751
|
Bouitbir J, Haegler P, Singh F, Joerin L, Felser A, Duthaler U, Krähenbühl S. Impaired Exercise Performance and Skeletal Muscle Mitochondrial Function in Rats with Secondary Carnitine Deficiency. Front Physiol 2016; 7:345. [PMID: 27559315 PMCID: PMC4978712 DOI: 10.3389/fphys.2016.00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023] Open
Abstract
Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP), a carnitine analog inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats. Methods: Male Sprague Dawley rats were treated daily with water (control rats; n = 12) or with 20 mg/100 g body weight THP (n = 12) via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion. Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (–24%) and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption) was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected. Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.
Collapse
Affiliation(s)
- Jamal Bouitbir
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland; Swiss Centre of Applied Human ToxicologyBasel, Switzerland
| | - Patrizia Haegler
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - François Singh
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland; Fédération de Médecine Translationelle, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France
| | - Lorenz Joerin
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - Andrea Felser
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - Urs Duthaler
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland
| | - Stephan Krähenbühl
- Department of Clinical Pharmacology and Toxicology, University Hospital BaselBasel, Switzerland; Department of Biomedicine, University of BaselBasel, Switzerland; Swiss Centre of Applied Human ToxicologyBasel, Switzerland
| |
Collapse
|
752
|
The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy. Sci Rep 2016; 6:30610. [PMID: 27506553 PMCID: PMC4978969 DOI: 10.1038/srep30610] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease.
Collapse
|
753
|
MacInnis MJ, Zacharewicz E, Martin BJ, Haikalis ME, Skelly LE, Tarnopolsky MA, Murphy RM, Gibala MJ. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J Physiol 2016; 595:2955-2968. [PMID: 27396440 DOI: 10.1113/jp272570] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS A classic unresolved issue in human integrative physiology involves the role of exercise intensity, duration and volume in regulating skeletal muscle adaptations to training. We employed counterweighted single-leg cycling as a unique within-subject model to investigate the role of exercise intensity in promoting training-induced increases in skeletal muscle mitochondrial content. Six sessions of high-intensity interval training performed over 2 weeks elicited greater increases in citrate synthase maximal activity and mitochondrial respiration compared to moderate-intensity continuous training matched for total work and session duration. These data suggest that exercise intensity, and/or the pattern of contraction, is an important determinant of exercise-induced skeletal muscle remodelling in humans. ABSTRACT We employed counterweighted single-leg cycling as a unique model to investigate the role of exercise intensity in human skeletal muscle remodelling. Ten young active men performed unilateral graded-exercise tests to measure single-leg V̇O2, peak and peak power (Wpeak ). Each leg was randomly assigned to complete six sessions of high-intensity interval training (HIIT) [4 × (5 min at 65% Wpeak and 2.5 min at 20% Wpeak )] or moderate-intensity continuous training (MICT) (30 min at 50% Wpeak ), which were performed 10 min apart on each day, in an alternating order. The work performed per session was matched for MICT (143 ± 8.4 kJ) and HIIT (144 ± 8.5 kJ, P > 0.05). Post-training, citrate synthase (CS) maximal activity (10.2 ± 0.8 vs. 8.4 ± 0.9 mmol kg protein-1 min-1 ) and mass-specific [pmol O2 •(s•mg wet weight)-1 ] oxidative phosphorylation capacities (complex I: 23.4 ± 3.2 vs. 17.1 ± 2.8; complexes I and II: 58.2 ± 7.5 vs. 42.2 ± 5.3) were greater in HIIT relative to MICT (interaction effects, P < 0.05); however, mitochondrial function [i.e. pmol O2 •(s•CS maximal activity)-1 ] measured under various conditions was unaffected by training (P > 0.05). In whole muscle, the protein content of COXIV (24%), NDUFA9 (11%) and mitofusin 2 (MFN2) (16%) increased similarly across groups (training effects, P < 0.05). Cytochrome c oxidase subunit IV (COXIV) and NADH:ubiquinone oxidoreductase subunit A9 (NDUFA9) were more abundant in type I than type II fibres (P < 0.05) but training did not increase the content of COXIV, NDUFA9 or MFN2 in either fibre type (P > 0.05). Single-leg V̇O2, peak was also unaffected by training (P > 0.05). In summary, single-leg cycling performed in an interval compared to a continuous manner elicited superior mitochondrial adaptations in human skeletal muscle despite equal total work.
