701
|
Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27:4373-9. [PMID: 18372920 PMCID: PMC11968769 DOI: 10.1038/onc.2008.72] [Citation(s) in RCA: 560] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/07/2008] [Accepted: 02/20/2008] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively control expression of target genes in animals and plants. The microRNA-21 gene (mir-21) has been identified as the only miRNA commonly overexpressed in solid tumors of the lung, breast, stomach, prostate, colon, brain, head and neck, esophagus and pancreas. We initiated a screen to identify miR-21 target genes using a reporter assay and identified a potential miR-21 target in the 3'-UTR of the programmed cell death 4 (PDCD4) gene. We cloned the full-length 3'-UTR of human PDCD4 downstream of a reporter and found that mir-21 downregulated, whereas a modified antisense RNA to miR-21 upregulated reporter activity. Moreover, deletion of the putative miR-21-binding site (miRNA regulatory element, MRE) from the 3'-UTR of PDCD4, or mutations in the MRE abolished the ability of miR-21 to inhibit reporter activity, indicating that this MRE is a critical regulatory region. Western blotting showed that Pdcd4 protein levels were reduced by miR-21 in human and mouse cells, whereas quantitative real-time PCR revealed little difference at the mRNA level, suggesting translational regulation. Finally, overexpression of mir-21 in MCF-7 human breast cancer cells and mouse epidermal JB6 cells promoted soft agar colony formation by downregulating Pdcd4 protein levels. The demonstration that miR-21 promotes cell transformation supports the concept that mir-21 functions as an oncogene by a mechanism that involves translational repression of the tumor suppressor Pdcd4.
Collapse
Affiliation(s)
- Z Lu
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
- Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - M Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - V Stribinskis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
- Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - CM Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
- Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - KS Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
- Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - NH Colburn
- Gene Regulation Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Y Li
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
- Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
702
|
Abstract
MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and has a role in tumorigenesis, in part through regulation of the tumor suppressor gene tropomyosin 1 (TPM1). Given that TPM1 has been implicated in cell migration, in this study we further investigated the role of mir-21 in cell invasion and tumor metastasis. We found that suppression of mir-21 in metastatic breast cancer MDA-MB-231 cells significantly reduced invasion and lung metastasis. Consistent with this, ectopic expression of TPM1 remarkably reduced cell invasion. Furthermore, we identified two additional direct mir-21 targets, programmed cell death 4 (PDCD4) and maspin, both of which have been implicated in invasion and metastasis. Like TPM1, PDCD4 and maspin also reduced invasiveness of MDA-MB-231 cells. Finally, the expression of PDCD4 and maspin inversely correlated with mir-21 expression in human breast tumor specimens, indicating the potential regulation of PDCD4 and maspin by mir-21 in these tumors. Taken together, the results suggest that, as an oncogenic miRNA, mir-21 has a role not only in tumor growth but also in invasion and tumor metastasis by targeting multiple tumor/metastasis suppressor genes. Therefore, suppression of mir-21 may provide a novel approach for the treatment of advanced cancers.
Collapse
|
703
|
Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, Yao X, Pan Z, Zhang P, Li J, Wan D, Gu J. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer 2008; 123:972-8. [PMID: 18508316 DOI: 10.1002/ijc.23580] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transforming growth factor-beta (TGF-beta) plays a dual and complex role in human cancer. In this report, we observe a specific set of MicroRNAs (miRNAs) changed in response to TGF-beta in human hepatocellular carcinoma (HCC) cells by miRNA microarray screening. A cluster of miRNA, miR-23a approximately 27a approximately 24, is induced in an early stage by TGF-beta in Huh-7 cells. Knockdown of Smad4, Smad2 or Smad3 expression by RNA interference can attenuate the response of miR-23a approximately 27a approximately 24 to TGF-beta addition, indicating that this induction is dependent on Smad pathway. We also explore that miR-23a approximately 27a approximately 24 can function as an antiapoptotic and proliferation-promoting factor in liver cancer cells. In addition, expression of this miRNA cluster is found to be remarkably upregulated in HCC tissues versus normal liver tissues. These findings suggest a novel, alternative mechanism through which TGF-beta could induce specific miRNA expression to escape from tumor-suppressive response in HCC cells.
Collapse
Affiliation(s)
- Shenglin Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Medical School of Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
704
|
Lee SO. [Physiologic and pathologic experimental models for studying cholangiocytes]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 14:139-49. [PMID: 18617761 DOI: 10.3350/kjhep.2008.14.2.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholangiocytes (epithelial cells lining the intra- and extrahepatic bile ducts) and hepatocytes are two major components of liver epithelia. Although cholangiocytes are less numerous than hepatocytes, they are involved in both bile secretion and diverse cellular processes such as cell-cycle phenomena, cell signaling, and interactions with other cells, matrix components, foreign organisms, and xenobiotics. Cholangiocytes are also targets in several human diseases including cholangiocarcinoma, primary sclerosing cholangitis, autoimmune cholangitis, and vanishing bile-duct syndrome. The rapid advances in experimental biology technologies are greatly expanding interest in and knowledge of the physiology and pathophysiology of cholangiocytes. This review focuses on the progress of in vivo and in vitro experimental models in elucidating the physiologic functions of cholangiocytes and the pathophysiology of various cholangiopathies. The following aspects are reviewed: isolation of cholangiocytes from the liver and their heterogeneity, various culture systems, establishment of cholangiocyte cell lines, isolation and usage of intrahepatic bile-duct units, three-dimensional modeling of the bile duct, experimental models for inducing cholangiocyte proliferation, and various cholangiopathies such as cholangiocarcinoma, primary sclerosing cholangitis, and autoimmune cholangitis.
Collapse
Affiliation(s)
- Seung-Ok Lee
- Division of Gatroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Hospital and Medical School, Jeonju, Korea.
| |
Collapse
|
705
|
Wong QWL, Lung RWM, Law PTY, Lai PBS, Chan KYY, To KF, Wong N. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 2008; 135:257-69. [PMID: 18555017 DOI: 10.1053/j.gastro.2008.04.003] [Citation(s) in RCA: 365] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 03/18/2008] [Accepted: 04/03/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Recent studies have emphasized causative links between microRNA (miRNA) deregulations and cancer development. In hepatocellular carcinoma (HCC), information on differentially expressed miRNA remained largely undefined. METHODS Array-based miRNA profiling was performed on HCC cells that were derived from chronic carriers of hepatitis B virus (HBV) and hepatitis C virus (HCV), and nonviral-associated patients. Specific microRNA (miR)-223 and miR-222 deregulations were verified in an independent series of tumors. The functional effect of miR-223 was examined further. An integrative analysis of messenger RNA (mRNA) array with in silico predictions defined potential downstream targets of miR-223. A luciferase reporter assay was conducted to confirm target association. RESULTS Distinct up-regulations of miR-222, miR-221, and miR-31, and down-regulations of miR-223, miR-126, and miR-122a were identified. Further investigations suggested the highly deregulated miR-223 and miR-222 could unequivocally distinguish HCC from adjacent nontumoral liver, irrespective of viral associations (P <or= .0002). Re-expression of miR-223 in HBV, HCV, and non-HBV non-HCV-related HCC cell lines revealed a consistent inhibitory effect on cell viability (P < .01). Integrative analysis further implicated Stathmin 1 (STMN1) as a downstream target of miR-223. A strong inverse relationship between STMN1 mRNA and miR-223 expressions was shown (P = .006). A substantial reduction in STMN1 protein was further demonstrated upon restoration of miR-223 expression in HCC cell lines. We further showed that miR-223 readily could suppress the luciferase activity in reporter construct containing the STMN1 3' untranslated region (P = .02). CONCLUSIONS Our study revealed specific miRNA differential expressions in HCC and underscores the potential importance of miR-223 down-regulations in the development of HCC.
