751
|
Dominguez JA, Xie Y, Dunne WM, Yoseph BP, Burd EM, Coopersmith CM, Davidson NO. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia. PLoS One 2012; 7:e49159. [PMID: 23145105 PMCID: PMC3493497 DOI: 10.1371/journal.pone.0049159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 10/04/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the "motor" of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. METHODOLOGY/PRINCIPAL FINDINGS Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. CONCLUSIONS/SIGNIFICANCE These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and hepatic lipid flux.
Collapse
Affiliation(s)
- Jessica A. Dominguez
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - W. Michael Dunne
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Benyam P. Yoseph
- Emory Center for Critical Care and Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eileen M. Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Craig M. Coopersmith
- Emory Center for Critical Care and Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
752
|
Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis. Shock 2012; 38:68-75. [PMID: 22592747 DOI: 10.1097/shk.0b013e318259abdb] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia-induced sepsis is a common cause of morbidity in the intensive care unit. Although pneumonia is initiated in the lungs, extrapulmonary manifestations occur commonly. In light of the key role the intestine plays in the pathophysiology of sepsis, we sought to determine whether MRSA pneumonia induces intestinal injury. FVB/N mice were subjected to MRSA or sham pneumonia and killed 24 h later. Septic animals had a marked increase in intestinal epithelial apoptosis by both hematoxylin-eosin and active caspase 3 staining. Methicillin-resistant S. aureus-induced intestinal apoptosis was associated with an increase in the expression of the proapoptotic proteins Bid and Bax and the antiapoptotic protein Bcl-xL in the mitochondrial pathway. In the receptor-mediated pathway, MRSA pneumonia induced an increase in Fas ligand but decreased protein levels of Fas, FADD, pFADD, TNF-R1, and TRADD. To assess the functional significance of these changes, MRSA pneumonia was induced in mice with genetic manipulations in proteins in either the mitochondrial or receptor-mediated pathways. Both Bid-/- mice and animals with intestine-specific overexpression of Bcl-2 had decreased intestinal apoptosis compared with wild-type animals. In contrast, Fas ligand-/- mice had no alterations in apoptosis. To determine if these findings were organism-specific, similar experiments were performed in mice subjected to Pseudomonas aeruginosa pneumonia. Pseudomonas aeruginosa induced gut apoptosis, but unlike MRSA, this was associated with increased Bcl-2 and TNF-R1 and decreased Fas. Methicillin-resistant S. aureus pneumonia thus induces organism-specific changes in intestinal apoptosis via changes in both the mitochondrial and receptor-mediated pathways, although the former may be more functionally significant.
Collapse
|
753
|
Mostafa Anower A, Shim JA, Choi B, Sohn S. Pretreatment with interleukin-6 small interfering RNA can improve the survival rate of polymicrobial cecal ligation and puncture mice by down regulating interleukin-6 production. Eur J Pharmacol 2012; 688:76-83. [DOI: 10.1016/j.ejphar.2012.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/26/2012] [Accepted: 05/15/2012] [Indexed: 11/28/2022]
|
754
|
Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 2012; 13:684-98. [PMID: 22801555 DOI: 10.1038/embor.2012.96] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium--which constitutes the interface between the enteric microbiota and host tissues--actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
755
|
Cecal ligation and puncture followed by methicillin-resistant Staphylococcus aureus pneumonia increases mortality in mice and blunts production of local and systemic cytokines. Shock 2012; 37:85-94. [PMID: 21937950 DOI: 10.1097/shk.0b013e3182360faf] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mortality in the intensive care unit frequently results from the synergistic effect of two temporally distinct infections. This study examined the pathophysiology of a new model of intra-abdominal sepsis followed by methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Mice underwent cecal ligation and puncture (CLP) or sham laparotomy followed 3 days later by an intratracheal injection of MRSA or saline. Both CLP/saline and sham/MRSA mice had 100% survival, whereas animals with CLP followed by MRSA pneumonia had 67% 7-day survival. Animals subjected to CLP/MRSA had increased bronchoalveolar lavage concentrations of MRSA compared with sham/MRSA animals. Animals subjected to sham/MRSA pneumonia had increased bronchoalveolar lavage levels of interleukin 6 (IL-6), tumor necrosis factor α, and granulocyte colony-stimulating factor compared with those given intratracheal saline, whereas CLP/MRSA mice had a blunted local inflammatory response with markedly decreased cytokine levels. Similarly, animals subjected to CLP/saline had increased peritoneal lavage levels of IL-6 and IL-1β compared with those subjected to sham laparotomy, whereas this response was blunted in CLP/MRSA mice. Systemic cytokines were upregulated in both CLP/saline and sham/MRSA mice, and this was blunted by the combination of CLP/MRSA. In contrast, no synergistic effect on pneumonia severity, white blood cell count, or lymphocyte apoptosis was identified in CLP/MRSA mice compared with animals with either insult in isolation. These results indicate that a clinically relevant model of CLP followed by MRSA pneumonia causes higher mortality than could have been predicted from studying either infection in isolation, and this was associated with a blunted local (pulmonary and peritoneal) and systemic inflammatory response and decreased ability to clear infection.
Collapse
|
756
|
Bactericidal antibiotics temporarily increase inflammation and worsen acute kidney injury in experimental sepsis. Crit Care Med 2012; 40:538-43. [PMID: 21926582 DOI: 10.1097/ccm.0b013e31822f0d2e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the relationships among bactericidal antimicrobial treatment of sepsis, inflammatory response, severity of acute kidney injury, and outcomes. DESIGN Controlled laboratory experiment. SETTING University laboratory. INTERVENTIONS Sepsis was induced by cecal ligation and puncture in 52 rats and was treated with either bactericidal antibiotics (ampicillin/sulbactam) or placebo (saline). Serial blood specimens were obtained after cecal ligation and puncture for serum creatinine, interleukin-6, and neutrophil gelatinase-associated lipocalin concentrations. RIFLE (Risk, Injury, Failure, Loss, End-stage kidney disease) criteria were used to assess severity of acute kidney injury. All animals were observed for survival up to 1 wk. In a separate experiment, six healthy animals were given antibiotics and renal function was assessed. Another 12 animals were euthanized 2 days after laparotomy for kidney histology. MEASUREMENTS AND MAIN RESULTS Survival in the placebo group was 50% compared with 81.8% in the antibiotic group (p < .05). Most animals (93%) without antibiotics developed acute kidney injury, of which 39% exhibited greater than a threefold rise in serum creatinine (RIFLE-F). Furthermore, survival decreased as acute kidney injury severity increased. Surprisingly, all antibiotic-treated animals developed acute kidney injury, of which 68.6% reached RIFLE-F. However, renal dysfunction was less persistent in these animals. Patterns of plasma interleukin-6 were similar to creatinine with higher concentrations seen earlier in antibiotic-treated animals but with faster resolution. Interleukin-6 concentration at 24 hrs was independently associated with the development of RIFLE-F. Histologic findings were consistent with functional parameters showing that antibiotics worsened acute kidney injury. CONCLUSION In polymicrobial sepsis, bactericidal antibiotics resulted in more inflammation and more severe acute kidney injury. However, resolution of inflammation and acute kidney injury was faster with antibiotics and correlated best with survival. These results suggest that transient worsening of renal function may be an expected consequence of sepsis therapy. These findings also question the value of peak severity of acute kidney injury as a primary end point and suggest that resolution of acute kidney injury may be more appropriate.
Collapse
|
757
|
Improved antimicrobial host defense in mice following poly-(1,6)-β-D-glucopyranosyl-(1,3)-β-D-glucopyranose glucan treatment by a gender-dependent immune mechanism. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2043-9. [PMID: 21976224 DOI: 10.1128/cvi.05202-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clinical trials with biological modifiers targeting specific inflammatory mediators associated with severe sepsis have shown no or limited survival benefit. The approach taken in studies reported here was to limit the point source of intra-abdominal infection by potentiating innate immune function, thereby lessening the severity of sepsis and improving survival. Soluble beta-glucans, glucose polymers of the fungal cell wall, have been shown to stimulate innate immune host defense in animal and human studies when administered prior to an infectious challenge. We evaluated the effects of poly-(1,6)-β-d-glucopyranosyl-(1,3)-β-d-glucopyranose glucan (PGG glucan) on overall survival when administered intraperitoneally after the onset of polymicrobial infection by cecal ligation and puncture (CLP). Since gender-dependent differences in host immune response to infection have been reported, male and female mice were prospectively stratified for PGG glucan treatment. Outbred CD-1 mice were administered 10 mg/kg of body weight PGG glucan or the polysaccharide control, dextran, 1 h after CLP. Six hours after CLP, blood samples were obtained for cytokine measurements. Surprisingly, a gender-dependent effect on the response to PGG glucan was revealed. PGG glucan enhanced survival in female mice over a 10-day period, but survival in males was improved for only 24 h. In female mice, PGG glucan reduced interleukin-6 (IL-6) and IL-10 levels and reduced the bacterial burden in the liver. Ovariectomy abrogated the response to PGG glucan. Together, the translational potential of these findings is the indicated use of PGG glucan given locally, rather than intravenously, for improved source control during the management of sepsis. This therapy does not require prophylactic beta-glucan administration.