Collapse
Affiliation(s)
- Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Evelyn Zacharewicz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Brian J Martin
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maria E Haikalis
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
754
|
Layec G, Gifford JR, Trinity JD, Hart CR, Garten RS, Park SY, Le Fur Y, Jeong EK, Richardson RS. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function. Am J Physiol Endocrinol Metab 2016; 311:E358-66. [PMID: 27302751 PMCID: PMC5005269 DOI: 10.1152/ajpendo.00028.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Although theoretically sound, the accuracy and precision of (31)P-magnetic resonance spectroscopy ((31)P-MRS) approaches to quantitatively estimate mitochondrial capacity are not well documented. Therefore, employing four differing models of respiratory control [linear, kinetic, and multipoint adenosine diphosphate (ADP) and phosphorylation potential], this study sought to determine the accuracy and precision of (31)P-MRS assessments of peak mitochondrial adenosine-triphosphate (ATP) synthesis rate utilizing directly measured peak respiration (State 3) in permeabilized skeletal muscle fibers. In 23 subjects of different fitness levels, (31)P-MRS during a 24-s maximal isometric knee extension and high-resolution respirometry in muscle fibers from the vastus lateralis was performed. Although significantly correlated with State 3 respiration (r = 0.72), both the linear (45 ± 13 mM/min) and phosphorylation potential (47 ± 16 mM/min) models grossly overestimated the calculated in vitro peak ATP synthesis rate (P < 0.05). Of the ADP models, the kinetic model was well correlated with State 3 respiration (r = 0.72, P < 0.05), but moderately overestimated ATP synthesis rate (P < 0.05), while the multipoint model, although being somewhat less well correlated with State 3 respiration (r = 0.55, P < 0.05), most accurately reflected peak ATP synthesis rate. Of note, the PCr recovery time constant (τ), a qualitative index of mitochondrial capacity, exhibited the strongest correlation with State 3 respiration (r = 0.80, P < 0.05). Therefore, this study reveals that each of the (31)P-MRS data analyses, including PCr τ, exhibit precision in terms of mitochondrial capacity. As only the multipoint ADP model did not overstimate the peak skeletal muscle mitochondrial ATP synthesis, the multipoint ADP model is the only quantitative approach to exhibit both accuracy and precision.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan S Garten
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Song Y Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, Centre national de la recherche scientifique, Center for Magnetic Resonance in Biology and Medicine, Unité Mixte de Recherche 7339, Marseille, France
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
755
|
Ronchi JA, Francisco A, Passos LAC, Figueira TR, Castilho RF. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria. J Biol Chem 2016; 291:20173-87. [PMID: 27474736 DOI: 10.1074/jbc.m116.730473] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 11/06/2022] Open
Abstract
The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP(+) at the expense of NADH oxidation and H(+) movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP(+) ratio severalfold higher than the NADH/NAD(+) ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated Nnt(C57BL/6J) allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt(+/+), Nnt(+/-), and Nnt(-/-) mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt(+/-) and Nnt(-/-) exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt(-/-) mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt(+/-) mitochondria matched that in the Nnt(+/+) mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism.
Collapse
Affiliation(s)
| | - Annelise Francisco
- From the Department of Clinical Pathology, Faculty of Medical Sciences, and
| | - Luiz Augusto Correa Passos
- Multidisciplinary Center for Biological Investigation on Laboratory Animals Science, University of Campinas, Campinas SP 13083-877, Brazil
| | | | | |
Collapse
|
756
|
Asseburg H, Schäfer C, Müller M, Hagl S, Pohland M, Berressem D, Borchiellini M, Plank C, Eckert GP. Effects of Grape Skin Extract on Age-Related Mitochondrial Dysfunction, Memory and Life Span in C57BL/6J Mice. Neuromolecular Med 2016; 18:378-95. [DOI: 10.1007/s12017-016-8428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
|
757
|
van der Zwaard S, de Ruiter CJ, Noordhof DA, Sterrenburg R, Bloemers FW, de Koning JJ, Jaspers RT, van der Laarse WJ. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists. J Appl Physiol (1985) 2016; 121:636-45. [PMID: 27445298 DOI: 10.1152/japplphysiol.00355.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands;
| | - C Jo de Ruiter
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Dionne A Noordhof
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Renske Sterrenburg
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department of Trauma Surgery, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Jos J de Koning
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Faculty of Behavioural and Movement Sciences, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; and
| | - Willem J van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
758
|
Iacovelli J, Rowe GC, Khadka A, Diaz-Aguilar D, Spencer C, Arany Z, Saint-Geniez M. PGC-1α Induces Human RPE Oxidative Metabolism and Antioxidant Capacity. Invest Ophthalmol Vis Sci 2016; 57:1038-51. [PMID: 26962700 PMCID: PMC4788093 DOI: 10.1167/iovs.15-17758] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Oxidative stress and metabolic dysregulation of the RPE have been implicated in AMD; however, the molecular regulation of RPE metabolism remains unclear. The transcriptional coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a powerful mediator of mitochondrial function. This study examines the ability of PGC-1α to regulate RPE metabolic program and oxidative stress response. Methods Primary human fetal RPE (hfRPE) and ARPE-19 were matured in vitro using standard culture conditions. Mitochondrial mass of RPE was measured using MitoTracker staining and citrate synthase activity. Expression of PGC-1 isoforms, RPE-specific genes, oxidative metabolism proteins, and antioxidant enzymes was analyzed by quantitative PCR and Western blot. Mitochondrial respiration and fatty-acid oxidation were monitored using the Seahorse extracellular flux analyzer. Expression of PGC-1α was increased using adenoviral delivery. ARPE-19 were exposed to hydrogen peroxide to induce oxidative stress. Reactive oxygen species were measured by CM-H2DCFDA fluorescence. Cell death was analyzed by LDH release. Results Maturation of ARPE-19 and hfRPE was associated with significant increase in mitochondrial mass, expression of oxidative phosphorylation (OXPHOS) genes, and PGC-1α gene expression. Overexpression of PGC-1α increased expression of OXPHOS and fatty-acid β-oxidation genes, ultimately leading to the potent induction of mitochondrial respiration and fatty-acid oxidation. PGC-1α gain of function also strongly induced numerous antioxidant genes and, importantly, protected RPE from oxidant-mediated cell death without altering RPE functions. Conclusions This study provides important insights into the metabolic changes associated with RPE functional maturation and identifies PGC-1α as a potent driver of RPE mitochondrial function and antioxidant capacity.
