701
|
Huda N, Liu G, Hong H, Yan S, Khambu B, Yin XM. Hepatic senescence, the good and the bad. World J Gastroenterol 2019; 25:5069-5081. [PMID: 31558857 PMCID: PMC6747293 DOI: 10.3748/wjg.v25.i34.5069] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Gradual alterations of cell’s physiology and functions due to age or exposure to various stresses lead to the conversion of normal cells to senescent cells. Once becoming senescent, the cell stops dividing permanently but remains metabolically active. Cellular senescence does not have a single marker but is characterized mainly by a combination of multiple markers, such as, morphological changes, expression of cell cycle inhibitors, senescence associated β-galactosidase activity, and changes in nuclear membrane. When cells in an organ become senescent, the entire organism can be affected. This may occur through the senescence-associated secretory phenotype (SASP). SASP may exert beneficial or harmful effects on the microenvironment of tissues. Research on senescence has become a very exciting field in cell biology since the link between age-related diseases, including cancer, and senescence has been established. The loss of regenerative and homeostatic capacity of the liver over the age is somehow connected to cellular senescence. The major contributors of senescence properties in the liver are hepatocytes and cholangiocytes. Senescent cells in the liver have been implicated in the etiology of chronic liver diseases including cirrhosis and hepatocellular carcinoma and in the interference of liver regeneration. This review summarizes recently reported findings in the understanding of the molecular mechanisms of senescence and its relationship with liver diseases.
Collapse
Affiliation(s)
- Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
702
|
Li A, Yi M, Qin S, Chu Q, Luo S, Wu K. Prospects for combining immune checkpoint blockade with PARP inhibition. J Hematol Oncol 2019; 12:98. [PMID: 31521196 PMCID: PMC6744711 DOI: 10.1186/s13045-019-0784-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
The immunogenicity of a cancer cell is derived from accumulated somatic mutations. However, on the contrary to increased immunogenicity, anti-cancer immune response tends to be feeble. This impaired anti-cancer immunity could be attributed to multiple factors including loss of immunodominant epitopes, downregulation of major histocompatibility complex, and immunosuppressive microenvironment, as well as aberrant negative co-stimulatory signals. Immune checkpoint inhibitors block negative co-stimulatory signals such as programmed cell death-1 and cytotoxic T-lymphocyte-associated protein 4, ultimately reactivating anti-cancer immunity. Immune checkpoint inhibitors elicit potent anti-cancer effect and have been approved for multiple cancers. Nevertheless, there still are significant potential improvements for the applications of checkpoint inhibitor, especially considering frequent resistance. Recent studies demonstrated that additional PARP inhibition could alleviate resistance and enhance efficacy of immune checkpoint blockade therapy via promoting cross-presentation and modifying immune microenvironment. We proposed that PARP inhibitors could enhance the priming and tumor-killing activities of T cell, boost the whole cancer-immunity cycle, and thereby improve the response to immune checkpoint blockade. In this review, we focused the latest understanding of the effect of PARP inhibitors on anti-cancer immunity and PARP inhibitors combining immune checkpoint blockade therapy. Moreover, we summarized the preclinical and clinical evidence and discussed the feasibility of this combination therapy in future clinical practice.
Collapse
Affiliation(s)
- Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
703
|
Zhang C, Zheng DW, Li CX, Zou MZ, Yu WY, Liu MD, Peng SY, Zhong ZL, Zhang XZ. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials 2019; 223:119472. [PMID: 31499254 DOI: 10.1016/j.biomaterials.2019.119472] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022]
Abstract
Inflammation during photothermal therapy (PTT) of tumor usually results in adverse consequences. Here, a biomembrane camouflaged nanomedicine (mPDAB) containing polydopamine and ammonia borane was designed to enhance PTT efficacy and mitigate inflammation. Polydopamine, a biocompatible photothermal agent, can effectively convert light into heat for PTT. Ammonia borane was linked to the surface of polydopamine through the interaction of hydrogen bonding, which could destroy redox homoeostasis in tumor cells and reduce inflammation by H2 release in tumor microenvironment. Owing to the same origin of outer biomembranes, mPDAB showed excellent tumor accumulation and low systemic toxicity in a breast tumor model. Excellent PTT efficacy and inflammation reduction made the mPDAB completely eliminate the primary tumors, while also restraining the outgrowth of distant dormant tumors. The biomimetic nanomedicine shows potentials as a universal inflammation-self-alleviated platform to ameliorate inflammation-related disease treatment, including but not limited to PTT for tumor.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Mei-Zhen Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, PR China
| | - Wu-Yang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Miao-Deng Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Si-Yuan Peng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Zhen-Lin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
704
|
Smola M, Birkus G, Boura E. No magnesium is needed for binding of the stimulator of interferon genes to cyclic dinucleotides. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:593-598. [PMID: 31475926 DOI: 10.1107/s2053230x19010999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
Stimulator of interferon genes (STING) binds cyclic dinucleotides (CDNs), which induce a large conformational change of the protein. The structural basis of activation of STING by CDNs is rather well understood. Unliganded STING forms an open dimer that undergoes a large conformational change (∼10 Å) to a closed conformation upon the binding of a CDN molecule. This event activates downstream effectors of STING and subsequently leads to activation of the type 1 interferon response. However, a previously solved structure of STING with 3',3'-c-di-GMP shows Mg atoms mediating the interaction of STING with this CDN. Here, it is shown that no Mg atoms are needed for this interaction; in fact, magnesium can in some cases obstruct the binding of a CDN to STING.
Collapse
Affiliation(s)
- Miroslav Smola
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Gabriel Birkus
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Evzen Boura
- Gilead Sciences Research Centre at IOCB Prague, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
705
|
Wang J, Li R, Lin H, Qiu Q, Lao M, Zeng S, Wang C, Xu S, Zou Y, Shi M, Liang L, Xu H, Xiao Y. Accumulation of cytosolic dsDNA contributes to fibroblast-like synoviocytes-mediated rheumatoid arthritis synovial inflammation. Int Immunopharmacol 2019; 76:105791. [PMID: 31472320 DOI: 10.1016/j.intimp.2019.105791] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022]
Abstract
The accumulation of cytosolic dsDNA plays important roles in the regulation of cellular processes. However, whether cytosolic dsDNA is involved in the pathogenesis of rheumatoid arthritis (RA) is not clear. Therefore, the present study investigated the roles of cytosolic dsDNA in the modulation of inflammatory responses of fibroblast-like synoviocytes (FLS) in patients with RA. FLS were obtained from active RA patients. dsDNA accumulation in the cytosol was detected by immunofluorescence staining and the Qubit® dsDNA HS Assay. Immunohistochemistry was employed to detect the dsDNA and cGMP-AMP synthase (cGAS) expression in the synovium. Short hairpin RNA (shRNA) was used to knockdown the expression of cGAS and stimulator of interferon genes (STING). Protein expression was detected by Western blotting and immunofluorescence staining. We observed increased cytosolic dsDNA and cGAS expression in FLS and synovium from RA patients. dsDNA and cGAS expression correlated with the severity of rheumatoid synovitis. Transfection of dsDNA into the cytosol of RA FLS promoted pro-inflammatory cytokines production. DNaseII overexpression downregulated cytosolic dsDNA expression and inhibited dsDNA-induced cytokines secretion. We also found that dsDNA and TNF-α enhanced cGAS and STING expression, and dsDNA-induced cytokine secretion was reduced by cGAS or STING knockdown. Furthermore, we determined that the dsDNA-induced phosphorylation of IRF3 and NF-κBp65 was decreased by DNaseII overexpression or cGAS/STING knockdown. Overall, our findings show that increased cytosolic dsDNA level promoted inflammatory responses via the cGAS/STING pathway in RA FLS, which suggests that cytosolic dsDNA accumulation is an important contributor to FLS-mediated rheumatoid synovial inflammation.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haobo Lin
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minxi Lao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shan Zeng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuicui Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoyao Zou
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
706
|
Chon HJ, Kim H, Noh JH, Yang H, Lee WS, Kong SJ, Lee SJ, Lee YS, Kim WR, Kim JH, Kim G, Kim C. STING signaling is a potential immunotherapeutic target in colorectal cancer. J Cancer 2019; 10:4932-4938. [PMID: 31598165 PMCID: PMC6775531 DOI: 10.7150/jca.32806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Stimulator of Interferon Genes (STING) is an innate immune sensor for cytosolic DNA. STING signaling activation is indispensable for type I interferon response and the anti-cancer immune response by CD8+ T cells. The aim of this study was to characterize intratumoral STING expression pattern and its clinical implication in colorectal cancer (CRC). Methods: We analyzed STING and CD8 expression in 225 CRC patients who underwent surgical resection. Clinicopathological variables and survival outcomes were analyzed according to STING expression levels. Mice with syngeneic MC38 tumors were also treated with a STING agonist, and tumor microenvironments were analyzed using immunofluorescent staining and flow cytometry. Results: Distinct STING expression was observed in the CRC tumor specimens. Patients with higher STING expression had early stage cancer with increased intratumoral CD8+ T cell infiltration and less frequent lymphovascular invasion. Compared to CRC patients with lower STING expression, those with higher STING expression had longer overall and recurrence-free survival. Multivariate Cox regression model also revealed higher STING expression to be an independent prognostic factor for better overall survival. When MC38 colon tumors were treated with intratumoral injection of STING agonist, tumor growth was remarkably suppressed with increased intratumoral CD8+ T cell infiltration. Moreover, T-cell activation markers, ICOS and IFN-γ, were also upregulated in CD8+ T cells, indicating enhanced effector T cell function after STING treatment. Conclusion: We confirmed the distinct STING expression in CRC and demonstrated its independent prognostic value in survival outcomes. STING could be a potential therapeutic target that enhances anti-cancer immune response in CRC.
