701
|
Anh Tuan P, Bai S, Saito T, Imai T, Ito A, Moriguchi T. Involvement of EARLY BUD-BREAK, an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (Pyrus pyrifolia Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes. PLANT & CELL PHYSIOLOGY 2016; 57:1038-47. [PMID: 26940832 DOI: 10.1093/pcp/pcw041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/19/2016] [Indexed: 05/05/2023]
Abstract
In the Japanese pear (Pyrus pyrifolia Nakai) 'Kosui', three developmental stages of lateral flower buds have been proposed to occur during ecodormancy to the flowering phase, i.e. rapid enlargement, sprouting and flowering. Here, we report an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor gene, named pear EARLY BUD-BREAK (PpEBB), which was highly expressed during the rapid enlargement stage occurring prior to the onset of bud break in flower buds. Gene expression analysis revealed that PpEBB expression was dramatically increased during the rapid enlargement stage in three successive growing seasons. PpEBB transcript levels peaked 1 week prior to onset of bud break in 'Kosui' potted plants treated with hydrogen cyanamide or water under forcing conditions. Chromatin immunoprecipitation-quantitative PCR showed that higher levels of active histone modifications (trimethylation of the histone H3 tail at Lys4) in the 5'-upstream and start codon regions of the PpEBB gene were associated with the induced expression level of PpEBB during the rapid enlargement stage. In addition, we provide evidence that PpEBB may interact with and regulate pear four D-type cyclin (PpCYCD3) genes during bud break in 'Kosui' lateral flower buds. PpEBB significantly increased the promoter activities of four PpCYCD3 genes in a dual-luciferase assay using tobacco leaves. Taken together, our findings uncovered aspects of the bud break regulatory mechanism in the Japanese pear and provided further evidence that the EBB family plays an important role in bud break in perennial plants.
Collapse
Affiliation(s)
- Pham Anh Tuan
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| | - Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan Present address: Institute of Fruit Science, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Takanori Saito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan Present address: Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510 Japan
| | - Tsuyoshi Imai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| | - Akiko Ito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605 Japan
| |
Collapse
|
702
|
Kobayashi Y, Otani T, Ishibashi K, Shikanai T, Nishimura Y. C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants. Genome Biol Evol 2016; 8:1459-66. [PMID: 27189994 PMCID: PMC4898807 DOI: 10.1093/gbe/evw093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, such as Zea mays and Arabidopsis thaliana To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial ribbon-helix-helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus vulgaris The addition of the CEP drastically altered the intra-cp localization of AtSiR to cp nucleoids. Our analysis supports the possible functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp nucleoid protein.
Collapse
Affiliation(s)
| | | | | | | | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Japan
| |
Collapse
|
703
|
Characterization of ubiquitin ligase SlATL31 and proteomic analysis of 14-3-3 targets in tomato fruit tissue (Solanum lycopersicum L.). J Proteomics 2016; 143:254-264. [PMID: 27113132 DOI: 10.1016/j.jprot.2016.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 02/01/2023]
Abstract
UNLABELLED The 14-3-3 proteins participate in many aspects of plant physiology by interacting with phosphorylated proteins and thereby regulating target protein functions. In Arabidopsis plant, the ubiquitin ligase ATL31 controls 14-3-3 stability via both direct interaction and ubiquitination, and this consequently regulates post-germinative growth in response to carbon and nitrogen nutrient availability. Since 14-3-3 proteins regulate the activities of many key enzymes related to nutrient metabolism, one would anticipate that they should play an essential role not only in vegetative but also in reproductive tissue. Because fruit yield largely depends on carbon and nitrogen availability and their utilization, the function of 14-3-3 proteins was analyzed in tomato fruit tissue. Here, we isolated and characterized an ubiquitin ligase SlATL31 (Solyc03g112340) from tomato and demonstrated that SlATL31 has ubiquitin ligase activity as well as interaction with tomato 14-3-3 proteins, suggesting the possibility that the SlATL31 functions as an ubiquitin ligase for 14-3-3 similarly to its Arabidopsis ortholog. Furthermore, we performed proteomic analysis of 14-3-3 interacting proteins and identified 106 proteins as putative 14-3-3 targets including key enzymes for carbon metabolism and photosynthesis. This 14-3-3 interactome result and available transcriptome profile suggest a considerable yet complex role of 14-3-3 proteins in tomato fruit tissue. BIOLOGICAL SIGNIFICANCE Considerable cumulative evidence exists which implies that 14-3-3 proteins are involved in the regulation of plant primary metabolism. Here we provide the first report of 14-3-3 interactome analysis and identify putative 14-3-3 targets in tomato fruit tissue, which may be highly important given the documented metabolic shifts, which occur during fruit development and ripening. These data open future research avenues by which to understand the regulation of the role of post-translational regulation in tomato fruit development.
Collapse
|
704
|
Stonebloom S, Ebert B, Xiong G, Pattathil S, Birdseye D, Lao J, Pauly M, Hahn MG, Heazlewood JL, Scheller HV. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans. BMC PLANT BIOLOGY 2016; 16:90. [PMID: 27091363 PMCID: PMC4836069 DOI: 10.1186/s12870-016-0780-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. RESULTS T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wild type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. CONCLUSIONS Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.
Collapse
Affiliation(s)
- Solomon Stonebloom
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Berit Ebert
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Guangyan Xiong
- />Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Sivakumar Pattathil
- />Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA
- />BioEnergy Science Center, University of Georgia, Athens, GA 30602-4712 USA
| | - Devon Birdseye
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jeemeng Lao
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Markus Pauly
- />Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Michael G. Hahn
- />Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA
- />BioEnergy Science Center, University of Georgia, Athens, GA 30602-4712 USA
- />Department of Plant Biology, University of Georgia, Athens, GA 30602-4712 USA
| | - Joshua L. Heazlewood
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, 3010 Melbourne, Victoria Australia
| | - Henrik Vibe Scheller
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
705
|
Kanno S, Arrighi JF, Chiarenza S, Bayle V, Berthomé R, Péret B, Javot H, Delannoy E, Marin E, Nakanishi TM, Thibaud MC, Nussaume L. A novel role for the root cap in phosphate uptake and homeostasis. eLife 2016; 5:e14577. [PMID: 27050616 PMCID: PMC4829427 DOI: 10.7554/elife.14577] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/11/2016] [Indexed: 01/26/2023] Open
Abstract
The root cap has a fundamental role in sensing environmental cues as well as regulating root growth via altered meristem activity. Despite this well-established role in the control of developmental processes in roots, the root cap’s function in nutrition remains obscure. Here, we uncover its role in phosphate nutrition by targeted cellular inactivation or phosphate transport complementation in Arabidopsis, using a transactivation strategy with an innovative high-resolution real-time 33P imaging technique. Remarkably, the diminutive size of the root cap cells at the root-to-soil exchange surface accounts for a significant amount of the total seedling phosphate uptake (approximately 20%). This level of Pi absorption is sufficient for shoot biomass production (up to a 180% gain in soil), as well as repression of Pi starvation-induced genes. These results extend our understanding of this important tissue from its previously described roles in environmental perception to novel functions in mineral nutrition and homeostasis control. DOI:http://dx.doi.org/10.7554/eLife.14577.001 All plants need phosphate to grow because it is a major component of DNA and many other biological molecules. Most of the Earth’s soil is poor in phosphate, and so farmland is routinely supplemented with fertilizers to provide crops with this essential nutrient. However, phosphate fertilizers are becoming scarce and their quality is expected to decline in the near future. Plant biologists must therefore determine how to adapt plants to a restricted supply of this resource, in order to sustain high crop yields for the growing world population. Plants are known to absorb phosphate through specific protein-based transporters located in the cells that make up the outer layer of roots. These proteins are highly concentrated at the root tip, and while this specialized tissue is well-known for perceiving gravity and light, it had not been shown to play a role in phosphate absorption. Kanno, Arrighi et al. have now used genetically modified Arabidopsis plants to demonstrate that phosphate can be taken up via the small cells that surround the root tip. The experiments showed that the absorbed phosphate rapidly reaches the leaves within minutes, helps the plant grow and modifies its metabolism. As the root tip can accumulate high amounts of phosphate in order to sustain its own activity, it was important to distinguish uptake of phosphate from the environment from redistribution of phosphate already within the plant. Kanno, Arrighi et al. tackled this issue through the development of a new radioactive micro-imaging technique. Phosphate transporters are also present within the cell layers within the root, but their purpose and activity are not well described. Further studies are needed to analyze the role of other root cell layers in phosphate uptake and transport, and the newly developed techniques will help decipher the mechanisms involved. DOI:http://dx.doi.org/10.7554/eLife.14577.002
Collapse
Affiliation(s)
- Satomi Kanno
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Jean-François Arrighi
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Serge Chiarenza
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Vincent Bayle
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes Micro-organismes, Castanet-Tolosan, France
| | - Benjamin Péret
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Hélène Javot
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Etienne Delannoy
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Elena Marin
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Tomoko M Nakanishi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Marie-Christine Thibaud
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| | - Laurent Nussaume
- Laboratoire de Biologie du Developpement des Plantes, Institut de Biosciences et Biotechnology Aix-Marseille, Commissariat à l'Energie atomique et aux énergies alternatives, Saint Paul Les Durance, France.,UMR 7265 Biol. Veget. & Microbiol. Environ., Centre National de Recherche Scientifique, Saint Paul Les Durance, France.,UMR 7265, Aix-Marseille Université, Marseille, France
| |
Collapse
|
706
|
Sempere RN, Gómez-Aix C, Ruíz-Ramón F, Gómez P, Hasiów-Jaroszewska B, Sánchez-Pina MA, Aranda MA. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates. PHYTOPATHOLOGY 2016; 106:395-406. [PMID: 26667188 DOI: 10.1094/phyto-10-15-0277-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.