Collapse
Affiliation(s)
- Jared Iacovelli
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Glenn C Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arogya Khadka
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Daniel Diaz-Aguilar
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Carrie Spencer
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Magali Saint-Geniez
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
759
|
Henríquez-Olguín C, Díaz-Vegas A, Utreras-Mendoza Y, Campos C, Arias-Calderón M, Llanos P, Contreras-Ferrat A, Espinosa A, Altamirano F, Jaimovich E, Valladares DM. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout. Front Physiol 2016; 7:282. [PMID: 27471471 PMCID: PMC4944119 DOI: 10.3389/fphys.2016.00282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho–p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47phox–gp91phox interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de ChileSantiago, Chile; Laboratory of Exercise Sciences, Clínica MEDSSantiago, Chile
| | - Alexis Díaz-Vegas
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Yildy Utreras-Mendoza
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Cristian Campos
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Manuel Arias-Calderón
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Paola Llanos
- Facultad de Odontología, Institute for Research in Dental Sciences, Universidad de Chile Santiago, Chile
| | - Ariel Contreras-Ferrat
- Facultad de Medicina, School of Medical Technology, Universidad de Chile Santiago, Chile
| | - Alejandra Espinosa
- Facultad de Medicina, School of Medical Technology, Universidad de Chile Santiago, Chile
| | - Francisco Altamirano
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Enrique Jaimovich
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Denisse M Valladares
- Facultad de Medicina, Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| |
Collapse
|
760
|
Granata C, Oliveira RSF, Little JP, Renner K, Bishop DJ. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J 2016; 30:3413-3423. [PMID: 27402675 DOI: 10.1096/fj.201500100r] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023]
Abstract
Increased mitochondrial content and respiration have both been reported after exercise training. However, no study has directly compared how different training volumes influence mitochondrial respiration and markers of mitochondrial biogenesis. Ten healthy men performed high-intensity interval cycling during 3 consecutive training phases; 4 wk of normal-volume training (NVT; 3/wk), followed by 20 d of high-volume training (HVT; 2/d) and 2 wk of reduced-volume training (RVT; 5 sessions). Resting biopsy samples (vastus lateralis) were obtained at baseline and after each phase. No mitochondrial parameter changed after NVT. After HVT, mitochondrial respiration and citrate synthase activity (∼40-50%), as well as the protein content of electron transport system (ETS) subunits (∼10-40%), and that of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), NRF1, mitochondrial transcription factor A (TFAM), PHF20, and p53 (∼65-170%) all increased compared to baseline; mitochondrial specific respiration remained unchanged. After RVT, all the mitochondrial parameters measured except citrate synthase activity (∼36% above initial) were not significantly different compared to baseline (all P > 0.05). Our findings demonstrate that training volume is an important determinant of training-induced mitochondrial adaptations and highlight the rapid reversibility of human skeletal muscle to a reduction in training volume.-Granata, C., Oliveira, R. S. F., Little, J. P., Renner, K., Bishop, D. J. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle.
Collapse
Affiliation(s)
- Cesare Granata
- Institute of Sport, Exercise, and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia
| | - Rodrigo S F Oliveira
- Institute of Sport, Exercise, and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - David J Bishop
- Institute of Sport, Exercise, and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia;
| |
Collapse
|
761
|
Li C, White SH, Warren LK, Wohlgemuth SE. Effects of aging on mitochondrial function in skeletal muscle of American American Quarter Horses. J Appl Physiol (1985) 2016; 121:299-311. [PMID: 27283918 PMCID: PMC5040552 DOI: 10.1152/japplphysiol.01077.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle function, aerobic capacity, and mitochondrial (Mt) function have been found to decline with age in humans and rodents. However, not much is known about age-related changes in Mt function in equine skeletal muscle. Here, we compared fiber-type composition and Mt function in gluteus medius and triceps brachii muscle between young (age 1.8 ± 0.1 yr, n = 24) and aged (age 17-25 yr, n = 10) American Quarter Horses. The percentage of myosin heavy chain (MHC) IIX was lower in aged compared with young muscles (gluteus, P = 0.092; triceps, P = 0.012), while the percentages of MHC I (gluteus; P < 0.001) and MHC IIA (triceps; P = 0.023) were increased. Mass-specific Mt density, indicated by citrate synthase activity, was unaffected by age in gluteus, but decreased in aged triceps (P = 0.023). Cytochrome-c oxidase (COX) activity per milligram tissue and per Mt unit decreased with age in gluteus (P < 0.001 for both) and triceps (P < 0.001 and P = 0.003, respectively). Activity of 3-hydroxyacyl-CoA dehydrogenase per milligram tissue was unaffected by age, but increased per Mt unit in aged gluteus and triceps (P = 0.023 and P < 0.001, respectively). Mt respiration of permeabilized muscle fibers per milligram tissue was unaffected by age in both muscles. Main effects of age appeared when respiration was normalized to Mt content, with increases in LEAK, oxidative phosphorylation capacity, and electron transport system capacity (P = 0.038, P = 0.045, and P = 0.007, respectively), independent of muscle. In conclusion, equine skeletal muscle aging was accompanied by a shift in fiber-type composition, decrease in Mt density and COX activity, but preserved Mt respiratory function.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Sarah H White