Collapse
Affiliation(s)
- Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,CHA Medical School, CHA University, Seongnam, Korea
| | - Hyojoong Kim
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea
| | - Jung Hyun Noh
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,CHA Medical School, CHA University, Seongnam, Korea
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea
| | - So Jung Kong
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea
| | - Seung Jun Lee
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea
| | - Yu Seong Lee
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea
| | - Woo Ram Kim
- Department of Surgery, CHA Bundang Medical Center, Seongnam, Korea
| | - Joo Hang Kim
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, Seongnam, Korea.,CHA Medical School, CHA University, Seongnam, Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,CHA Medical School, CHA University, Seongnam, Korea
| |
Collapse
|
707
|
McGuckin Wuertz K, Treuting PM, Hemann EA, Esser-Nobis K, Snyder AG, Graham JB, Daniels BP, Wilkins C, Snyder JM, Voss KM, Oberst A, Lund J, Gale M. STING is required for host defense against neuropathological West Nile virus infection. PLoS Pathog 2019; 15:e1007899. [PMID: 31415679 DOI: 10.1371/journal.ppat.1007899] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV), an emerging and re-emerging RNA virus, is the leading source of arboviral encephalitic morbidity and mortality in the United States. WNV infections are acutely controlled by innate immunity in peripheral tissues outside of the central nervous system (CNS) but WNV can evade the actions of interferon (IFN) to facilitate CNS invasion, causing encephalitis, encephalomyelitis, and death. Recent studies indicate that STimulator of INterferon Gene (STING), canonically known for initiating a type I IFN production and innate immune response to cytosolic DNA, is required for host defense against neurotropic RNA viruses. We evaluated the role of STING in host defense to control WNV infection and pathology in a murine model of infection. When challenged with WNV, STING knock out (-/-) mice displayed increased morbidity and mortality compared to wild type (WT) mice. Virologic analysis and assessment of STING activation revealed that STING signaling was not required for control of WNV in the spleen nor was WNV sufficient to mediate canonical STING activation in vitro. However, STING-/- mice exhibited a clear trend of increased viral load and virus dissemination in the CNS. We found that STING-/- mice exhibited increased and prolonged neurological signs compared to WT mice. Pathological examination revealed increased lesions, mononuclear cellular infiltration and neuronal death in the CNS of STING-/- mice, with sustained pathology after viral clearance. We found that STING was required in bone marrow derived macrophages for early control of WNV replication and innate immune activation. In vivo, STING-/- mice developed an aberrant T cell response in both the spleen and brain during WNV infection that linked with increased and sustained CNS pathology compared to WT mice. Our findings demonstrate that STING plays a critical role in immune programming for the control of neurotropic WNV infection and CNS disease.
Collapse
Affiliation(s)
- Kathryn McGuckin Wuertz
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America.,Department of Defense; United States Army Medical Department, San Antonio, TX, United States of America
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Emily A Hemann
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Katharina Esser-Nobis
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Annelise G Snyder
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States of America
| | - Courtney Wilkins
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Kathleen M Voss
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jennifer Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Michael Gale
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
708
|
Stinson LF, Payne MS, Keelan JA. Placental and intra-amniotic inflammation are associated with altered fetal immune responses at birth. Placenta 2019; 85:15-23. [PMID: 31421529 DOI: 10.1016/j.placenta.2019.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION High-grade placental inflammation is associated with preterm birth and poor neonatal outcomes. Recent reports suggest that low-grade placental inflammation is common in uncomplicated pregnancies. The relationship between placental inflammation and innate immune anti-microbial responses is unknown. In this study we sought to identify any association between placental inflammation and fetal immune responses. METHODS Cord blood samples collected from late preterm and full-term Caesarean section deliveries (n = 44) were exposed to various immune challenges (resiquimod, LPS, PGN, poly (I:C), cGAMP, and 5'ppp-dsRNA) and production of inflammatory mediators (G-CSF, IFN-γ, IL-1β, IL-6, IL-8, IL-10, and TNF-α) was measured by multiplex assay. Hospital histology reports were used to assess the extent of inflammation in the placenta. RESULTS Almost half (47.7%) of placentae examined here showed histological evidence of inflammation. Resiquimod, LPS, and PGN elicited strong inflammatory responses in neonatal cord blood, while poly (I:C), cGAMP, and 5'ppp-dsRNA elicited weaker responses. Fetuses with evidence of chorioamnionitis and fetal inflammatory reaction in their placentae had significantly increased immune responses to cGAMP and 5'ppp-dsRNA (ligands for STING and RIG-I, respectively) and significantly decreased immune responses to poly (I:C) (a TLR3 agonist). Interestingly, STING, RIG-I, and TLR3 are all involved in viral response pathways, suggesting that fetuses exposed to chorioamnionitis or fetal inflammatory reaction might respond differently to viruses postnatally. CONCLUSION Our data suggest that low-level placental inflammation is associated with altered innate cytokine responses at birth.
Collapse
Affiliation(s)
- Lisa F Stinson
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia.
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
709
|
Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y, Chaudhary V, Yuen KS, Ho TH, Chan CP, Zhang Y, Kok KH, Yang W, Chan CP, Jin DY. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res 2019; 46:4054-4071. [PMID: 29547894 PMCID: PMC5934658 DOI: 10.1093/nar/gky186] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
STING is a core adaptor in innate nucleic acid sensing in mammalian cells, on which different sensing pathways converge to induce type I interferon (IFN) production. Particularly, STING is activated by 2'3'-cGAMP, a cyclic dinucleotide containing mixed phosphodiester linkages and produced by cytoplasmic DNA sensor cGAS. Here, we reported on a novel transcript isoform of STING designated STING-β that dominantly inhibits innate nucleic acid sensing. STING-β without transmembrane domains was widely expressed at low levels in various human tissues and viral induction of STING-β correlated inversely with IFN-β production. The expression of STING-β declined in patients with lupus, in which type I IFNs are commonly overproduced. STING-β suppressed the induction of IFNs, IFN-stimulated genes and other cytokines by various immunostimulatory agents including cyclic dinucleotides, DNA, RNA and viruses, whereas depletion of STING-β showed the opposite effect. STING-β interacted with STING-α and antagonized its antiviral function. STING-β also interacted with TBK1 and prevented it from binding with STING-α, TRIF or other transducers. In addition, STING-β bound to 2'3'-cGAMP and impeded its binding with and activation of STING-α, leading to suppression of IFN-β production. Taken together, STING-β sequesters 2'3'-cGAMP second messenger and other transducer molecules to inhibit innate nucleic acid sensing dominantly.
Collapse
Affiliation(s)
- Pei-Hui Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei-Wei Gao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Jun Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vidyanath Chaudhary
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ting-Hin Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ching-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yan Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
710
|
Boussios S, Karihtala P, Moschetta M, Karathanasi A, Sadauskaite A, Rassy E, Pavlidis N. Combined Strategies with Poly (ADP-Ribose) Polymerase (PARP) Inhibitors for the Treatment of Ovarian Cancer: A Literature Review. Diagnostics (Basel) 2019; 9:E87. [PMID: 31374917 PMCID: PMC6787707 DOI: 10.3390/diagnostics9030087] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are the first clinically approved drugs designed to exploit synthetic lethality, and were first introduced as a cancer-targeting strategy in 2005. They have led to a major change in the treatment of advanced ovarian cancer, and altered the natural history of a disease with extreme genetic complexity and defective DNA repair via homologous recombination (HR) pathway. Furthermore, additional mechanisms apart from breast related cancer antigens 1 and 2 (BRCA1/2) mutations can also result in HR pathway alterations and consequently lead to a clinical benefit from PARP inhibitors. Novel combinations of PARP inhibitors with other anticancer therapies are challenging, and better understanding of PARP biology, DNA repair mechanisms, and PARP inhibitor mechanisms of action is crucial. It seems that PARP inhibitor and biologic agent combinations appear well tolerated and clinically effective in both BRCA-mutated and wild-type cancers. They target differing aberrant and exploitable pathways in ovarian cancer, and may induce greater DNA damage and HR deficiency. The input of immunotherapy in ovarian cancer is based on the observation that immunosuppressive microenvironments can affect tumour growth, metastasis, and even treatment resistance. Several biologic agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (VEGF; bevacizumab, cediranib), and PD-1 or PD-L1 (durvalumab, pembrolizumab, nivolumab), anti-CTLA4 monoclonal antibodies (tremelimumab), mTOR-(vistusertib), AKT-(capivasertib), and PI3K inhibitors (buparlisib, alpelisib), as well as MEK 1/2, and WEE1 inhibitors (selumetinib and adavosertib, respectively). Olaparib and veliparib have also been combined with chemotherapy with the rationale of disrupting base excision repair via PARP inhibition. Olaparib has been investigated with carboplatin and paclitaxel, whereas veliparib has been tested additionally in combination with temozolomide vs. pegylated liposomal doxorubicin, as well as with oral cyclophosphamide, and topoisomerase inhibitors. However, overlapping myelosuppression observed with PARP inhibitor and chemotherapy combinations requires further investigation with dose escalation studies. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of such combination strategies.