Collapse
Affiliation(s)
- Raquel N Sempere
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Cristina Gómez-Aix
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Fabiola Ruíz-Ramón
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Pedro Gómez
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Beata Hasiów-Jaroszewska
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - María Amelia Sánchez-Pina
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Miguel A Aranda
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| |
Collapse
|
707
|
Shi WL, Chen XL, Wang LX, Gong ZT, Li S, Li CL, Xie BB, Zhang W, Shi M, Li C, Zhang YZ, Song XY. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2191-205. [PMID: 26850879 PMCID: PMC4809282 DOI: 10.1093/jxb/erw023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions.
Collapse
Affiliation(s)
- Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Li-Xia Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Zhi-Ting Gong
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| |
Collapse
|
708
|
Mahoney AK, Anderson EM, Bakker RA, Williams AF, Flood JJ, Sullivan KC, Pillitteri LJ. Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression. PLANTA 2016; 243:987-98. [PMID: 26748914 PMCID: PMC4819751 DOI: 10.1007/s00425-015-2445-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/11/2015] [Indexed: 05/26/2023]
Abstract
The MUTE promoter contains a 175-bp region rich in Dof regulatory elements (AAAG) that is necessary and sufficient for initiation of transcription in meristemoids and the stomatal lineage. The molecular mechanism underlying the decision to divide or differentiate is a central question in developmental biology. During stomatal development, expression of the master regulator MUTE triggers the differentiation of meristemoids into stomata. In this study, we carried out MUTE promoter deletion analysis to define a regulatory region that promotes the initiation of expression in meristemoids. Expression constructs with truncated promoter fragments fused to β-glucuronidase (GUS) were developed. The full-length promoter and promoter truncations of at least 500 bp from the translational start site exhibited normal spatiotemporal expression patterns. Further truncation revealed a 175-bp promoter fragment that was necessary and sufficient for stomatal-lineage expression. Known cis-elements were identified and tested for functional relevance. Comparison of orthologous MUTE promoters suggested DNA binding with one finger (Dof) regulatory elements and novel motifs may be important for regulation. Our data highlight the complexity and combinatorial control of gene regulation and provides tools to further investigate the genetic control of stomatal development.
Collapse
Affiliation(s)
- Aaron K Mahoney
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Elizabeth M Anderson
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Rachael A Bakker
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Anthony F Williams
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Jake J Flood
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Katrina C Sullivan
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Lynn J Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA.
| |
Collapse
|
709
|
Postma J, Liebrand TWH, Bi G, Evrard A, Bye RR, Mbengue M, Kuhn H, Joosten MHAJ, Robatzek S. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. THE NEW PHYTOLOGIST 2016; 210:627-42. [PMID: 26765243 DOI: 10.1111/nph.13802] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/10/2015] [Indexed: 05/05/2023]
Abstract
The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis.
Collapse
Affiliation(s)
- Jelle Postma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Thomas W H Liebrand
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Guozhi Bi
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Alexandre Evrard
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ruby R Bye
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Malick Mbengue
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hannah Kuhn
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- Unit of Plant Molecular Cell Biology, Institute of Biology I, RWTH Aachen, Worringerweg 1, 52056, Aachen, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
710
|
Dantas GC, Martins PMM, Martins DAB, Gomes E, Ferreira H. A protein expression system for tandem affinity purification in Xanthomonas citri subsp. citri. Braz J Microbiol 2016; 47:518-26. [PMID: 26991273 PMCID: PMC4874617 DOI: 10.1016/j.bjm.2016.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022] Open
Abstract
Citrus canker, caused by the Gram-negative bacterium Xanthomonas citri subsp. citri (Xac), is one of the most devastating diseases to affect citrus crops. There is no treatment for citrus canker; effective control against the spread of Xac is usually achieved by the elimination of affected plants along with that of asymptomatic neighbors. An in depth understanding of the pathogen is the keystone for understanding of the disease; to this effect we are committed to the development of strategies to ease the study of Xac. Genome sequencing and annotation of Xac revealed that ∼37% of the genome is composed of hypothetical ORFs. To start a systematic characterization of novel factors encoded by Xac, we constructed integrative-vectors for protein expression specific to this bacterium. The vectors allow for the production of TAP-tagged proteins in Xac under the regulation of the xylose promoter. In this study, we show that a TAP-expression vector, integrated into the amy locus of Xac, does not compromise its virulence. Furthermore, our results also demonstrate that the polypeptide TAP can be overproduced in Xac and purified from the soluble phase of cell extracts. Our results substantiate the use of our vectors for protein expression in Xac thus contributing a novel tool for the characterization of proteins and protein complexes generated by this bacterium in vivo.
Collapse
Affiliation(s)
- Giordanni C Dantas
- Depto. de Bioquimica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Paula M M Martins
- Depto. de Bioquimica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Daniela A B Martins
- Depto. de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Eleni Gomes
- Depto. de Biologia, Universidade Estadual Paulista, São Jose do Rio Preto, SP, Brazil
| | - Henrique Ferreira
- Depto. de Bioquimica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil.
| |
Collapse
|
711
|
Flexible gateway constructs for functional analyses of genes in plant pathogenic fungi. Fungal Genet Biol 2016; 79:186-92. [PMID: 26092806 DOI: 10.1016/j.fgb.2015.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/23/2022]
Abstract
Genetic manipulation of fungi requires quick, low-cost, efficient, high-throughput and molecular tools. In this paper, we report 22 entry constructs as new molecular tools based on the Gateway technology facilitating rapid construction of binary vectors that can be used for functional analysis of genes in fungi. The entry vectors for single, double or triple gene-deletion mutants were developed using hygromycin, geneticin and nourseothricin resistance genes as selection markers. Furthermore, entry vectors containing green fluorescent (GFP) or red fluorescent (RFP) in combination with hygromycin, geneticin or nourseothricin selection markers were generated. The latter vectors provide the possibility of gene deletion and simultaneous labelling of the fungal transformants with GFP or RFP reporter genes. The applicability of a number of entry vectors was validated in Zymoseptoria tritici, an important fungal wheat pathogen.