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Lori K Warren
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | | |
Collapse
|
762
|
Park SY, Trinity JD, Gifford JR, Diakos NA, McCreath L, Drakos S, Richardson RS. Mitochondrial function in heart failure: The impact of ischemic and non-ischemic etiology. Int J Cardiol 2016; 220:711-7. [PMID: 27394972 DOI: 10.1016/j.ijcard.2016.06.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Although cardiac mitochondrial dysfunction is associated with heart failure (HF), this is a complex syndrome with two predominant etiologies, ischemic HF (iHF) and non-ischemic HF (niHF), and the exact impact of mitochondrial dysfunction in these two distinct forms of HF is unknown. METHODS AND RESULTS To determine the impact of HF etiology on mitochondrial function, respiration was measured in permeabilized cardiac muscle fibers from patients with iHF (n=17), niHF (n=18), and healthy donor hearts (HdH). Oxidative phosphorylation capacity (OXPHOS), assessed as state 3 respiration, fell progressively from HdH to niHF, to iHF (Complex I+II: 54±1; 34±4; 27±3pmol·s(-1)·mg(-1)) as did citrate synthase activity (CSA: 206±18; 129±6; 82±6nmol·mg(-1)·min(-1)). Although still significantly lower than HdH, normalization of OXPHOS by CSA negated the difference in mass specific OXPHOS between iHF and niHF. Interestingly, Complex I state 2 respiration increased progressively from HdH, to niHF, to iHF, whether or not normalized for CSA (0.6±0.2; 1.1±0.3; 2.3±0.3; pmol·mg(-1)·CSA), such that the respiratory control ratio (RCR), fell in the same manner across groups. Finally, both the total free radical levels (60±6; 46±4AU) and level of mitochondrial derived superoxide (1.0±0.2; 0.7±0.1AU) were greater in iHF compared to niHF, respectively. CONCLUSIONS Thus, the HF-related attenuation in OXPHOS actually appears to be independent of etiology when the lower mitochondrial content of iHF is taken into account. However, these findings provide evidence of deleterious intrinsic mitochondrial changes in iHF, compared to niHF, including greater proton leak, attenuated OXPHOS efficiency, and augmented free radical levels.
Collapse
Affiliation(s)
- Song-Young Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Nikolaos A Diakos
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lauren McCreath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stavros Drakos
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
763
|
Hagl S, Asseburg H, Heinrich M, Sus N, Blumrich EM, Dringen R, Frank J, Eckert GP. Effects of Long-Term Rice Bran Extract Supplementation on Survival, Cognition and Brain Mitochondrial Function in Aged NMRI Mice. Neuromolecular Med 2016; 18:347-63. [PMID: 27350374 DOI: 10.1007/s12017-016-8420-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/14/2016] [Indexed: 11/27/2022]
Abstract
Aging represents a major risk factor for the development of neurodegenerative diseases like Alzheimer's disease (AD). As mitochondrial dysfunction plays an important role in brain aging and occurs early in the development of AD, the prevention of mitochondrial dysfunction might help to slow brain aging and the development of neurodegenerative diseases. Rice bran extract (RBE) contains high concentrations of vitamin E congeners and γ-oryzanol. We have previously shown that RBE increased mitochondrial function and protected from mitochondrial dysfunction in vitro and in short-term in vivo feeding studies. To mimic the use of RBE as food additive, we have now investigated the effects of a long-term (6 months) feeding of RBE on survival, behavior and brain mitochondrial function in aged NMRI mice. RBE administration significantly increased survival and performance of aged NMRI mice in the passive avoidance and Y-maze test. Brain mitochondrial dysfunction found in aged mice was ameliorated after RBE administration. Furthermore, data from mRNA and protein expression studies revealed an up-regulation of mitochondrial proteins in RBE-fed mice, suggesting an increase in mitochondrial content which is mediated by a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-dependent mechanism. Our findings suggest that a long-term treatment with a nutraceutical containing RBE could be useful for slowing down brain aging and thereby delaying or even preventing AD.
Collapse
Affiliation(s)
- Stephanie Hagl
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Heike Asseburg
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Martina Heinrich
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Nadine Sus
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Gunter P Eckert
- Department of Pharmacology, Goethe-University, Biozentrum Niederursel, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany. .,Institute of Nutritional Sciences, University of Giessen, Wilhelmstrasse 20, 35392, Giessen, Germany.