Collapse
Affiliation(s)
- Stergios Boussios
- Acute Oncology Assessment Unit, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK.
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece.
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 22, 90029 Oulu, Finland
| | - Michele Moschetta
- Drug Development Unit, Sarah Cannon Research Institute, 93 Harley Street, London W1G 6AD, UK
| | - Afroditi Karathanasi
- Acute Oncology Assessment Unit, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK
| | - Agne Sadauskaite
- Department of Pharmacy, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, Kent, UK
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France
- Department of Hematology-Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, 166830 Beirut, Lebanon
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110 Ioannina, Greece
| |
Collapse
|
711
|
Takaoka A, Yamada T. Regulation of signaling mediated by nucleic acid sensors for innate interferon-mediated responses during viral infection. Int Immunol 2019; 31:477-488. [PMID: 30985869 PMCID: PMC7110195 DOI: 10.1093/intimm/dxz034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Type I and type III interferons are important anti-viral cytokines that are massively induced during viral infection. This dynamic process is regulated by many executors and regulators for efficient eradication of invading viruses and protection from harmful, excessive responses. An array of innate sensors recognizes virus-derived nucleic acids to activate their downstream signaling to evoke cytokine responses including interferons. In particular, a cytoplasmic RNA sensor RIG-I (retinoic acid-inducible gene I) is involved in the detection of multiple types of not only RNA viruses but also DNA viruses. Accumulating findings have revealed that activation of nucleic acid sensors and the related signaling mediators is regulated on the basis of post-translational modification such as ubiquitination, phosphorylation and ADP-ribosylation. In addition, long non-coding RNAs (lncRNAs) have been implicated as a new class of regulators in innate signaling. A comprehensive understanding of the regulatory mechanisms of innate sensor activation and its signaling in host-virus interaction will provide a better therapeutic strategy to efficiently control viral infection and maintain immune homeostasis.
Collapse
Affiliation(s)
- Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taisho Yamada
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
712
|
Hartl CA, Bertschi A, Puerto RB, Andresen C, Cheney EM, Mittendorf EA, Guerriero JL, Goldberg MS. Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. J Immunother Cancer 2019; 7:199. [PMID: 31362778 PMCID: PMC6668091 DOI: 10.1186/s40425-019-0654-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Despite major advancements in immunotherapy among a number of solid tumors, response rates among ovarian cancer patients remain modest. Standard treatment for ovarian cancer is still surgery followed by taxane- and platinum-based chemotherapy. Thus, there is an urgent need to develop novel treatment options for clinical translation. Methods Our approach was to analyze the effects of standard chemotherapy in the tumor microenvironment of mice harboring orthotopic, syngeneic ID8-Vegf-Defb29 ovarian tumors in order to mechanistically determine a complementary immunotherapy combination. Specifically, we interrogated the molecular and cellular consequences of chemotherapy by analyzing gene expression and flow cytometry data. Results These data show that there is an immunosuppressive shift in the myeloid compartment, with increased expression of IL-10 and ARG1, but no activation of CD3+ T cells shortly after chemotherapy treatment. We therefore selected immunotherapies that target both the innate and adaptive arms of the immune system. Survival studies revealed that standard chemotherapy was complemented most effectively by a combination of anti-IL-10, 2′3’-cGAMP, and anti-PD-L1. Immunotherapy dramatically decreased the immunosuppressive myeloid population while chemotherapy effectively activated dendritic cells. Together, combination treatment increased the number of activated T and dendritic cells as well as expression of cytotoxic factors. It was also determined that the immunotherapy had to be administered concurrently with the chemotherapy to reverse the acute immunosuppression caused by chemotherapy. Mechanistic studies revealed that antitumor immunity in this context was driven by CD4+ T cells, which acquired a highly activated phenotype. Our data suggest that these CD4+ T cells can kill cancer cells directly via granzyme B-mediated cytotoxicity. Finally, we showed that this combination therapy is also effective at delaying tumor growth substantially in an aggressive model of lung cancer, which is also treated clinically with taxane- and platinum-based chemotherapy. Conclusions This work highlights the importance of CD4+ T cells in tumor immunology. Furthermore, the data support the initiation of clinical trials in ovarian cancer that target both innate and adaptive immunity, with a focus on optimizing dosing schedules. Electronic supplementary material The online version of this article (10.1186/s40425-019-0654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina A Hartl
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrian Bertschi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Regina Bou Puerto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Carolin Andresen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA.,Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
713
|
Bussi C, Gutierrez MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev 2019; 43:341-361. [PMID: 30916769 PMCID: PMC6606852 DOI: 10.1093/femsre/fuz006] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/26/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains one of the deadliest infectious diseases with over a billion deaths in the past 200 years (Paulson 2013). TB causes more deaths worldwide than any other single infectious agent, with 10.4 million new cases and close to 1.7 million deaths in 2017. The obstacles that make TB hard to treat and eradicate are intrinsically linked to the intracellular lifestyle of Mtb. Mtb needs to replicate within human cells to disseminate to other individuals and cause disease. However, we still do not completely understand how Mtb manages to survive within eukaryotic cells and why some cells are able to eradicate this lethal pathogen. Here, we summarise the current knowledge of the complex host cell-pathogen interactions in TB and review the cellular mechanisms operating at the interface between Mtb and the human host cell, highlighting the technical and methodological challenges to investigating the cell biology of human host cell-Mtb interactions.
Collapse
Affiliation(s)
- Claudio Bussi
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Maximiliano G Gutierrez
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| |
Collapse
|
714
|
TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages. Proc Natl Acad Sci U S A 2019; 116:16479-16488. [PMID: 31346090 PMCID: PMC6697806 DOI: 10.1073/pnas.1901090116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activators of interferons have received a great deal of interest in recent decades, both due to the central role they play in host defense against a range of pathogens, as well as the now well-recognized importance of dysregulated interferon activation/signaling in the pathogenesis of a number of highly prevalent and hard-to-treat diseases, such as systemic lupus erythematosus (SLE). Therefore, novel regulators of interferon activation are being sought as they may provide better targets to treat these diseases. We report the discovery of TMEM203 as an SLE-associated gene and a regulator of ligand-dependent activation of interferon production via STING. Thus, our work could form the basis of a novel therapeutic strategy for the treatment of interferonopathies, including SLE. Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-β. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.
Collapse
|
715
|
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms 2019; 7:microorganisms7080216. [PMID: 31349602 PMCID: PMC6723309 DOI: 10.3390/microorganisms7080216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) family of transcription factors is a key component of the host innate immune response to infectious adenoviruses and adenovirus vectors. In this review, we will discuss a regulatory adenoviral protein encoded by early region 3 (E3) called E3-RIDα, which targets NFκB through subversion of novel host cell pathways. E3-RIDα down-regulates an EGF receptor signaling pathway, which overrides NFκB negative feedback control in the nucleus, and is induced by cell stress associated with viral infection and exposure to the pro-inflammatory cytokine TNF-α. E3-RIDα also modulates NFκB signaling downstream of the lipopolysaccharide receptor, Toll-like receptor 4, through formation of membrane contact sites controlling cholesterol levels in endosomes. These innate immune evasion tactics have yielded unique perspectives regarding the potential physiological functions of host cell pathways with important roles in infectious disease.
Collapse
Affiliation(s)
- Cathleen R Carlin
- Department of Molecular Biology and Microbiology and the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
716
|
Yang H, Lee WS, Kong SJ, Kim CG, Kim JH, Chang SK, Kim S, Kim G, Chon HJ, Kim C. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Invest 2019; 129:4350-4364. [PMID: 31343989 DOI: 10.1172/jci125413] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The stimulator of interferon genes (STING) signaling pathway is a critical link between innate and adaptive immunity, and induces anti-tumor immune responses. STING is expressed in vasculatures, but its role in tumor angiogenesis has not been elucidated. Here we investigated STING-induced tumor vascular remodeling and the potential of STING-based combination immunotherapy. Endothelial STING expression was correlated with enhanced T-cell infiltration and prolonged survival in human colon and breast cancer. Intratumoral STING activation with STING agonists (cGAMP or RR-CDA) normalized tumor vasculatures in implanted and spontaneous cancers, but not in STING-deficient mice. These were mediated by upregulation of type I/II interferon genes and vascular stabilizing genes (e.g., Angpt1, Pdgfrb, and Col4a). STING in non-hematopoietic cells is as important as STING in hematopoietic cells to induce a maximal therapeutic efficacy of exogenous STING agonist. Vascular normalizing effects of STING agonists were dependent on type I interferon signaling and CD8+ T cells. Notably, STING-based immunotherapy was maximally effective when combined with VEGFR2 blockade and/or immune checkpoint blockade (αPD-1 or αCTLA-4), leading to complete regression of immunotherapy-resistant tumors. Our data show that intratumoral STING activation can normalize tumor vasculature and the tumor microenvironment, providing a rationale for combining STING-based immunotherapy and anti-angiogenic therapy.
