protein (PDAPP mice). The transgenic mice at 4-5 months of age, prior to the formation of amyloid-beta peptide deposits in these animals, differed from non-transgenic control mice in three respects: (1) paired-pulse facilitation (PPF) was enhanced; (2) responses to high frequency stimulation bursts were distorted; (3) long-term potentiation (LTP) decayed more rapidly. More striking was the profound reduction in the size of synaptic responses and frequent loss of field potentials that were found in the transgenic mice at 27-29 months, an age at which they exhibit numerous amyloid plaques, neuritic dystrophy, and gliosis. Control mice at these ages did not show such dramatic effects. PPF was reduced in aged transgenic mice, compared to aged controls; however, LTP was still in evidence, although direct comparisons of its induction conditions in aged transgenic and control mice were compromised by the profound differences in field potentials between the two groups. These results point to two conclusions: (1) altered synaptic communication appears in PDAPP mice in advance of amyloid plaque formation and probably involves changes in presynaptic calcium kinetics; (2) the disturbances in synaptic transmission that appear when abundant plaques and Alzheimer's-like neuropathology are present in the transgenic mice are not necessarily accompanied by a disproportionate loss of long-term synaptic plasticity.
Collapse
Affiliation(s)
- J Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | | | | | | |
Collapse
|
735
|
Ren RF, Lah JJ, Diehlmann A, Kim ES, Hawver DB, Levey AI, Beyreuther K, Flanders KC. Differential effects of transforming growth factor-beta(s) and glial cell line-derived neurotrophic factor on gene expression of presenilin-1 in human post-mitotic neurons and astrocytes. Neuroscience 1999; 93:1041-9. [PMID: 10473269 DOI: 10.1016/s0306-4522(99)00215-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mutations in the presenilin-1 gene are linked to the majority of early-onset familial Alzheimer's disease cases. We have previously shown that the expression of transforming growth factor-beta is altered in Alzheimer's patients, compared to controls. Here we examine presenilin- expression in human post-mitotic neurons (hNT cells), normal human astrocytes, and human brain tumor cell lines following treatment with three isoforms of transforming growth factor-beta, or glial cell line-derived neurotrophic factor, a member of the transforming growth factor-beta superfamily. As the NT2/D1 teratocarcinoma cell line is treated with retinoic acid to induce differentiation to hNT cells, presenilin-1 messenger RNA expression is dramatically increased. Furthermore, there is a 2-3-fold increase in presenilin-1 messenger RNA expression following treatment of hNT cells with growth factors and similar results are found by Western blotting and with immunohistochemical staining for presenilin-1 protein. However, treatment of normal human astrocytes with cytokines results in minimal changes in presenilin-1 messenger RNA and protein. Interestingly, the expression of presenilin-1 in human U87 MG astrocytoma and human SK-N-SH neuroblastoma cells is only increased when cells are treated with glial cell line-derived neurotrophic factor or transforming growth factor-beta3. These findings suggest that endogenous presenilin-1 gene expression in human neurons can be induced by growth factors present in normal and diseased brain tissue. Cytokines may play a major role in regulating expression of presenilin-1 which may affect its biological actions in physiological and pathological conditions.
Collapse
Affiliation(s)
- R F Ren
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
736
|
Cui J, Holmes EH, Liu PK. Oxidative damage to the c-fos gene and reduction of its transcription after focal cerebral ischemia. J Neurochem 1999; 73:1164-74. [PMID: 10461908 PMCID: PMC2709844 DOI: 10.1046/j.1471-4159.1999.0731164.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated oxidative damage to the c-fos gene and to its transcription in the brain of Long-Evans rats using a transient focal cerebral ischemia and reperfusion (FCIR) model. We observed a significant (p < 0.001) increase in the immunoreactivity to 8-hydroxy-2'-guanine (oh8G) and its deoxy form (oh8dG) in the ischemic cortex at 0-30 min of reperfusion in all 27 animals treated with 15-90 min of ischemia. Treatment with a neuronal nitric oxide synthase (nNOS) inhibitor, 3-bromo-7-nitroindazole (60 mg/kg, i.p.), abolished the majority but not all of the oh8G/oh8dG immunoreactivity. Treatment with RNase A reduced the oh8G immunoreactivity, suggesting that RNA may be targeted. This observation was further supported by decreased levels of mRNA transcripts of the c-fos and actin genes in the ischemic core within 30 min of reperfusion using in situ hybridization. The reduction in mRNA transcription occurred at a time when nuclear gene damage, detected as sensitive sites to Escherichia coli Fpg protein in the transcribed strand of the c-fos gene, was increased 13-fold (p < 0.01). Our results suggest that inhibiting nNOS partially attenuates FCIR-induced oxidative damage and that nNOS or other mechanisms induce nuclear gene damage that interferes with gene transcription in the brain.