Collapse
Affiliation(s)
- Queenie W-L Wong
- Department of Anatomical and Cellular Pathology at the Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, SAR Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
706
|
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123:372-379. [PMID: 18449891 DOI: 10.1002/ijc.23501] [Citation(s) in RCA: 560] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
microRNAs are endogenous small noncoding RNAs that regulate gene expression negatively at posttranscriptional level. This latest addition to the complex gene regulatory circuitry revolutionizes our way to understanding physiological and pathological processes in the human body. Here we investigated the possible role of microRNAs in the development of multidrug resistance (MDR) in gastric cancer cells. microRNA expression profiling revealed a limited set of microRNAs with altered expression in multidrug- resistant gastric cancer cell line SGC7901/VCR compared to its parental SGC7901 cell line. Among the downregulated microRNAs are miR-15b and miR-16, members of miR-15/16 family, whose expression was further validated by qRT-PCR. In vitro drug sensitivity assay demonstrated that overexpression of miR-15b or miR-16 sensitized SGC7901/VCR cells to anticancer drugs whereas inhibition of them using antisense oligonucleotides conferred SGC7901 cells MDR. The downregulation of miR-15b and miR-16 in SGC7901/VCR cells was concurrent with the upregulation of Bcl-2 protein. Enforced mir-15b or miR-16 expression reduced Bcl-2 protein level and the luciferase activity of a BCL2 3' untranslated region-based reporter construct in SGC7901/VCR cells, suggesting that BCL2 is a direct target of miR-15b and miR-16. Moreover, overexpression of miR-15b or miR-16 could sensitize SGC7901/VCR cells to VCR-induced apoptosis. Taken together, our findings suggest that miR-15b and miR-16 could play a role in the development of MDR in gastric cancer cells at least in part by modulation of apoptosis via targeting BCL2.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dexin Zhang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui Du
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanglin Pan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lina Zhao
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shiren Sun
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Liu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
707
|
Roehle A, Hoefig KP, Repsilber D, Thorns C, Ziepert M, Wesche KO, Thiere M, Loeffler M, Klapper W, Pfreundschuh M, Matolcsy A, Bernd HW, Reiniger L, Merz H, Feller AC. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol 2008; 142:732-44. [PMID: 18537969 DOI: 10.1111/j.1365-2141.2008.07237.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNA, miR) are negative regulators of gene expression that play an important role in diverse biological processes such as development, cell growth, apoptosis and haematopoiesis, suggesting their association with cancer. Here we analysed the expression signatures of 157 miRNAs in 58 diffuse large B-cell lymphoma (DLBCL), 46 follicular lymphoma (FL) and seven non-neoplastic lymph nodes (LN). Comparison of the possible combinations of DLBCL-, FL- and LN resulted in specific DLBCL- and FL-signatures, which include miRNAs with previously published function in haematopoiesis (MIRN150 and MIRN155) or tumour development (MIRN210, MIRN10A, MIRN17-5P and MIRN145). As compared to LN, some miRNAs are differentially regulated in both lymphoma types (MIRN155, MIRN210, MIRN106A, MIRN149 and MIRN139). Conversely, some miRNAs show lymphoma-specific aberrant expression, such as MIRN9/9*, MIRN301, MIRN338 and MIRN213 in FL and MIRN150, MIRN17-5P, MIRN145, MIRN328 and others in DLBCL. A classification tree was computed using four miRNAs (MIRN330, MIRN17-5P, MIRN106a and MIRN210) to correctly identify 98% of all 111 cases that were analysed in this study. Finally, eight miRNAs were found to correlate with event-free and overall survival in DLBCL including known tumour suppressors (MIRN21, MIRN127 and MIRN34a) and oncogenes (MIRN195 and MIRNLET7G).
Collapse
Affiliation(s)
- Anja Roehle
- Institute for Pathology, University Clinic Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
708
|
Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G, Calin GA. MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 2008; 22:1095-105. [PMID: 18323801 DOI: 10.1038/leu.2008.30] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are a family of 19-24 nucleotide noncoding RNAs (ncRNAs) with posttranscriptional regulatory functions. Increasing evidences from the literature show that miRNAs play a pivotal role in human tumorigenesis. Many studies have addressed the role of miRNAs in normal hematopoiesis, giving an interpretative key to the aberrancies of expression observed in human hematological malignancies. Moreover, the recent demonstration that other ncRNAs, the ultraconserved genes (UCGs) or transcribed ultraconserved regions (T-UCRs), are involved in human cancerogenesis, suggests that the wider family of ncRNAs (including both miRNAs and UCGs) could contribute to the development of the malignant phenotype. Here we review the main studies investigating the role of miRNAs and UCRs in both normal hemopoiesis and hematological malignancies, and identify the molecular, clinical and therapeutic implications of these recent findings.
Collapse
Affiliation(s)
- M Fabbri
- Human Cancer Genetics, Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
709
|
Braconi C, Patel T. MicroRNA expression profiling: a molecular tool for defining the phenotype of hepatocellular tumors. Hepatology 2008; 47:1807-9. [PMID: 18506877 DOI: 10.1002/hep.22326] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
710
|
Haverty PM, Fridlyand J, Li L, Getz G, Beroukhim R, Lohr S, Wu TD, Cavet G, Zhang Z, Chant J. High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer 2008; 47:530-42. [PMID: 18335499 DOI: 10.1002/gcc.20558] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Analysis of recurrent DNA amplification can lead to the identification of cancer driver genes, but this process is often hampered by the low resolution of existing copy number analysis platforms. Fifty-one breast tumors were profiled for copy number alterations (CNAs) with the high-resolution Affymetrix 500K SNP array. These tumors were also expression-profiled and surveyed for mutations in selected genes commonly mutated in breast cancer (TP53, CDKN2A, ERBB2, KRAS, PIK3CA, PTEN). Combined analysis of common CNAs and mutations revealed putative associations between features. Analysis of both the prevalence and amplitude of CNAs defined regions of recurrent alteration. Compared with previous array comparative genomic hybridization studies, our analysis provided boundaries for frequently altered regions that were approximately one-fourth the size, greatly reducing the number of potential alteration-driving genes. Expression data from matched tumor samples were used to further interrogate the functional relevance of genes located in recurrent amplicons. Although our data support the importance of some known driver genes such as ERBB2, refined amplicon boundaries at other locations, such as 8p11-12 and 11q13.5-q14.2, greatly reduce the number of potential driver genes and indicate alternatives to commonly suggested driver genes in some cases. For example, the previously reported recurrent amplification at 17q23.2 is reduced to a 249 kb minimal region containing the putative driver RPS6KB1 as well as the putative oncogenic microRNA mir-21. High-resolution copy number analysis provides refined insight into many breast cancer amplicons and their relationships to gene expression, point mutations and breast cancer subtype classifications. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Peter M Haverty
- Department of Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
711
|
Abstract
Since its discovery as the elusive tumor suppressor gene at the frequently mutated 10q23 locus, PTEN has been identified as lost or mutated in several sporadic and heritable tumor types. A decade of work has established that PTEN is a nonredundant phosphatase that is essential for regulating the highly oncogenic prosurvival PI3K/AKT signaling pathway. This review discusses emerging modes of PTEN function and regulation, and speculates about how manipulation of PTEN function could be used for cancer therapy.
Collapse
Affiliation(s)
- Leonardo Salmena
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, New Research Building, 330 Brookline Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
712
|
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs with regulatory functions, which play an important role in many human diseases, including cancer. An emerging number of studies show that miRNAs can act either as oncogenes or as tumor suppressor genes or sometimes as both. Germline, somatic mutations and polymorphisms can contribute to cancer predisposition. miRNA expression levels have diagnostic and prognostic implications, and their roles as anticancer therapeutic agents is promising and currently under investigation.