| |
Collapse
|
764
|
Akhnokh MK, Yang FH, Samokhvalov V, Jamieson KL, Cho WJ, Wagg C, Takawale A, Wang X, Lopaschuk GD, Hammock BD, Kassiri Z, Seubert JM. Inhibition of Soluble Epoxide Hydrolase Limits Mitochondrial Damage and Preserves Function Following Ischemic Injury. Front Pharmacol 2016; 7:133. [PMID: 27375480 PMCID: PMC4896112 DOI: 10.3389/fphar.2016.00133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022] Open
Abstract
Aims: Myocardial ischemia can result in marked mitochondrial damage leading to cardiac dysfunction, as such identifying novel mechanisms to limit mitochondrial injury is important. This study investigated the hypothesis that inhibiting soluble epoxide hydrolase (sEH), responsible for converting epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids protects mitochondrial from injury caused by myocardial infarction. Methods: sEH null and WT littermate mice were subjected to surgical occlusion of the left anterior descending (LAD) artery or sham operation. A parallel group of WT mice received an sEH inhibitor, trans-4-[4-(3-adamantan-1-y1-ureido)-cyclohexyloxy]-benzoic acid (tAUCB; 10 mg/L) or vehicle in the drinking water 4 days prior and 7 days post-MI. Cardiac function was assessed by echocardiography prior- and 7-days post-surgery. Heart tissues were dissected into infarct, peri-, and non-infarct regions to assess ultrastructure by electron microscopy. Complexes I, II, IV, citrate synthase, PI3K activities, and mitochondrial respiration were assessed in non-infarct regions. Isolated working hearts were used to measure the rates of glucose and palmitate oxidation. Results: Echocardiography revealed that tAUCB treatment or sEH deficiency significantly improved systolic and diastolic function post-MI compared to controls. Reduced infarct expansion and less adverse cardiac remodeling were observed in tAUCB-treated and sEH null groups. EM data demonstrated mitochondrial ultrastructure damage occurred in infarct and peri-infarct regions but not in non-infarct regions. Inhibition of sEH resulted in significant improvements in mitochondrial respiration, ATP content, mitochondrial enzymatic activities and restored insulin sensitivity and PI3K activity. Conclusion: Inhibition or genetic deletion of sEH protects against long-term ischemia by preserving cardiac function and maintaining mitochondrial efficiency.
Collapse
Affiliation(s)
- Maria K Akhnokh
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-020M Katz Group Centre for Pharmacy and Health Research, University of Alberta Edmonton, AB, Canada
| | - Feng Hua Yang
- Guangdong Laboratory Animal Monitoring Institute Guangdong, China
| | - Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-020M Katz Group Centre for Pharmacy and Health Research, University of Alberta Edmonton, AB, Canada
| | - Kristi L Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-020M Katz Group Centre for Pharmacy and Health Research, University of Alberta Edmonton, AB, Canada
| | - Woo Jung Cho
- Imaging Core Facility, Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | - Cory Wagg
- Mazankowski Alberta Heart Institute, University of AlbertaEdmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| | - Abhijit Takawale
- Mazankowski Alberta Heart Institute, University of AlbertaEdmonton, AB, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| | - Xiuhua Wang
- Mazankowski Alberta Heart Institute, University of AlbertaEdmonton, AB, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of AlbertaEdmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada; Department of Pediatrics, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| | - Bruce D Hammock
- Department of Entomology and Nematology Comprehensive Cancer Center, University of California, Davis Davis, CA, USA
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of AlbertaEdmonton, AB, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-020M Katz Group Centre for Pharmacy and Health Research, University of AlbertaEdmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of AlbertaEdmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
765
|
Stephenson EJ, Ragauskas A, Jaligama S, Redd JR, Parvathareddy J, Peloquin MJ, Saravia J, Han JC, Cormier SA, Bridges D. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab 2016; 310:E1003-15. [PMID: 27117006 PMCID: PMC4935140 DOI: 10.1152/ajpendo.00521.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/19/2016] [Indexed: 01/22/2023]
Abstract
We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle.
Collapse
Affiliation(s)
- Erin J Stephenson
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Alyse Ragauskas
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Sridhar Jaligama
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - JeAnna R Redd
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jyothi Parvathareddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Matthew J Peloquin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jordy Saravia
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Joan C Han
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Stephania A Cormier
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Dave Bridges
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
766
|
Chu MJJ, Premkumar R, Hickey AJR, Jiang Y, Delahunt B, Phillips ARJ, Bartlett ASJR. Steatotic livers are susceptible to normothermic ischemia-reperfusion injury from mitochondrial Complex-I dysfunction. World J Gastroenterol 2016; 22:4673-4684. [PMID: 27217699 PMCID: PMC4870074 DOI: 10.3748/wjg.v22.i19.4673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the effects of ischemic preconditioning (IPC, 10-min ischemia/10-min reperfusion) on steatotic liver mitochondrial function after normothermic ischemia-reperfusion injury (IRI).
METHODS: Sixty male Sprague-Dawley rats were fed 8-wk with either control chow or high-fat/high-sucrose diet inducing > 60% mixed steatosis. Three groups (n = 10/group) for each dietary state were tested: (1) the IRI group underwent 60 min partial hepatic ischemia and 4 h reperfusion; (2) the IPC group underwent IPC prior to same standard IRI; and (3) sham underwent the same surgery without IRI or IPC. Hepatic mitochondrial function was analyzed by oxygraphs. Mitochondrial Complex-I, Complex-II enzyme activity, serum alanine aminotransferase (ALT), and histological injury were measured.
RESULTS: Steatotic-IRI livers had a greater increase in ALT (2476 ± 166 vs 1457 ± 103 IU/L, P < 0.01) and histological injury following IRI compared to the lean liver group. Steatotic-IRI demonstrated lower Complex-I activity at baseline [78.4 ± 2.5 vs 116.4 ± 6.0 nmol/(min.mg protein), P < 0.001] and following IRI [28.0 ± 6.2 vs 104.3 ± 12.6 nmol/(min.mg protein), P < 0.001]. Steatotic-IRI also demonstrated impaired Complex-I function post-IRI compared to the lean liver IRI group. Complex-II activity was unaffected by hepatic steatosis or IRI. Lean liver mitochondrial function was unchanged following IRI. IPC normalized ALT and histological injury in steatotic livers but had no effect on overall steatotic liver mitochondrial function or individual mitochondrial complex enzyme activities.