Collapse
Affiliation(s)
- Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, South Korea
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, South Korea
| | - So Jung Kong
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, South Korea
| | - Chang Gon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Joo Hoon Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, South Korea
| | | | - Sewha Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, South Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, South Korea
| |
Collapse
|
717
|
Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell 2019; 178:302-315.e23. [PMID: 31299200 PMCID: PMC6693521 DOI: 10.1016/j.cell.2019.05.035] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/21/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Abstract
Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.
Collapse
Affiliation(s)
- Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Maria Paredes
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
718
|
Li T, Li X, Attri KS, Liu C, Li L, Herring LE, Asara JM, Lei YL, Singh PK, Gao C, Wen H. O-GlcNAc Transferase Links Glucose Metabolism to MAVS-Mediated Antiviral Innate Immunity. Cell Host Microbe 2019; 24:791-803.e6. [PMID: 30543776 DOI: 10.1016/j.chom.2018.11.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/19/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Increased glucose metabolism in immune cells not only serves as a hallmark feature of acute inflammation but also profoundly affects disease outcome following bacterial infection and tissue damage. However, the role of individual glucose metabolic pathways during viral infection remains largely unknown. Here we demonstrate an essential function of the hexosamine biosynthesis pathway (HBP)-associated O-linked β-N-acetylglucosamine (O-GlcNAc) signaling in promoting antiviral innate immunity. Challenge of macrophages with vesicular stomatitis viruses (VSVs) enhances HBP activity and downstream protein O-GlcNAcylation. Human and murine cells deficient of O-GlcNAc transferase, a key enzyme for protein O-GlcNAcylation, show defective antiviral immune responses upon VSV challenge. Mechanistically, O-GlcNAc transferase-mediated O-GlcNAcylation of the signaling adaptor MAVS on serine 366 is required for K63-linked ubiquitination of MAVS and subsequent downstream retinoic-acid inducible gene-like receptor -antiviral signaling activation. Thus, our study identifies a molecular mechanism by which HBP-mediated O-GlcNAcylation regulates MAVS function and highlights the importance of glucose metabolism in antiviral innate immunity.
Collapse
Affiliation(s)
- Tianliang Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xinghui Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Applied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Changhong Liu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Lupeng Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Laura E Herring
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pankaj K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Applied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chengjiang Gao
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Haitao Wen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
719
|
Activation of the STING-Dependent Type I Interferon Response Reduces Microglial Reactivity and Neuroinflammation. Neuron 2019; 96:1290-1302.e6. [PMID: 29268096 DOI: 10.1016/j.neuron.2017.11.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Brain aging and neurodegeneration are associated with prominent microglial reactivity and activation of innate immune response pathways, commonly referred to as neuroinflammation. One such pathway, the type I interferon response, recognizes viral or mitochondrial DNA in the cytoplasm via activation of the recently discovered cyclic dinucleotide synthetase cGAS and the cyclic dinucleotide receptor STING. Here we show that the FDA-approved antiviral drug ganciclovir (GCV) induces a type I interferon response independent of its canonical thymidine kinase target. Inhibition of components of the STING pathway, including STING, IRF3, Tbk1, extracellular IFNβ, and the Jak-Stat pathway resulted in reduced activity of GCV and its derivatives. Importantly, functional STING was necessary for GCV to inhibit inflammation in cultured myeloid cells and in a mouse model of multiple sclerosis. Collectively, our findings uncover an unexpected new activity of GCV and identify the STING pathway as a regulator of microglial reactivity and neuroinflammation.
Collapse
|
720
|
Exman P, Barroso-Sousa R, Tolaney SM. Evidence to date: talazoparib in the treatment of breast cancer. Onco Targets Ther 2019; 12:5177-5187. [PMID: 31303769 PMCID: PMC6612288 DOI: 10.2147/ott.s184971] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Approximately 5-10% of all patients diagnosed with breast cancer have germline BRCA1/2 mutations, which make their disease more susceptible to DNA-damaging agents and a new class of drugs known as poly(ADP-ribose) polymerase (PARP) inhibitors. Talazoparib is a new PARP inhibitor that has been recently approved for use in patients with metastatic breast cancer with germline BRCA mutations after a phase III trial showed superior progression-free survival when compared to standard chemotherapy. In this review, we analyze the development of talazoparib as well as its safety profile and the potential role of the combination therapy with standard cytotoxic drugs and with novel therapies.
Collapse
Affiliation(s)
- Pedro Exman
- Breast Oncology Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Romualdo Barroso-Sousa
- Breast Oncology Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara M Tolaney
- Breast Oncology Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
721
|
Identification of Novel Biomarkers of Homologous Recombination Defect in DNA Repair to Predict Sensitivity of Prostate Cancer Cells to PARP-Inhibitors. Int J Mol Sci 2019; 20:ijms20123100. [PMID: 31242618 PMCID: PMC6627216 DOI: 10.3390/ijms20123100] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
One of the most common malignancies in men is prostate cancer, for which androgen deprivation is the standard therapy. However, prostate cancer cells become insensitive to anti-androgen treatment and proceed to a castration-resistant state with limited therapeutic options. Therefore, besides the androgen deprivation approach, novel biomarkers are urgently required for specific targeting in this deadly disease. Recently, germline or somatic mutations in the homologous recombination (HR) DNA repair genes have been identified in at least 20–25% of metastatic castration-resistant prostate cancers (mCRPC). Defects in genes involved in HR DNA repair can sensitize cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors, a class of drugs already approved by the Food and Drug Administration (FDA) for breast and ovarian cancer carrying germline mutations in BRCA1/2 genes. For advanced prostate cancer carrying Breast cancer1/2 (BRCA1/2) or ataxia telengiectasia mutated (ATM) mutations, preclinical studies and clinical trials support the use of PARP-inhibitors, which received breakthrough therapy designation by the FDA. Based on these assumptions, several trials including DNA damage response and repair (DDR) targeting have been launched and are ongoing for prostate cancer. Here, we review the state-of-the-art potential biomarkers that could be predictive of cancer cell synthetic lethality with PARP inhibitors. The identification of key molecules that are affected in prostate cancer could be assayed in future clinical studies to better stratify prostate cancer patients who might benefit from target therapy.
Collapse
|
722
|
Accumulation of Cytoplasmic DNA Due to ATM Deficiency Activates the Microglial Viral Response System with Neurotoxic Consequences. J Neurosci 2019; 39:6378-6394. [PMID: 31189575 DOI: 10.1523/jneurosci.0774-19.2019] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a PI3K-like kinase best known for its role in the DNA damage response (DDR), especially after double-strand breaks. Mutations in the ATM gene result in a condition known as ataxia-telangiectasia (A-T) that is characterized by cancer predisposition, radiosensitivity, neurodegeneration, sterility, and acquired immune deficiency. We show here that the innate immune system is not spared in A-T. ATM-deficient microglia adopt an active phenotype that includes the overproduction of proinflammatory cytokines that are toxic to cultured neurons and likely contribute to A-T neurodegeneration. Causatively, ATM dysfunction results in the accumulation of DNA in the cytoplasm of microglia as well as a variety of other cell types. In microglia, cytoplasmic DNA primes an antiviral response via the DNA sensor, STING (stimulator of interferon genes). The importance of this response pathway is supported by our finding that inhibition of STING blocks the overproduction of neurotoxic cytokines. Cytosolic DNA also activates the AIM2 (absent in melanoma 2) containing inflammasome and induces proteolytic processing of cytokine precursors such as pro-IL-1β. Our study furthers our understanding of neurodegeneration in A-T and highlights the role of cytosolic DNA in the innate immune response.SIGNIFICANCE STATEMENT Conventionally, the immune deficiencies found in ataxia-telangiectasia (A-T) patients are viewed as defects of the B and T cells of the acquired immune system. In this study, we demonstrate the microglia of the innate immune system are also affected and uncover the mechanism by which this occurs. Loss of ATM (ataxia-telangiectasia mutated) activity leads to a slowing of DNA repair and an accumulation of cytoplasmic fragments of genomic DNA. This ectopic DNA induces the antivirus response, which triggers the production of neurotoxic cytokines. This expands our understanding of the neurodegeneration found in A-T and offers potentially new therapeutic options.
Collapse
|
723
|
Abstract
DNA viruses are linked to many infectious diseases and contribute significantly to human morbidity and mortality worldwide. Moreover, DNA viral infections are usually lifelong and hard to eradicate. Under certain circumstances, these viruses can cause fatal disease, especially in children and immunocompromised patients. An efficient innate immune response against these viruses is critical, not only as the first line of host defense against viral infection but also for mounting more specific and robust adaptive immunity against the virus. Recognition of the viral DNA genome is the very first step of this whole process and is crucial for understanding viral pathogenesis as well as for preventing and treating DNA virus-associated diseases. This review focuses on the current state of our knowledge on how human DNA viruses are sensed by the host innate immune system and how viral proteins counteract this immune response.