Collapse
|
713
|
Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008; 14:2690-5. [PMID: 18451233 DOI: 10.1158/1078-0432.ccr-07-1731] [Citation(s) in RCA: 601] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although microRNAs have recently been recognized as riboregulators of gene expression, little is known about microRNA expression profiles in serous ovarian carcinoma. We assessed the expression of microRNA and the association between microRNA expression and the prognosis of serous ovarian carcinoma. EXPERIMENTAL DESIGN Twenty patients diagnosed with serous ovarian carcinoma and eight patients treated for benign uterine disease between December 2000 and September 2003 were enrolled in this study. The microRNA expression profiles were examined using DNA microarray and Northern blot analyses. RESULTS Several microRNAs were differentially expressed in serous ovarian carcinoma compared with normal ovarian tissues, including miR-21, miR-125a, miR-125b, miR-100, miR-145, miR-16, and miR-99a, which were each differentially expressed in >16 patients. In addition, the expression levels of some microRNAs were correlated with the survival in patients with serous ovarian carcinoma. Higher expression of miR-200, miR-141, miR-18a, miR-93, and miR-429, and lower expression of let-7b, and miR-199a were significantly correlated with a poor prognosis (P < 0.05). CONCLUSION Our results indicate that dysregulation of microRNAs is involved in ovarian carcinogenesis and associated with the prognosis of serous ovarian carcinoma.
Collapse
Affiliation(s)
- Eun Ji Nam
- Women's Cancer Clinic, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
714
|
Romero DG, Plonczynski MW, Carvajal CA, Gomez-Sanchez EP, Gomez-Sanchez CE. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology 2008; 149:2477-83. [PMID: 18218696 PMCID: PMC2329274 DOI: 10.1210/en.2007-1686] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs that decrease the expression levels of specific genes by translational repression, sequestration, and degradation of their mRNAs. Angiotensin II is an important modulator of adrenal zona glomerulosa cell physiology, including steroidogenesis and proliferation among many other physiological processes. Because each miRNA may regulate the expression levels of multiple genes, thereby resembling the transcription regulatory networks triggered by transcription factors, we hypothesize that specific miRNAs may be involved in angiotensin II-mediated adrenocortical cell physiology. The human adrenocortical cell line H295R is the only adrenal cell line available with a steroid secretion pattern and regulation similar to freshly isolated adrenocortical cells. We screened for miRNAs regulated by angiotensin II in H295R cells and found that miRNA-21 expression levels were specifically modulated by angiotensin II. Angiotensin II time dependently increased miRNA-21 expression reaching a 4.4-fold induction after 24 h. Angiotensin II-mediated miRNA-21 expression resulted in biologically active miRNA-21, determined using a fusion mRNA reporter system carrying miRNA-21 target sequences in its 3' untranslated region. Up-regulation of miRNA-21 intracellular levels increased aldosterone secretion but not cortisol. Elevation of miRNA-21 levels also increased cell proliferation in H295R cells. In summary, miRNA-21 is an endogenously expressed miRNA in human adrenal cells. miRNA-21 expression is up-regulated by angiotensin II, and its overexpression caused an increase in aldosterone secretion and cell proliferation. Alterations in miRNA-21 expression levels or function may be involved in dysregulation of angiotensin II signaling and abnormal aldosterone secretion by adrenal glands in humans.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine , University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | |
Collapse
|
715
|
Pezzolesi MG, Platzer P, Waite KA, Eng C. Differential expression of PTEN-targeting microRNAs miR-19a and miR-21 in Cowden syndrome. Am J Hum Genet 2008; 82:1141-9. [PMID: 18460397 DOI: 10.1016/j.ajhg.2008.04.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/01/2008] [Accepted: 04/18/2008] [Indexed: 12/17/2022] Open
Abstract
Germline mutations in the gene encoding phosphatase and tensin homolog deleted on chromosome ten (PTEN [MIM 601728]) are associated with a number of clinically distinct heritable cancer syndromes, including both Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS). Seemingly identical pathogenic PTEN mutations have been observed in patients with CS and BRRS, as well as in patients with incomplete features of CS, referred to as CS-like (CSL) patients. These observations indicate that additional, unidentified, genetic and epigenetic factors act as phenotypic modifiers in these disorders. These genetic factors could also contribute to disease in patients with CS, CSL, or BRRS without identifiable PTEN mutations. Two potential modifiers are miR-19a and miR-21, which are previously identified PTEN-targeting miRNAs. We investigated the role of these miRNAs by characterizing their relative expression levels in PTEN-mutation-positive and PTEN-mutation-negative patients with CS, CSL, or BRRS. Interestingly, we observed differential expression of miR-19a and miR-21 in our PTEN-mutation-positive patients. Both were found to be significantly overexpressed within this group (p < 0.01) and were inversely correlated with germline PTEN protein levels. Similarly, the relative expression of miR-19a and miR-21 was differentially expressed in a series of PTEN-mutation-negative patients with CS or CSL with variable clinical phenotypes and decreased full-length PTEN protein expression. Among PTEN-mutation-positive patients with CS, both miRNAs were significantly overexpressed (p = 0.006-0.013). Taken together, our study results suggest that differential expression of PTEN-targeting miR-19a and miR-21 modulates the PTEN protein levels and the CS and CSL phenotypes, irrespective of the patient's mutation status, and support their roles as genetic modifiers in CS and CSL.
Collapse
Affiliation(s)
- Marcus G Pezzolesi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
716
|
Li Q, Wang G. Research progress of the relationship between microRNAs and p53 gene in oncogenesis. Shijie Huaren Xiaohua Zazhi 2008; 16:1332-1336. [DOI: 10.11569/wcjd.v16.i12.1332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The initiation and development of oncogenesis are a multi-step and complicated process, in which activation of oncogenes and inactivation of tumor suppressor genes are involved. MicroRNAs (miRNAs) are a new class of endogenous, non-coding small RNA molecules. It has been demonstrated that their expression levels are closely associated with human pathogenesis of cancers. They may participate in regulating the abnormal expression of oncogenes and tumor suppressor genes. Mutation in tumor suppressor gene p53 is the most frequent phenomenon in human cancer, and up to now, almost 50% human cancers are demonstrated associated with p53 mutation. Recent studies showed that miRNAs might play a role in regulating the tumor-suppressor activity of p53 gene. In this review, the research progress in this field is discussed.
Collapse
|
717
|
Salter KH, Acharya CR, Walters KS, Redman R, Anguiano A, Garman KS, Anders CK, Mukherjee S, Dressman HK, Barry WT, Marcom KP, Olson J, Nevins JR, Potti A. An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PLoS One 2008; 3:e1908. [PMID: 18382681 PMCID: PMC2270912 DOI: 10.1371/journal.pone.0001908] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/22/2008] [Indexed: 02/07/2023] Open
Abstract
Background A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. Methods and Results Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. Conclusions Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.
Collapse
Affiliation(s)
- Kelly H. Salter
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Chaitanya R. Acharya
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Kelli S. Walters
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Richard Redman
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ariel Anguiano
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Katherine S. Garman
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carey K. Anders
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sayan Mukherjee
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Institute for Statistics and Decision Sciences, Duke University, Durham, North Carolina, United States of America
| | - Holly K. Dressman
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - William T. Barry
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Institute for Statistics and Decision Sciences, Duke University, Durham, North Carolina, United States of America
| | - Kelly P. Marcom
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John Olson
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph R. Nevins
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Anil Potti
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
718
|
Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 2008; 48:648-56. [PMID: 18291553 DOI: 10.1016/j.jhep.2008.01.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have uncovered profound and unexpected roles for a family of tiny regulatory RNAs, known as microRNAs (miRNAs), in the control of diverse aspects of hepatic function and dysfunction, including hepatocyte growth, stress response, metabolism, viral infection and proliferation, gene expression, and maintenance of hepatic phenotype. In liver cancer, misexpression of specific miRNAs suggests diagnostic and prognostic significance. Here, we review the biology of the most abundant miRNA in human liver, miR-122, and consider the diversity of its roles in the liver. We provide a compilation of all miRNAs expressed in the liver, and consider some possible therapeutic opportunities for exploiting miRNAs in the different settings of liver diseases.