CONCLUSION: Warm IRI impairs steatotic liver Complex-I activity and function. The protective effects of IPC in steatotic livers may not be mediated through mitochondria.
Collapse
|
767
|
Samokhvalov V, Jamieson KL, Fedotov I, Endo T, Seubert JM. SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia-Reoxygenation Injury in Cardiac Cells. Front Pharmacol 2016; 7:124. [PMID: 27242531 PMCID: PMC4868841 DOI: 10.3389/fphar.2016.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/28/2016] [Indexed: 01/11/2023] Open
Abstract
Hypoxia–reoxygenation (H/R) injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex, and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3) is an n - 3 polyunsaturated fatty acid obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s) protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta Edmonton, AB, Canada
| | - Kristi L Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta Edmonton, AB, Canada
| | - Ilia Fedotov
- Department of Biochemistry, Saratov State Medical University Saratov, Russia
| | - Tomoko Endo
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of AlbertaEdmonton, AB, Canada; Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of HokkaidoHokkaido, Japan
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of AlbertaEdmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
768
|
Fletcher JA, Linden MA, Sheldon RD, Meers GM, Morris EM, Butterfield A, Perfield JW, Thyfault JP, Rector RS. Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations. Am J Physiol Gastrointest Liver Physiol 2016; 310:G832-43. [PMID: 27012775 PMCID: PMC4895870 DOI: 10.1152/ajpgi.00355.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/16/2016] [Indexed: 01/31/2023]
Abstract
Exercise stimulates hepatic mitochondrial adaptations; however, the mechanisms remain largely unknown. Here we tested whether FGF21 plays an obligatory role in exercise induced hepatic mitochondrial adaptations by testing exercise responses in FGF21 knockout mice. FGF21 knockout (FGF21-KO) and wild-type (WT) mice (11-12 wk of age) had access to voluntary running wheels for exercise (EX) or remained sedentary for 8 wk. FGF21 deficiency resulted in greater body weight, adiposity, serum cholesterol, insulin, and glucose concentrations compared with WT mice (P < 0.05). In addition, hepatic mitochondrial complete palmitate oxidation, β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity, and nuclear content of PGC-1α were 30-50% lower in FGF21-KO mice compared with WT mice (P < 0.01). EX effectively lowered body weight, adiposity, serum triglycerides, free fatty acids, and insulin and normalized mitochondrial complete palmitate oxidation in the FGF21-KO mice, whereas the reduced hepatic β-HAD activity and lowered nuclear content of PGC-1α in FGF21-KO mice were not restored by EX. In addition, EX increased hepatic CPT-1α mRNA expression and ACC phosphorylation (a marker of increased AMPK activity) and reduced hepatic triacylglycerol content in both genotypes. However, FGF21-KO mice displayed a lower EX-induced increase in the mRNA expression of the hepatic gluconeogenic gene, PEPCK, compared with WT. In conclusion, FGF21 does not appear necessary for exercise-induced systemic and hepatic mitochondrial adaptations, but the increased adiposity, hyperinsulinemia, and impairments in hepatic mitochondrial function induced by FGF21 deficiency can be partially rescued by daily wheel running exercise.
Collapse
Affiliation(s)
- Justin A. Fletcher
- 1Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; ,3Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri;
| | - Melissa A. Linden
- 1Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; ,3Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri;
| | - Ryan D. Sheldon
- 1Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; ,3Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri;
| | - Grace M. Meers
- 2Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri; ,3Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri;
| | - E. Matthew Morris
- 5Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | | | - James W. Perfield
- 4Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana;
| | - John P. Thyfault
- 5Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and ,6Kansas City Veterans Affairs Medical Center, Research Service, Kansas, City, Missouri
| | - R. Scott Rector
- 1Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; ,2Department of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri; ,3Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri;
| |
Collapse
|
769
|
Molina AJA, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF, Eggebeen J, Haykowsky MJ, Brubaker PH, Kitzman DW. Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients With Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance. JACC-HEART FAILURE 2016; 4:636-45. [PMID: 27179829 DOI: 10.1016/j.jchf.2016.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to examine skeletal muscle mitochondria content, oxidative capacity, and the expression of key mitochondrial dynamics proteins in patients with heart failure with preserved ejection fraction (HFpEF), as well as to determine potential relationships with measures of exercise performance. BACKGROUND Multiple lines of evidence indicate that severely reduced peak exercise oxygen uptake (peak VO2) in older patients with HFpEF is related to abnormal skeletal muscle oxygen utilization. Mitochondria are key regulators of skeletal muscle metabolism; however, little is known about how these organelles are affected in HFpEF. METHODS Both vastus lateralis skeletal muscle citrate synthase activity and the expression of porin and regulators of mitochondrial fusion were examined in older patients with HFpEF (n = 20) and healthy, age-matched control subjects (n = 17). RESULTS Compared with age-matched healthy control subjects, mitochondrial content assessed by porin expression was 46% lower (p = 0.01), citrate synthase activity was 29% lower (p = 0.01), and Mfn2 (mitofusin 2) expression was 54% lower (p <0.001) in patients with HFpEF. Expression of porin was significantly positively correlated with both peak VO2 and 6-min walk distance (r = 0.48, p = 0.003 and r = 0.33, p = 0.05, respectively). Expression of Mfn2 was also significantly positively correlated with both peak VO2 and 6-min walk distance (r = 0.40, p = 0.02 and r = 0.37, p = 0.03 respectively). CONCLUSIONS These findings suggest that skeletal muscle oxidative capacity, mitochondrial content, and mitochondrial fusion are abnormal in older patients with HFpEF and might contribute to their severe exercise intolerance.