Collapse
Affiliation(s)
- Zhe Ma
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Guoxin Ni
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
724
|
Chaudhary S, Mittra I. Cell-free chromatin: A newly described mediator of systemic inflammation. J Biosci 2019; 44:32. [PMID: 31180045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent research has shown that cell-free chromatin (cfCh) particles that are released from the billions of cells that die in the body everyday can enter into healthy cells, integrate into their genomes and induce dsDNA breaks and apoptotic responses. Genomic integration of cfCh activates NF κ B suggesting a novel mechanism of induction of systemic inflammation. Since DNA damage and inflammation are underlying pathologies in multiple devastating acute and chronic disease conditions, the discovery of agents that can inactivate cfCh may provide therapeutic possibilities.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410 210, India
| | | |
Collapse
|
725
|
Dillon MT, Bergerhoff KF, Pedersen M, Whittock H, Crespo-Rodriguez E, Patin EC, Pearson A, Smith HG, Paget JTE, Patel RR, Foo S, Bozhanova G, Ragulan C, Fontana E, Desai K, Wilkins AC, Sadanandam A, Melcher A, McLaughlin M, Harrington KJ. ATR Inhibition Potentiates the Radiation-induced Inflammatory Tumor Microenvironment. Clin Cancer Res 2019; 25:3392-3403. [PMID: 30770349 PMCID: PMC6551222 DOI: 10.1158/1078-0432.ccr-18-1821] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/09/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE ATR inhibitors (ATRi) are in early phase clinical trials and have been shown to sensitize to chemotherapy and radiotherapy preclinically. Limited data have been published about the effect of these drugs on the tumor microenvironment.Experimental Design: We used an immunocompetent mouse model of HPV-driven malignancies to investigate the ATR inhibitor AZD6738 in combination with fractionated radiation (RT). Gene expression analysis and flow cytometry were performed posttherapy. RESULTS Significant radiosensitization to RT by ATRi was observed alongside a marked increase in immune cell infiltration. We identified increased numbers of CD3+ and NK cells, but most of this infiltrate was composed of myeloid cells. ATRi plus radiation produced a gene expression signature matching a type I/II IFN response, with upregulation of genes playing a role in nucleic acid sensing. Increased MHC I levels were observed on tumor cells, with transcript-level data indicating increased antigen processing and presentation within the tumor. Significant modulation of cytokine gene expression (particularly CCL2, CCL5, and CXCL10) was found in vivo, with in vitro data indicating CCL3, CCL5, and CXCL10 are produced from tumor cells after ATRi + RT. CONCLUSIONS We show that DNA damage by ATRi and RT leads to an IFN response through activation of nucleic acid-sensing pathways. This triggers increased antigen presentation and innate immune cell infiltration. Further understanding of the effect of this combination on the immune response may allow modulation of these effects to maximize tumor control through antitumor immunity.
Collapse
Affiliation(s)
| | | | - Malin Pedersen
- The Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Alex Pearson
- The Institute of Cancer Research, London, United Kingdom
| | - Henry G Smith
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Shane Foo
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Elisa Fontana
- The Institute of Cancer Research, London, United Kingdom
| | - Krisha Desai
- The Institute of Cancer Research, London, United Kingdom
| | - Anna C Wilkins
- The Institute of Cancer Research, London, United Kingdom
| | | | - Alan Melcher
- The Institute of Cancer Research, London, United Kingdom
| | | | | |
Collapse
|
726
|
Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proc Natl Acad Sci U S A 2019; 116:11946-11955. [PMID: 31142647 DOI: 10.1073/pnas.1905013116] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-cGAMP-STING pathway plays a key role in innate immunity, with cGAS sensing both pathogenic and mislocalized DNA in the cytoplasm. Human cGAS (h-cGAS) constitutes an important drug target for control of antiinflammatory responses that can contribute to the onset of autoimmune diseases. Recent studies have established that the positively charged N-terminal segment of cGAS contributes to enhancement of cGAS enzymatic activity as a result of DNA-induced liquid-phase condensation. We have identified an additional cGASCD-DNA interface (labeled site-C; CD, catalytic domain) in the crystal structure of a human SRY.cGASCD-DNA complex, with mutations along this basic site-C cGAS interface disrupting liquid-phase condensation, as monitored by cGAMP formation, gel shift, spin-down, and turbidity assays, as well as time-lapse imaging of liquid droplet formation. We expand on an earlier ladder model of cGAS dimers bound to a pair of parallel-aligned DNAs to propose a multivalent interaction-mediated cluster model to account for DNA-mediated condensation involving both the N-terminal domain of cGAS and the site-C cGAS-DNA interface. We also report the crystal structure of the h-cGASCD-DNA complex containing a triple mutant that disrupts the site-C interface, with this complex serving as a future platform for guiding cGAS inhibitor development at the DNA-bound h-cGAS level. Finally, we solved the structure of RU.521 bound in two alternate alignments to apo h-cGASCD, thereby occupying more of the catalytic pocket and providing insights into further optimization of active-site-binding inhibitors.
Collapse
|
727
|
Raghuram GV, Chaudhary S, Johari S, Mittra I. Illegitimate and Repeated Genomic Integration of Cell-Free Chromatin in the Aetiology of Somatic Mosaicism, Ageing, Chronic Diseases and Cancer. Genes (Basel) 2019; 10:genes10060407. [PMID: 31142004 PMCID: PMC6628102 DOI: 10.3390/genes10060407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that an individual is a complex mosaic of genetically divergent cells. Post-zygotic genomes of the same individual can differ from one another in the form of single nucleotide variations, copy number variations, insertions, deletions, inversions, translocations, other structural and chromosomal variations and footprints of transposable elements. High-throughput sequencing has led to increasing detection of mosaicism in healthy individuals which is related to ageing, neuro-degenerative disorders, diabetes mellitus, cardiovascular diseases and cancer. These age-related disorders are also known to be associated with significant increase in DNA damage and inflammation. Herein, we discuss a newly described phenomenon wherein the genome is under constant assault by illegitimate integration of cell-free chromatin (cfCh) particles that are released from the billions of cells that die in the body every day. We propose that such repeated genomic integration of cfCh followed by dsDNA breaks and repair by non-homologous-end-joining as well as physical damage to chromosomes occurring throughout life may lead to somatic/chromosomal mosaicism which would increase with age. We also discuss the recent finding that genomic integration of cfCh and the accompanying DNA damage is associated with marked activation of inflammatory cytokines. Thus, the triple pathologies of somatic mosaicism, DNA/chromosomal damage and inflammation brought about by a common mechanism of genomic integration of cfCh may help to provide an unifying model for the understanding of aetiologies of the inter-related conditions of ageing, degenerative disorders and cancer.
Collapse
Affiliation(s)
- Gorantla V Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India.
| | - Shahid Chaudhary
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India.
| | - Shweta Johari
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India.
| | - Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India.
| |
Collapse
|
728
|
Wang L, Yang H, Zamperone A, Diolaiti D, Palmbos PL, Abel EV, Purohit V, Dolgalev I, Rhim AD, Ljungman M, Hadju CH, Halbrook CJ, Bar-Sagi D, di Magliano MP, Crawford HC, Simeone DM. ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes Dev 2019; 33:641-655. [PMID: 31048544 PMCID: PMC6546061 DOI: 10.1101/gad.323303.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of β-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.
Collapse
Affiliation(s)
- Lidong Wang
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Huibin Yang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Andrea Zamperone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Daniel Diolaiti
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ethan V Abel
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vinee Purohit
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Igor Dolgalev
- Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA
| | - Andrew D Rhim
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christina H Hadju
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dafna Bar-Sagi
- Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Howard C Crawford
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diane M Simeone
- Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.,Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York 10016, USA.,Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
729
|
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res 2019; 29:347-364. [PMID: 30948788 PMCID: PMC6796845 DOI: 10.1038/s41422-019-0164-5] [Citation(s) in RCA: 1451] [Impact Index Per Article: 290.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, 510510, Guangzhou, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom Vanden Berghe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Methusalem program, Ghent University, 9000, Ghent, Belgium
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
- Université Pierre et Marie Curie, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
730
|
Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, Fan Y, Yang Y, Wang J, Glisson BS, Wistuba II, Sage J, Heymach JV, Gibbons DL, Byers LA. Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer. Cancer Discov 2019; 9:646-661. [PMID: 30777870 PMCID: PMC6563834 DOI: 10.1158/2159-8290.cd-18-1020] [Citation(s) in RCA: 542] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC in vivo models. CD8+ T-cell depletion reversed the antitumor effect, demonstrating the role of CD8+ T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of cGAS and STING successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC.See related commentary by Hiatt and MacPherson, p. 584.This article is highlighted in the In This Issue feature, p. 565.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Limo Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carminia M Della Corte
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto Morikawa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sandra Cristea
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Thuyen Nguyen
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Youhong Fan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongbin Yang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bonnie S Glisson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
731
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
732
|
Bonanno L, Zulato E, Pavan A, Attili I, Pasello G, Conte P, Indraccolo S. LKB1 and Tumor Metabolism: The Interplay of Immune and Angiogenic Microenvironment in Lung Cancer. Int J Mol Sci 2019; 20:ijms20081874. [PMID: 30995715 PMCID: PMC6514929 DOI: 10.3390/ijms20081874] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Liver kinase B1 (LKB1) is a tumor suppressor gene whose inactivation is frequent in different tumor types, especially in lung adenocarcinoma (about 30% of cases). LKB1 has an essential role in the control of cellular redox homeostasis by regulating ROS production and detoxification. Loss of LKB1 makes the tumor cell more sensitive to oxidative stress and consequently to stress-inducing treatments, such as chemotherapy and radiotherapy. LKB1 loss triggers complex changes in tumor microenvironment, supporting a role in the regulation of angiogenesis and suggesting a potential role in the response to anti-angiogenic treatment. On the other hand, LKB1 deficiency can promote an immunosuppressive microenvironment and may be involved in primary resistance to anti-PD-1/anti-PD-L1, as it has been reported in lung cancer. The aim of this review is to discuss interactions of LKB1 with the tumor microenvironment and the potential applications of this knowledge in predicting response to treatment in lung cancer.