Collapse
|
758
|
Dominguez JA, Vithayathil PJ, Khailova L, Lawrance CP, Samocha AJ, Jung E, Leathersich AM, Dunne WM, Coopersmith CM. Epidermal growth factor improves survival and prevents intestinal injury in a murine model of pseudomonas aeruginosa pneumonia. Shock 2011; 36:381-9. [PMID: 21701422 PMCID: PMC3175258 DOI: 10.1097/shk.0b013e31822793c4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. FVB/N mice underwent intratracheal injection of either P. aeruginosa or saline and were then randomized to receive either systemic EGF or vehicle beginning immediately or 24 h after the onset of pneumonia. Systemic EGF decreased 7-day mortality from 65% to 10% when initiated immediately after the onset of pneumonia and to 27% when initiated 24 h after the onset of pneumonia. Even though injury in pneumonia is initiated in the lungs, the survival advantage conferred by EGF was not associated with improvements in pulmonary pathology. In contrast, EGF prevented intestinal injury by reversing pneumonia-induced increases in intestinal epithelial apoptosis and decreases in intestinal proliferation and villus length. Systemic cytokines and kidney and liver function were unaffected by EGF therapy, although EGF decreased pneumonia-induced splenocyte apoptosis. To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine.
Collapse
Affiliation(s)
- Jessica A. Dominguez
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Paul J. Vithayathil
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Ludmila Khailova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Alexandr J. Samocha
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Enjae Jung
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Ann M. Leathersich
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - W. Michael Dunne
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Craig M. Coopersmith
- Emory Center for Critical Care and Department of Surgery Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
759
|
Fox AC, Breed ER, Liang Z, Clark AT, Zee-Cheng BR, Chang KC, Dominguez JA, Jung E, Dunne WM, Burd EM, Farris AB, Linehan DC, Coopersmith CM. Prevention of lymphocyte apoptosis in septic mice with cancer increases mortality. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1950-6. [PMID: 21734077 PMCID: PMC3150286 DOI: 10.4049/jimmunol.1003391] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lymphocyte apoptosis is thought to have a major role in the pathophysiology of sepsis. However, there is a disconnect between animal models of sepsis and patients with the disease, because the former use subjects that were healthy prior to the onset of infection while most patients have underlying comorbidities. The purpose of this study was to determine whether lymphocyte apoptosis prevention is effective in preventing mortality in septic mice with preexisting cancer. Mice with lymphocyte Bcl-2 overexpression (Bcl-2-Ig) and wild type (WT) mice were injected with a transplantable pancreatic adenocarcinoma cell line. Three weeks later, after development of palpable tumors, all animals received an intratracheal injection of Pseudomonas aeruginosa. Despite having decreased sepsis-induced T and B lymphocyte apoptosis, Bcl-2-Ig mice had markedly increased mortality compared with WT mice following P. aeruginosa pneumonia (85 versus 44% 7-d mortality; p = 0.004). The worsened survival in Bcl-2-Ig mice was associated with increases in Th1 cytokines TNF-α and IFN-γ in bronchoalveolar lavage fluid and decreased production of the Th2 cytokine IL-10 in stimulated splenocytes. There were no differences in tumor size or pulmonary pathology between Bcl-2-Ig and WT mice. To verify that the mortality difference was not specific to Bcl-2 overexpression, similar experiments were performed in Bim(-/-) mice. Septic Bim(-/-) mice with cancer also had increased mortality compared with septic WT mice with cancer. These data demonstrate that, despite overwhelming evidence that prevention of lymphocyte apoptosis is beneficial in septic hosts without comorbidities, the same strategy worsens survival in mice with cancer that are given pneumonia.
Collapse
Affiliation(s)
- Amy C Fox
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
760
|
Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 2011; 19:198-208. [PMID: 21296575 DOI: 10.1016/j.tim.2011.01.001] [Citation(s) in RCA: 524] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/27/2010] [Accepted: 01/07/2011] [Indexed: 12/12/2022]
Abstract
Sepsis is a serious medical condition characterized by dysregulated systemic inflammatory responses followed by immunosuppression. To study the pathophysiology of sepsis, diverse animal models have been developed. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) is the most frequently used model because it closely resembles the progression and characteristics of human sepsis. Here we summarize the role of several immune components in the pathogenesis of sepsis induced by CLP. However, several therapies proposed on the basis of promising results obtained by CLP could not be translated to the clinic. This demonstrates that experimental sepsis models do not completely mimic human sepsis. We propose several strategies to narrow the gap between experimental sepsis models and clinical sepsis, including targeting factors that contribute to the immunosuppressive phase of sepsis, and reproducing the heterogeneity of human patients.
Collapse
|
761
|
Blockade of interleukin-6 in murine sepsis revisited: Is there an indication for a new therapy in human patients?*. Crit Care Med 2011; 39:1582-3. [DOI: 10.1097/ccm.0b013e318215c0ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
762
|
Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model*. Crit Care Med 2011; 39:1407-13. [DOI: 10.1097/ccm.0b013e318211ff56] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
763
|
Zhou QQ, Yang DZ, Luo YJ, Li SZ, Liu FY, Wang GS. Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-altitude hypoxic environment. World J Gastroenterol 2011; 17:1584-93. [PMID: 21472125 PMCID: PMC3070130 DOI: 10.3748/wjg.v17.i12.1584] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/15/2011] [Accepted: 02/22/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To study whether over-starvation aggravates intestinal mucosal injury and promotes bacterial and endotoxin translocation in a high-altitude hypoxic environment.
METHODS: Sprague-Dawley rats were exposed to hypobaric hypoxia at a simulated altitude of 7000 m for 72 h. Lanthanum nitrate was used as a tracer to detect intestinal injury. Epithelial apoptosis was observed with terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Serum levels of diamino oxidase (DAO), malondialdehyde (MDA), glutamine (Gln), superoxide dismutase (SOD) and endotoxin were measured in intestinal mucosa. Bacterial translocation was detected in blood culture and intestinal homogenates. In addition, rats were given Gln intragastrically to observe its protective effect on intestinal injury.
RESULTS: Apoptotic epithelial cells, exfoliated villi and inflammatory cells in intestine were increased with edema in the lamina propria accompanying effusion of red blood cells. Lanthanum particles were found in the intercellular space and intracellular compartment. Bacterial translocation to mesenteric lymph nodes (MLN) and spleen was evident. The serum endotoxin, DAO and MDA levels were significantly higher while the serum SOD, DAO and Gln levels were lower in intestine (P < 0.05). The bacterial translocation number was lower in the high altitude hypoxic group than in the high altitude starvation group (0.47 ± 0.83 vs 2.38 ± 1.45, P < 0.05). The bacterial translocation was found in each organ, especially in MLN and spleen but not in peripheral blood. The bacterial and endotoxin translocations were both markedly improved in rats after treatment with Gln.
CONCLUSION: High-altitude hypoxia and starvation cause severe intestinal mucosal injury and increase bacterial and endotoxin translocation, which can be treated with Gln.
Collapse
|
764
|
McConnell KW, Fox AC, Clark AT, Chang NYN, Dominguez JA, Farris AB, Buchman TG, Hunt CR, Coopersmith CM. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3718-25. [PMID: 21296977 PMCID: PMC3126621 DOI: 10.4049/jimmunol.1003652] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.
Collapse
Affiliation(s)
- Kevin W McConnell
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
765
|
Iwata A, de Claro RA, Morgan-Stevenson VL, Tupper JC, Schwartz BR, Liu L, Zhu X, Jordan KC, Winn RK, Harlan JM. Extracellular administration of BCL2 protein reduces apoptosis and improves survival in a murine model of sepsis. PLoS One 2011; 6:e14729. [PMID: 21390214 PMCID: PMC3044724 DOI: 10.1371/journal.pone.0014729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 01/31/2011] [Indexed: 01/02/2023] Open
Abstract
Background Severe sepsis and septic shock are major causes of morbidity and mortality worldwide. In experimental sepsis there is prominent apoptosis of various cell types, and genetic manipulation of death and survival pathways has been shown to modulate organ injury and survival. Methodology/Principal Findings We investigated the effect of extracellular administration of two anti-apoptotic members of the BCL2 (B-cell lymphoma 2) family of intracellular regulators of cell death in a murine model of sepsis induced by cecal ligation and puncture (CLP). We show that intraperitoneal injection of picomole range doses of recombinant human (rh) BCL2 or rhBCL2A1 protein markedly improved survival as assessed by surrogate markers of death. Treatment with rhBCL2 or rhBCL2A1 protein significantly reduced the number of apoptotic cells in the intestine and heart following CLP, and this was accompanied by increased expression of endogenous mouse BCL2 protein. Further, mice treated with rhBCL2A1 protein showed an increase in the total number of neutrophils in the peritoneum following CLP with reduced neutrophil apoptosis. Finally, although neither BCL2 nor BCL2A1 are a direct TLR2 ligand, TLR2-null mice were not protected by rhBCL2A1 protein, indicating that TLR2 signaling was required for the protective activity of extracellularly adminsitered BCL2A1 protein in vivo. Conclusions/Significance Treatment with rhBCL2A1 or rhBCL2 protein protects mice from sepsis by reducing apoptosis in multiple target tissues, demonstrating an unexpected, potent activity of extracellularly administered BCL2 BH4-domain proteins.