Collapse
|
712
|
Poudel AN, Zhang T, Kwasniewski M, Nakabayashi R, Saito K, Koo AJ. Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1396-1408. [PMID: 26968098 DOI: 10.1016/j.bbalip.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 03/06/2016] [Indexed: 12/17/2022]
Abstract
Plants rapidly perceive tissue damage, such as that inflicted by insects, and activate several key defense responses. The importance of the fatty acid-derived hormone jasmonates (JA) in dictating these wound responses has been recognized for many years. However, important features pertaining to the regulation of the JA pathway are still not well understood. One key unknown is the inactivation mechanism of the JA pathway and its relationship with plant response to wounding. Arabidopsis cytochrome P450 enzymes in the CYP94 clade metabolize jasmonoyl-L-isoleucine (JA-Ile), a major metabolite of JA responsible for many biological effects attributed to the JA signaling pathway; thus, CYP94s are expected to contribute to the attenuation of JA-Ile-dependent wound responses. To directly test this, we created the double and triple knock-out mutants of three CYP94 genes, CYP94B1, CYP94B3, and CYP94C1. The mutations blocked the oxidation steps and caused JA-Ile to accumulate 3-4-fold the WT levels in the wounded leaves. Surprisingly, over accumulation of JA-Ile did not lead to a stronger wound response. On the contrary, the mutants displayed a series of symptoms reminiscent of JA-Ile deficiency, including resistance to wound-induced growth inhibition, decreased anthocyanin and trichomes, and increased susceptibility to insects. The mutants, however, responded normally to exogenous JA treatments, indicating that JA perception or signaling pathways were intact. Untargeted metabolite analyses revealed >40% reduction in wound-inducible metabolites in the mutants. These observations raise questions about the current JA signaling model and point toward a more complex model perhaps involving JA derivatives and/or feedback mechanisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Arati N Poudel
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Misha Kwasniewski
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
713
|
Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:870-7. [PMID: 26927949 DOI: 10.1080/09168451.2015.1135042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.
Collapse
Affiliation(s)
- Masahiro Noshi
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Risa Hatanaka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Noriaki Tanabe
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Yusuke Terai
- b Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Takanori Maruta
- b Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| |
Collapse
|
714
|
Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P, Matsuura H, Koo AJ. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2107-20. [PMID: 26672615 PMCID: PMC4793799 DOI: 10.1093/jxb/erv521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Jasmonate (JA) and auxin are essential hormones in plant development and stress responses. While the two govern distinct physiological processes, their signaling pathways interact at various levels. Recently, members of the Arabidopsis indole-3-acetic acid (IAA) amidohydrolase (IAH) family were reported to metabolize jasmonoyl-isoleucine (JA-Ile), a bioactive form of JA. Here, we characterized three IAH members, ILR1, ILL6, and IAR3, for their function in JA and IAA metabolism and signaling. Expression of all three genes in leaves was up-regulated by wounding or JA, but not by IAA. Purified recombinant proteins showed overlapping but distinct substrate specificities for diverse amino acid conjugates of JA and IAA. Perturbed patterns of the endogenous JA profile in plants overexpressing or knocked-out for the three genes were consistent with ILL6 and IAR3, but not ILR1, being the JA amidohydrolases. Increased turnover of JA-Ile in the ILL6- and IAR3-overexpressing plants created symptoms of JA deficiency whereas increased free IAA by overexpression of ILR1 and IAR3 made plants hypersensitive to exogenous IAA conjugates. Surprisingly, ILL6 overexpression rendered plants highly resistant to exogenous IAA conjugates, indicating its interference with IAA conjugate hydrolysis. Fluorescent protein-tagged IAR3 and ILL6 co-localized with the endoplasmic reticulum-localized JA-Ile 12-hydroxylase, CYP94B3. Together, these results demonstrate that in wounded leaves JA-inducible amidohydrolases contribute to regulate active IAA and JA-Ile levels, promoting auxin signaling while attenuating JA signaling. This mechanism represents an example of a metabolic-level crosstalk between the auxin and JA signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Arati N Poudel
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Naoki Kitaoka
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68521, USA
| | - Hideyuki Matsuura
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
715
|
Inada N, Higaki T, Hasezawa S. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus. PLANT PHYSIOLOGY 2016; 170:1420-34. [PMID: 26747284 PMCID: PMC4775110 DOI: 10.1104/pp.15.01265] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/05/2016] [Indexed: 05/19/2023]
Abstract
Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1-ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus.
Collapse
Affiliation(s)
- Noriko Inada
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| | - Takumi Higaki
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| | - Seiichiro Hasezawa
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| |
Collapse
|
716
|
Ishizaki K, Nishihama R, Yamato KT, Kohchi T. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research. PLANT & CELL PHYSIOLOGY 2016; 57:262-70. [PMID: 26116421 DOI: 10.1093/pcp/pcv097] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants.
Collapse
Affiliation(s)
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Wakayama, 649-6493 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
717
|
Buschmann H, Holtmannspötter M, Borchers A, O'Donoghue MT, Zachgo S. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha. THE NEW PHYTOLOGIST 2016; 209:999-1013. [PMID: 26467050 DOI: 10.1111/nph.13691] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/26/2015] [Indexed: 05/29/2023]
Abstract
The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Agnes Borchers
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Martin-Timothy O'Donoghue
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| |
Collapse
|
718
|
Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression. PLoS Genet 2016; 12:e1005760. [PMID: 26745809 PMCID: PMC4706318 DOI: 10.1371/journal.pgen.1005760] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1), plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots. Ethylene is a gaseous phytohormone that plays critical roles in plant development and defense. It is well known that ethylene inhibits primary root elongation through effects on auxin. However, it is not clear how ethylene signal is translated into auxin. In this report, the highly ethylene-responsive transcription factor ETHYLENE RESPONSE FACTOR1 (ERF1) is demonstrated to positively regulate ASA1, encoding ANTHRANILATE SYNTHASE α1, a rate-limiting enzyme in Trp biosynthesis where auxin is derived, by directly binding to its promoter and activating ASA1. Consequently, auxin biosynthesis is promoted, leading to increased auxin accumulation and thus inhibition of primary root elongation. This study unravels a molecular mechanism that bridges ethylene signaling and auxin biosynthesis in primary root elongation.
Collapse
|
719
|
Bi G, Liebrand TWH, Bye RR, Postma J, van der Burgh AM, Robatzek S, Xu X, Joosten MHAJ. SOBIR1 requires the GxxxG dimerization motif in its transmembrane domain to form constitutive complexes with receptor-like proteins. MOLECULAR PLANT PATHOLOGY 2016; 17:96-107. [PMID: 25891985 PMCID: PMC6638328 DOI: 10.1111/mpp.12266] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Receptor-like proteins (RLPs), forming an important group of transmembrane receptors in plants, play roles in development and immunity. RLPs contain extracellular leucine-rich repeats (LRRs) and, in contrast with receptor-like kinases (RLKs), lack a cytoplasmic kinase required for the initiation of downstream signalling. Recent studies have revealed that the RLK SOBIR1/EVR (SUPPRESSOR OF BIR1-1/EVERSHED) specifically interacts with RLPs. SOBIR1 stabilizes RLPs and is required for their function. However, the mechanism by which SOBIR1 associates with RLPs and regulates RLP function remains unknown. The Cf immune receptors of tomato (Solanum lycopersicum), mediating resistance to the fungus Cladosporium fulvum, are RLPs that also interact with SOBIR1. Here, we show that both the LRR and kinase domain of SOBIR1 are dispensable for association with the RLP Cf-4, whereas the highly conserved GxxxGxxxG motif present in the transmembrane domain of SOBIR1 is essential for its interaction with Cf-4 and additional RLPs. Complementation assays in Nicotiana benthamiana, in which endogenous SOBIR1 levels were knocked down by virus-induced gene silencing, showed that the LRR domain as well as the kinase activity of SOBIR1 are required for the Cf-4/Avr4-triggered hypersensitive response (HR). In contrast, the LRRs and kinase activity of SOBIR1 are not required for facilitation of Cf-4 accumulation. Together, these results suggest that, in addition to being a stabilizing scaffold for RLPs, SOBIR1 is also required for the initiation of downstream signalling through its kinase domain.