Collapse
Affiliation(s)
- Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| | - Elisabetta Zulato
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| | - Alberto Pavan
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, 35128 Padova, Italy.
| | - Ilaria Attili
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, 35128 Padova, Italy.
| | - Giulia Pasello
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| | - PierFranco Conte
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, Università degli Studi di Padova, 35128 Padova, Italy.
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV- IRCCS, 35128 Padova, Italy.
| |
Collapse
|
733
|
Yamamoto T, Kanuma T, Takahama S, Okamura T, Moriishi E, Ishii KJ, Terahara K, Yasutomi Y. STING agonists activate latently infected cells and enhance SIV-specific responses ex vivo in naturally SIV controlled cynomolgus macaques. Sci Rep 2019; 9:5917. [PMID: 30976083 PMCID: PMC6459902 DOI: 10.1038/s41598-019-42253-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
To achieve a functional cure for HIV, treatment regimens that eradicate latently HIV-infected cells must be established. For this, many groups have attempted to reactivate latently-infected cells to induce cytopathic effects and/or elicit cytotoxic T lymphocyte (CTL)/NK cell-mediated immune responses to kill these cells. We believe that not only the reactivation of latently-infected cells, but also the induction of strong CTL responses, would be required for this. Here, we used typical immune activators that target pattern recognition receptors (PRRs). For our experimental model, we identified eight SIV-infected cynomolgus monkeys that became natural controllers of viremia. Although plasma viral loads were undetectable, we could measure SIV-DNA by qPCR in peripheral blood mononuclear cells (PBMCs). Using these PBMCs, we screened 10 distinct PRR ligands to measure IFN-α and IFN-γ production. Among these, STING ligands, cGAMP and c-di-AMP, and the TLR7/8 agonist R848 markedly increased cytokine levels. Both R848 and STING ligands could reactivate latently-infected cells in both cynomolgus monkeys and human PBMCs in vitro. Furthermore, c-di-AMP increased the frequency of SIV Gag-specific CD8+ T cells including polyfunctional CD8+ T cells, as compared to that in untreated control or R848-treated cells. Together, STING ligands might be candidates for HIV treatment.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan. .,Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Tomohiro Kanuma
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Shokichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Tomotaka Okamura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| | - Eiko Moriishi
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, 305-0843, Japan
| |
Collapse
|
734
|
|
735
|
Bommareddy PK, Zloza A, Rabkin SD, Kaufman HL. Oncolytic virus immunotherapy induces immunogenic cell death and overcomes STING deficiency in melanoma. Oncoimmunology 2019; 8:1591875. [PMID: 31143509 PMCID: PMC6527276 DOI: 10.1080/2162402x.2019.1591875] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/28/2022] Open
Abstract
Successful immunotherapy for melanoma depends on the recruitment of effector CD8+ T cells to the tumor microenvironment. Factors contributing to T cell regulation in melanoma have recently been recognized, including the stimulator of interferon genes (STING). Agents that can activate STING or enhance T cell infiltration into established tumors have become an important focus for further clinical development. Talimogene laherparepvec (T-VEC) is an oncolytic herpes simplex virus, type 1 (HSV-1) encoding granulocyte-macrophage colony stimulating factor (GM-CSF) and is approved for the treatment of melanoma and has shown therapeutic activity in murine tumors known to express high levels of STING. The mechanism of action for T-VEC has not been fully elucidated but is thought to include induction of immunogenic cell death (ICD) and activation of host anti-tumor immunity. Thus, we sought to investigate how T-VEC mediates anti-tumor activity in a melanoma model. To determine if T-VEC induced ICD we established the relative sensitivity of a panel of melanoma cell lines to T-VEC oncolysis. Following T-VEC infection in vitro, melanoma cell lines released of HMGB1, ATP, and translocated ecto-calreticulin. To identify potential mediators of this effect, we found that melanoma cell sensitivity to T-VEC was inversely related to STING expression. CRISPR/Cas9-STING knockout was also associated with increased T-VEC cell killing. In the D4M3A melanoma, which has low expression of STING and is resistant to PD-1 blockade therapy, T-VEC was able to induce therapeutic responses in both injected and non-injected tumors and demonstrated recruitment of viral- and tumor-antigen specific CD8+ T cells, and induction of a pro-inflammatory gene signature at both injected and non-injected tumors. These data suggest that T-VEC induces ICD in-vitro and promotes tumor immunity and can induce therapeutic responses in anti-PD-1-refractory, low STING expressing melanoma.
Collapse
Affiliation(s)
- Praveen K Bommareddy
- School of Graduate Studies & Rutgers Cancer Institute, Rutgers University, Rutgers Universi, New Brunswick, NJ, USA
| | - Andrew Zloza
- School of Graduate Studies & Rutgers Cancer Institute, Rutgers University, Rutgers Universi, New Brunswick, NJ, USA.,Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, USA
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Howard L Kaufman
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA.,Replimune, Inc., Woburn, MA, USA
| |
Collapse
|
736
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
737
|
Li A, Yi M, Qin S, Song Y, Chu Q, Wu K. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol 2019; 12:35. [PMID: 30935414 PMCID: PMC6444510 DOI: 10.1186/s13045-019-0721-x] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
During tumor progression, a subset of cancer cells escape from immune surveillance and eventually develop into measurable tumor mass. Cancer immunotherapy eradicates tumor cells by enhancing multiple steps in cancer-immunity cycle including antigen presentation, T cell priming, activation, and immune killing activity. Immunotherapy has been verified as an effective strategy in multiple cancers, but some problems still exist in actual clinical practice such as frequent primary and adaptive resistance. Combination with other adjuvant therapies gives us a new perspective to overcome the emerging obstacles in immunotherapy application. Recently, a series of studies demonstrated that the vital component of host innate immunity — cGAS-STING pathway might play an important role in anti-cancer immunity. It is generally acknowledged that the downstream signals of cGAS-STING especially type I interferon (IFN) bridge innate immunity and adaptive immunity. Given the functions of type I IFN in promoting the maturation and migration of dendritic cells, enhancing cytotoxic T lymphocyte- or natural killer cell-mediated cytotoxicity effect, and protecting effector cells from apoptosis, we believe cGAS-STING agonist might be used as sensitizer for multiple immunotherapies such as cancer vaccine, immune checkpoint blockade, and chimeric antigen receptor T cell therapy. In this review, we highlight the latest understanding of cGAS-STING pathway and the advances of the combination therapy of STING agonist and immunotherapy.