Collapse
Affiliation(s)
- Akiko Iwata
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - R. Angelo de Claro
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Joan C. Tupper
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Barbara R. Schwartz
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Li Liu
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xiaodong Zhu
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Katherine C. Jordan
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robert K. Winn
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - John M. Harlan
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
766
|
Hammer M, Echtenachter B, Weighardt H, Jozefowski K, Rose-John S, Männel DN, Holzmann B, Lang R. Increased inflammation and lethality of Dusp1-/- mice in polymicrobial peritonitis models. Immunology 2011; 131:395-404. [PMID: 20561086 DOI: 10.1111/j.1365-2567.2010.03313.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mitogen-activated protein kinase phosphatase Dusp1 (also known as MKP-1) is essential for control of the inflammatory response to systemic challenge with the lipopolysaccharide of Gram-negative bacteria. Here, we have investigated the consequences of Dusp1-deficiency in colon ascendens stent peritonitis (CASP) and caecal ligation and puncture (CLP), two mouse models of septic peritonitis. Following CASP, Dusp1(-/-) mice had increased serum levels of CCL4, interleukin-10 (IL-10) and IL-6, with differences from wild-type mice being dependent on severity of sepsis. These cytokines, along with inducible nitric oxide synthase messenger RNA, were also expressed at higher levels in spleen and liver. Similar over-production of these cytokines was detected in the CLP model, with even larger differences from wild-type mice. Despite the increased inflammatory response, bacterial clearance was impaired in Dusp1(-/-) mice subjected to CASP and CLP. Dusp1(-/-) mice suffered increased lethality in both peritonitis models. Together our data indicate that exaggerated inflammatory responses to gut bacteria introduced into the peritoneum in the absence of Dusp1 do not help to control bacterial replication but are detrimental for the host.
Collapse
Affiliation(s)
- Michael Hammer
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
767
|
Repetitive low-volume blood sampling method as a feasible monitoring tool in a mouse model of sepsis. Shock 2010; 34:420-6. [PMID: 20610942 DOI: 10.1097/shk.0b013e3181dc0918] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Blood-based monitoring of immunoinflammatory and organ function fluctuations is essential in models of critical illness. This is challenging in diseased mice as repetitive blood collection may be harmful and/or affect end points. We studied the influence of daily sampling in acutely septic (days 1-5) mice upon survival and selected hematologic and organ function parameters. In addition, we tested the reliabilty of complete blood cell (CBC) count using resuspended blood cells. Female OF-1 and CD-1 mice underwent cecal ligation and puncture (CLP) and were subdivided into Daily and Day 5 groups. Blood was collected daily for 5 days in the Daily group and only on day 5 post-CLP in the Day 5 group. We tested 20 μL (both strains) and 35 μL (OF-1 mice) sampling volumes. The 35-μL volume simultaneously served to test the CBC reliabilty in resuspended versus unprocessed blood. Daily sampling did not affect the 14-day CLP mortality. Compared with the Day 5 group, daily 35-μL sampling in OF-1 mice decreased the red blood cell count and hemoglobin concentration by 22% and 23% (P < 0.05). In neither strain did daily 20-μL sampling affect the red blood cell count, whereas there was a 9% hemoglobin decrease (P < 0.05) in OF-1 mice. Although alanine aminotransferase, lactate dehydrogenase, and glucose levels were comparable, urea significantly increased by 24% in the Daily group (20-μL volume, OF-1 mice). Interleukin 6, platelets, and white blood cell counts remained unaffected. There was an excellent correlation between regular and resuspended CBC for all cell types (r ≥ 0.9; slope, ≥0.9), except lymphocytes (r > 0.5; slope, >0.5). This method provides a feasible and safe translation of clinically relevant daily immunomonitoring to the mouse sepsis model.
Collapse
|
768
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
769
|
Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice. Int J Radiat Oncol Biol Phys 2010; 77:1536-44. [PMID: 20637981 DOI: 10.1016/j.ijrobp.2010.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 11/23/2022]
|
770
|
Cancer causes increased mortality and is associated with altered apoptosis in murine sepsis. Crit Care Med 2010; 38:886-93. [PMID: 20009755 DOI: 10.1097/ccm.0b013e3181c8fdb1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Whereas most septic patients have an underlying comorbidity, most animal models of sepsis use mice that were healthy before the onset of infection. Malignancy is the most common comorbidity associated with sepsis. The purpose of this study was to determine whether mice with cancer have a different response to sepsis than healthy animals. DESIGN Prospective, randomized controlled study. SETTING Animal laboratory in a university medical center. SUBJECTS C57Bl/6 mice. INTERVENTIONS Animals received a subcutaneous injection of either 250,000 cells of the transplantable pancreatic adenocarcinoma cell line Pan02 (cancer) or phosphate-buffered saline (healthy). Three weeks later, mice given Pan02 cells had reproducible, nonmetastatic tumors. Both groups of mice then underwent intratracheal injection of either Pseudomonas aeruginosa (septic) or 0.9% NaCl (sham). Animals were killed 24 hrs postoperatively or followed-up 7 days for survival. MEASUREMENTS AND MAIN RESULTS Mice with cancer and healthy mice appeared similar when subjected to sham operation, although cancer animals had lower levels of T- and B-lymphocyte apoptosis. Septic mice with cancer had increased mortality compared to previously healthy septic mice subjected to the identical injury (52% vs. 28%; p = .04). This was associated with increased bacteremia but no difference in local pulmonary infection. Septic mice with cancer also had increased intestinal epithelial apoptosis. Although sepsis induced an increase in T- and B-lymphocyte apoptosis in all animals, septic mice with cancer had decreased T- and B-lymphocyte apoptosis compared to previously healthy septic mice. Serum and pulmonary cytokines, lung histology, complete blood counts, and intestinal proliferation were similar between septic mice with cancer and previously healthy septic mice. CONCLUSIONS When subjected to the same septic insult, mice with cancer have increased mortality compared to previously healthy animals. Decreased systemic bacterial clearance and alterations in intestinal epithelial and lymphocyte apoptosis may help explain this differential response.
Collapse
|
771
|
Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses. Crit Care Med 2010; 38:223-41. [PMID: 19770740 DOI: 10.1097/ccm.0b013e3181b4a76b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, then treatment involves only nonspecific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar after disparate infections with similar mortalities. DESIGN Prospective, randomized controlled study. SETTING Animal laboratory in a university medical center. INTERVENTIONS Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple time points. MEASUREMENTS AND MAIN RESULTS The host response was dependent on the causative organism as well as kinetics of mortality, but the pro-inflammatory and anti-inflammatory responses were independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of five distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary macrophage inflammatory peptide-2 and interleukin-10 with progression of infection, whereas elevated plasma tumor necrosis factor sr2 and macrophage chemotactic peptide-1 were indicative of fulminant disease with >90% mortality within 48 hrs. CONCLUSIONS Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a potential therapeutic approach in the treatment of sepsis.