Collapse
Affiliation(s)
- Anthony J A Molina
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Manish S Bharadwaj
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cynthia Van Horn
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barbara J Nicklas
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary F Lyles
- Gerontology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Joel Eggebeen
- Cardiology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mark J Haykowsky
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Peter H Brubaker
- Department of Exercise and Health Science, Wake Forest University, Winston-Salem, North Carolina
| | - Dalane W Kitzman
- Cardiology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
770
|
Sorensen JC, Cheregi BD, Timpani CA, Nurgali K, Hayes A, Rybalka E. Mitochondria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting? Cancer Chemother Pharmacol 2016; 78:673-83. [PMID: 27167634 DOI: 10.1007/s00280-016-3045-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Chemotherapy has been associated with increased mitochondrial reactive oxygen species production, mitochondrial dysfunction and skeletal muscle atrophy leading to severe patient clinical complications including skeletal muscle fatigue, insulin resistance and wasting. The exact mechanisms behind this skeletal muscle toxicity are largely unknown, and as such co-therapies to attenuate chemotherapy-induced side effects are lacking. Here, we review the current literature describing the clinical manifestations and molecular origins of chemotherapy-induced myopathy with a focus on the mitochondria as the target organelle via which chemotherapeutic agents establish toxicity. We explore the likely mechanisms through which myopathy is induced, using the anthracycline doxorubicin, and the platinum-based alkylating agent oxaliplatin, as examples. Finally, we recommend directions for future research and outline the potential significance of these proposed directions.
Collapse
Affiliation(s)
- James C Sorensen
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia.,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia
| | - Beatrice D Cheregi
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia
| | - Cara A Timpani
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia.,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia
| | - Alan Hayes
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, 8001, Australia.,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia
| | - Emma Rybalka
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia. .,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, 8001, Australia. .,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia.
| |
Collapse
|
771
|
Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med Sci Sports Exerc 2016; 47:1922-31. [PMID: 25539479 DOI: 10.1249/mss.0000000000000605] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in numerous clinical settings. Endurance exercise has long been known to increase mitochondrial function in the skeletal muscle. Comparatively little is known regarding the effect of resistance exercise training (RET) on skeletal muscle mitochondrial respiratory function. PURPOSE The purpose of the current study was to determine the effect of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. METHODS Here, we studied the effect of a 12-wk RET program on skeletal muscle mitochondrial function in 11 young healthy men. Muscle biopsies were collected before and after the 12-wk training program, and mitochondrial respiratory capacity was determined in permeabilized myofibers by high-resolution respirometry. RESULTS RET increased lean body mass and quadriceps muscle strength by 4% and 15%, respectively (P < 0.001). Coupled mitochondrial respiration supported by complex I, and complex I and II substrates increased by 2- and 1.4-fold, respectively (P < 0.01). The ratio of coupled complex I-supported respiration to maximal respiration increased with RET (P < 0.05), as did complex I protein abundance (P < 0.05), whereas the substrate control ratio for succinate was reduced after RET (P < 0.001). Transcripts responsible for proteins critical to electron transfer and NAD production increased with training (P < 0.05), whereas transcripts involved in mitochondrial biogenesis were unaltered. CONCLUSIONS Collectively, 12 wk of RET resulted in qualitative and quantitative changes in skeletal muscle mitochondrial respiration. This adaptation was accompanied by modest changes in mitochondrial proteins and transcript expression. RET seems to be a means to augment the respiratory capacity and intrinsic function of skeletal muscle mitochondria.
Collapse
Affiliation(s)
- Craig Porter
- 1Metabolism Unit, Shriners Hospitals for Children, Galveston, TX; 2Department of Surgery, University of Texas Medical Branch, Galveston, TX; 3Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX; 4Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX; and 5Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | | | | | | | | |
Collapse
|
772
|
Koliaki C, Roden M. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr 2016; 36:337-67. [PMID: 27146012 DOI: 10.1146/annurev-nutr-071715-050656] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans.
Collapse
Affiliation(s)
- Chrysi Koliaki
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| |
Collapse
|
773
|
Severe Burn Injury Induces Thermogenically Functional Mitochondria in Murine White Adipose Tissue. Shock 2016; 44:258-64. [PMID: 26009824 DOI: 10.1097/shk.0000000000000410] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic cold exposure induces functionally thermogenic mitochondria in the inguinal white adipose tissue (iWAT) of mice. Whether this response occurs in pathophysiological states remains unclear. The purpose of this study was to determine the impact of severe burn trauma on iWAT mitochondrial function in mice. Male BALB/c mice (10-12 weeks) received full-thickness scald burns to ∼30% of the body surface area. Inguinal white adipose tissue was harvested from mice at 1, 4, 10, 20, and 40 days postinjury. Total and uncoupling protein 1 (UCP1)-dependent mitochondrial thermogenesis were determined in iWAT. Citrate synthase activity was determined as a proxy of mitochondrial abundance. Immunohistochemistry was performed to assess iWAT morphology and UCP1 expression. Uncoupling protein 1-dependent respiration was significantly greater at 4 and 10 days after burn compared with sham, peaking at 20 days after burn (P < 0.001). Citrate synthase activity was threefold greater at 4, 10, 20, and 40 days after burn versus sham (P < 0.05). Per mitochondrion, UCP1 function increased after burn trauma (P < 0.05). After burn trauma, iWAT exhibited numerous multilocular lipid droplets that stained positive for UCP1. The current findings demonstrate the induction of thermogenically competent mitochondria within rodent iWAT in a model of severe burn trauma. These data identify a specific pathology that induces the browning of white adipose tissue in vivo and may offer a mechanistic explanation for the chronic hypermetabolism observed in burn victims.