Collapse
Affiliation(s)
- Guozhi Bi
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Thomas W H Liebrand
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Ruby R Bye
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Jelle Postma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Aranka M van der Burgh
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
720
|
Adlung N, Prochaska H, Thieme S, Banik A, Blüher D, John P, Nagel O, Schulze S, Gantner J, Delker C, Stuttmann J, Bonas U. Non-host Resistance Induced by the Xanthomonas Effector XopQ Is Widespread within the Genus Nicotiana and Functionally Depends on EDS1. FRONTIERS IN PLANT SCIENCE 2016; 7:1796. [PMID: 27965697 PMCID: PMC5127841 DOI: 10.3389/fpls.2016.01796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
Most Gram-negative plant pathogenic bacteria translocate effector proteins (T3Es) directly into plant cells via a conserved type III secretion system, which is essential for pathogenicity in susceptible plants. In resistant plants, recognition of some T3Es is mediated by corresponding resistance (R) genes or R proteins and induces effector triggered immunity (ETI) that often results in programmed cell death reactions. The identification of R genes and understanding their evolution/distribution bears great potential for the generation of resistant crop plants. We focus on T3Es from Xanthomonas campestris pv. vesicatoria (Xcv), the causal agent of bacterial spot disease on pepper and tomato plants. Here, 86 Solanaceae lines mainly of the genus Nicotiana were screened for phenotypical reactions after Agrobacterium tumefaciens-mediated transient expression of 21 different Xcv effectors to (i) identify new plant lines for T3E characterization, (ii) analyze conservation/evolution of putative R genes and (iii) identify promising plant lines as repertoire for R gene isolation. The effectors provoked different reactions on closely related plant lines indicative of a high variability and evolution rate of potential R genes. In some cases, putative R genes were conserved within a plant species but not within superordinate phylogenetical units. Interestingly, the effector XopQ was recognized by several Nicotiana spp. lines, and Xcv infection assays revealed that XopQ is a host range determinant in many Nicotiana species. Non-host resistance against Xcv and XopQ recognition in N. benthamiana required EDS1, strongly suggesting the presence of a TIR domain-containing XopQ-specific R protein in these plant lines. XopQ is a conserved effector among most xanthomonads, pointing out the XopQ-recognizing RxopQ as candidate for targeted crop improvement.
Collapse
Affiliation(s)
- Norman Adlung
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
- *Correspondence: Norman Adlung
| | - Heike Prochaska
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Sabine Thieme
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Anne Banik
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Doreen Blüher
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Peter John
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Oliver Nagel
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Sebastian Schulze
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Johannes Gantner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Carolin Delker
- Department of Crop Physiology, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-WittenbergHalle, Germany
| | - Johannes Stuttmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-WittenbergHalle, Germany
- Ulla Bonas
| |
Collapse
|
721
|
Sunada M, Goh T, Ueda T, Nakano A. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2016; 129:93-102. [PMID: 26493488 DOI: 10.1007/s10265-015-0760-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/17/2015] [Indexed: 05/23/2023]
Abstract
Recent studies demonstrated that endosomal transport played important roles in various plant functions. The RAB GTPase regulates the tethering and fusion steps of vesicle trafficking to target membranes in each trafficking pathway by acting as a molecular switch. RAB GTPase activation is catalyzed by specific guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP on the RAB GTPase with GTP. RAB5 is a key regulator of endosomal trafficking and is uniquely diversified in plants; the plant-unique RAB5 group ARA6 was acquired in addition to conventional RAB5 during evolution. In Arabidopsis thaliana, conventional RAB5, ARA7 and RHA1 regulate the endosomal/vacuolar trafficking pathways, whereas ARA6 acts in the pathway from the endosome to the plasma membrane. Despite their distinct functions, all RAB5 members are activated by the common GEF VACUOLAR PROTEIN SORTING 9a (VPS9a). VPS9a consists of an N-terminal conserved domain and C-terminal region (CTR) with no similarity to known functional domains. In this study, we investigated the function of the CTR by generating truncated versions of VPS9a and found that it was specifically responsible for ARA6 regulation; moreover, the CTR was required for the oligomerization and correct localization of VPS9a. The oligomerization of VPS9a was mediated by a distinctive region consisting of 36 amino acids in the CTR that was conserved in plant RAB5 GEFs. Thus the VPS9a CTR plays an important role in the regulation of the two RAB5 groups in plants.
Collapse
Affiliation(s)
- Mariko Sunada
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuaki Goh
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advances Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
722
|
Tong W, Imai A, Tabata R, Shigenobu S, Yamaguchi K, Yamada M, Hasebe M, Sawa S, Motose H, Takahashi T. Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:834. [PMID: 27379127 PMCID: PMC4904021 DOI: 10.3389/fpls.2016.00834] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/27/2016] [Indexed: 05/19/2023]
Abstract
Polyamines are small basic compounds present in all living organisms and act in a variety of biological processes. However, the mechanism of polyamine sensing, signaling and response in relation to other metabolic pathways remains to be fully addressed in plant cells. As one approach, we isolated Arabidopsis mutants that show increased resistance to spermine in terms of chlorosis. We show here that two of the mutants have a point mutation in a nitrate transporter gene of the NRT1/PTR family (NPF), NRT1.3 (AtNPF6.4). These mutants also exhibit increased resistance to putrescine and spermidine while loss-of-function mutants of the two closest homologs of NRT1.3, root-specific NRT1.1 (AtNPF6.3) and petiole-specific NRT1.4 (AtNPF6.2), were shown to have a normal sensitivity to polyamines. When the GUS reporter gene was expressed under the control of the NRT1.3 promoter, GUS staining was observed in leaf mesophyll cells and stem cortex cells but not in the epidermis, suggesting that NRT1.3 specifically functions in parenchymal tissues. We further found that the aerial part of the mutant seedling has normal levels of polyamines but shows reduced uptake of norspermidine compared with the wild type. These results suggest that polyamine transport or metabolism is associated with nitrate transport in the parenchymal tissue of the shoot.
Collapse
Affiliation(s)
- Wurina Tong
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Akihiro Imai
- National Institute for Basic BiologyOkazaki, Japan
| | - Ryo Tabata
- Graduate School of Science and Technology, Kumamoto UniversityKumamoto, Japan
| | | | | | - Masashi Yamada
- National Institute for Basic BiologyOkazaki, Japan
- Department of Biology, Duke UniversityDurham, NC, USA
| | | | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto UniversityKumamoto, Japan
| | - Hiroyasu Motose
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
- *Correspondence: Taku Takahashi,
| |
Collapse
|
723
|
Jordá L, Sopeña-Torres S, Escudero V, Nuñez-Corcuera B, Delgado-Cerezo M, Torii KU, Molina A. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:897. [PMID: 27446127 PMCID: PMC4923796 DOI: 10.3389/fpls.2016.00897] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/19/2023]
Abstract
ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering.
Collapse
Affiliation(s)
- Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Lucía Jordá,
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Beatriz Nuñez-Corcuera
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Magdalena Delgado-Cerezo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Keiko U. Torii
- Department of Biology, University of Washington, SeattleWA, USA
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| |
Collapse
|
724
|
Liu Y, Zhang D, Ping J, Li S, Chen Z, Ma J. Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean. PLoS Genet 2016; 12:e1005818. [PMID: 26807727 PMCID: PMC4726468 DOI: 10.1371/journal.pgen.1005818] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/28/2015] [Indexed: 11/27/2022] Open
Abstract
It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems. However, little is known regarding how semi-determinate stems, which produce terminal racemes similar to those observed in determinate plants, are specified in any flowering plants. Here we show that semi-determinacy in soybean is modulated by transcriptional repression of Dt1, the functional ortholog of TFL1, in SAMs. Such repression is fulfilled by recently enabled spatiotemporal expression of Dt2, an ancestral form of the APETALA1/FRUITFULL orthologs, which encodes a MADS-box factor directly binding to the regulatory sequence of Dt1. In addition, Dt2 triggers co-expression of the putative SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (GmSOC1) in SAMs, where GmSOC1 interacts with Dt2, and also directly binds to the Dt1 regulatory sequence. Heterologous expression of Dt2 and Dt1 in determinate (tfl1) Arabidopsis mutants enables creation of semi-determinacy, but the same forms of the two genes in the tfl1 and soc1 background produce indeterminate stems, suggesting that Dt2 and SOC1 both are essential for transcriptional repression of Dt1. Nevertheless, the expression of Dt2 is unable to repress TFL1 in Arabidopsis, further demonstrating the evolutionary novelty of the regulatory mechanism underlying stem growth in soybean.
Collapse
Affiliation(s)
- Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qiangdao, Shandong, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
725
|
Thévenin J, Xu W, Vaisman L, Lepiniec L, Dubreucq B, Dubos C. The Physcomitrella patens System for Transient Gene Expression Assays. Methods Mol Biol 2016; 1482:151-61. [PMID: 27557766 DOI: 10.1007/978-1-4939-6396-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transient expression assays are valuable techniques to study in vivo the transcriptional regulation of gene expression. These methods allow to assess the transcriptional properties of a given transcription factor (TF) or a complex of regulatory proteins against specific DNA motifs, called cis-regulatory elements. Here, we describe a fast, efficient, and reliable method based on the use of Physcomitrella patens protoplasts that allows the study of gene expression in a qualitative and quantitative manner by combining the advantage of GFP (green fluorescent protein) as a marker of promoter activity with flow cytometry for accurate measurement of fluorescence in individual cells.