Collapse
|
772
|
Kollef MH, Micek ST. Standardization of Care to Improve Outcomes of Patients with Ventilator-associated Pneumonia and Severe Sepsis. Intensive Care Med 2010. [DOI: 10.1007/978-1-4419-5562-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
773
|
Apostolov EO, Soultanova I, Savenka A, Bagandov OO, Yin X, Stewart AG, Walker RB, Basnakian AG. Deoxyribonuclease I is essential for DNA fragmentation induced by gamma radiation in mice. Radiat Res 2009; 172:481-92. [PMID: 19772469 DOI: 10.1667/rr1647.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gamma radiation is known to induce cell death in several organs. This damage is associated with endonuclease-mediated DNA fragmentation; however, the enzyme that produces the latter and is likely to cause cell death is unknown. To determine whether the most abundant cytotoxic endonuclease DNase I mediates gamma-radiation-induced tissue injury, we used DNase I knockout mice and zinc chelate of 3,5-diisopropylsalicylic acid (Zn-DIPS), which, as we show, has DNase I inhibiting activity in vitro. The study demonstrated for the first time that inactivation or inhibition of DNase I ameliorates radiation injury to the white pulp of spleen, intestine villi and bone marrow as measured using a quantitative TUNEL assay. The spleen and intestine of DNase I knockout mice were additionally protected from radiation by Zn-DIPS, perhaps due to the broad radioprotective effect of the zinc ions. Surprisingly, the main DNase I-producing tissues such as the salivary glands, pancreas and kidney showed no effect of DNase I inactivation. Another unexpected observation was that even without irradiation, DNA fragmentation and cell death were significantly lower in the intestine of DNase I knockout mice than in wild-type mice. This points to the physiological role of DNase I in normal cell death in the intestinal epithelium. In conclusion, our results suggested that DNase I-mediated mechanism of DNA damage and subsequent tissue injury are essential in gamma-radiation-induced cell death in radiosensitive organs.
Collapse
Affiliation(s)
- Eugene O Apostolov
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
774
|
SYSTEMIC INFLAMMATION INCREASES INTESTINAL PERMEABILITY DURING EXPERIMENTAL HUMAN ENDOTOXEMIA. Shock 2009; 32:374-8. [DOI: 10.1097/shk.0b013e3181a2bcd6] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
775
|
Clark JA, Gan H, Samocha AJ, Fox AC, Buchman TG, Coopersmith CM. Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G471-9. [PMID: 19571236 PMCID: PMC2739816 DOI: 10.1152/ajpgi.00012.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 06/30/2009] [Indexed: 01/31/2023]
Abstract
Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. Transgenic FVB/N mice that overexpress EGF exclusively in enterocytes (IFABP-EGF) and wild-type (WT) mice were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability, expression of the tight junction proteins claudins-1, -2, -3, -4, -5, -7, and -8, occludin, and zonula occludens-1; villus length; intestinal epithelial proliferation; and epithelial apoptosis were evaluated. A separate cohort of mice was followed for survival. Peritonitis induced a threefold increase in intestinal permeability in WT mice. This was associated with increased claudin-2 expression and a change in subcellular localization. Permeability decreased to basal levels in IFABP-EGF septic mice, and claudin-2 expression and localization were similar to those of sham animals. Claudin-4 expression was decreased following CLP but was not different between WT septic mice and IFABP-EGF septic mice. Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion.
Collapse
Affiliation(s)
- Jessica A Clark
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
776
|
Qiao H, Sanders RD, Ma D, Wu X, Maze M. Sedation improves early outcome in severely septic Sprague Dawley rats. Crit Care 2009; 13:R136. [PMID: 19691839 PMCID: PMC2750194 DOI: 10.1186/cc8012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/14/2009] [Accepted: 08/19/2009] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Sepsis, a systemic inflammatory response to infective etiologies, has a high mortality rate that is linked both to excess cytokine activity and apoptosis of critical immune cells. Dexmedetomidine has recently been shown to improve outcome in a septic cohort of patients when compared to patients randomized to a benzodiazepine-based sedative regimen. We sought to compare the effects of dexmedetomidine and midazolam, at equi-sedative doses, on inflammation and apoptosis in an animal model of severe sepsis. METHODS After central venous access, Sprague Dawley rats underwent cecal ligation and intestinal puncture (CLIP) with an 18 G needle without antibiotic cover and received either saline, or an infusion of comparable volume of saline containing midazolam (0.6 mg.kg-1.h-1) or dexmedetomidine (5 ug.kg-1.h-1) for 8 hours. Following baseline measurements and CLIP, blood was sampled for cytokine measurement (tumour necrosis factor (TNF)-alpha and interleukin (IL)-6; n = 4-6 per group) at 2, 4 and 5 hours, and animal mortality rate (MR) was monitored (n = 10 per group) every 2 hours until 2 hours had elapsed. In addition, spleens were harvested and apoptosis was assessed by immunoblotting (n = 4 per group). RESULTS The 24 hour MR in CLIP animals (90%) was significantly reduced by sedative doses of either dexmedetomidine (MR = 20%) or midazolam (MR = 30%). While both sedatives reduced systemic levels of the inflammatory cytokine TNF-alpha (P < 0.05); only dexmedetomidine reduced the IL-6 response to CLIP, though this narrowly missed achieving significance (P = 0.05). Dexmedetomidine reduced splenic caspase-3 expression (P < 0.05), a marker of apoptosis, when compared to either midazolam or saline. CONCLUSIONS Sedation with midazolam and dexmedetomidine both improve outcome in polymicrobial severely septic rats. Possible benefits conveyed by one sedative regimen over another may become evident over a more prolonged time-course as both IL-6 and apoptosis were reduced by dexmedetomidine but not midazolam. Further studies are required to evaluate this hypothesis.
Collapse
Affiliation(s)
- Hong Qiao
- Department of Anesthesiology, First Hospital, Peking University, No. 8 Xishiku St., Beijing 100034, PR China
| | - Robert D Sanders
- Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, London, SW10 9NH, UK
| | - Daqing Ma
- Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, London, SW10 9NH, UK
| | - Xinmin Wu
- Department of Anesthesiology, First Hospital, Peking University, No. 8 Xishiku St., Beijing 100034, PR China
| | - Mervyn Maze
- Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, London, SW10 9NH, UK
| |
Collapse
|
777
|
Stromberg PE, Woolsey CA, Clark AT, Clark JA, Turnbull IR, McConnell KW, Chang KC, Chung CS, Ayala A, Buchman TG, Hotchkiss RS, Coopersmith CM. CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis. FASEB J 2009; 23:1817-25. [PMID: 19158156 PMCID: PMC2698654 DOI: 10.1096/fj.08-119024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/23/2008] [Indexed: 12/30/2022]
Abstract
Lymphocytes help determine whether gut epithelial cells proliferate or differentiate but are not known to affect whether they live or die. Here, we report that lymphocytes play a controlling role in mediating gut epithelial apoptosis in sepsis but not under basal conditions. Gut epithelial apoptosis is similar in unmanipulated Rag-1(-/-) and wild-type (WT) mice. However, Rag-1(-/-) animals have a 5-fold augmentation in gut epithelial apoptosis following cecal ligation and puncture (CLP) compared to septic WT mice. Reconstitution of lymphocytes in Rag-1(-/-) mice via adoptive transfer decreases intestinal apoptosis to levels seen in WT animals. Subset analysis indicates that CD4(+) but not CD8(+), gammadelta, or B cells are responsible for the antiapoptotic effect of lymphocytes on the gut epithelium. Gut-specific overexpression of Bcl-2 in transgenic mice decreases mortality following CLP. This survival benefit is lymphocyte dependent since gut-specific overexpression of Bcl-2 fails to alter survival when the transgene is overexpressed in Rag-1(-/-) mice. Further, adoptively transferring lymphocytes to Rag-1(-/-) mice that simultaneously overexpress gut-specific Bcl-2 results in improved mortality following sepsis. Thus, sepsis unmasks CD4(+) lymphocyte control of gut apoptosis that is not present under homeostatic conditions, which acts as a key determinant of both cellular survival and host mortality.
Collapse
Affiliation(s)
- Paul E Stromberg
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
778
|
Abstract
Sepsis remains the leading cause for noncardiac intensive care unit deaths in the United States. Despite recent advances in the treatment of this devastating condition, mortality and morbidity remain unacceptably high. Sepsis is characterized by a multitude of pathophysiological changes that include inflammation, metabolic derangements, hemodynamic alterations, and multiorgan dysfunction. Unfortunately, several studies of treatment modalities aimed at correcting one or more of the underlying derangements have led to disappointing results. New treatment modalities are needed. beta-Receptor blockers have long been used for a variety of conditions such as coronary artery disease, congestive heart failure, and arterial hypertension. Recent data suggest that beta-blocker effects on metabolism, glucose homeostasis, cytokine expression, and myocardial function may be beneficial in the setting of sepsis. Although treating a potentially hypotensive condition with a drug with antihypertensive properties may initially seem counterintuitive, the metabolic and immunomodulatory properties of beta-blockers may be of benefit. It is the purpose of this review to discuss the effects of beta-blockers on the following: (1) metabolism, (2) glucose regulation, (3) the inflammatory response, (4) cardiac function, and (5) mortality in sepsis.