Collapse
Affiliation(s)
- J Cui
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
737
|
Mayeux R, Tang MX, Jacobs DM, Manly J, Bell K, Merchant C, Small SA, Stern Y, Wisniewski HM, Mehta PD. Plasma amyloid beta-peptide 1-42 and incipient Alzheimer's disease. Ann Neurol 1999; 46:412-6. [PMID: 10482274 DOI: 10.1002/1531-8249(199909)46:3<412::aid-ana19>3.0.co;2-a] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the amyloid precursor protein and presenilin 1 and 2 genes result in elevated plasma levels of the amyloid beta-peptide species terminating at amino acid residue 42 (A beta1-42). In a longitudinal study of unrelated elderly individuals, those who subsequently developed Alzheimer's disease had higher plasma levels of A beta1-42 at entry than did those who remained free of dementia. The results indicate that elevated plasma levels of the released A beta peptide A beta1-42 may be detected several years before the onset of symptoms, supporting that extracellular A beta1-42 plays an important role in the pathogenesis of late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- R Mayeux
- Taub Alzheimer's Disease Research Center, Staten Island, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
738
|
Wolfe MS, De Los Angeles J, Miller DD, Xia W, Selkoe DJ. Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry 1999; 38:11223-30. [PMID: 10471271 DOI: 10.1021/bi991080q] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid-beta protein (Abeta) is strongly implicated in the pathogenesis of Alzheimer's disease. The final step in the production of Abeta from the amyloid precursor protein (APP) is proteolysis by the unidentified gamma-secretases. This cleavage event is unusual in that it apparently occurs within the transmembrane region of the substrate. Studies with substrate-based inhibitors together with molecular modeling and mutagenesis of the gamma-secretase cleavage site of APP suggest that gamma-secretases are aspartyl proteases that catalyze a novel intramembranous proteolysis. This proteolysis requires the presenilins, proteins with eight transmembrane domains that are mutated in most cases of autosomal dominant familial Alzheimer's disease. Two conserved transmembrane aspartates in presenilins are essential for gamma-secretase activity, suggesting that presenilins themselves are gamma-secretases. Moreover, presenilins also mediate the apparently intramembranous cleavage of the Notch receptor, an event critical for Notch signaling and embryonic development. Thus, if presenilins are gamma-secretases, then they are also likely the proteases that cleave Notch within its transmembrane domain. Another protease, S2P, involved in the processing of the sterol regulatory element binding protein, is also a multipass integral membrane protein which cleaves within or very close to the transmembrane region of its substrate. Thus, presenilins and S2P appear to be members of a new type of polytopic protease with an intramembranous active site.
Collapse
Affiliation(s)
- M S Wolfe
- Department of Pharmaceutical Sciences, University of Tennessee, Memphis 38163, USA.
| | | | | | | | | |
Collapse
|
739
|
Nakagawa Y, Nakamura M, Mcintosh TK, Rodriguez A, Berlin JA, Smith DH, Saatman KE, Raghupathi R, Clemens J, Saido TC, Schmidt ML, Lee VM, Trojanowski JQ. Traumatic brain injury in young, amyloid‐β peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished Aβ deposition during aging. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990830)411:3<390::aid-cne3>3.0.co;2-#] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yasushi Nakagawa
- The Center for Neurodegenerative Disease Research, Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Michio Nakamura
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Tracy K. Mcintosh
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Amaris Rodriguez
- The Center for Neurodegenerative Disease Research, Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Jesse A. Berlin
- The Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Kathryn E. Saatman
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Ramesh Raghupathi
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | | | - Takaomi C. Saido
- The Proteolytic Neuroscience Laboratory, RIKEN Brain Science Institute, Saitama 351‐0198, Japan
| | - M. Luise Schmidt
- The Center for Neurodegenerative Disease Research, Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - Virginia M.‐Y. Lee
- The Center for Neurodegenerative Disease Research, Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| | - John Q. Trojanowski
- The Center for Neurodegenerative Disease Research, Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104‐4283
| |
Collapse
|
740
|
Nakai T, Yamasaki A, Sakaguchi M, Kosaka K, Mihara K, Amaya Y, Miura S. Membrane topology of Alzheimer's disease-related presenilin 1. Evidence for the existence of a molecular species with a seven membrane-spanning and one membrane-embedded structure. J Biol Chem 1999; 274:23647-58. [PMID: 10438548 DOI: 10.1074/jbc.274.33.23647] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A significant member of early-onset familial type of Alzheimer's disease cases has been shown to be caused by dominant mutations in either of the two genes encoding presenilin 1 (PS1) and presenilin 2 (PS2). These two proteins are highly homologous to each other and have been reported to be mainly localized to the membranes of intracellular compartments such as the endoplasmic reticulum. Information about the membrane topological structures of these proteins is indispensable for understanding their physiological and pathological roles. Although several models have been proposed previously, their precise membrane topologies remain unknown. In this study, we examined this issue in detail by expressing a series of C-terminally deleted PS1 mutants fused to the hydrophilic portion of Escherichia coli leader peptidase in vitro using a reticulocyte lysate in the presence of microsomal membranes. Our results predict that PS1 exists mainly in a seven membrane-spanning structure with its C-terminal end exposed to the luminal space. This was also confirmed by expressing these fusion proteins in cultured cells. We further showed that a ninth hydrophobic segment is tightly bound to the membrane without spanning it. Based on the above observations, we propose a novel "seven membrane-spanning and one membrane-embedded" topological model for presenilins.