Collapse
Affiliation(s)
- Anping Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongping Song
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, Henan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kongming Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
738
|
Gao Y, Xu W, Dou X, Wang H, Zhang X, Yang S, Liao H, Hu X, Wang H. Mitochondrial DNA Leakage Caused by Streptococcus pneumoniae Hydrogen Peroxide Promotes Type I IFN Expression in Lung Cells. Front Microbiol 2019; 10:630. [PMID: 30984149 PMCID: PMC6447684 DOI: 10.3389/fmicb.2019.00630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae (S. pn), the bacterial pathogen responsible for invasive pneumococcal diseases, is capable of producing substantial amounts of hydrogen peroxide. However, the impact of S. pn-secreted hydrogen peroxide (H2O2) on the host immune processes is not completely understood. Here, we demonstrated that S. pn-secreted H2O2 caused mitochondrial damage and severe histopathological damage in mouse lung tissue. Additionally, S. pn-secreted H2O2 caused not only oxidative damage to mitochondrial deoxyribonucleic acid (mtDNA), but also a reduction in the mtDNA content in alveolar epithelia cells. This resulted in the release of mtDNA into the cytoplasm, which subsequently induced type I interferons (IFN-I) expression. We also determined that stimulator of interferon genes (STING) signaling was probably involved in S. pn H2O2-inducing IFN-I expression in response to mtDNA damaged by S. pn-secreted H2O2. In conclusion, our study demonstrated that H2O2 produced by S. pn resulted in mtDNA leakage from damaged mitochondria and IFN-I production in alveolar epithelia cells, and STING may be required in this process, and this is a novel mitochondrial damage mechanism by which S. pn potentiates the IFN-I cascade in S. pn infection.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoyun Dou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
739
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
740
|
Sevenich L. Turning "Cold" Into "Hot" Tumors-Opportunities and Challenges for Radio-Immunotherapy Against Primary and Metastatic Brain Cancers. Front Oncol 2019; 9:163. [PMID: 30941312 PMCID: PMC6433980 DOI: 10.3389/fonc.2019.00163] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
The development of immunotherapies has revolutionized intervention strategies for a variety of primary cancers. Despite this promising progress, treatment options for primary brain cancer and brain metastasis remain limited and still largely depend on surgical resection, radio- and/or chemotherapy. The paucity in the successful development of immunotherapies for brain cancers can in part be attributed to the traditional view of the brain as an immunologically privileged site. The presence of the blood-brain barrier and the absence of lymphatic drainage were believed to restrict the entry of blood-borne immune and inflammatory cells into the central nervous system (CNS), leading to an exclusion of the brain from systemic immune surveillance. However, recent insight from pre-clinical and clinical studies on the immune landscape of brain cancers challenged this dogma. Recruitment of blood-borne immune cells into the CNS provides unprecedented opportunities for the development of tumor microenvironment (TME)-targeted or immunotherapies against primary and metastatic cancers. Moreover, it is increasingly recognized that in addition to genotoxic effects, ionizing radiation represents a critical modulator of tumor-associated inflammation and synergizes with immunotherapies in adjuvant settings. This review summarizes current knowledge on the cellular and molecular identity of tumor-associated immune cells in primary and metastatic brain cancers and discusses underlying mechanisms by which ionizing radiation modulates the immune response. Detailed mechanistic insight into the effects of radiation on the unique immune landscape of brain cancers is essential for the development of multimodality intervention strategies in which immune-modulatory effects of radiotherapy are exploited to sensitize brain cancers to immunotherapies by converting immunologically “cold” into “hot” environments.
Collapse
Affiliation(s)
- Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| |
Collapse
|
741
|
Abstract
Inflammation is a complex and necessary component of the response to biological, chemical, or physical stimuli, and the cellular and molecular events that initiate and regulate the interactions between the various players in the inflammatory process remain a source of ongoing investigation. In the acute phase of the inflammatory response, cells of the immune system migrate to the site of injury in a carefully orchestrated sequence of events that is facilitated by soluble mediators such as cytokines, chemokines, and acute-phase proteins. Depending on the degree of injury, this acute phase may be sufficient to resolve the damage and initiate healing processes. Persistent inflammation, either as a result of prolonged exposure to stimulation or an inappropriate reaction against self-molecules, can lead to the chronic phase, in which tissue damage and fibrosis can occur. Chronic inflammation has been reported to contribute to numerous diseases, including arthritis, asthma, atherosclerosis, autoimmune diseases, diabetes, and cancer, and to conditions of aging. Hematology and clinical chemistry data from standard toxicology studies can provide an initial indication of the presence and sometimes the location of inflammation. These data may suggest more specific immune function assays that are necessary to determine the presence and/or mechanism(s) of immunomodulation. Although changes in hematology dynamics, acute-phase proteins, complement factors, and cytokines are common to virtually all inflammatory conditions, and can be measured by a variety of techniques, individual biomarkers have yet to be strongly associated with specific pathologic events. Thus, although sensitive indicators of inflammation, these factors generally lack the specificity to identify the offending cause. The profile seen in a given inflammatory condition is dependent on the severity, chronicity, and mechanisms involved in the inflammatory process, as well as the species and the capacity of the individual's immune system to respond and adapt.
Collapse
Affiliation(s)
- Dori R Germolec
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Kelly A Shipkowski
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Rachel P Frawley
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ellen Evans
- Immunotoxicology Center of Emphasis, Pfizer, Inc., Groton, CT, USA
| |
Collapse
|
742
|
Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J, Zheng J, Huang J, Slade DA, Wu X, Ren J. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis. EBioMedicine 2019; 41:497-508. [PMID: 30878597 PMCID: PMC6443583 DOI: 10.1016/j.ebiom.2019.02.055] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gut integrity is compromised in abdominal sepsis with increased cellular apoptosis and altered barrier permeability. Intestinal epithelial cells (IEC) form a physiochemical barrier that separates the intestinal lumen from the host's internal milieu and is strongly involved in the mucosal inflammatory response and immune response. Recent research indicates the involvement of the stimulator of interferons genes (STING) pathway in uncontrolled inflammation and gut mucosal immune response. METHODS We investigated the role of STING signaling in sepsis and intestinal barrier function using intestinal biopsies from human patients with abdominal sepsis and with an established model of abdominal sepsis in mice. FINDINGS In human abdominal sepsis, STING expression was elevated in peripheral blood mononuclear cells and intestinal biopsies compared with healthy controls, and the degree of STING expression in the human intestinal lamina propria correlated with the intestinal inflammation in septic patients. Moreover, elevated STING expression was associated with high levels of serum intestinal fatty acid binding protein that served as a marker of enterocyte damage. In mice, the intestinal STING signaling pathway was markedly activated following the induction of sepsis induced by cecal ligation perforation (CLP). STING knockout mice showed an alleviated inflammatory response, attenuated gut permeability, and decreased bacterial translocation. Whereas mice treated with a STING agonist (DMXAA) following CLP developed greater intestinal apoptosis and a more severe systemic inflammatory response. We demonstrated that mitochondrial DNA (mtDNA) was released during sepsis, inducing the intestinal inflammatory response through activating the STING pathway. We finally investigated DNase I administration at 5 hours post CLP surgery, showing that it reduced systemic mtDNA and inflammatory cytokines levels, organ damage, and bacterial translocation, suggesting that inhibition of mtDNA-STING signaling pathway protects against CLP-induced intestinal barrier dysfunction. INTERPRETATION Our results indicate that the STING signaling pathway can contribute to lethal sepsis by promoting IEC apoptosis and through disrupting the intestinal barrier. Our findings suggest that regulation of the mtDNA-STING pathway may be a promising therapeutic strategy to promote mucosal healing and protect the intestinal barrier in septic patients. FUND: National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Qiongyuan Hu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Medical School of Nanjing University, Nanjing, China
| | - Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guanwei Li
- Department of colorectal and anal surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dingyu Wang
- Medical School of Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing, China
| | - Quan Zhou
- Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Medical School of Nanjing University, Nanjing, China
| | - Jiashuo Zheng
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Medical School of Nanjing University, Nanjing, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dominic A Slade
- Medical School of Nanjing University, Nanjing, China; Department of Surgery, Salford Royal NHS Foundation Trust, Stott Lane, Salford, United Kingdom.
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
743
|
Hu Q, Knight PH, Ren Y, Ren H, Zheng J, Wu X, Ren J, Sawyer RG. The emerging role of stimulator of interferons genes signaling in sepsis: Inflammation, autophagy, and cell death. Acta Physiol (Oxf) 2019; 225:e13194. [PMID: 30269441 DOI: 10.1111/apha.13194] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Stimulator of interferons genes (STING) is an adaptor protein that plays a critical role in the secretion of type I interferons and pro-inflammatory cytokines in response to cytosolic nucleic acid. Recent research indicates the involvement of the STING pathway in uncontrolled inflammation, sepsis, and shock. STING signaling is significantly up-regulated in human sepsis, and STING agonists are suggested to contribute to the pathogenesis of sepsis and shock. Nevertheless, little is known about the consequences of activated STING-mediated signaling during sepsis. It has been shown that aberrant activation of the STING-dependent way can result in increased inflammation, type I interferons responses, and cell death (including apoptosis, necroptosis, and pyroptosis). In addition, autophagy modulation has been demonstrated to protect against multiple organs injuries in animal sepsis model. However, impaired autophagy may contribute to the aberrant activation of STING signaling, leading to uncontrolled inflammation and cell death. Here we present a comprehensive review of recent advances in the understanding of STING signaling, focusing on the regulatory mechanisms and the roles of this pathway in sepsis.
Collapse
Affiliation(s)
- Qiongyuan Hu
- Department of Surgery, Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Patrick H. Knight
- Department of Surgery Western Michigan University Homer Stryker, MD, School of Medicine Kalamazoo Michigan
| | - Yanhan Ren
- Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois
| | - Huajian Ren
- Department of Surgery, Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Jiashuo Zheng
- Department of Surgery, Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Xiuwen Wu
- Department of Surgery, Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Robert G. Sawyer
- Department of Surgery Western Michigan University Homer Stryker, MD, School of Medicine Kalamazoo Michigan
| |
Collapse
|
744
|
Abe T, Marutani Y, Shoji I. Cytosolic DNA-sensing immune response and viral infection. Microbiol Immunol 2019; 63:51-64. [PMID: 30677166 PMCID: PMC7168513 DOI: 10.1111/1348-0421.12669] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
How host cells recognize many kinds of RNA and DNA viruses and initiate innate antiviral responses against them has not yet been fully elucidated. Over the past decade, investigations into the mechanisms underlying these antiviral responses have focused extensively on immune surveillance sensors that recognize virus‐derived components (such as lipids, sugars and nucleic acids). The findings of these studies have suggested that antiviral responses are mediated by cytosolic or intracellular compartment sensors and their adaptor molecules (e.g., TLR, myeloid differentiation primary response 88, retinoic acid inducible gene‐I, IFN‐β promoter stimulator‐1, cyclic GMP‐AMP synthase and stimulator of IFN genes axis) for the primary sensing of virus‐derived nucleic acids, leading to production of type I IFNs, pro‐inflammatory cytokines and chemokines by the host cells. Thus, host cells have evolved an elaborate host defense machinery to recognize and eliminate virus infections. In turn, to achieve sustained viral infection and induce pathogenesis, viruses have also evolved several counteracting strategies for achieving immune escape by targeting immune sensors, adaptor molecules, intracellular kinases and transcription factors. In this review, we discuss recent discoveries concerning the role of the cytosolic nucleic acid‐sensing immune response in viral recognition and control of viral infection. In addition, we consider the regulatory machinery of the cytosolic nucleic acid‐sensing immune response because these immune surveillance systems must be tightly regulated to prevent aberrant immune responses to self and non‐self‐nucleic acids.