Collapse
|
779
|
Abcejo AS, Andrejko KM, Raj NR, Deutschman CS. Failed interleukin-6 signal transduction in murine sepsis: attenuation of hepatic glycoprotein 130 phosphorylation. Crit Care Med 2009; 37:1729-34. [PMID: 19325483 PMCID: PMC2670954 DOI: 10.1097/ccm.0b013e31819dee81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Sepsis impairs the activation of the interleukin (IL)-6 dependent transcription factor signal transducer and activator of transcription (STAT)-3. However, the molecular basis for depressed functionality has not been characterized. In this study, we test the hypothesis that altered signal transduction results from a change in the activation state of one or more of the components of the intracellular IL-6-linked pathway. DESIGN Randomized prospective experimental study. SETTING University medical laboratory. SUBJECTS Male, 6-8-week-old C57/Bl6 mice. INTERVENTIONS Cecal ligation and single puncture (CLP) or cecal ligation and double puncture (2CLP) was used to model mild and fulminant sepsis, respectively. Sham-operated and unoperated animals served as controls. All animals were fluid resuscitated at the time of surgery and every 24 hours thereafter. Surviving animals were euthanized at 3, 6, 16, 24, 48, and 72 hours; blood samples were obtained and liver tissue was harvested. MEASUREMENTS AND MAIN RESULTS Serum IL-6 levels were elevated in both CLP and 2CLP relative to controls. STAT-3 DNA binding activity and nuclear phosphorylated-STAT-3 levels were elevated in CLP but decreased abruptly 24 hours after 2CLP. This 2CLP-induced alteration was associated with attenuated phosphorylation of the key transcellular glycoprotein (gp) 130. Abundance and phosphorylation of the other key component of IL-6 signal transduction pathway, janus kinase-1, was unchanged following either CLP or 2CLP. 2CLP also did not cause disassociation of the gp130-janus kinase-1 complex. CONCLUSIONS Impaired gp130 phosphorylation may be responsible for IL-6 hyporesponsiveness during sepsis.
Collapse
Affiliation(s)
- Arnoley S Abcejo
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
780
|
Garin-Laflam MP, Steinbrecher KA, Rudolph JA, Mao J, Cohen MB. Activation of guanylate cyclase C signaling pathway protects intestinal epithelial cells from acute radiation-induced apoptosis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G740-9. [PMID: 19221018 PMCID: PMC2670662 DOI: 10.1152/ajpgi.90268.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Uroguanylin (UGN) is a peptide hormone that binds to and activates the intestinal epithelial cell (IEC) transmembrane receptor guanylate cyclase C (GC-C), which in turn increases intracellular cGMP. Gene targeting of murine UGN or GC-C results in significantly lower levels of cGMP in IECs. On the basis of effects of cGMP in nonintestinal systems, we hypothesized that loss of GC-C activation would increase intestinal epithelial apoptosis following radiation-induced injury. We first compared apoptosis from the proximal jejunum of C57BL/6 wild-type (WT) and GC-C knockout (KO) mice 3 h after they received 5 Gy of gamma-irradiation. We then investigated whether supplementation via intraperitoneal injection of 1 mM 8BrcGMP would mitigate radiation-induced apoptosis in these experimental animals. Identical experiments were performed in BALB/c UGN WT and KO mice. Apoptosis was assessed by quantitating morphological indications of cell death, terminal dUTP nick-end labeling, and cleaved caspase 3 immunohistochemistry. Both UGN KO and GC-C KO mice were more susceptible than their WT littermates in this in vivo model of apoptotic injury. Furthermore, cGMP supplementation in both GC-C and UGN KO animals ameliorated radiation-induced apoptosis. Neither WT strain demonstrated significant alteration in apoptotic susceptibility as a result of cGMP supplementation before radiation injury. These in vivo findings demonstrate increased radiosensitivity of IECs in UGN and GC-C KO mice and a role for cGMP as a primary downstream mediator of GC-C activation in the protection of these IECs from radiation-induced apoptosis.
Collapse
Affiliation(s)
- M. P. Garin-Laflam
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, and the University of Cincinnati, Cincinnati, Ohio
| | - K. A. Steinbrecher
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, and the University of Cincinnati, Cincinnati, Ohio
| | - J. A. Rudolph
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, and the University of Cincinnati, Cincinnati, Ohio
| | - J. Mao
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, and the University of Cincinnati, Cincinnati, Ohio
| | - M. B. Cohen
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, and the University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
781
|
Beurel E, Jope RS. Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J Neuroinflammation 2009; 6:9. [PMID: 19284588 PMCID: PMC2660311 DOI: 10.1186/1742-2094-6-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 03/11/2009] [Indexed: 01/26/2023] Open
Abstract
Background Septic shock is a prevalent condition that, when not lethal, often causes disturbances in cognition, mood, and behavior, particularly due to central actions of the inflammatory cytokine interleukin-6 (IL-6). To identify potential targets to control brain IL-6, we tested if IL-6 produced by glia is regulated by signal transducer and activator of transcription-3 (STAT3) and glycogen synthase kinase-3 (GSK3). Methods Lipopolysaccharide (LPS) was used to induce inflammatory responses in mice or cultured primary glia. IL-6 was measured by ELISA and other inflammatory molecules were measured using an array. Results Mouse brain IL-6 levels increased after central, as well as peripheral, LPS administration, consistent with glia producing a portion of brain IL-6. STAT3 in the brain was activated after peripheral or central LPS administration, and in LPS-stimulated cultured primary glia. Inhibition of STAT3 expression, function, or activation reduced by ~80% IL-6 production by primary glia, demonstrating the dependence on active STAT3. GSK3 promotes STAT3 activation, and array analysis of inflammatory molecules produced by LPS-stimulated primary glia demonstrated that IL-6 was the cytokine most diminished (>90%) by GSK3 inhibition. Inhibition of GSK3, and knockdown of GSK3β, not GSK3α, greatly inhibited IL-6 production by LPS-stimulated primary glia. Conversely, expression of active STAT3 and active GSK3 promoted IL-6 production. In vivo inhibition of GSK3 reduced serum and brain IL-6 levels, brain STAT3 activation, and GFAP upregulation following LPS administration. Conclusion STAT3 and GSK3 cooperatively promote neuroinflammation, providing novel targets for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA.
| | | |
Collapse
|
782
|
Turnbull IR, Clark AT, Stromberg PE, Dixon DJ, Woolsey CA, Davis CG, Hotchkiss RS, Buchman TG, Coopersmith CM. Effects of aging on the immunopathologic response to sepsis. Crit Care Med 2009; 37:1018-23. [PMID: 19237912 PMCID: PMC2760736 DOI: 10.1097/ccm.0b013e3181968f3a] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Aging is associated with increased inflammation following sepsis. The purpose of this study was to determine whether this represents a fundamental age-based difference in the host response or is secondary to the increased mortality seen in aged hosts. DESIGN Prospective, randomized controlled study. SETTING Animal laboratory in a university medical center. SUBJECTS Young (6-12 weeks) and aged (20-24 months) FVB/N mice. INTERVENTIONS Mice were subjected to 2 x 25 or 1 x 30 cecal ligation and puncture (CLP). MEASUREMENTS AND MAIN RESULTS Survival was similar in young mice subjected to 2 x 25 CLP and aged mice subjected to 1 x 30 CLP (p = 0.15). Young mice subjected to 1 x 30 CLP had improved survival compared with the other groups (p < 0.05). When injury was held constant but mortality was greater, both systemic and peritoneal levels of tumor necrosis factor-alpha, interleukin (IL)-6, IL-10, and monocyte chemotactic protein-1 were elevated 24 hours after CLP in aged animals compared with young animals (p < 0.05). When mortality was similar but injury severity was different, there were no significant differences in systemic cytokines between aged mice and young mice. In contrast, peritoneal levels of tumor necrosis factor-alpha, IL-6, and IL-10 were higher in aged mice subjected to 1 x 30 CLP than young mice subjected to 2 x 25 CLP despite their similar mortalities (p < 0.05). There were no significant differences in either bacteremia or peritoneal cultures when animals of different ages sustained similar injuries or had different injuries with similar mortalities. CONCLUSIONS Aged mice are more likely to die of sepsis than young mice when subjected to an equivalent insult, and this is associated with increases in both systemic and local inflammation. There is an exaggerated local but not systemic inflammatory response in aged mice compared with young mice when mortality is similar. This suggests that systemic processes that culminate in death may be age independent, but the local inflammatory response may be greater with aging.
Collapse
Affiliation(s)
- Isaiah R. Turnbull
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Andrew T. Clark
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Paul E. Stromberg
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - David J. Dixon
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Cheryl A. Woolsey
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Christopher G. Davis
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Timothy G. Buchman
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Craig M. Coopersmith
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| |
Collapse
|
783
|
Inagaki-Tachibana E, Tsukahara T, Kaji K, Eguchi R, Kanazawa H, Hayashi H, Suzuki Y. Involvement of DNA fragmentation of enterocytes in mucosal injury to a mouse jejunum incubated in ussing chambers. NAGOYA JOURNAL OF MEDICAL SCIENCE 2009; 71:11-8. [PMID: 19358471 PMCID: PMC11166391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A mouse jejunum, when incubated in vitro in Ussing chambers, was found to exhibit morphological deterioration of the villi with denudation of the epithelia (J Nutr Sci Vitaminol, 51: 406, 2005). Our study examined the involvement of apoptosis in an intestinal injury model by a DNA ladder assay and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Electrophoresis of mucosal DNA revealed ladders, indicating the occurrence of DNA fragmentation. Cells with TUNEL-positive nuclei were detected among the villus epithelial cells (enterocytes), whereas they are rarely seen among crypt epithelial cells. These features were evident within 1 h after the start of incubation. Apoptotic death of the enterocytes was thus involved in the destruction of villi when incubated in Ussing chambers.