Collapse
Affiliation(s)
- T Nakai
- Radioisotope Research Center, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
741
|
|
742
|
Developmental Expression of Wild-Type and Mutant Presenilin-1 in Hippocampal Neurons from Transgenic Mice: Evidence for Novel Species-Specific Properties of Human Presenilin-1. Mol Med 1999. [DOI: 10.1007/bf03401981] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
743
|
Van Uden E, Carlson G, St George-Hyslop P, Westaway D, Orlando R, Mallory M, Rockenstein E, Masliah E. Aberrant presenilin-1 expression downregulates LDL receptor-related protein (LRP): is LRP central to Alzheimer's disease pathogenesis? Mol Cell Neurosci 1999; 14:129-40. [PMID: 10479411 DOI: 10.1006/mcne.1999.0772] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) polymorphisms have recently been associated with an increased susceptibility of Alzheimer's disease (AD). Furthermore, LRP has been linked to molecules that confer susceptibility to AD (apolipoprotein E, alpha-2-macroglobulin, amyloid precursor protein), previously with the exception of the presenilins. Here we report that aberrant presenilin-1 expression in vivo and in vitro downregulates LRP. Specifically, transgenic mice overexpressing the M146L or L286V presenilin-1 mutation show decreased levels of LRP expression in neuronal populations where presenilin-1 and LRP are closely colocalized or coexpressed. Moreover, cell lines transfected with presenilin-1 also expressed decreased levels of LRP. These findings suggest that LRP may be central to AD pathogenesis since all proteins genetically associated with AD can now be linked via a single pathway to LRP.
Collapse
Affiliation(s)
- E Van Uden
- School of Medicine, University of California at San Diego, La Jolla, California, 92093-0624, USA
| | | | | | | | | | | | | | | |
Collapse
|
744
|
De Jonghe C, Cras P, Vanderstichele H, Cruts M, Vanderhoeven I, Smouts I, Vanmechelen E, Martin JJ, Hendriks L, Van Broeckhoven C. Evidence that Abeta42 plasma levels in presenilin-1 mutation carriers do not allow for prediction of their clinical phenotype. Neurobiol Dis 1999; 6:280-7. [PMID: 10448055 DOI: 10.1006/nbdi.1999.0247] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the presenilin 1 (PSEN1) gene are an important cause of autosomal dominant Alzheimer's disease (AD). Both in vitro and in vivo experiments showed that PSEN1 mutations increase secretion of amyloid beta42 (Abeta42), the longer and more fibrillogenic isoform of Abeta. We measured secreted Abeta42 in plasma of patients, presymptomatic mutation carriers, and escapees of two extended Belgian early-onset AD families, AD/A and AD/B, with a similar severe phenotype in terms of onset age (mean 35 years), duration of the disease (mean 6.5 years), and pathology. Both families segregate a different missense mutation in PSEN1 located in different parts of the protein: I143T in family AD/A and G384A in family AD/B. A significant increase in Abeta42 concentrations was observed in plasma of mutation carriers in family AD/B, but not in family AD/A. A differential effect of the two PSEN1 mutations on Abeta42 secretion was also detected in conditioned medium of stably transfected HEK293 cells. Both mutations increased Abeta42 secretion significantly; however, the increase was highest for G384A (5.5-fold over wild-type PSEN1), the largest effect observed for missense PSEN1 mutations to date. Although the Abeta42 concentrations measured in vivo and in vitro did not correlate with onset age, a positive correlation was obtained with age in the presymptomatic mutation carriers and a negative correlation with duration of disease in the patients. Our data obtained for PSEN1 mutation carriers suggest that measuring Abeta42 concentrations in plasma will be informative as a diagnostic marker in a limited number of cases.
