751
|
Gutekunst CA, Levey AI, Heilman CJ, Whaley WL, Yi H, Nash NR, Rees HD, Madden JJ, Hersch SM. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Natl Acad Sci U S A 1995; 92:8710-4. [PMID: 7568002 PMCID: PMC41036 DOI: 10.1073/pnas.92.19.8710] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules.
Collapse
Affiliation(s)
- C A Gutekunst
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
752
|
Abstract
Trinucleotide repeat expansions have been identified as the underlying mutation in an increasing number of human genetic diseases, such as fragile site syndromes, myotonic dystrophy and several neurodegenerative disorders including Huntington's disease. By an unknown mechanism, polymorphic GC-rich triplet repeats expand in all these diseases. The expansions of a CCG repeat in fragile-site-associated disorders and the CTG repeat (in the 3'-untranslated region of the myotonin kinase gene) causing myotonic dystrophy are very large, whereas small expansions of CAG repeats have been identified in the open reading frame of genes in a number of neurological genetic disorders.
Collapse
Affiliation(s)
- H Hummerich
- Genome Analysis Laboratory, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
753
|
Clarke ND. Sequence 'minimization': exploring the sequence landscape with simplified sequences. Curr Opin Biotechnol 1995; 6:467-72. [PMID: 7579658 DOI: 10.1016/0958-1669(95)80077-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The challenges of protein engineering arise, in part, from the enormous number of possible sequences and the almost unimaginably small fraction of such sequences that can be studied experimentally or computationally. Fortunately, not all possibilities need to be considered because many different sequences can adopt the same structure. Of the vast number of sequences that fold into a given conformation, some are 'simpler' than the sequences of typical proteins. Studying protein sequences that are simpler helps focus attention on the principal determinants of structure. Recent examples of this strategy are the simplification of protein surfaces and cores, the use of a binary 'code' for protein design and the structural analysis of random simple sequences.
Collapse
Affiliation(s)
- N D Clarke
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
754
|
Stott K, Blackburn JM, Butler PJ, Perutz M. Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc Natl Acad Sci U S A 1995; 92:6509-13. [PMID: 7604023 PMCID: PMC41547 DOI: 10.1073/pnas.92.14.6509] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many transcription factors and some other proteins contain glutamine repeats; their abnormal expansion has been linked to several dominantly inherited neuro-degenerative diseases. Having found that poly(L-glutamine) alone forms beta-strands held together by hydrogen bonds between their amide groups, we surmised that glutamine repeats may form polar zippers, an unusual motif for protein-protein interactions. To test this hypothesis, we have engineered a Gly-Gln10-Gly peptide into the inhibitory loop of truncated chymotrypsin inhibitor 2 (CI2), a small protein from barley seeds, by both insertion and replacement. Gel filtration resolved both mutant inhibitors into at least three fractions, which analytical ultracentrifugation identified as monomers, dimers, and trimers of the recombinant protein; the truncated wild-type CI2 formed only monomers. CD difference spectra of the dimers and trimers versus wild type indicated that their glutamine repeats formed beta-pleated sheets, while those of the monomers versus wild type were more suggestive of type I beta-turns. The CD spectra of all three fractions remained unchanged even after incubation at 70 degrees C; neither the dimers nor the trimers dissociated at this temperature. We argue that the stability of all three fractions is due to the multiplicity of hydrogen bonds between extended strands of glutamine repeats in the oligomers or within a beta-hairpin formed by the single glutamine repeat of each monomer. Pathological effects may arise when expanded glutamine repeats cause proteins to acquire excessively high affinities for each other or for other proteins with glutamine repeats.
Collapse
Affiliation(s)
- K Stott
- Medical Research Council Centre for Protein Engineering, Cambridge, England
| | | | | | | |
Collapse
|
755
|
Abstract
I discuss three recent developments in sequence analysis by the statistical method of scores. First is the identification of segments of high aggregate score in a single protein sequence. Charge clusters and hyper-charge runs are prime examples. Proteins containing hyper-charge runs are principally associated with DNA and RNA processing, chromatin structure, ion storage and exchange, and protein complex assembly. Second is the protein sequence comparisons identifying common segments having high total similarity scores. These are illustrated by comparisons within the family of prokaryotic heat shock 70 kDa proteins. Third is the scoring protocols applied to the inverse folding problem.
Collapse
Affiliation(s)
- S Karlin
- Department of Mathematics, Stanford University, CA 94305-2125, USA
| |
Collapse
|
756
|
|
757
|
Baxendale S, Abdulla S, Elgar G, Buck D, Berks M, Micklem G, Durbin R, Bates G, Brenner S, Beck S. Comparative sequence analysis of the human and pufferfish Huntington's disease genes. Nat Genet 1995; 10:67-76. [PMID: 7647794 DOI: 10.1038/ng0595-67] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Huntington's disease (HD) gene encodes a novel protein with as yet no known function. In order to identify the functionally important domains of this protein, we have cloned and sequenced the homologue of the HD gene in the pufferfish, Fugu rubripes. The Fugu HD gene spans only 23 kb of genomic DNA, compared to the 170 kb human gene, and yet all 67 exons are conserved. The first coding exon, the site of the disease-causing triplet repeat, is highly conserved. However, the glutamine repeat in Fugu consists of just four residues. We also show that gene order may be conserved over longer stretches of the two genomes. Our work describes a detailed example of sequence comparison between human and Fugu, and illustrates the power of the pufferfish genome as a model system in the analysis of human genes.