Collapse
Affiliation(s)
- Johanne Thévenin
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Wenjia Xu
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Louise Vaisman
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Loïc Lepiniec
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Bertrand Dubreucq
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France.,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France
| | - Christian Dubos
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France. .,AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, UMR1318, RD10, 78026, Versailles, France. .,Biochimie et Physiologie Moleculaire des Plantes, UMR 5004, INRA/CNRS/SupAgro-M/UM2, 34060, Montpellier Cedex 1, France. .,Unité de Biochimie et Physiologie Moléculaire des Plantes (B&PMP), 2 Place Pierre Viala, 34060, Montpellier Cedex 02, France.
| |
Collapse
|
726
|
Sheikh AH, Eschen-Lippold L, Pecher P, Hoehenwarter W, Sinha AK, Scheel D, Lee J. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:61. [PMID: 26870073 PMCID: PMC4740394 DOI: 10.3389/fpls.2016.00061] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/14/2016] [Indexed: 05/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense.
Collapse
Affiliation(s)
- Arsheed H. Sheikh
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Pascal Pecher
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Wolfgang Hoehenwarter
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Alok K. Sinha
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant BiochemistryHalle/Saale, Germany
- *Correspondence: Justin Lee,
| |
Collapse
|
727
|
Okamoto M, Matsui A, Tanaka M, Morosawa T, Ishida J, Iida K, Mochizuki Y, Toyoda T, Seki M. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1079. [PMID: 27493656 PMCID: PMC4954817 DOI: 10.3389/fpls.2016.01079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/08/2016] [Indexed: 05/04/2023]
Abstract
Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance.
Collapse
Affiliation(s)
- Masanori Okamoto
- Arid Land Research Center, Tottori UniversityHamasaka, Japan
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- PRESTO, Japan Science and Technology AgencyKawaguchi, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Taeko Morosawa
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Kei Iida
- Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | | | - Tetsuro Toyoda
- RIKEN Advanced Center for Computing and CommunicationWako, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Kihara Institute for Biological Research, Yokohama City UniversityYokohama, Japan
- CREST, Japan Science and Technology AgencyKawaguchi, Japan
- *Correspondence: Motoaki Seki,
| |
Collapse
|
728
|
Nakabayashi K, Bartsch M, Ding J, Soppe WJJ. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing. PLoS Genet 2015; 11:e1005737. [PMID: 26684465 PMCID: PMC4686169 DOI: 10.1371/journal.pgen.1005737] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1) is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.
Collapse
Affiliation(s)
- Kazumi Nakabayashi
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Melanie Bartsch
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jia Ding
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wim J. J. Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
729
|
Nishimura K, Ishikawa S, Matsunami E, Yamauchi J, Homma K, Faulkner C, Oparka K, Jisaka M, Nagaya T, Yokota K, Nakagawa T. New Gateway-compatible vectors for a high-throughput protein–protein interaction analysis by a bimolecular fluorescence complementation (BiFC) assay in plants and their application to a plant clathrin structure analysis. Biosci Biotechnol Biochem 2015; 79:1995-2006. [DOI: 10.1080/09168451.2015.1060847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Protein–protein interactions (PPI) play key roles in various biological processes. The bimolecular fluorescence complementation (BiFC) assay is an excellent tool for routine PPI analyses in living cells. We developed new Gateway vectors for a high-throughput BiFC analysis of plants, adopting a monomeric Venus split just after the tenth β-strand, and analyzed the interaction between Arabidopsis thaliana coated vesicle coatmers, the clathrin heavy chain (CHC), and the clathrin light chain (CLC). In competitive BiFC tests, CLC interacted with CHC through a coiled-coil motif in the middle section of CLC. R1340, R1448, and K1512 in CHC and W94 in CLC are potentially key amino acids underlying the inter-chain interaction, consistent with analyses based on homology modeling. Our Gateway BiFC system, the V10-BiFC system, provides a useful tool for a PPI analysis in living plant cells. The CLC–CHC interaction identified may facilitate clathrin triskelion assembly needed for cage formation.
Collapse
Affiliation(s)
- Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization of Research, Shimane University, Matsue, Japan
| | - Syouta Ishikawa
- Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Erika Matsunami
- Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan
| | - Christine Faulkner
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Karl Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Tsutomu Nagaya
- Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization of Research, Shimane University, Matsue, Japan
| |
Collapse
|
730
|
Hafrén A, Lõhmus A, Mäkinen K. Formation of Potato Virus A-Induced RNA Granules and Viral Translation Are Interrelated Processes Required for Optimal Virus Accumulation. PLoS Pathog 2015; 11:e1005314. [PMID: 26641460 PMCID: PMC4671561 DOI: 10.1371/journal.ppat.1005314] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2015] [Indexed: 11/24/2022] Open
Abstract
RNA granules are cellular structures, which play an important role in mRNA translation, storage, and degradation. Animal (+)RNA viruses often co-opt RNA granule proteins for viral reproduction. However, the role of RNA granules in plant viral infections is poorly understood. Here we use Potato virus A (PVA) as a model potyvirus and demonstrate that the helper component-proteinase (HCpro), the potyviral suppressor of RNA silencing, induces the formation of RNA granules. We used confocal microscopy to demonstrate the presence of host RNA binding proteins including acidic ribosomal protein P0, argonaute 1 (AGO1), oligouridylate-binding protein 1 (UBP1), varicose (VCS) and eukaryotic initiation factor iso4E (eIF(iso)4E) in these potyvirus-induced RNA granules. We show that the number of potyviral RNA granules is down-regulated by the genome-linked viral protein (VPg). We demonstrated previously that VPg is a virus-specific translational regulator that co-operates with potyviral RNA granule components P0 and eIF(iso)4E in PVA translation. In this study we show that HCpro and varicose, components of potyviral RNA granules, stimulate VPg-promoted translation of the PVA, whereas UBP1 inhibits this process. Hence, we propose that PVA translation operates via a pathway that is interrelated with potyviral RNA granules in PVA infection. The importance of these granules is evident from the strong reduction in viral RNA and coat protein amounts that follows knock down of potyviral RNA granule components. HCpro suppresses antiviral RNA silencing during infection, and our results allow us to propose that this is also the functional context of the potyviral RNA granules we describe in this study.
Collapse
Affiliation(s)
- Anders Hafrén
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
731
|
Ichikawa M, Iwano M, Sato MH. Nuclear membrane localization during pollen development and apex-focused polarity establishment of SYP124/125 during pollen germination in Arabidopsis thaliana. PLANT REPRODUCTION 2015; 28:143-151. [PMID: 26111864 DOI: 10.1007/s00497-015-0265-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Establishment of apex-polarity. Elongation of the pollen tube is a highly coordinated process involving polarized secretion of cell wall and membrane materials to the apical region. We investigated changes in the localization of soluble NSF attachment proteins (SNAREs) in developing pollen grains and the pollen tube for transgenic Arabidopsis expressing pollen-specific plasma-membrane Qa-SNAREs (SYP124, 125 and 131) fused with the green fluorescent protein (GFP). The expression of SYP124 and SYP125 was firstly detected in the microspore nuclear membrane during pollen mitosis II. Although SYP124, 125 and 131 accumulated throughout the cytosol in the mature pollen grain, GFP-SYP124 and GFP-SYP125 were highly concentrated in the apical or subapical regions of the elongating pollen tube with slightly different localization patterns, whereas GFP-SYP131 was uniformly localized to the plasma membrane of the pollen tube. The apex-focused polarity of GFP-SYP125 was established coincident with formation of a Ca(2+) gradient before pollen germination. These results suggest that SNAREs function differentially in the same cells and that at least two distinct membrane transport pathways are involved in the pollen development and the pollen tube germination and elongation.