Collapse
Affiliation(s)
- Eiko Inagaki-Tachibana
- Department of Nutritional Sciences, School of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nisshin, Aichi 470-0196, Japan.
| | | | | | | | | | | | | |
Collapse
|
784
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
785
|
Tschoeke SK, Oberholzer C, LaFace D, Hutchins B, Moldawer LL, Oberholzer A. Endogenous IL-10 regulates sepsis-induced thymic apoptosis and improves survival in septic IL-10 null mice. Scand J Immunol 2008; 68:565-71. [PMID: 18959626 PMCID: PMC3943354 DOI: 10.1111/j.1365-3083.2008.02176.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have shown that increased lymphocyte apoptosis contributes to sepsis-induced mortality. Furthermore, studies have demonstrated that IL-10 can suppress lymphocyte apoptosis, in part, by upregulating Bcl-2 expression and interfering with activation induced cell death. We have previously shown that intrathymic delivery of IL-10 with an adenoviral vector in wild-type mice significantly improves outcome to sepsis. Presently, we investigated the role of endogenous IL-10 expression on thymocyte apoptosis and outcome in IL-10 null mice subject to induction of generalized polymicrobial peritonitis via cecal ligation and puncture. Compared to wild-type C57BL/6 mice, IL-10 null mice demonstrated increased mortality and enhanced lymphocyte apoptosis. Intrathymic injection with an adenoviral vector expressing human IL-10 prior to cecal ligation and puncture in IL-10 null mice significantly improved outcome and decreased thymic caspase-3 activity. Furthermore, plasma concentrations of IL-6 were also significantly reduced in IL-10 null mice treated with the IL-10 expressing adenovirus. In contrast, injection of a control adenovirus did not improve outcome in IL-10 null mice, nor was caspase-3 activity reduced. Thus, local thymic expression of IL-10 not only improves outcome but also reduces local tissue apoptosis and caspase-3 activity, and appears to attenuate the systemic proinflammatory cytokine response.
Collapse
Affiliation(s)
- S K Tschoeke
- Department of Trauma and Reconstructive Surgery, Charité - University Hospitals Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
786
|
PACAP inhibit the release and cytokine activity of HMGB1 and improve the survival during lethal endotoxemia. Int Immunopharmacol 2008; 8:1646-51. [PMID: 18713653 DOI: 10.1016/j.intimp.2008.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/16/2008] [Accepted: 07/22/2008] [Indexed: 12/22/2022]
Abstract
The pathogenesis of sepsis is mediated in part by bacterial endotoxin (lipopolysaccharide; LPS), which stimulates macrophages/monocytes to sequentially release early (e.g., TNF-alpha, IL-1beta) and late [e.g., high mobility group box 1 (HMGB1) protein] pro-inflammatory cytokines. Specifically targeting early mediators has not been effective clinically, in part, because peak mediator activity often has passed before therapy can be initiated. Recent discovery of HMGB1 as a late mediator of lethal sepsis has provided a new target for the treatment of septic shock. Here, we demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide, significantly attenuated circulating HMGB1 levels and increased survival in animals with established endotoxemia, even if treatment began after acute cytokine response has occurred. In vitro, PACAP suppressed LPS-induced HMGB1 release from macrophages/monocytes, even when given 2-4 h after LPS stimulation. PACAP also suppressed HMGB1 release induced by TNF-alpha or IFN-gamma. Moreover, PACAP inhibits HMGB1-induced cytokine release in vitro and in vivo. These results indicate that PACAP inhibits the release and pro-inflammatory activity of HMGB1 and improves survival during lethal endotoxemia, which confirms this peptide as a candidate for therapy of septic shock.
Collapse
|
787
|
Clark JA, Clark AT, Hotchkiss RS, Buchman TG, Coopersmith CM. Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis. Shock 2008; 30:36-42. [PMID: 18004230 PMCID: PMC2551558 DOI: 10.1097/shk.0b013e31815d0820] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF after the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2 x 23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive injection of either 150 microg kg(-1) d(-1) (i.p.) EGF or 0.9% saline (i.p.). Circulating EGF levels were decreased after CLP compared with sham animals but were unaffected by giving exogenous EGF treatment. In contrast, intestinal EGF levels increased after CLP and were further augmented by exogenous EGF treatment. Intestinal EGF receptor was increased after CLP, whether assayed by immunohistochemistry, real-time polymerase chain reaction, or Western blot, and exogenous EGF treatment decreased intestinal EGF receptor. Villus length decreased 2-fold between sham and septic animals, and EGF treatment resulted in near total restitution of villus length. Sepsis decreased intestinal proliferation and increased intestinal apoptosis. This was accompanied by increased expression of the proapoptotic proteins Bid and Fas-associated death domain, as well as the cyclin-dependent kinase inhibitor p21 cip1/waf Epidermal growth factor treatment after the onset of sepsis restored both proliferation and apoptosis to levels seen in sham animals and normalized expression of Bid, Fas-associated death domain, and p21 cip1/waf . To determine whether improvements in gut homeostasis were associated with a decrease in sepsis-induced mortality, septic mice with or without EGF treatment after CLP were followed 7 days for survival. Mortality decreased from 60% to 30% in mice treated with EGF after the onset of sepsis (P < 0.05). Thus, EGF may be a potential therapeutic agent for the treatment of sepsis in part due to its ability to protect intestinal integrity.
Collapse
Affiliation(s)
- Jessica A. Clark
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Andrew T. Clark
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Timothy G. Buchman
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Craig M. Coopersmith
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| |
Collapse
|
788
|
Martignoni A, Tschöp J, Goetzman HS, Choi LG, Reid MD, Johannigman JA, Lentsch AB, Caldwell CC. CD4-expressing cells are early mediators of the innate immune system during sepsis. Shock 2008; 29:591-7. [PMID: 17885647 PMCID: PMC2747655 DOI: 10.1097/shk.0b013e318157f427] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is well established that the immune response to sepsis is mediated by leukocytes associated with the innate immune system. However, there is an emerging view that T lymphocytes can also mediate this response. Here, we observed a significant depletion of both CD4 and CD8 T cells in human patients after blunt trauma. To determine what effect the loss of these cells may have during a subsequent infection, we obtained CD4- and CD8-deficient mice and subjected them to cecal ligation and puncture (CLP). We observed that CD4 knockout (KO) mice showed increased CLP-induced mortality compared with CD8-deficient and wild-type (WT) mice especially within the first 30 h of injury. CD4 KO mice also exhibited significantly increased IL-6 concentrations after the CLP. The CD4 KO mice had an increased concentration of bacteremia as compared with WT mice. Antibiotic treatment decreased mortality in the CD4 KO mice as compared with no changes in the wild mice after CLP. Neutrophils isolated from septic CD4 KO mice showed decreased spontaneous oxidative burst compared with neutrophils taken from septic controls. We examined the role of IFN-gamma by using mice deficient in this cytokine and found these mice to have significantly higher mortality as compared with WT mice. Finally, we detected a 2-fold increase in CD11b+ cells that exhibited intracellular IFN-gamma staining in the peritoneum of WT mice after CLP. The data suggest that CD4+ cells may facilitate the early clearance of bacteria by regulating neutrophils function possibly through an IFN-gamma-dependent mechanism.
Collapse
Affiliation(s)
- André Martignoni
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
- Department of Anesthesiology, Klinikum Grosshadern, Munich, Germany
| | - Johannes Tschöp
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Anesthesiology, Klinikum Grosshadern, Munich, Germany
| | - Holly S. Goetzman
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa G. Choi
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
| | - Maria D. Reid
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
| | - Jay A. Johannigman
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alex B. Lentsch
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Charles C. Caldwell
- The Laboratory of Trauma, Sepsis & Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Research, Shriner’s Hospital for Children, Cincinnati, Ohio
| |
Collapse
|
789
|
Rajan S, Vyas D, Clark AT, Woolsey CA, Clark JA, Hotchkiss RS, Buchman TG, Coopersmith CM. Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis. Shock 2008; 29:483-9. [PMID: 17998890 PMCID: PMC2562881 DOI: 10.1097/shk.0b013e31815bbb26] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Targeted IL-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic Inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild-type (WT) littermates (n = 127) were subjected to cecal ligation and puncture with a 27-gauge needle. The 7-day survival rate was 45% in transgenic animals and 30% in WT animals (P < or = 0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals regardless of whether they expressed the transgene. Local parameter of injury, including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines, and stimulated cytokines from intraepithelial lymphocytes, were similar between transgenic and WT mice. However, in stimulated splenocytes, proinflammatory cytokines monocyte chemoattractant protein 1 (189 +/- 43 vs. 40 +/- 8 pg/mL) and IL-6 (116 +/- 28 vs. 34 +/- 9 pg/mL) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (P < 0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the 2 groups, as were circulating LPS levels. Transgenic mice also had lower white blood cell counts associated with lower absolute neutrophil counts (0.5 +/- 0.1 vs. 1.0 +/- 0.2 10(3)/mm3; P < 0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage.