Collapse
Affiliation(s)
- S Baxendale
- Genome Analysis Laboratory, ICRF, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
758
|
Servadio A, Koshy B, Armstrong D, Antalffy B, Orr HT, Zoghbi HY. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet 1995; 10:94-8. [PMID: 7647801 DOI: 10.1038/ng0595-94] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat which codes for glutamine in the protein ataxin-1. We have investigated the effect of this expansion on ataxin-1 by immunoblot analysis. The wild-type protein is detected in both normal and affected individuals; however, a mutant protein which varies in its migration properties according to the size of the CAG repeat is detected in cultured cells and tissues from SCA1 individuals. The protein has a nuclear localization in all normal and SCA1 brain regions examined but a cytoplasmic localization of ataxin-1 was also observed in cerebellar Purkinje cells. Our data show that in SCA1, the expanded alleles are faithfully translated into proteins of apparently normal stability and distribution.
Collapse
Affiliation(s)
- A Servadio
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
759
|
Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nat Genet 1995; 10:104-10. [PMID: 7647777 DOI: 10.1038/ng0595-104] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD) results from the expansion of a polyglutamine encoding CAG repeat in a gene of unknown function. The wide expression of this transcript does not correlate with the pattern of neuropathology in HD. To study the HD gene product (huntingtin), we have developed monoclonal antibodies raised against four different regions of the protein. On western blots, these monoclonals detect the approximately 350 kD huntingtin protein in various human cell lines and in neural and non-neural rodent tissues. In cell lines from HD patients, a doublet protein is detected corresponding to the mutated and normal huntingtin. Immunohistochemical studies in the human brain using two of these antibodies detects the huntingtin in perikarya of some neurons, neuropiles, varicosities and as punctate staining likely to be nerve endings.
Collapse
Affiliation(s)
- Y Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, ULP, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
760
|
Sutherland GR, Richards RI. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A 1995; 92:3636-41. [PMID: 7731957 PMCID: PMC42017 DOI: 10.1073/pnas.92.9.3636] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human genome contains many repeated DNA sequences that vary in complexity of repeating unit from a single nucleotide to a whole gene. The repeat sequences can be widely dispersed or in simple tandem arrays. Arrays of up to 5 or 6 nt are known as simple tandem repeats, and these are widely dispersed and highly polymorphic. Members of one group of the simple tandem repeats, the trinucleotide repeats, can undergo an increase in copy number by a process of dynamic mutation. Dynamic mutations of the CCG trinucleotide give rise to one group of fragile sites on human chromosomes, the rare folate-sensitive group. One member of this group, the fragile X (FRAXA) is responsible for the most common familial form of mental retardation. Another member of the group FRAXE is responsible for a rarer mild form of mental retardation. Similar mutations of AGC repeats give rise to a number of neurological disorders. The expanded repeats are unstable between generations and somatically. The intergenerational instability gives rise to unusual patterns of inheritance--particularly anticipation, the increasing severity and/or earlier age of onset of the disorder in successive generations. Dynamic mutations have been found only in the human species, and possible reasons for this are considered. The mechanism of dynamic mutation is discussed, and a number of observations of simple tandem repeat mutation that could assist in understanding this phenomenon are commented on.
Collapse
Affiliation(s)
- G R Sutherland
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, Adelaide, Australia
| | | |
Collapse
|
761
|
Boffa LC, Carpaneto EM, Allfrey VG. Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid. Proc Natl Acad Sci U S A 1995; 92:1901-5. [PMID: 7892196 PMCID: PMC42390 DOI: 10.1073/pnas.92.6.1901] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An amplification of tandem CAG trinucleotide sequences in DNA due to errors in DNA replication is involved in at least four hereditary neurodegenerative diseases. The CAG triplet repeats when translated into protein give rise to tracts of glutamine residues, which are a prominent feature of many transcription factors, including the TATA-binding protein of transcription factor TFIID. We have used a biotin-labeled, complementary peptide nucleic acid (PNA) to invade the CAG repeats in intact chromatin and then employed a method for the selective isolation of transcriptionally active chromatin restriction fragments containing the PNA.DNA hybrids. The PNA-containing chromatin fragments were captured on streptavidin-agarose magnetic beads and shown to contain all the CAG.PNA hybrids of the active chromatin fraction. DNA hybridization experiments using a DNA probe specific for unique sequences downstream of the CAG-tandem repeats confirmed that the PNA.DNA hybrids contained the transcribed gene for the TATA-binding protein. In contrast, no hybridization signal was detected with a DNA probe specific for the c-myc protooncogene, which is amplified and transcriptionally active in COLO 320DM cells but lacks CAG tandem repeats.