Collapse
|
719
|
|
720
|
Dillhoff M, Wojcik SE, Bloomston M. MicroRNAs in solid tumors. J Surg Res 2008; 154:349-54. [PMID: 18656897 DOI: 10.1016/j.jss.2008.02.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 02/11/2008] [Accepted: 02/21/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs or miRs) are small, noncoding RNAs (approximately 20-22 nucleotides) that have critical functions in cell proliferation, apoptosis, and differentiation. These evolutionarily conserved RNA sequences are the result of a complex sequence of processing steps, which can regulate the expression of tens, and even hundreds, of genes. Their regulatory effect is based upon the degree of complementarity between the mature miRNA and the 3' untranslated region region of the target mRNA resulting in either complete degradation or translational inhibition of the target mRNA. In vertebrates they are often tissue specific in their expression patterns and dysregulated in malignancies. Thus, miRNA profiling has been used to create signatures for many solid malignancies. These profiles have been used to not only classify tumors, but also to help predict survival and outcome. Herein, we review the role of miRNAs in the development and progression of solid tumors.
Collapse
Affiliation(s)
- Mary Dillhoff
- Department of Surgery, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
721
|
Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, Roberts LR, Schmittgen TD. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 2008. [PMID: 18223217 DOI: 10.1158/1087-0432.ccr-07-0523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE MicroRNA (miRNA) is a new class of small, noncoding RNA. The purpose of this study was to determine if miRNAs are differentially expressed in hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN More than 200 precursor and mature miRNAs were profiled by real-time PCR in 43 and 28 pairs of HCC and adjacent benign liver, respectively, and in normal liver specimens. RESULTS Several miRNAs including miR-199a, miR-21, and miR-301 were differentially expressed in the tumor compared with adjacent benign liver. A large number of mature and precursor miRNAs were up-regulated in the adjacent benign liver specimens that were both cirrhotic and hepatitis-positive compared with the uninfected, noncirrhotic specimens (P < 0.01). Interestingly, all of the miRNAs in this comparison had increased expression and none were decreased. The expression of 95 randomly selected mRNAs was not significantly altered in the cirrhotic and hepatitis-positive specimens, suggesting a preferential increase in the transcription of miRNA. Comparing the miRNA expression in the HCC tumors with patient's survival time revealed two groups of patients; those with predominantly lower miRNA expression and poor survival and those with predominantly higher miRNA expression and good survival (P < 0.05). A set of 19 miRNAs significantly correlated with disease outcome. A number of biological processes including cell division, mitosis, and G(1)-S transition were predicted to be targets of the 19 miRNAs in this group. CONCLUSION We show that a global increase in the transcription of miRNA genes occurs in cirrhotic and hepatitis-positive livers and that miRNA expression may prognosticate disease outcome in HCC.
Collapse
Affiliation(s)
- Jinmai Jiang
- College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
722
|
Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111:3183-3189. [PMID: 18187662 PMCID: PMC2265455 DOI: 10.1182/blood-2007-07-098749] [Citation(s) in RCA: 488] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 12/30/2007] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs of 19 to 25 nucleotides that are negative regulators of gene expression. To determine whether miRNAs are associated with cytogenetic abnormalities and clinical features in acute myeloid leukemia (AML), we evaluated the miRNA expression of CD34(+) cells and 122 untreated adult AML cases using a microarray platform. After background subtraction and normalization using a set of housekeeping genes, data were analyzed using Significance Analysis of Microarrays. An independent set of 60 untreated AML patients was used to validate the outcome signatures using real-time polymerase chain reaction. We identified several miRNAs differentially expressed between CD34(+) normal cells and the AML samples. miRNA expression was also closely associated with selected cytogenetic and molecular abnormalities, such as t(11q23), isolated trisomy 8, and FLT3-ITD mutations. Furthermore, patients with high expression of miR-191 and miR-199a had significantly worse overall and event-free survival than AML patients with low expression (overall survival: miR-191, P = .03; and miR-199a, P = .001, Cox regression). In conclusion, miRNA expression in AML is closely associated with cytogenetics and FLT3-ITD mutations. A small subset of miRNAs is correlated with survival.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD34/metabolism
- Blood Cell Count
- Cell Lineage
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 8/genetics
- Cytogenetics
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Karyotyping
- Leukemia, Erythroblastic, Acute/diagnosis
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/therapy
- Male
- MicroRNAs/genetics
- Middle Aged
- Mutation/genetics
- Prognosis
- Stem Cells/cytology
- Stem Cells/metabolism
- Treatment Outcome
- Trisomy/genetics
Collapse
Affiliation(s)
- Ramiro Garzon
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
723
|
Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, O'Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 2008; 3:e1738. [PMID: 18320056 PMCID: PMC2254191 DOI: 10.1371/journal.pone.0001738] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Accepted: 01/24/2008] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are critical regulators of transcriptional and post-transcriptional gene silencing, which are involved in multiple developmental processes in many organisms. Apart from miRNAs, mouse germ cells express another type of small RNA, piwi-interacting RNAs (piRNAs). Although it has been clear that piRNAs play a role in repression of retrotransposons during spermatogenesis, the function of miRNA in mouse germ cells has been unclear. Methodology/Principal Findings In this study, we first revealed the expression pattern of miRNAs by using a real-time PCR-based 220-plex miRNA expression profiling method. During development of germ cells, miR-17-92 cluster, which is thought to promote cell cycling, and the ES cell-specific cluster encoding miR-290 to -295 (miR-290-295 cluster) were highly expressed in primordial germ cells (PGCs) and spermatogonia. A set of miRNAs was developmentally regulated. We next analysed function of miRNA biogenesis in germ cell development by using conditional Dicer-knockout mice in which Dicer gene was deleted specifically in the germ cells. Dicer-deleted PGCs and spermatogonia exhibited poor proliferation. Retrotransposon activity was unexpectedly suppressed in Dicer-deleted PGCs, but not affected in the spermatogonia. In Dicer-deleted testis, spermatogenesis was retarded at an early stage when proliferation and/or early differentiation. Additionally, we analysed spermatogenesis in conditional Argonaute2-deficient mice. In contrast to Dicer-deficient testis, spermatogenesis in Argonaute2-deficient testis was indistinguishable from that in wild type. Conclusion/Significance These results illustrate that miRNAs are important for the proliferation of PGCs and spermatogonia, but dispensable for the repression of retrotransposons in developing germ cells. Consistently, miRNAs promoting cell cycling are highly expressed in PGCs and spermatogonia. Furthermore, based on normal spermatogenesis in Argonaute2-deficient testis, the critical function of Dicer in spermatogenesis is independent of Argonaute2.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Masahiro Kaneda
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Fuchou Tang
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Petra Hajkova
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kaiqin Lao
- Advanced Research Technology, Applied Biosystems, Foster City, California, United States of America
| | - Donal O'Carroll
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, New York, United States of America
| | - Partha P. Das
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alexander Tarakhovsky
- Laboratory of Lymphocyte Signaling, The Rockefeller University, New York, New York, United States of America
| | - Eric A. Miska
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - M. Azim Surani
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
724
|
Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008; 13:272-86. [PMID: 18328430 DOI: 10.1016/j.ccr.2008.02.013] [Citation(s) in RCA: 692] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/13/2007] [Accepted: 02/20/2008] [Indexed: 12/14/2022]
Abstract
Deregulation of E2F1 activity and resistance to TGFbeta are hallmarks of gastric cancer. MicroRNAs (miRNAs) are small noncoding RNAs frequently misregulated in human malignancies. Here we provide evidence that the miR-106b-25 cluster, upregulated in a subset of human gastric tumors, is activated by E2F1 in parallel with its host gene, Mcm7. In turn, miR-106b and miR-93 regulate E2F1 expression, establishing a miRNA-directed negative feedback loop. Furthermore, upregulation of these miRNAs impairs the TGFbeta tumor suppressor pathway, interfering with the expression of CDKN1A (p21(Waf1/Cip1)) and BCL2L11 (Bim). Together, these results suggest that the miR-106b-25 cluster is involved in E2F1 posttranscriptional regulation and may play a key role in the development of TGFbeta resistance in gastric cancer.