Collapse
Affiliation(s)
- Mie Ichikawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan.
| |
Collapse
|
732
|
Min L, Hu Q, Li Y, Xu J, Ma Y, Zhu L, Yang X, Zhang X. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 Network Regulates Somatic Embryogenesis by Regulating Auxin Homeostasis. PLANT PHYSIOLOGY 2015; 169:2805-21. [PMID: 26491146 PMCID: PMC4677921 DOI: 10.1104/pp.15.01480] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/21/2015] [Indexed: 05/19/2023]
Abstract
Somatic embryogenesis (SE) is an efficient tool for the propagation of plant species and also, a useful model for studying the regulatory networks in embryo development. However, the regulatory networks underlying the transition from nonembryogenic callus to somatic embryos during SE remain poorly understood. Here, we describe an upland cotton (Gossypium hirsutum) CASEIN KINASE I gene, GhCKI, which is a unique key regulatory factor that strongly affects SE. Overexpressing GhCKI halted the formation of embryoids and plant regeneration because of a block in the transition from nonembryogenic callus to somatic embryos. In contrast, defective GhCKI in plants facilitated SE. To better understand the mechanism by which GhCKI regulates SE, the regulatory network was analyzed. A direct upstream negative regulator protein, cotton LEAFY COTYLEDON1, was identified to be targeted to a cis-element, CTTTTC, in the promoter of GhCKI. Moreover, GhCKI interacted with and phosphorylated cotton CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF transcription factor15 by coordinately regulating the expression of cotton PHYTOCHROME INTERACTING FACTOR4, finally disrupting auxin homeostasis, which led to increased cell proliferation and aborted somatic embryo formation in GhCKI-overexpressing somatic cells. Our results show a complex process of SE that is negatively regulated by GhCKI through a complex regulatory network.
Collapse
Affiliation(s)
- Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
733
|
Tuan PA, Bai S, Yaegaki H, Tamura T, Hihara S, Moriguchi T, Oda K. The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC PLANT BIOLOGY 2015; 15:280. [PMID: 26582106 PMCID: PMC4652394 DOI: 10.1186/s12870-015-0664-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/04/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Red coloration of fruit skin is one of the most important traits in peach (Prunus persica), and it is mainly due to the accumulation of anthocyanins. Three MYB10 genes, PpMYB10.1, PpMYB10.2, and PpMYB10.3, have been reported as important regulators of red coloration and anthocyanin biosynthesis in peach fruit. In this study, contribution of PpMYB10.1/2/3 to anthocyanin accumulation in the fruit skin was investigated in the Japanese peach cultivars, white-skinned 'Mochizuki' and red-skinned 'Akatsuki'. We then investigated the relationships between allelic type of PpMYB10.1 and skin color phenotype in 23 Japanese peach cultivars for future establishment of DNA-marker. RESULTS During the fruit development of 'Mochizuki' and 'Akatsuki', anthocyanin accumulation was observed only in the skin of red 'Akatsuki' fruit in the late ripening stages concomitant with high mRNA levels of the last step gene leading to anthocyanin accumulation, UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). This was also correlated with the expression level of PpMYB10.1. Unlike PpMYB10.1, expression levels of PpMYB10.2/3 were low in the skin of both 'Mochizuki' and 'Akatsuki' throughout fruit development. Moreover, only PpMYB10.1 revealed expression levels associated with total anthocyanin accumulation in the leaves and flowers of 'Mochizuki' and 'Akatsuki'. Introduction of PpMYB10.1 into tobacco increased the expression of tobacco UFGT, resulting in higher anthocyanin accumulation and deeper red transgenic tobacco flowers; however, overexpression of PpMYB10.2/3 did not alter anthocyanin content and color of transgenic tobacco flowers when compared with wild-type flowers. Dual-luciferase assay showed that the co-infiltration of PpMYB10.1 with PpbHLH3 significantly increased the activity of PpUFGT promoter. We also found close relationships of two PpMYB10.1 allelic types, MYB10.1-1/MYB10.1-2, with the intensity of red skin coloration. CONCLUSION We showed that PpMYB10.1 is a major regulator of anthocyanin accumulation in red-skinned peach and that it activates PpUFGT transcription. PpMYB10.2/3 may be involved in functions other than anthocyanin accumulation in peach. The peach cultivars having two MYB10.1-2 types resulted in the white skin color. By contrast, those with two MYB10.1-1 or MYB10.1-1/MYB10.1-2 types showed respective red or pale red skin color. These findings contribute to clarifying the molecular mechanisms of anthocyanin accumulation and generating gene-based markers linked to skin color phenotypes.
Collapse
Affiliation(s)
- Pham Anh Tuan
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Songling Bai
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Hideaki Yaegaki
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Takayuki Tamura
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, 1174-1 Koda-Oki, Akaiwa, Okayama, 709-0801, Japan.
| | - Seisuke Hihara
- Research Institute for Agriculture, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, 1174-1 Koda-Oki, Akaiwa, Okayama, 709-0801, Japan.
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture Forestry, and Fisheries, 7549-1 Yoshikawa, Kibi-chou, Okayama, 716-1241, Japan.
| |
Collapse
|
734
|
Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 2015; 48:89-93. [PMID: 26569124 DOI: 10.1038/ng.3447] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022]
Abstract
The circadian clock is a critical regulator of plant physiology and development, controlling key agricultural traits in crop plants. In addition, natural variation in circadian rhythms is important for local adaptation. However, quantitative modulation of circadian rhythms due to artificial selection has not yet been reported. Here we show that the circadian clock of cultivated tomato (Solanum lycopersicum) has slowed during domestication. Allelic variation of the tomato homolog of the Arabidopsis gene EID1 is responsible for a phase delay. Notably, the genomic region harboring EID1 shows signatures of a selective sweep. We find that the EID1 allele in cultivated tomatoes enhances plant performance specifically under long day photoperiods, suggesting that humans selected slower circadian rhythms to adapt the cultivated species to the long summer days it encountered as it was moved away from the equator.
Collapse
|
735
|
Cheng X, Deng P, Cui H, Wang A. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation. Virology 2015; 485:439-51. [DOI: 10.1016/j.virol.2015.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/24/2023]
|
736
|
S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 2015; 6:8669. [PMID: 26493030 PMCID: PMC4639896 DOI: 10.1038/ncomms9669] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. Nitric oxide counteracts the inhibitory effects of the plant hormone ABA during seed germination and seedling growth. Here, Albertos et al. show that nitric oxide can act antagonistically to ABA by inducing the S-nitrosylation and degradation of the ABI5 transcription factor involved in ABA signalling.
Collapse
|
737
|
Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 2015; 4:e09269. [PMID: 26460543 PMCID: PMC4600763 DOI: 10.7554/elife.09269] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses.
Collapse
Affiliation(s)
- Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Bastiaan Bargmann
- Section of Cell and Developmental Biology, Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Mark Estelle
- Section of Cell and Developmental Biology, Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Yi Sang
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
738
|
Almasi R, Miller WA, Ziegler-Graff V. Mild and severe cereal yellow dwarf viruses differ in silencing suppressor efficiency of the P0 protein. Virus Res 2015; 208:199-206. [PMID: 26116275 DOI: 10.1016/j.virusres.2015.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Viral pathogenicity has often been correlated to the expression of the viral encoded-RNA silencing suppressor protein (SSP). The silencing suppressor activity of the P0 protein encoded by cereal yellow dwarf virus-RPV (CYDV-RPV) and -RPS (CYDV-RPS), two poleroviruses differing in their symptomatology was investigated. CYDV-RPV displays milder symptoms in oat and wheat whereas CYDV-RPS is responsible for more severe disease. We showed that both P0 proteins (P0(CY-RPV) and P0(CY-RPS)) were able to suppress local RNA silencing induced by either sense or inverted repeat transgenes in an Agrobacterium tumefaciens-mediated expression assay in Nicotiana benthamiana. P0(CY-RPS) displayed slightly higher activity. Systemic spread of the silencing signal was not impaired. Analysis of short-interfering RNA (siRNA) abundance revealed that accumulation of primary siRNA was not affected, but secondary siRNA levels were reduced by both CYDV P0 proteins, suggesting that they act downstream of siRNA production. Correlated with this finding we showed that both P0 proteins partially destabilized ARGONAUTE1. Finally both P0(CY-RPV) and P0(CY-RPS) interacted in yeast cells with ASK2, a component of an E3-ubiquitin ligase, with distinct affinities.