Collapse
Affiliation(s)
- L C Boffa
- Istituto Nazionale per la Ricerca sul Cancro IST, Genoa, Italy
| | | | | |
Collapse
|
762
|
Siebel CW, Admon A, Rio DC. Soma-specific expression and cloning of PSI, a negative regulator of P element pre-mRNA splicing. Genes Dev 1995; 9:269-83. [PMID: 7867926 DOI: 10.1101/gad.9.3.269] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PSI is an RNA-binding protein involved in repressing splicing of the P element third intron in Drosophila somatic cell extracts. PSI produced in bacteria restores splicing inhibition to an extract relieved of inhibitory activity, indicating that PSI plays a direct role in somatic inhibition. Sequence analysis of cDNAs encoding PSI reveals three KH RNA-binding domains, a conserved motif also found in the yeast splicing regulator MER1. Notably, PSI is expressed highly in somatic embryonic nuclei but is undetectable in germ-line cells. In contrast, hrp48, another protein implicated in somatic inhibition, is found in the nucleus and cytoplasm of both tissues. The splicing inhibitory properties and soma-specific expression of PSI may be sufficient to explain the germ-line-specific transposition of P elements.
Collapse
Affiliation(s)
- C W Siebel
- Department of Molecular and Cell Biology, University of California at Berkeley 94720
| | | | | |
Collapse
|
763
|
Abstract
Seven inherited human disorders are now associated with the intragenic expansion of triplet repeat DNA sequences. These repeats demonstrate extreme instability in both germline and somatic tissue, accounting for the unusual genetic inheritance patterns and symptom variability associated with these diseases.
Collapse
Affiliation(s)
- D G Monckton
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Tex 77030
| | | |
Collapse
|
764
|
Lanz RB, Wieland S, Hug M, Rusconi S. A transcriptional repressor obtained by alternative translation of a trinucleotide repeat. Nucleic Acids Res 1995; 23:138-45. [PMID: 7532856 PMCID: PMC306641 DOI: 10.1093/nar/23.1.138] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Triplet nucleotide repeats are ubiquitous and rapidly evolving sequences in eucaryotic genomes. They are sporadically found in coding regions of transcription regulators where they become translated in different homopolymeric aminoacid (HPAA) stretches, depending on the local frame. Poly(CAG) yields three different HPAAs (poly Gln, Ser or Ala). Current sequence databases indicate a clear bias in the size and frequency of these HPAAs according to the rule: (Gln)n > (Ser)n >> (Ala)n. Aiming to understand the reasons of this bias, we changed the translational reading frame of the highly polymorphic CAG-repeat that normally encodes poly-Gln in the N-terminal portion of the rat glucocorticoid receptor (GR). The GR mutant in which the CAG repeat is translated to poly-Ala (called GR[Ala]) is incapable of transactivation, but maintains competence for hormone binding, nuclear translocation and specific DNA binding. We show that GR desactivation is obtained only when a very precise threshold length of the repeat is reached. GR[Ala] displays a strong negative dominance when tested for transcriptional activation in vivo and may become useful for selective competition of receptor dependent activities in tissue culture cells and transgenic animals. We discuss the implications of our findings for the understanding of the evolutionary behaviour of trinucleotide repeats in coding sequences.
Collapse
Affiliation(s)
- R B Lanz
- Institut für Molekularbiologie II der Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
765
|
|
766
|
Affiliation(s)
- D Eisenberg
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, Molecular Biology Institute
| |
Collapse
|
767
|
Abstract
Ascaris hemoglobin consists of 8 subunits, each of which contains a C-terminal peptide with the sequence Glu-Glu-Lys-His repeated 4 times. When plotted on a beta-strand, this sequence leads to alternate lysines and glutamates on one side of the strand, and alternate glutamates and histidines on the other side, suggestive of a polar zipper that links the subunits together. A computer search of the protein database showed that the same or similar sequences also occur in other proteins. Some contain long repeats of Asp-Arg or Glu-Arg, among them the small nuclear ribonucleo-U1 70K protein, which is an autoantigen in systemic lupus erythematosis. These repeats appear to constitute the dominant epitopes in the autoimmune reaction. Single chains with Asp-Arg repeats may form alpha-helices in which alternate positively charged ridges and negatively charged grooves compensate each other. Several separate chains with Asp-Arg repeats could compensate each other's charges optimally by zipping together to beta-sheets. Several homeodomains of Drosophila, as well as the human transcription factor SP1, contain repeats of glutamines. Molecular modeling, circular dichroism, and electron and X-ray diffraction studies of a synthetic poly(L-glutamine) showed that it forms beta-sheets held together by hydrogen bonds between the main-chain and side-chain amides. Published data suggest that the function of these glutamine repeats consists of joining essential transcription factors bound to distant segments of DNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Perutz
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|