Collapse
Affiliation(s)
- Saju Rajan
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Dinesh Vyas
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Andrew T Clark
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Cheryl A Woolsey
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Jessica A Clark
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Timothy G Buchman
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| | - Craig M Coopersmith
- Department of Surgery, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110
| |
Collapse
|
790
|
What's new in Shock, April 2008? Shock 2008; 29:427-30. [PMID: 18344841 DOI: 10.1097/shk.0b013e31816c14e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
791
|
Tschöp J, Martignoni A, Goetzman HS, Choi LG, Wang Q, Noel JG, Ogle CK, Pritts TA, Johannigman JA, Lentsch AB, Caldwell CC. Gammadelta T cells mitigate the organ injury and mortality of sepsis. J Leukoc Biol 2008; 83:581-8. [PMID: 18063696 PMCID: PMC2747639 DOI: 10.1189/jlb.0707507] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sepsis is a difficult condition to treat and is associated with a high mortality rate. Sepsis is known to cause a marked depletion of lymphocytes, although the function of different lymphocyte subsets in the response to sepsis is unclear. gammadelta T cells are found largely in epithelial-rich tissues, and previous studies of gammadelta T cells in models of sepsis have yielded divergent results. In the present study, we examined the function of gammadelta T cells during sepsis in mice using cecal ligation and puncture (CLP). Mice deficient in gammadelta T cells had decreased survival times and increased tissue damage after CLP compared with wild-type mice. Furthermore, bacterial load was increased in gammadelta T cell-deficient mice, yet antibiotic treatment did not change mortality. Additionally, we found that recruitment of neutrophils and myeloid suppressor cells to the site of infection was diminished in gammadelta T cell-deficient mice. Finally, we found that circulating levels of IFN-gamma were increased, and systemic levels of IL-10 were decreased in gammadelta T cell-deficient mice after CLP compared with wild-type mice. gammadelta T cell-deficient mice also had increased intestinal permeability after CLP compared with wild-type mice. Neutralization of IFN-gamma abrogated the increase in intestinal permeability in gammadelta T cell-deficient mice. The intestines taken from gammadelta T cell-deficient mice had decreased myeloperoxidase yet had increased tissue damage as compared with wild-type mice. Collectively, our data suggest that gammadelta T cells modulate the response to sepsis and may be a potential therapeutic target.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Humans
- Intestines/immunology
- Intestines/pathology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Reference Values
- Sepsis/immunology
- Sepsis/mortality
- Sepsis/prevention & control
- Survival Analysis
- T-Lymphocytes/immunology
- Wounds, Nonpenetrating/immunology
- Wounds, Nonpenetrating/mortality
- Wounds, Nonpenetrating/prevention & control
Collapse
Affiliation(s)
- Johannes Tschöp
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Anesthesiology, Klinikum Grosshadern, Munich, Germany
| | - André Martignoni
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Research, Shriner’s Hospital for Children (SHC), Cincinnati, Ohio, USA
- Department of Anesthesiology, Klinikum Grosshadern, Munich, Germany
| | - Holly S. Goetzman
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa G. Choi
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Research, Shriner’s Hospital for Children (SHC), Cincinnati, Ohio, USA
| | - Quan Wang
- Department of Research, Shriner’s Hospital for Children (SHC), Cincinnati, Ohio, USA
| | - John G. Noel
- Department of Research, Shriner’s Hospital for Children (SHC), Cincinnati, Ohio, USA
| | - Cora K. Ogle
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Research, Shriner’s Hospital for Children (SHC), Cincinnati, Ohio, USA
| | - Timothy A. Pritts
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jay A. Johannigman
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alex B. Lentsch
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles C. Caldwell
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Research, Shriner’s Hospital for Children (SHC), Cincinnati, Ohio, USA
| |
Collapse
|
792
|
Li W, Ashok M, Li J, Yang H, Sama AE, Wang H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS One 2007; 2:e1153. [PMID: 17987129 PMCID: PMC2048740 DOI: 10.1371/journal.pone.0001153] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/16/2007] [Indexed: 11/18/2022] Open
Abstract
Background The pathogenesis of sepsis is mediated in part by bacterial endotoxin, which stimulates macrophages/monocytes to sequentially release early (e.g., TNF, IL-1, and IFN-γ) and late (e.g., HMGB1) pro-inflammatory cytokines. Our recent discovery of HMGB1 as a late mediator of lethal sepsis has prompted investigation for development of new experimental therapeutics. We previously reported that green tea brewed from the leaves of the plant Camellia sinensis is effective in inhibiting endotoxin-induced HMGB1 release. Methods and Findings Here we demonstrate that its major component, (-)-epigallocatechin-3-gallate (EGCG), but not catechin or ethyl gallate, dose-dependently abrogated HMGB1 release in macrophage/monocyte cultures, even when given 2–6 hours post LPS stimulation. Intraperitoneal administration of EGCG protected mice against lethal endotoxemia, and rescued mice from lethal sepsis even when the first dose was given 24 hours after cecal ligation and puncture. The therapeutic effects were partly attributable to: 1) attenuation of systemic accumulation of proinflammatory mediator (e.g., HMGB1) and surrogate marker (e.g., IL-6 and KC) of lethal sepsis; and 2) suppression of HMGB1-mediated inflammatory responses by preventing clustering of exogenous HMGB1 on macrophage cell surface. Conclusions Taken together, these data suggest a novel mechanism by which the major green tea component, EGCG, protects against lethal endotoxemia and sepsis.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
| | - Mala Ashok
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Andrew E. Sama
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, New York, United States of America
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
793
|
Metkar S, Awasthi S, Denamur E, Kim KS, Gangloff SC, Teichberg S, Haziot A, Silver J, Goyert SM. Role of CD14 in responses to clinical isolates of Escherichia coli: effects of K1 capsule expression. Infect Immun 2007; 75:5415-24. [PMID: 17709409 PMCID: PMC2168279 DOI: 10.1128/iai.00601-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Severe bacterial infections leading to sepsis or septic shock can be induced by bacteria that utilize different factors to drive pathogenicity and/or virulence, leading to disease in the host. One major factor expressed by all clinical isolates of gram-negative bacteria is lipopolysaccharide (LPS); a second factor expressed by some Escherichia coli strains is a K1 polysaccharide capsule. To determine the role of the CD14 LPS receptor in the pathogenic effects of naturally occurring E. coli, the responses of CD14-/- and CD14+/+ mice to three different isolates of E. coli obtained from sepsis patients were compared; two isolates express both smooth LPS and the K1 antigen, while the third isolate expresses only LPS and is negative for K1. An additional K1-positive isolate obtained from a newborn with meningitis and a K1-negative isogenic mutant of this strain were also used for these studies. CD14-/- mice were resistant to the lethal effects of the K1-negative isolates. This resistance was accompanied by significantly lower levels of systemic tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) in these mice than in CD14+/+ mice, enhanced clearance of the bacteria, and significantly fewer additional gross symptoms. In contrast, CD14-/- mice were as sensitive as CD14+/+ mice to the lethal effects of the K1-positive isolates, even though they had significantly lower levels of TNF-alpha and IL-6 than CD14+/+ mice. These studies show that different bacterial isolates can use distinctly different mechanisms to cause disease and suggest that new, nonantibiotic therapeutics need to be directed against multiple targets.