Collapse
Affiliation(s)
- Fabio Petrocca
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
725
|
Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 2008; 47:897-907. [PMID: 18176954 DOI: 10.1002/hep.22160] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) have been used as cancer-related biomarkers. Hepatocellular carcinoma (HCC) is an aggressive cancer with a dismal outcome largely due to metastasis and postsurgical recurrence. We investigated whether the expression of certain miRNAs are associated with HCC metastasis. We examined the miRNA expression profiles of 482 cancerous and noncancerous specimens from radical resection of 241 patients with HCC. Using a supervised algorithm and a clinically well-defined cohort of 131 cases, we built a unique 20-miRNA metastasis signature that could significantly predict (P < 0.001) primary HCC tissues with venous metastases from metastasis-free solitary tumors with 10-fold cross-validation. However, significant miRNAs could not be identified from the corresponding noncancerous hepatic tissues. A survival risk prediction analysis revealed that a majority of the metastasis-related miRNAs were associated with survival. Furthermore, the 20-miRNA tumor signature was validated in 110 additional cases as a significant independent predictor of survival (P = 0.009) and was significantly associated with both survival and relapse in 89 cases of early stage HCC (P = 0.022 and 0.002, respectively). These 20 miRNAs may provide a simple profiling method to assist in identifying patients with HCC who are likely to develop metastases/recurrence. In addition, functional analysis of these miRNAs may enhance our biological understanding of HCC metastasis.
Collapse
Affiliation(s)
- Anuradha Budhu
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
726
|
Abstract
Genomic evidence reveals that gene expression in humans is precisely controlled in cellular, tissue-type, temporal, and condition-specific manners. Completely understanding the regulatory mechanisms of gene expression is therefore one of the most important issues in genomic medicine. Surprisingly, recent analyses of the human and animal genomes have demonstrated that the majority of RNA transcripts are relatively small, noncoding RNAs (sncRNAs), rather than large, protein coding message RNAs (mRNAs). Moreover, these sncRNAs may represent a novel important layer of regulation for gene expression. The most important breakthrough in this new area is the discovery of microRNAs (miRNAs). miRNAs comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. As a group, miRNAs may directly regulate approximately 30% of the genes in the human genome. In keeping with the nomenclature of RNomics, which is to study sncRNAs on the genomic scale, "microRNomics" is coined here to describe a novel subdiscipline of genomics that studies the identification, expression, biogenesis, structure, regulation of expression, targets, and biological functions of miRNAs on the genomic scale. A growing body of exciting evidence suggests that miRNAs are important regulators of cell differentiation, proliferation/growth, mobility, and apoptosis. These miRNAs therefore play important roles in development and physiology. Consequently, dysregulation of miRNA function may lead to human diseases such as cancer, cardiovascular disease, liver disease, immune dysfunction, and metabolic disorders. microRNomics may be a newly emerging approach for human disease biology.
Collapse
Affiliation(s)
- Chunxiang Zhang
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101-1709, USA.
| |
Collapse
|
727
|
Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 2008; 8:59-81. [PMID: 18081537 DOI: 10.1517/14712598.8.1.59] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a novel class of endogenous non-coding single-stranded RNAs, which regulate gene expression post-transcriptionally by base pairing with their target mRNAs. So far > 5000 miRNA entries have been registered and miRNAs have been implicated in most, if not all, central cellular processes and several diseases. As the mechanism of action for miRNA regulation of target mRNAs is mediated by Watson-Crick base pairing, antisense oligonucleotides targeting the miRNAs appear as an obvious choice to specifically inhibit miRNA function. Indeed, miRNAs can be antagonized in vivo by oligonucleotides composed of high-affinity nucleotide mimics. Lessons learned from traditional antisense strategies and small-interfering RNA approaches, that is from potent nucleotide mimics, design rules, pharmacokinetics, administration and safety issues, are likely to pave the way for future clinical trials of miRNA-antagonizing oligonucleotides.
Collapse
Affiliation(s)
- Jan Stenvang
- University of Copenhagen, Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | |
Collapse
|
728
|
Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, Kotani K, Oikawa H, Sakurai E, Izutsu N, Kato K, Komatsu H, Ikeda K, Wakabayashi G, Masuda T. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 2008; 99:280-6. [PMID: 18201269 PMCID: PMC11159409 DOI: 10.1111/j.1349-7006.2007.00666.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 12/23/2022] Open
Abstract
Alterations of several microRNA (miRNA) have been linked to cancer development and its biology. To search for unique miRNA that might play a role in the development of anaplastic thyroid carcinoma (ATC), we examined the expression of multiple miRNA and their functional effects on target genes in human thyroid carcinoma cell lines. We quantitatively evaluated the expression of multiple miRNA in 10 ATC and five papillary thyroid carcinoma (PTC) cell lines, as well as primary tumors from 11 thyroid carcinoma patients (three ATC and eight PTC), using the stem-loop-mediated reverse transcription real-time polymerase chain reaction method. We also examined the target gene specificity of unique miRNA that showed differences in expression between ATC and PTC cell lines. One miRNA, miR-138, was significantly downregulated in ATC cell lines in comparison with PTC (P < 0.01). Eleven miRNA (including miR-138) potentially targeting the human telomerase reverse transcriptase (hTERT) gene were totally downregulated in both ATC and PTC cell lines in comparison with normal thyroid tissues. A tendency for an inverse correlation between miR-138 and hTERT protein expression was observed in the thyroid cancer cell lines, although this failed to reach significance (r = -0.392, P = 0.148). We demonstrated that overexpression of miR-138 induced a reduction in hTERT protein expression, and confirmed target specificity between miR-138 and the hTERT 3'-untranslated region by luciferase reporter assay. These results suggest that loss of miR-138 expression may partially contribute to the gain of hTERT protein expression in ATC, and that further multiple miRNA targeting hTERT mRNA might be involved in the development of thyroid carcinoma.
Collapse
Affiliation(s)
- Shingo Mitomo
- Department of Pathology, School of Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
729
|
Affiliation(s)
- Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics and the Human Cancer Genetics Program, Ohio State University Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
730
|
Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D, Calin GA. miRNAs and their potential for use against cancer and other diseases. Future Oncol 2008; 3:521-37. [PMID: 17927518 DOI: 10.2217/14796694.3.5.521] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miRNAs are 19-24 nucleotide long noncoding RNAs found in almost all genetically dissected species, including viruses, plants, nematodes, flies, fish, mice and humans. Rapid advances have been made in understanding their physiological functions, while abnormal patterns of miRNA expression have been found in many disease states, most notably human cancer. It is now clear that miRNAs represent a class of genes with a great potential for use in diagnosis, prognosis and therapy. In this review we will focus on the discoveries that elucidate their crucial role in mammalian diseases, particularly in cancer, and propose that miRNA-based gene therapy might become the potential technology of choice in a wide range of human diseases including cancer.