Collapse
Affiliation(s)
- Reza Almasi
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Plant Virology Research Center, College of Agriculture, Shiraz University, Iran
| | - W Allen Miller
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
739
|
ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat Commun 2015; 6:8138. [PMID: 26419884 DOI: 10.1038/ncomms9138] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 07/22/2015] [Indexed: 11/08/2022] Open
Abstract
Group A protein type 2C phosphatases (PP2Cs) are negative regulators of abscisic acid (ABA) signalling and plant adaptation to stress. However, our knowledge of the regulation of PP2C activity is limited. Here we report that the PP2C HAB1 undergoes alternative splicing to produce two splice variants, which encode HAB1.1 and HAB1.2, that play opposing roles in ABA-mediated seed germination and ABA-mediated post-germination developmental arrest. HAB1.2 is predominately formed in the presence of ABA and prevents seed germination and post-germinative growth. HAB1.2 interacts with OST1, but cannot inhibit OST1 kinase activity; thus, it functions as a positive regulator of ABA signalling. We also identified an RNA-recognition motif-containing protein, RBM25, as a potential regulator of HAB1 alternative splicing and molecular diversity. Our results reveal a mechanism for turning ABA signalling on and off and for plant adaptation to abiotic stress.
Collapse
|
740
|
Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T. Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS One 2015; 10:e0138876. [PMID: 26406247 PMCID: PMC4583185 DOI: 10.1371/journal.pone.0138876] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022] Open
Abstract
We previously reported Agrobacterium-mediated transformation methods for the liverwort Marchantia polymorpha using the hygromycin phosphotransferase gene as a marker for selection with hygromycin. In this study, we developed three additional markers for M. polymorpha transformation: the gentamicin 3'-acetyltransferase gene for selection with gentamicin; a mutated acetolactate synthase gene for selection with chlorsulfuron; and the neomycin phosphotransferase II gene for selection with G418. Based on these four marker genes, we have constructed a series of Gateway binary vectors designed for transgenic experiments on M. polymorpha. The 35S promoter from cauliflower mosaic virus and endogenous promoters for constitutive and heat-inducible expression were used to create these vectors. The reporters and tags used were Citrine, 3×Citrine, Citrine-NLS, TagRFP, tdTomato, tdTomato-NLS, GR, SRDX, SRDX-GR, GUS, ELuc(PEST), and 3×FLAG. These vectors, designated as the pMpGWB series, will facilitate molecular genetic analyses of the emerging model plant M. polymorpha.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
741
|
Wang GF, Balint-Kurti PJ. Cytoplasmic and Nuclear Localizations Are Important for the Hypersensitive Response Conferred by Maize Autoactive Rp1-D21 Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1023-1031. [PMID: 26039083 DOI: 10.1094/mpmi-01-15-0014-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Disease resistance (R) genes have been isolated from many plant species. Most encode nucleotide binding leucine-rich repeat (NLR) proteins that trigger a rapid localized programmed cell death called the hypersensitive response (HR) upon pathogen recognition. Despite their structural similarities, different NLR are distributed in a range of subcellular locations, and analogous domains play diverse functional roles. The autoactive maize NLR gene Rp1-D21 derives from an intragenic recombination between two NLR genes, Rp1-D and Rp1-dp2, and confers a HR independent of the presence of a pathogen. Rp1-D21 and its N-terminal coiled coil (CC) domain (CCD21) confer autoactive HR when transiently expressed in Nicotiana benthamiana. Rp1-D21 was predominantly localized in cytoplasm with a small amount in the nucleus, while CCD21 was localized in both nucleus and cytoplasm. Targeting of Rp1-D21 or CCD21 predominantly to either the nucleus or the cytoplasm abolished HR-inducing activity. Coexpression of Rp1-D21 or CCD21 constructs confined, respectively, to the nucleus and cytoplasm did not rescue full activity, suggesting nucleocytoplasmic movement was important for HR induction. This work emphasizes the diverse structural and subcellular localization requirements for activity found among plant NLR R genes.
Collapse
Affiliation(s)
- Guan-Feng Wang
- 1 Dept. of Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Peter J Balint-Kurti
- 1 Dept. of Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
- 2 USDA-ARS Plant Science Research Unit, Raleigh, NC 27695, U.S.A
| |
Collapse
|
742
|
Minami A, Tominaga Y, Furuto A, Kondo M, Kawamura Y, Uemura M. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:501-14. [PMID: 26095877 DOI: 10.1111/tpj.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 05/24/2023]
Abstract
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.
Collapse
Affiliation(s)
- Anzu Minami
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yoko Tominaga
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Akari Furuto
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Mariko Kondo
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Matsuo Uemura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
743
|
Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W. The Type III Effector AvrBs2 in Xanthomonas oryzae pv. oryzicola Suppresses Rice Immunity and Promotes Disease Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:869-80. [PMID: 25688911 DOI: 10.1094/mpmi-10-14-0314-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak, is one of the most important bacterial pathogens in rice. However, little is known about the functions of individual type III effectors in virulence and pathogenicity of X. oryzae pv. oryzicola. Here, we examined the effect of the mutations of 23 putative nontranscription activator-like effector genes on X. oryzae pv. oryzicola virulence. The avrBs2 knock-out mutant was significantly attenuated in virulence to rice. In contrast, the xopAA deletion caused enhanced virulence to a certain rice cultivar. It was also demonstrated that six putative effectors, including XopN, XopX, XopA, XopY, XopF1, and AvrBs2, caused the hypersensitive response on nonhost Nicotiana benthamiana leaves. Virulence function of AvrBs2 was further confirmed by transgenic technology. Pathogen-associated molecular pattern-triggered immune responses including the generation of reactive oxygen species and expression of pathogenesis-related genes were strongly suppressed in the AvrBs2-expressing transgenic rice lines. Although not inhibiting flg22-induced activation of mitogen-activated protein kinases, heterologous expression of AvrBs2 greatly promotes disease progression in rice caused by two important bacterial pathogens X. oryzae pvs. oryzae and oryzicola. Collectively, these results indicate that AvrBs2 is an essential virulence factor that contributes to X. oryzae pv. oryzicola virulence through inhibiting defense responses and promoting bacterial multiplication in monocot rice.
Collapse
Affiliation(s)
- Shuai Li
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Yanping Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Anfei Fang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Jiyang Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Lijuan Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Kang Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Yuling Mao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
744
|
Chen T, Cui P, Xiong L. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 2015; 43:8283-98. [PMID: 26227967 PMCID: PMC4787832 DOI: 10.1093/nar/gkv751] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/11/2015] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs are a class of small regulatory RNAs that are generated from primary miRNA (pri-miRNA) transcripts with a stem-loop structure. Accuracy of the processing of pri-miRNA into mature miRNA in plants can be enhanced by SERRATE (SE) and HYPONASTIC LEAVES 1 (HYL1). HYL1 activity is regulated by the FIERY2 (FRY2)/RNA polymerase II C-terminal domain phosphatase-like 1 (CPL1). Here, we discover that HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5) and two serine/arginine-rich splicing factors RS40 and RS41, previously shown to be involved in pre-mRNA splicing, affect the biogenesis of a subset of miRNA. These proteins are required for correct miRNA strand selection and the maintenance of miRNA levels. FRY2 dephosphorylates HOS5 whose phosphorylation status affects its subnuclear localization. HOS5 and the RS proteins bind both intronless and intron-containing pri-miRNAs. Importantly, all of these splicing-related factors directly interact with both HYL1 and SE in nuclear splicing speckles. Our results indicate that these splicing factors are directly involved in the biogenesis of a group of miRNA.
Collapse
Affiliation(s)
- Tao Chen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peng Cui
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Liming Xiong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
745
|
Ampomah-Dwamena C, Driedonks N, Lewis D, Shumskaya M, Chen X, Wurtzel ET, Espley RV, Allan AC. The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content. BMC PLANT BIOLOGY 2015; 15:185. [PMID: 26215656 PMCID: PMC4517366 DOI: 10.1186/s12870-015-0573-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/17/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. RESULTS The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. CONCLUSION The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.
Collapse
Affiliation(s)
- Charles Ampomah-Dwamena
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Nicky Driedonks
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
- Institute for Wetland and Water Research, Radboud University, Postbus 9010, 6500 GL, Nijmegen, Netherlands.
| | - David Lewis
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| | - Maria Shumskaya
- Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA.
| | - Xiuyin Chen
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA.