Collapse
Affiliation(s)
- C De Jonghe
- Flanders Interunivesity Institute for Biotechnology (VIB) and Born Bunge Foundation, Department of Biochemistry, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
745
|
De Jonghe C, Cruts M, Rogaeva EA, Tysoe C, Singleton A, Vanderstichele H, Meschino W, Dermaut B, Vanderhoeven I, Backhovens H, Vanmechelen E, Morris CM, Hardy J, Rubinsztein DC, St George-Hyslop PH, Van Broeckhoven C. Aberrant splicing in the presenilin-1 intron 4 mutation causes presenile Alzheimer's disease by increased Abeta42 secretion. Hum Mol Genet 1999; 8:1529-40. [PMID: 10401002 DOI: 10.1093/hmg/8.8.1529] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously described a splice donor site mutation in intron 4 of presenilin-1 (PSEN1) in two patients with autopsy-confirmed early-onset Alzheimer's disease (AD). Here we provide evidence that the intron 4 mutation is present in four additional unrelated early-onset AD cases, that the mutation segregates in an autosomal dominant manner and that all cases have one common ancestor. We demonstrate that the intron 4 mutation produces three different transcripts, two deletion transcripts (Delta4 and Delta4cryptic) and one insertion transcript (insTAC), by aberrant splicing. The deletion transcripts result in the formation of C-truncated (approximately 7 kDa) PSEN1 proteins while the insertion transcript produces a full-length PSEN1 with one extra amino acid (Thr) inserted between codons 113 and 114 (PSEN1 T113-114ins). The truncated proteins were not detectable in vivo in brain homogenates or lymphoblast lysates of mutation carriers. In vitro HEK-293 cells overexpressing Delta4, Delta4cryptic or insTACPSEN1 cDNAs showed increased Abeta42 secretion (approximately 3.4 times) only for the insertion cDNA construct. Increased Abeta42 production was also observed in brain homogenates. Our data indicate that in the case of intron 4 mutation, the AD pathophysiology results from the presence of the PSEN1 T113-114ins protein comparable with cases carrying dominant PSEN1 missense mutations.
Collapse
Affiliation(s)
- C De Jonghe
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Laboratory of Molecular Genetics, Born-Bunge Foundation (BBS), University of Antwerp (UIA), Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
746
|
Lamb BT, Bardel KA, Kulnane LS, Anderson JJ, Holtz G, Wagner SL, Sisodia SS, Hoeger EJ. Amyloid production and deposition in mutant amyloid precursor protein and presenilin-1 yeast artificial chromosome transgenic mice. Nat Neurosci 1999; 2:695-7. [PMID: 10412057 DOI: 10.1038/11154] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- B T Lamb
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA.
| | | | | | | | | | | | | | | |
Collapse
|
747
|
Nilsberth C, Luthman J, Lannfelt L, Schultzberg M. Expression of presenilin 1 mRNA in rat peripheral organs and brain. THE HISTOCHEMICAL JOURNAL 1999; 31:515-23. [PMID: 10507458 DOI: 10.1023/a:1003887922777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
At least 50 different mutations in the presenilin 1 gene have been shown to cause early onset familial Alzheimer's disease. Although presenilin 1 has an obvious role in the pathogenesis of Alzheimer's disease, its function is still unknown. In the present study, the occurrence and distribution of presenilin 1 mRNA was examined in rat peripheral organs as well as in the brain by in situ hybridization histochemistry, using a radiolabelled oligonucleotide probe. In comparison to the brain, a high presenilin 1 mRNA expression was found in the testis, kidney, spleen, adrenal gland and thymus. It was also observed in skeletal muscle, liver, small intestine and lung, whereas no presenilin 1 could be detected in the heart, spinal cord and pancreas. Since presenilin 1 mRNA was found to be abundant in peripheral tissues which apparently are not affected in Alzheimer's disease, additional functions of presenilin 1 are suggested, unrelated to its role in the pathological processes of the disease.