Collapse
Affiliation(s)
- Esmerina Tili
- Ohio State University, Department of Molecular Virology, Immunology & Medical Genetics and Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
731
|
Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DLW, Au GKH, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299:425-36. [PMID: 18230780 PMCID: PMC2614237 DOI: 10.1001/jama.299.4.425] [Citation(s) in RCA: 1193] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT MicroRNAs have potential as diagnostic biomarkers and therapeutic targets in cancer. No study has evaluated the association between microRNA expression patterns and colon cancer prognosis or therapeutic outcome. OBJECTIVE To identify microRNA expression patterns associated with colon adenocarcinomas, prognosis, or therapeutic outcome. DESIGN, SETTING, AND PATIENTS MicroRNA microarray expression profiling of tumors and paired nontumorous tissues was performed on a US test cohort of 84 patients with incident colon adenocarcinoma, recruited between 1993 and 2002. We evaluated associations with tumor status, TNM staging, survival prognosis, and response to adjuvant chemotherapy. Associations were validated in a second, independent Chinese cohort of 113 patients recruited between 1991 and 2000, using quantitative reverse transcription polymerase chain reaction assays. The final date of follow-up was December 31, 2005, for the Maryland cohort and August 16, 2004, for the Hong Kong cohort. MAIN OUTCOME MEASURES MicroRNAs that were differentially expressed in tumors and microRNA expression patterns associated with survival using cancer-specific death as the end point. RESULTS Thirty-seven microRNAs were differentially expressed in tumors from the test cohort. Selected for validation were miR-20a, miR-21, miR-106a, miR-181b, and miR-203, and all 5 were enriched in tumors from the validation cohort (P < .001). Higher miR-21 expression was present in adenomas (P = .006) and in tumors with more advanced TNM staging (P < .001). In situ hybridization demonstrated miR-21 to be expressed at high levels in colonic carcinoma cells. The 5-year cancer-specific survival rate was 57.5% for the Maryland cohort and was 49.5% for the Hong Kong cohort. High miR-21 expression was associated with poor survival in both the training (hazard ratio, 2.5; 95% confidence interval, 1.2-5.2) and validation cohorts (hazard ratio, 2.4; 95% confidence interval, 1.4-3.9), independent of clinical covariates, including TNM staging, and was associated with a poor therapeutic outcome. CONCLUSIONS Expression patterns of microRNAs are systematically altered in colon adenocarcinomas. High miR-21 expression is associated with poor survival and poor therapeutic outcome.
Collapse
Affiliation(s)
- Aaron J Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
732
|
Abstract
MicroRNAs (miRNAs) are a recently discovered group of small RNA molecules involved in the regulation of gene expression. Analogously to mRNAs, the non-protein-encoding pri-miRNAs are synthesized by RNA polymerase II and post-transcriptionally modified by addition of a 5'-cap and a 3'-poly (A) tail. Subsequently, the pri-miRNA undergoes a number of processing steps in the nucleus and cytoplasm, and ends up as a mature approximately 22 nt miRNA, which can exert its function by binding to the 3'-untranslated region of a subset of mRNAs. Binding of the miRNA to the mRNA results in a reduced translation rate and/or increased degradation of the mRNA. In this way a large number of cellular pathways, such as cellular proliferation, differentiation, and apoptosis, are regulated by mi-RNAs. As corruption of these pathways is the hallmark of many cancers, dysregulation of miRNA biogenesis or expression levels may lead to tumorigenesis. The mechanisms that alter the expression of miRNAs are similar to those that change the expression levels of mRNAs of tumor suppressor- and oncogenes, i.e. gross genomic aberrations, epigenetic changes, and minor mutations affecting the expression level, processing, or target-interaction potential of the miRNA. Furthermore, expression profiling of miRNAs has been found to be useful for classification of different tumor types. Taken together, miRNAs can be classified as onco-miRs or tumor suppressor-miRs, and may turn out to be potential targets for cancer therapy.
Collapse
Affiliation(s)
- Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
733
|
Kulshreshtha R, Davuluri RV, Calin GA, Ivan M. A microRNA component of the hypoxic response. Cell Death Differ 2008; 15:667-71. [PMID: 18219318 DOI: 10.1038/sj.cdd.4402310] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
microRNAs participate in a wide variety of physiological and pathological cellular processes. Recent studies have established a link between a specific group of microRNAs and hypoxia, a key feature of the neoplastic microenvironment. A significant proportion of the hypoxia-regulated microRNAs (HRMs) are also overexpressed in human cancers, suggesting a role in tumorigenesis. Preliminary evidence suggests that they could affect important processes such as apoptosis, proliferation and angiogenesis. Several HRMs exhibit induction in response to HIF activation, thus extending its repertoire of targets beyond translated genes. In the present review, we discuss the emerging roles of HRMs in oxygen deprivation in cancer context.
Collapse
Affiliation(s)
- R Kulshreshtha
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
734
|
Lee JY, Kim S, Hwang DW, Jeong JM, Chung JK, Lee MC, Lee DS. Development of a Dual-Luciferase Reporter System for In Vivo Visualization of MicroRNA Biogenesis and Posttranscriptional Regulation. J Nucl Med 2008; 49:285-94. [DOI: 10.2967/jnumed.107.042507] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
735
|
Abstract
Cancer progression is mediated by overexpression of oncogenes and downregulation or loss of tumor suppressors. Proteins, which were traditionally categorized into these groups, have been recently joined by a species of RNA molecules known as microRNAs (miRNAs). miRNAs belong to a class of approximately 22-nt-long non-coding RNAs found in eukaryotes that hinder gene expression by inducing degradation or inhibiting translation of select mRNAs. A growing number of miRNAs have been implicated in promoting or suppressing tumorigenesis in a variety of tissues. The supporting evidence ranges from suggestive expression profiling data to direct functional validation using methods of forward and reverse genetics. We discuss the nature of published results, as well as the merits and pitfalls of various approaches aimed at identification of cancer-related miRNAs and their mRNA targets.
Collapse
Affiliation(s)
- Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, 840, South Wood Street, Room 1041, Chicago, IL 60612, United States.
| | | |
Collapse
|
736
|
Taylor EL, Gant TW. Emerging fundamental roles for non-coding RNA species in toxicology. Toxicology 2008; 246:34-9. [PMID: 18289762 DOI: 10.1016/j.tox.2007.12.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are a large family of small regulatory RNA molecules found in all multicellular organisms. Since their discovery in 2001, there has been impressive progress in miRNA research, and a great deal is now known about the biosynthesis of miRNAs and their regulatory role in translation. It is becoming increasingly clear that miRNAs have fundamental roles to play in cellular responses to xenobiotic stress, the development of pathophysiological changes and other toxicological phenomenon such as susceptibility and resistance. Furthermore, the expression of miRNAs, like many of the genes important in toxicology, can be regulated by xenobiotics and DNA methylation. In this article we review the present understanding of the miRNA field with particular reference to toxicology. We also give an insight into our current projects within this exciting area and highlight some of the new challenges that now face miRNA research.