Collapse
Affiliation(s)
- Shalaka Metkar
- Department of Microbiology and Immunology, CUNY Medical School, and Sophie Davis School for Biomedical Sciences, City College of New York, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
794
|
Vyas D, Robertson CM, Stromberg PE, Martin JR, Dunne WM, Houchen CW, Barrett TA, Ayala A, Perl M, Buchman TG, Coopersmith CM. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine. Histol Histopathol 2007; 22:623-630. [PMID: 17357092 PMCID: PMC1850436 DOI: 10.14670/hh-22.623] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gut epithelial apoptosis is involved in the pathophysiology of multiple diseases. This study characterized intestinal apoptosis in three mechanistically distinct injuries with different kinetics of cell death. FVB/N mice were subjected to gamma radiation, Pseudomonas aeruginosa pneumonia or injection of monoclonal anti-CD3 antibody and sacrificed 4, 12, or 24 hours post-injury (n=10/time point). Apoptosis was quantified in the jejunum by hematoxylin and eosin (H&E), active caspase-3, terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling (TUNEL), in situ oligoligation reaction (ISOL,) cytokeratin 18, and annexin V staining. Reproducible results were obtained only for H&E, active caspase-3, TUNEL and ISOL, which were quantified and compared against each other for each injury at each time point. Kinetics of injury were different with early apoptosis highest following radiation, late apoptosis highest following anti CD3, and more consistent levels following pneumonia. ISOL was the most consistent stain and was always statistically indistinguishable from at least 2 stains. In contrast, active caspase-3 demonstrated lower levels of apoptosis, while the TUNEL assay had higher levels of apoptosis in the most severely injured intestine regardless of mechanism of injury. H&E was a statistical outlier more commonly than any other stain. This suggests that regardless of mechanism or kinetics of injury, ISOL correlates to other quantification methods of detecting gut epithelial apoptosis more than any other method studied and compares favorably to other commonly accepted techniques of quantifying apoptosis in a large intestinal cross sectional by balancing sensitivity and specificity across a range of times and levels of death.
Collapse
Affiliation(s)
- D Vyas
- Department of Surgery, Washington University School of Medicine, St. Louis, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
795
|
Wilmanski J, Villanueva E, Deitch EA, Spolarics Z. Glucose-6-phosphate dehydrogenase deficiency and the inflammatory response to endotoxin and polymicrobial sepsis*. Crit Care Med 2007; 35:510-8. [PMID: 17205013 DOI: 10.1097/01.ccm.0000254337.50361.2e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human genetic polymorphism. The deficiency protects against malaria but was shown to worsen the clinical course after severe trauma. This study tested whether the deficiency is associated with altered cytokine responses in vitro and in vivo and affects survival after endotoxemia or polymicrobial sepsis (cecal ligation and puncture). DESIGN Genotyping of animals was carried out using a novel and improved allele-specific polymerase chain reaction assay. Macrophage and splenocyte responses in vitro and ex vivo were compared using gene array analyses and enzyme-linked immunosorbent assays and flow cytometry under both baseline and lipopolysaccharide-stimulated conditions. Endotoxemia- or sepsis-induced mortality was compared under a variety of treatment and resuscitation protocols. SETTINGS Medical school research laboratories. SUBJECTS Litter mates of wild-type and G6PD-mutant mice that display a degree of G6PD deficiency similar to that observed in the African-type human deficiency (20% of normal). MEASUREMENTS AND MAIN RESULTS Lipopolysaccharide in vivo (lipopolysaccharide from Escherichia coli, 10-35 mg/kg body weight intraperitoneally) resulted in greater interleukin-1beta, interleukin-6, and interleukin-10 levels in serum and peritoneal lavage in G6PD-deficient mice compared with wild type. Prevailing doses of lipopolysaccharide in vivo increased mortality in G6PD-deficient animals (40-70%) as compared with wild type (5-40%). In contrast, mortality after cecal ligation and puncture-induced sepsis was similar in G6PD-deficient and wild-type animals either in saline-resuscitated or antibiotic-treated animals. Splenic and blood phagocytes from septic G6PD-deficient and wild-type animals displayed attenuated ex vivo lipopolysaccharide responsiveness. CONCLUSIONS This study demonstrates that G6PD deficiency augments cytokine responses after inflammatory challenges. The deficiency is disadvantageous as reflected in increased mortality after hyperinflammation caused by acute endotoxemia. However, the deficiency may not manifest worsened survival after the immunosuppressed condition associated with severe sepsis.
Collapse
Affiliation(s)
- Jeanette Wilmanski
- Graduate School of Biomedical Sciences and the Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | | | | | | |
Collapse
|
796
|
Deutschman CS, Cereda M, Ochroch EA, Raj NR. Sepsis-induced cholestasis, steatosis, hepatocellular injury, and impaired hepatocellular regeneration are enhanced in interleukin-6 -/- mice. Crit Care Med 2006; 34:2613-20. [PMID: 16932236 DOI: 10.1097/01.ccm.0000240229.98275.07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Hepatic dysfunction is an important but poorly understood component of sepsis. In severe sepsis, liver dysfunction is characterized by cholestasis, steatosis, hepatocellular injury, impaired regeneration, a decreased response to the cytokine interleukin-6, and high mortality. To determine whether loss of interleukin-6 activity caused hepatic dysfunction and mortality, we induced sepsis in wild-type (interleukin-6 +/+) and interleukin-6 knockout (interleukin-6 -/-) mice. We hypothesized that sepsis in interleukin-6 -/- mice would increase cholestasis, steatosis, hepatocellular injury, and mortality and impair hepatocyte regeneration. DESIGN Randomized prospective experimental study. SETTING University medical laboratory. SUBJECTS Male adolescent C57Bl6 interleukin-6 +/+ and interleukin-6 -/- mice. INTERVENTIONS Mild sepsis was induced using cecal ligation and single puncture (CLP). Severe, lethal sepsis was induced using cecal ligation and double puncture (2CLP). Some mice received recombinant human interleukin-6 at the time of CLP/2CLP. All animals were fluid resuscitated at the time of surgery and every 24 hrs thereafter. In survival cohorts, mortality at 16, 24, 48, and 72 hrs was recorded. In separate cohorts, surviving animals were killed at 24 and 48 hrs, and liver tissue was harvested. A separate cohort of mice received bromodeoxyuridine for detection of regeneration. MEASUREMENTS AND MAIN RESULTS 2CLP was 100% fatal within the first 12 hrs in interleukin-6 -/- mice. Mortality from 2CLP in interleukin-6 +/+ mice before 24 hrs was nil but was 90% by 72 hrs. At 72 hrs, CLP was 40% fatal in interleukin-6 +/+ mice but 90% in interleukin-6 -/- mice. CLP induced cholestasis, steatosis, and hepatocellular injury in interleukin-6 -/-, but not interleukin-6 +/+, mice. Regeneration was absent following CLP in interleukin-6 -/- animals but occurred in interleukin-6 +/+ mice. Early administration of recombinant human interleukin-6 did not reverse abnormalities in interleukin-6 -/- mice. CONCLUSIONS The absence of interleukin-6 is an important determinant of hepatic dysfunction and mortality in sepsis.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
797
|
|
798
|
|
799
|
Enoh VT, Lin CY, Varma TK, Sherwood ER. Differential effect of imipenem treatment on injury caused by cecal ligation and puncture in wild-type and NK cell-deficient beta(2)-microgloblin knockout mice. Am J Physiol Gastrointest Liver Physiol 2006; 290:G277-84. [PMID: 16166341 DOI: 10.1152/ajpgi.00338.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous studies showed that beta(2)-microglobulin knockout mice treated with anti-asialoGM1 (beta2MKO/alphaAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential mechanisms of injury include systemic infection, cecal ischemia, and translocation of bacterial toxins such as endotoxin and superantigens. Currently, it is unclear which of these mechanisms of injury contributes to mortality in wild-type mice and whether beta2MKO/alphaAsGM1 mice are resistant to any particular mechanisms of injury. In the present study, we hypothesized that systemic infection is the major cause of injury after CLP in wild-type mice and that beta2MKO/alphaAsGM1 mice are resistant to infection-induced injury. To test this hypothesis, wild-type and beta2MKO/alphaAsGM1 mice were treated with the broad-spectrum antibiotic imipenem immediately after CLP to decrease the impact of systemic infection in our model. Treatment of wild-type and beta2MKO/alphaAsGM1 mice with imipenem decreased bacterial counts by at least two orders of magnitude. However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and had significant hypothermia, metabolic acidosis, and high plasma concentrations of the cytokines interleukin-6, macrophage inflammatory protein-2, and keratinocyte-derived chemokine. beta2MKO/alphaAsGM1 mice showed 40% long-term survival, which was increased to 90% by imipenem treatment. beta2MKO/alphaAsGM1 mice had less hypothermia, decreased metabolic acidosis, and lower cytokine concentrations at 18 h after CLP compared with wild-type mice. These results suggest that infection is not the major cause of mortality for wild-type mice in our model of CLP. Other mechanisms of injury such as cecal ischemia or translocation of microbial toxins may be more important. beta2MKO/alphaAsGM1 mice appear resistant to these early, non-infection-related causes of CLP-induced injury but showed delayed mortality associated with bacterial dissemination, which was ablated by treatment with imipenem.
Collapse
Affiliation(s)
- Victor T Enoh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0591, USA
| | | | | | | |
Collapse
|
800
|
|