Collapse
Affiliation(s)
- C Nilsberth
- Department of Clinical Neuroscience, Occupational Therapy and Elderly Care Research, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
748
|
McGowan E, Sanders S, Iwatsubo T, Takeuchi A, Saido T, Zehr C, Yu X, Uljon S, Wang R, Mann D, Dickson D, Duff K. Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 1999; 6:231-44. [PMID: 10448051 DOI: 10.1006/nbdi.1999.0243] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Doubly transgenic mice (PSAPP) overexpressing mutant APP and PS1 transgenes were examined using antibodies to Abeta subtypes and glial fibrillary acidic protein (GFAP). Visible Abeta deposition began primarily in the cingulate cortex of PSAPP mice at approximately 10 weeks of age. By 6 months, the mice had extensive amyloid deposition throughout the hippocampus and cortex as well as other regions of the brain. Highly congophilic deposits consisting of N-terminal normal and modified forms of Abeta were identified, reminiscent of those found in human AD brain. Both immunohistochemistry and mass spectrometry showed that Abeta42 forms were underrepresented relative to Abeta40, and Abeta43 was undetectable. Deposits were associated with prominent gliosis which increased with age, but in 14-month-old PSAPP mice, GFAP immunoreactivity in the vicinity of amyloid deposits was substantially reduced compared to APP littermates. These mice have considerable utility in the study of the amyloid phenotype of AD.
Collapse
Affiliation(s)
- E McGowan
- Mayo Clinic, Jacksonville, Florida, 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
749
|
Hartmann D, De Strooper B, Saftig P. Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr Biol 1999; 9:719-27. [PMID: 10421573 DOI: 10.1016/s0960-9822(99)80331-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Presenilin-1 (PS1) is a transmembrane protein that is located in the endoplasmic reticulum and the cis Golgi apparatus. Missense mutations of PS1 that modify gamma-secretase function, leading to a pathologic processing of amyloid precursor protein, are an important cause of familial Alzheimer's disease. Physiologically, the presenilins are involved in the Notch and Wnt-beta-catenin signaling pathways. RESULTS PS1-deficient mice develop a cortical dysplasia resembling human type 2 lissencephaly, with leptomeningeal fibrosis and migration of cortical-plate neurons beyond their normal position into the marginal zone and subarachnoid space. This disorder of neuronal migration is associated with the disappearance of the majority of the cells of the marginal zone, notably most of the Cajal-Retzius pioneer neurons, between embryonic days E14 and E18, and is preceded and accompanied by disorganization of Notch-1 immunoreactivity on the neuronal cell membranes. The marginal zone also becomes depleted of the extracellular matrix protein reelin and chondroitin sulfate proteoglycans. At that stage PS1 is transiently expressed in leptomeningeal fibroblasts, which are mandatory for the trophic support of Cajal-Retzius neurons. CONCLUSIONS In agreement with models in which neuronal migration disorders have been linked to a defect in Cajal-Retzius cells, the loss of most of these cells in PS1-deficient mice leads to cortical dysplasia. Because PS1 is normally expressed in the leptomeninges, and these become fibrotic in the PS1-knockout mice, we favor the hypothesis that the loss of Cajal-Retzius cells is caused by a defective trophic interaction with leptomeningeal cells, possibly involving disruption of Notch signaling.
Collapse
Affiliation(s)
- D Hartmann
- Anatomisches Institut der CAU Kiel, Otto-Hahn-Platz 8, D-24 118, Kiel, Germany
| | | | | |
Collapse
|
750
|
Julliams A, Vanderhoeven I, Kuhn S, Van Broeckhoven C, De Jonghe C. No influence of presenilin1 I143T and G384A mutations on endogenous tau phosphorylation in human and mouse neuroblastoma cells. Neurosci Lett 1999; 269:83-6. [PMID: 10430510 DOI: 10.1016/s0304-3940(99)00402-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Presenilin1 (PSEN1) 1143T and G384A mutations give rise to severe early-onset Alzheimer's disease in two extensively studied Belgian families. In the present study, we examined the effect of PSEN1 1143T and G384A mutations on tau phosphorylation in human SH-SY5Y and mouse Neuro-2a neuroblastoma cell lines that were transiently transfected with wild type (WT) or mutant PSEN1. With a phosphorylation independent antibody, no alteration in the electrophoretic mobility of tau was observed between wild type and mutant PSEN1 transfectants. Also, densitometric analysis of Tau1 immunoreactivity, characteristic of unphosphorylated tau, demonstrated no significant differences between WT and mutant PSEN1 transfectants. Our data suggest that in the cellular models we used, transient overexpression of 1143T and G384A mutant PSEN1 does not lead to increased tau phosphorylation.
Collapse
Affiliation(s)
- A Julliams
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), University of Antwerp (UIA), Belgium
| | | | | | | | | |
Collapse
|