Collapse
Affiliation(s)
- Emma L Taylor
- University of Leicester, Systems Toxicology Group, Lancaster Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|
737
|
Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, Roberts LR, Schmittgen TD. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res 2008; 14:419-27. [PMID: 18223217 PMCID: PMC2755230 DOI: 10.1158/1078-0432.ccr-07-0523] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE MicroRNA (miRNA) is a new class of small, noncoding RNA. The purpose of this study was to determine if miRNAs are differentially expressed in hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN More than 200 precursor and mature miRNAs were profiled by real-time PCR in 43 and 28 pairs of HCC and adjacent benign liver, respectively, and in normal liver specimens. RESULTS Several miRNAs including miR-199a, miR-21, and miR-301 were differentially expressed in the tumor compared with adjacent benign liver. A large number of mature and precursor miRNAs were up-regulated in the adjacent benign liver specimens that were both cirrhotic and hepatitis-positive compared with the uninfected, noncirrhotic specimens (P < 0.01). Interestingly, all of the miRNAs in this comparison had increased expression and none were decreased. The expression of 95 randomly selected mRNAs was not significantly altered in the cirrhotic and hepatitis-positive specimens, suggesting a preferential increase in the transcription of miRNA. Comparing the miRNA expression in the HCC tumors with patient's survival time revealed two groups of patients; those with predominantly lower miRNA expression and poor survival and those with predominantly higher miRNA expression and good survival (P < 0.05). A set of 19 miRNAs significantly correlated with disease outcome. A number of biological processes including cell division, mitosis, and G(1)-S transition were predicted to be targets of the 19 miRNAs in this group. CONCLUSION We show that a global increase in the transcription of miRNA genes occurs in cirrhotic and hepatitis-positive livers and that miRNA expression may prognosticate disease outcome in HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Disease Progression
- Gene Expression Profiling
- Hepatitis, Viral, Human/complications
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/metabolism
- Humans
- Liver Cirrhosis/complications
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- MicroRNAs/metabolism
- Prognosis
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Jinmai Jiang
- College of Pharmacy, Ohio State University, Columbus, Ohio
| | - Yuriy Gusev
- Department of Surgery, University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Ileana Aderca
- Divisions of Gastroenterology and Hepatology and Gastroenterological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Teresa A. Mettler
- Divisions of Gastroenterology and Hepatology and Gastroenterological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - David M. Nagorney
- Divisions of Gastroenterology and Hepatology and Gastroenterological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Daniel J. Brackett
- Department of Surgery, University of Oklahoma Health Sciences Center and Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Lewis R. Roberts
- Divisions of Gastroenterology and Hepatology and Gastroenterological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | |
Collapse
|
738
|
Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 2008; 18:89-102. [PMID: 18295505 DOI: 10.1016/j.semcancer.2008.01.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a novel class of small endogenous non-coding RNAs that regulate gene expression post-transcriptionally by binding to their cognate target mRNAs. Emerging evidence implies that miRNAs play important roles in cancer and thus, miRNAs have rapidly emerged as valuable markers for cancer diagnostics and promising targets for therapeutics. Locked nucleic acid (LNA) is a conformational RNA analoque that binds complementary RNA with unprecedented affinity and specificity. These properties make LNA well suited for miRNA detection and analysis for cancer diagnostics. Furthermore, recent studies on LNA-mediated silencing of miRNA function in vitro and in vivo support the potential of LNA in therapeutic intervention of cancer-associated miRNAs.
Collapse
Affiliation(s)
- Jan Stenvang
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
739
|
Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 2008; 27:378-86. [PMID: 17621267 DOI: 10.1038/sj.onc.1210648] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/04/2007] [Accepted: 06/04/2007] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is overexpressed and contributes to tumor cell growth in cholangiocarcinoma. Enforced IL-6 production can alter the expression of specific microRNAs (miRNAs) involved in tumor growth, and moreover can modulate expression of methylation-dependent genes. Thus, we assessed the methylation-dependent regulation of miRNA expression in human malignant cholangiocytes stably transfected to overexpress IL-6. The expression of the methyltransferases DNA methyltransferase enzyme-1 and HASJ4442 was increased by IL-6 overexpression, but was decreased by the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR). Expression profiling identified seven miRNAs that were significantly downregulated by IL-6 overexpression (<0.4-fold) and upregulated (>2-fold) by 5-aza-CdR. One of these, miR-370, is embedded in a CpG island. Although 5-aza-CdR increased miR-370 expression by 2.1-fold in malignant cells, the expression in nonmalignant cells was unchanged. The oncogene mitogen-activated protein kinase kinase kinase 8 (MAP3K8) was identified as a target of miR-370, and its expression was decreased by 5-aza-CdR in cholangiocarcinoma cells. Overexpression of IL-6 reduced miR-370 expression and reinstated MAP3K8 expression in vitro as well as in tumor cell xenografts in vivo. Thus, IL-6 may contribute to tumor growth by modulation of expression of selected miRNAs, such as miR-370. These studies define a mechanism by which inflammation-associated cytokines can epigenetically modulate gene expression and directly contribute to tumor biology.
Collapse
Affiliation(s)
- F Meng
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, TX, USA
| | | | | | | | | |
Collapse
|
740
|
Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W. MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 2008; 7:1-9. [DOI: 10.1158/1535-7163.mct-07-0573] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
741
|
Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA (NEW YORK, N.Y.) 2008; 14:35-42. [PMID: 18025253 PMCID: PMC2151027 DOI: 10.1261/rna.804508] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/12/2007] [Indexed: 05/18/2023]
Abstract
Very little is known regarding regulation of microRNA (miRNA) biogenesis in normal tissues, tumors, and cell lines. Here, we profiled the expression of 225 precursor and mature miRNAs using real-time PCR and compared the expression levels to determine the processing patterns. RNA from 22 different human tissues, 37 human cancer cell lines, and 16 pancreas and liver tissues/tumors was profiled. The relationship between precursor and mature miRNA expression fell into the following four categories: (1) a direct correlation exists between the precursor and mature miRNA expression in all cells/tissues studied; (2) direct correlation of the precursor and mature miRNA exists, yet the expression is restricted to specific cell lines or tissues; (3) there is detectable expression of mature miRNA in certain cells and tissues while the precursor is expressed in all or most cells/tissues; or (4) both precursor and mature miRNA are not expressed. Pearson correlation between the precursor and mature miRNA expression was closer to one for the tissues but was closer to zero for the cell lines, suggesting that processing of precursor miRNAs is reduced in cancer cell lines. By using Northern blotting, we show that many of these miRNAs (e.g., miR-31, miR-105 and miR-128a) are processed to the precursor, but in situ hybridization analysis demonstrates that these miRNA precursors are retained in the nucleus. We provide a database of the levels of precursor and mature miRNA in a variety of cell types. Our data demonstrate that a large number of miRNAs are transcribed but are not processed to the mature miRNA.
Collapse
Affiliation(s)
- Eun Joo Lee
- College of Pharmacy, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
742
|
Pan Q, Luo X, Chegini N. Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 2008; 12:227-40. [PMID: 18182067 PMCID: PMC2730932 DOI: 10.1111/j.1582-4934.2007.00207.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 12/13/2007] [Indexed: 11/28/2022] Open
Abstract
Given the emerging roles of microRNAs (miRNAs) as key regulator of mRNA stability we assessed their expression profile in paired myometrium and leiomyoma, their isolated smooth muscle cells (MSMC and LSMC), a spontaneously transformed leiomyoma smooth muscle cells (T-LSMC) and SK-LMS-1, a leiomyosarcoma cell line using microarray and real time PCR. Based on global normalization of expression values of 385 miRNAs and statistical analysis (anova), 91 miRNAs were expressed above the threshold levels in myometrium, with a progressive decline in numbers in leiomyomas, MSMC, LSMC, T-LSMC and SK-LMS-1 (P<0.05). We selected and validated the expression of miR-20a, miR-21, miR-26a, miR-18a, miR-206, miR-181a and miR-142-5p and found their differential expression in tissue and cell-specific manners (P<0.05). Treatments of MSMC and LSMC with 17beta estradiol and medroxyprogesterone acetate (10(-8)M), or ICI-182780 and RU-486 (10(-6)M) resulted in differential regulation of these miRNAs (P<0.05). In conclusion, the expression of a number of miRNAs in myometrium and leiomyoma with their progressive aberrant from normal MSMC into LSMC, transformed and cancerous stage, suggests that miRNAs and their regulation by ovarian steroids play a key role in pathogenesis of leiomyoma through gene expression stability.