Collapse
Affiliation(s)
- Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Yuki Marutani
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| |
Collapse
|
745
|
Criscuolo D, Morra F, Giannella R, Visconti R, Cerrato A, Celetti A. New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. J Exp Clin Cancer Res 2019; 38:91. [PMID: 30791940 PMCID: PMC6385418 DOI: 10.1186/s13046-019-1089-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Novel therapeutic strategies are urgently needed for the treatment of metastatic Urothelial Bladder Cancer. DNA damaging repair (DDR) targeting has been introduced in cinical trials for bladder cancer patients that carry alterations in homologous DNA repair genes, letting to envisage susceptibility to the Poly (adenosine diphosphate [ADP]) ribose polymerase (PARP) inhibitors. MAIN BODY PARP inhibition, by amplifying the DNA damage, augments the mutational burden and promotes the immune priming of the tumor by increasing the neoantigen exposure and determining upregulation of programmed death ligand 1 (PD-L1) expression. Thus, the combination of PARP-inhibition and the PD/PD-L1 targeting may represent a compelling strategy to treat bladder cancer and has been introduced in recent clinical trials. The targeting of DDR has been also used in combination with epigenetic drugs able to modulate the expression of genes involved in DDR, and also able to act as immunomodulator agents suggesting their use in combination with immune-checkpoint inhibitors. CONCLUSION In conclusion, it may be envisaged the combination of three classes of drugs to treat bladder cancer, by targeting the DDR process in a tumor context of DDR defect, together with epigenetic agents and immune-checkpoint inhibitors, whose association may amplify the effects and reduce the doses and the toxicity of each single drug.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | | | - Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Aniello Cerrato
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
746
|
Gao L, Li K, Zhang Y, Liu Y, Liu C, Zhang Y, Gao Y, Qi X, Cui H, Wang Y, Wang X. Inhibition of DNA-Sensing Pathway by Marek's Disease Virus VP23 Protein through Suppression of Interferon Regulatory Factor 7 Activation. J Virol 2019; 93:e01934-18. [PMID: 30518647 PMCID: PMC6363996 DOI: 10.1128/jvi.01934-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023] Open
Abstract
The type I interferon (IFN) response is the first line of host innate immune defense against viral infection; however, viruses have developed multiple strategies to antagonize host IFN responses for efficient infection and replication. Here, we report that Marek's disease virus (MDV), an oncogenic herpesvirus, encodes VP23 protein as a novel immune modulator to block the beta interferon (IFN-β) activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) in chicken fibroblasts and macrophages. VP23 overexpression markedly reduces viral DNA-triggered IFN-β production and promotes viral replication, while knockdown of VP23 during MDV infection enhances the IFN-β response and suppresses viral replication. VP23 selectively inhibits IFN regulatory factor 7 (IRF7) but not nuclear factor κB (NF-κB) activation. Furthermore, we found that VP23 interacts with IRF7 and blocks its binding to TANK-binding kinase 1 (TBK1), thereby inhibiting IRF7 phosphorylation and nuclear translocation, resulting in reduced IFN-β production. These findings expand our knowledge of DNA sensing in chickens and reveal a mechanism through which MDV antagonizes the host IFN response.IMPORTANCE Despite widespread vaccination, Marek's disease (MD) continues to pose major challenges for the poultry industry worldwide. MDV causes immunosuppression and deadly lymphomas in chickens, suggesting that this virus has developed a successful immune evasion strategy. However, little is known regarding the initiation and modulation of the host innate immune response during MDV infection. This study demonstrates that the cGAS-STING DNA-sensing pathway is critical for the induction of the IFN-β response against MDV infection in chicken fibroblasts and macrophages. An MDV protein, VP23, was found to efficiently inhibit the cGAS-STING pathway. VP23 selectively inhibits IRF7 but not NF-κB activation. VP23 interacts with IRF7 and blocks its binding to TBK1, thereby suppressing IRF7 activation and resulting in inhibition of the DNA-sensing pathway. These findings expand our knowledge of DNA sensing in chickens and reveal a mechanism through which MDV antagonizes the host IFN response.
Collapse
Affiliation(s)
- Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongqiang Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
747
|
Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci Rep 2019; 9:1853. [PMID: 30755715 PMCID: PMC6372650 DOI: 10.1038/s41598-019-38534-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
PARP inhibitors have been proven clinically efficacious in platinum-responsive ovarian cancer regardless of BRCA1/2 status and in breast cancers with germline BRCA1/2 mutation. However, resistance to PARP inhibitors may preexist or evolve during treatment in many cancer types and may be overcome by combining PARP inhibitors with other therapies, such as immune checkpoint inhibitors, which confer durable responses and are rapidly becoming the standard of care for multiple tumor types. This study investigated the therapeutic potential of combining niraparib, a highly selective PARP1/2 inhibitor, with anti-PD-1 immune checkpoint inhibitors in preclinical tumor models. Our results indicate that niraparib treatment increases the activity of the type I (alpha) and type II (gamma) interferon pathways and enhances the infiltration of CD8+ cells and CD4+ cells in tumors. When coadministered in immunocompetent models, the combination of niraparib and anti-PD-1 demonstrated synergistic antitumor activities in both BRCA-proficient and BRCA-deficient tumors. Interestingly, mice with tumors cured by niraparib monotherapy completely rejected tumor growth upon rechallenge with the same tumor cell line, suggesting the potential establishment of immune memory in animals treated with niraparib monotherapy. Taken together, our findings uncovered immunomodulatory effects of niraparib that may sensitize tumors to immune checkpoint blockade therapies.
Collapse
|
748
|
Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, Rice L, Seo GJ, Calmettes G, Ramakrishna C, Cantin E, An DS, Sun R, Wu TT, Jung JU, Savic S, Gwack Y. The Ca 2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol 2019; 20:152-162. [PMID: 30643259 PMCID: PMC6340781 DOI: 10.1038/s41590-018-0287-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the type I interferon response to DNA pathogens. Aberrant activation of STING is linked to the pathology of autoimmune and autoinflammatory diseases. The rate-limiting step for the activation of STING is its translocation from the ER to the ER-Golgi intermediate compartment. Here, we found that deficiency in the Ca2+ sensor stromal interaction molecule 1 (STIM1) caused spontaneous activation of STING and enhanced expression of type I interferons under resting conditions in mice and a patient with combined immunodeficiency. Mechanistically, STIM1 associated with STING to retain it in the ER membrane, and coexpression of full-length STIM1 or a STING-interacting fragment of STIM1 suppressed the function of dominant STING mutants that cause autoinflammatory diseases. Furthermore, deficiency in STIM1 strongly enhanced the expression of type I interferons after viral infection and prevented the lethality of infection with a DNA virus in vivo. This work delineates a STIM1-STING circuit that maintains the resting state of the STING pathway.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Beibei Wu
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yasser M El-Sherbiny
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Jennifer Leung
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Koollawat Chupradit
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA
- UCLA AIDS Institute, Los Angeles, CA, USA
| | - Laura Rice
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Gil Ju Seo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Chandran Ramakrishna
- Department of Molecular Immunology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Edouard Cantin
- Department of Molecular Immunology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Dong Sung An
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA
- UCLA AIDS Institute, Los Angeles, CA, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sinisa Savic
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
749
|
Franzese E, Centonze S, Diana A, Carlino F, Guerrera LP, Di Napoli M, De Vita F, Pignata S, Ciardiello F, Orditura M. PARP inhibitors in ovarian cancer. Cancer Treat Rev 2019; 73:1-9. [DOI: 10.1016/j.ctrv.2018.12.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
|
750
|
Abstract
Originally thought of as a stress response end point, the view of cellular senescence has since evolved into one encompassing a wide range of physiological and pathological functions, including both protumorignic and antitumorigenic features. It has also become evident that senescence is a highly dynamic and heterogenous process. Efforts to reconcile the beneficial and detrimental features of senescence suggest that physiological functions require the transient presence of senescent cells in the tissue microenvironment. Here, we propose the concept of a physiological "senescence life cycle," which has pathological consequences if not executed in its entirety.
Collapse
Affiliation(s)
- Adelyne Sue Li Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|