- The Graduate School and University Center-CUNY, 365 Fifth Ave, New York, NY, 10016-4309, USA.
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
746
|
Sénéchal F, L'Enfant M, Domon JM, Rosiau E, Crépeau MJ, Surcouf O, Esquivel-Rodriguez J, Marcelo P, Mareck A, Guérineau F, Kim HR, Mravec J, Bonnin E, Jamet E, Kihara D, Lerouge P, Ralet MC, Pelloux J, Rayon C. Tuning of Pectin Methylesterification: PECTIN METHYLESTERASE INHIBITOR 7 MODULATES THE PROCESSIVE ACTIVITY OF CO-EXPRESSED PECTIN METHYLESTERASE 3 IN A pH-DEPENDENT MANNER. J Biol Chem 2015; 290:23320-35. [PMID: 26183897 DOI: 10.1074/jbc.m115.639534] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.
Collapse
Affiliation(s)
- Fabien Sénéchal
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | | | - Jean-Marc Domon
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | - Emeline Rosiau
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | - Marie-Jeanne Crépeau
- INRA, UMR 1268, Biopolymères-Interactions-Assemblages, BP 71627, 44316 Nantes, France
| | - Ogier Surcouf
- the Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d'Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université-Université de Rouen, 76821 Mont-Saint-Aignan Cedex 1, France
| | | | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire and Analyses des Protéines (ICAP), Université de Picardie Jules Verne, 80039 Amiens, France
| | - Alain Mareck
- the Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d'Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université-Université de Rouen, 76821 Mont-Saint-Aignan Cedex 1, France
| | | | - Hyung-Rae Kim
- Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Jozef Mravec
- the Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark, and
| | - Estelle Bonnin
- INRA, UMR 1268, Biopolymères-Interactions-Assemblages, BP 71627, 44316 Nantes, France
| | - Elisabeth Jamet
- the LRSV, UMR 5546 Université Toulouse 3/CNRS, 31326 Castanet-Tolosan, France
| | - Daisuke Kihara
- the Departments of Computer Sciences and Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Patrice Lerouge
- the Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES EA 4358, Institut de Recherche et d'Innovation Biomédicale, Grand Réseau de Recherche-Végétal, Agronomie, Sol, Innovation, UFR des Sciences et Techniques, Normandie Université-Université de Rouen, 76821 Mont-Saint-Aignan Cedex 1, France
| | - Marie-Christine Ralet
- INRA, UMR 1268, Biopolymères-Interactions-Assemblages, BP 71627, 44316 Nantes, France
| | - Jérôme Pelloux
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| | - Catherine Rayon
- From the EA3900-BIOPI, Biologie des Plantes et Innovation and
| |
Collapse
|
747
|
Girard C, Chelysheva L, Choinard S, Froger N, Macaisne N, Lehmemdi A, Mazel J, Crismani W, Mercier R. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms. PLoS Genet 2015; 11:e1005369. [PMID: 26161528 PMCID: PMC4498898 DOI: 10.1371/journal.pgen.1005369] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/17/2015] [Indexed: 11/18/2022] Open
Abstract
Meiotic crossovers (COs) generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression. Sexually reproducing species produce offspring that are genetically unique from one another, despite having the same parents. This uniqueness is created by meiosis, which is a specialized cell division. After meiosis each parent transmits half of their DNA, but each time this occurs, the 'half portion' of DNA transmitted to offspring is different from the previous. The differences are due to resorting the parental chromosomes, but also recombining them. Here we describe a gene—FIDGETIN-LIKE 1—which limits the amount of recombination that occurs during meiosis. Previously we identified a gene with a similar function, FANCM. FIGL1 and FANCM operate through distinct mechanisms. This discovery will be useful to understand more, from an evolutionary perspective, why recombination is naturally limited. Also this has potentially significant applications for plant breeding which is largely about sampling many 'recombinants' to find individuals that have heritable advantages compared to their parents.
Collapse
Affiliation(s)
- Chloe Girard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Sandrine Choinard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Nicole Froger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Nicolas Macaisne
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Afef Lehmemdi
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Julien Mazel
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Wayne Crismani
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail: (WC); (RM)
| | - Raphael Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail: (WC); (RM)
| |
Collapse
|
748
|
Bouton C, Geldreich A, Ramel L, Ryabova LA, Dimitrova M, Keller M. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern. PLoS One 2015; 10:e0132665. [PMID: 26162084 PMCID: PMC4498817 DOI: 10.1371/journal.pone.0132665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splicing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5' region and suggested that the main role of CaMV splicing is to downregulate expression of open reading frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA.
Collapse
Affiliation(s)
- Clément Bouton
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laëtitia Ramel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| |
Collapse
|
749
|
Zhang B, Wang L, Zeng L, Zhang C, Ma H. Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev 2015; 29:975-87. [PMID: 25934507 PMCID: PMC4421985 DOI: 10.1101/gad.251520.114] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants flower in an appropriate season to allow sufficient vegetative development and position flower development in favorable environments. In Arabidopsis, CONSTANS (CO) and FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1) promote flowering by inducing FLOWER LOCUS T (FT) expression in the long-day afternoon. The CO protein is present in the morning but could not activate FT expression due to unknown negative mechanisms, which prevent premature flowering before the day length reaches a threshold. Here, we report that TARGET OF EAT1 (TOE1) and related proteins interact with the activation domain of CO and CO-like (COL) proteins and inhibit CO activity. TOE1 binds to the FT promoter near the CO-binding site, and reducing TOE function results in a morning peak of the FT mRNA. In addition, TOE1 interacts with the LOV domain of FKF1 and likely interferes with the FKF1-CO interaction, resulting in partial degradation of the CO protein in the afternoon to prevent premature flowering.
Collapse
Affiliation(s)
- Bailong Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Biodiversity Sciences, Fudan University, Shanghai 200438, China
| | - Liang Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liping Zeng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Biodiversity Sciences, Fudan University, Shanghai 200438, China
| | - Chao Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Biodiversity Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
750
|
Kong Z, Ioki M, Braybrook S, Li S, Ye ZH, Julie Lee YR, Hotta T, Chang A, Tian J, Wang G, Liu B. Kinesin-4 Functions in Vesicular Transport on Cortical Microtubules and Regulates Cell Wall Mechanics during Cell Elongation in Plants. MOLECULAR PLANT 2015; 8:1011-23. [PMID: 25600279 DOI: 10.1016/j.molp.2015.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/02/2015] [Accepted: 01/07/2015] [Indexed: 05/20/2023]
Abstract
In plants, anisotropic cell expansion depends on cortical microtubules that serve as tracks along which macromolecules and vesicles are transported by the motor kinesins of unknown identities. We used cotton (Gossypium hirsutum) fibers that underwent robust elongation to discover kinesins that are involved in cell elongation and found Gh KINESIN-4A expressed abundantly. The motor was detected by immunofluorescence on vesicle-like structures that were associated with cortical microtubules. In Arabidopsis thaliana, the orthologous motor At KINESIN-4A/FRA1, previously implicated in cellulose deposition during secondary growth in fiber cells, was examined by live-cell imaging in cells expressing the fluorescently tagged functional protein. The motor decorated vesicle-like particles that exhibit a linear movement along cortical microtubules with an average velocity of 0.89 μm/min, which was significantly different from those linked to cellulose biosynthesis. We also discovered that At KINESIN-4A/FRA1 and the related At KINESIN-4C play redundant roles in cell wall mechanics, cell elongation, and the axial growth of various vegetative and reproductive organs, as the loss of At KINESIN-4C greatly enhanced the defects caused by a null mutation at the KINESIN-4A/FRA1 locus. The double mutant displayed a lack of cell wall softening at normal stages of rapid cell elongation. Furthermore, enhanced deposition of arabinose-containing carbohydrate was detected in the kinesin-4 mutants. Our findings established a connection between the Kinesin-4-based transport of cargoes containing non-cellulosic components along cortical microtubules and cell wall mechanics and cell elongation in flowering plants.
Collapse
Affiliation(s)
- Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA; State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Motohide Ioki
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Siobhan Braybrook
- Sainsbury Laboratory Cambridge, University of Cambridge, Cambridge CB2 1LR, UK
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Anny Chang
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|