Collapse
Affiliation(s)
- Qun Pan
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, USA
| | - Xiaoping Luo
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, USA
| | - Nasser Chegini
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
743
|
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs that are thought to regulate the expression of as many as one-third of all human messenger RNAs (mRNAs). miRNAs are thought to be involved in diverse biological processes, including tumorigenesis. Analysis of miRNA levels may have diagnostic implications. Evidence shows that numerous viruses interact with the miRNA machinery, and that a number of viruses encode their own miRNAs. It seems likely that miRNAs will be implicated in many human diseases. Manipulation of miRNA levels by gene therapy provides an attractive new approach for therapeutic development. This review focuses on approaches to manipulate miRNA levels in cells and in vivo, and the implications for gene therapy. Furthermore, we discuss the use of endogenous miRNAs as scaffolds for the expression of RNA interference (RNAi) as well as competition between exogenous RNAi triggers and endogenous miRNAs. Because short interfering RNAs can also act as miRNAs, seed matches with the 3' untranslated regions of genes should be avoided to prevent off-target effects. Last, we discuss the use of miRNAs to avoid immune responses to viral vectors.
Collapse
Affiliation(s)
- Rebecca T Marquez
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
744
|
Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C. Real-time PCR quantification of precursor and mature microRNA. Methods 2008; 44:31-8. [PMID: 18158130 PMCID: PMC2663046 DOI: 10.1016/j.ymeth.2007.09.006] [Citation(s) in RCA: 449] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/21/2007] [Indexed: 11/17/2022] Open
Abstract
microRNAs (miRNAs) are challenging molecules to amplify by PCR because the miRNA precursor consists of a stable hairpin and the mature miRNA is roughly the size of a standard PCR primer. Despite these difficulties, successful real-time RT-PCR technologies have been developed to amplify and quantify both the precursor and mature microRNA. An overview of real-time PCR technologies developed by us to detect precursor and mature microRNAs is presented here. Protocols describe presentation of the data using relative (comparative C(T)) and absolute (standard curve) quantification. Real-time PCR assays were used to measure the time course of precursor and mature miR-155 expression in monocytes stimulated by lipopolysaccharide. Protocols are provided to configure the assays as low density PCR arrays for high throughput gene expression profiling. By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify miRNAs who's processing is regulated during differentiation. Real-time PCR has become the gold standard of nucleic acid quantification due to the specificity and sensitivity of the PCR. Technological advancements have allowed for quantification of miRNA that is of comparable quality to more traditional RNAs.
Collapse
|
745
|
Stutes M, Tran S, DeMorrow S. Genetic and epigenetic changes associated with cholangiocarcinoma: From DNA methylation to microRNAs. World J Gastroenterol 2007; 13:6465-9. [PMID: 18161915 PMCID: PMC4611284 DOI: 10.3748/wjg.v13.i48.6465] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas are malignant epithelial liver tumors arising from the intra- and extra-hepatic bile ducts. Little is known about the molecular development of this disease, and very few effective treatment options are available. Thus, prognosis is poor. Genetic and epigenetic changes play an integral role in the neoplastic transformation of human cells to their malignant counterparts. This review summarizes some of the more prevalent genetic alterations (by microRNA expression) and epigenetic changes (hypermethylation of specific gene promoters) that are thought to contribute to the carcinogenic process in cholangiocarcinoma.
Collapse
|
746
|
Zhang B, Farwell MA. microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med 2007; 12:3-21. [PMID: 18088390 PMCID: PMC3823469 DOI: 10.1111/j.1582-4934.2007.00196.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are a new class of non-protein-coding small RNAs, which regulate the expression of more than 30% protein-coding genes. The unique expression profiles of different miRNAs in different types of cancers and at different stages in one cancer type suggest that miRNAs can function as novel biomarkers for disease diagnostics and may present a new strategy for miRNA gene therapy. Anti-miRNAs and antisense oligonucleotides (ASO) have been employed to inhibit specific miRNA expression in vitro and in vivo for investigational and clinical purposes. Although miRNA-based diagnostics and gene therapy are still in their infancy, their huge potentials will meet our need for future disease diagnostics and gene therapy. High efficient delivery of miRNAs into targeted sites, designing accurate anti-miRNA/ASOs, and related biosafety issues are three major challenges in this field.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | |
Collapse
|
747
|
Pappas TC, Bader AG, Andruss BF, Brown D, Ford LP. Applying small RNA molecules to the directed treatment of human diseases: realizing the potential. Expert Opin Ther Targets 2007; 12:115-27. [DOI: 10.1517/14728222.12.1.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
748
|
Hagan JP, Croce CM. MicroRNAs in carcinogenesis. Cytogenet Genome Res 2007; 118:252-9. [PMID: 18000378 DOI: 10.1159/000108308] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/06/2006] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are an abundant class of noncoding RNAs, typically 20-23 nucleotides in length that are often evolutionarily conserved in metazoans and expressed in a cell and tissue specific manner. MicroRNAs exert their gene regulatory activity primarily by imperfectly base pairing to the 3' UTR of their target mRNAs, leading to mRNA degradation or translational inhibition. In cancer, microRNAs are often dysregulated with their expression patterns being correlated with clinically relevant tumor characteristics. Recently, microRNAs were shown to be directly involved in cancer initiation and progression. This review focuses primarily on emerging developments in the microRNA field that impact our understanding of how these molecules contribute to carcinogenesis.
Collapse
Affiliation(s)
- J P Hagan
- Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, USA.
| | | |
Collapse
|
749
|
Abstract
The functions ascribed to PTEN have become more diverse since its discovery as a putative phosphatase mutated in many human tumors. Although it can dephosphorylate lipids and proteins, it also has functions independent of phosphatase activity in normal and pathological states. In addition, control of PTEN function is very complex. It is positively and negatively regulated at the transcriptional level, as well as post-translationally by phosphorylation, ubiquitylation, oxidation and acetylation. Although most of its tumor suppressor activity is likely to be caused by lipid dephosphorylation at the plasma membrane, PTEN also resides in the cytoplasm and nucleus, and its subcellular distribution is under strict control. Deregulation of PTEN function is implicated in other human diseases in addition to cancer, including diabetes and autism.
Collapse
Affiliation(s)
- Tanja Tamguney
- UCSF Cancer Research Institute, 2340 Sutter Street, San Francisco, CA 94115, USA
| | - David Stokoe
- UCSF Cancer Research Institute, 2340 Sutter Street, San Francisco, CA 94115, USA
| |
Collapse
|
750
|
Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 2007; 16 Spec No 1:R106-13. [PMID: 17613543 DOI: 10.1093/hmg/ddm056] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are causing tremendous excitement in cancer research. MiRNAs are a large class of short non-coding RNAs that are found in many plants, animals and DNA viruses and often act to inhibit gene expression post-transcriptionally. Approximately 500 miRNA genes have been identified in the human genome. Their function is largely unknown, but data from worms, flies, fish and mice suggest that they have important roles in animal growth, development, homeostasis and disease. MiRNA expression profiles demonstrate that many miRNAs are deregulated in human cancers. MiRNAs have been shown to regulate oncogenes, tumour suppressors and a number of cancer-related genes controlling cell cycle, apoptosis, cell migration and angiogenesis. MiRNAs encoded by the mir-17-92 cluster have oncogenic potential and others may act as tumour suppressors. Some miRNAs and their target sites were found to be mutated in cancer. MiRNAs may have great diagnostic potential for human cancer and even miRNA-based cancer therapies may be on the horizon.
Collapse
Affiliation(s)
- Cherie Blenkiron
- The Wellcome Trust/Cancer Research, UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|