Collapse
|
774
|
Kanabus M, Fassone E, Hughes SD, Bilooei SF, Rutherford T, Donnell MO, Heales SJR, Rahman S. The pleiotropic effects of decanoic acid treatment on mitochondrial function in fibroblasts from patients with complex I deficient Leigh syndrome. J Inherit Metab Dis 2016; 39:415-426. [PMID: 27080638 PMCID: PMC4851692 DOI: 10.1007/s10545-016-9930-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 11/07/2022]
Abstract
There is growing interest in the use of the ketogenic diet (KD) to treat inherited metabolic diseases including mitochondrial disorders. However, neither the mechanism whereby the diet may be working, nor if it could benefit all patients with mitochondrial disease, is known. This study focusses on decanoic acid (C10), a component of the medium chain triglyceride KD, and a ligand for the nuclear receptor PPAR-γ known to be involved in mitochondrial biogenesis. The effects of C10 were investigated in primary fibroblasts from a cohort of patients with Leigh syndrome (LS) caused by nuclear-encoded defects of respiratory chain complex I, using mitochondrial respiratory chain enzyme assays, gene expression microarray, qPCR and flow cytometry. Treatment with C10 increased citrate synthase activity, a marker of cellular mitochondrial content, in 50 % of fibroblasts obtained from individuals diagnosed with LS in a PPAR-γ-mediated manner. Gene expression analysis and qPCR studies suggested that treating cells with C10 supports fatty acid metabolism, through increasing ACADVL and CPT1 expression, whilst downregulating genes involved in glucose metabolism (PDK3, PDK4). PCK2, involved in blocking glucose metabolism, was upregulated, as was CAT, encoding catalase. Moreover, treatment with C10 also decreased oxidative stress in complex I deficient (rotenone treated) cells. However, since not all cells from subjects with LS appeared to respond to C10, prior cellular testing in vitro could be employed as a means for selecting individuals for subsequent clinical studies involving C10 preparations.
Collapse
Affiliation(s)
- Marta Kanabus
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Elisa Fassone
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sean David Hughes
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Chemical Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Sara Farahi Bilooei
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | | | | | - Simon J R Heales
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Chemical Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Shamima Rahman
- Genetics and Genomic Medicine, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- Metabolic Department, Great Ormond Street Hospital Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|
775
|
Li DJ, Fu H, Zhao T, Ni M, Shen FM. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism 2016; 65:747-756. [PMID: 27085781 DOI: 10.1016/j.metabol.2016.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Physical exercise induces many adaptive changes in skeletal muscle and the whole body and improves metabolic characteristics. Fibroblast growth-factor 23 (FGF23) is a unique member of the FGF family that acts as a hormone regulating phosphate metabolism, calcitriol concentration, and kidney functions. The role of FGF23 in exercise and skeletal muscle is largely unknown yet. MATERIALS AND METHODS C57BL/6J mice were exercised on a motor treadmill. Mice serum FGF23 levels; FGF23 mRNA expression in various organs including the liver, heart, skeletal muscle tissue, and thyroid; and FGF23 receptor Klotho mRNA expression were examined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunoblotting, respectively, after a single bout of acute exercise (60min), exhaustive exercise, and chronic prolonged exercise (60min every day for one week). C57BL/6J mice were injected with recombinant FGF23 (100mg/kg, twice per day, i.p.) or vehicle control (saline) for 3days, and then the exercise performance, reactive oxygen species (ROS), H2O2 production, and mitochondrial functional biomarkers in muscle (gene expression of sirtuin 1, PPAR-δ, PGC-1α and mitochondrial transcription factor A [TFAM], and citrate synthase activity) were assayed. RESULTS Three forms of exercise, acute exercise, exhaustive exercise, and chronic exercise, increased serum FGF23 levels. However, only chronic exercise upregulated FGF23 mRNA and protein expression in skeletal muscle. FGF23 mRNA expression in the heart, liver, and thyroid was not affected. FGF23 protein was mainly located in the cytoplasm in skeletal muscle tissue and the localization of FGF23 was not altered by exercise. Exogenous FGF23 treatment significantly extended the time to exhaustion and reduced the exercise-induced ROS and H2O2 production. FGF23 treatment increased the mRNA level of PPAR-δ and citrate synthase activity, but did not influence the mRNA expression of sirtuin 1, PGC-1α, and TFAM in skeletal muscle. CONCLUSION These results demonstrate that exercise-stimulated FGF23 promotes exercise performance via controlling the excess ROS production and enhancing mitochondrial function in skeletal muscle, which reveals an entirely novel role of FGF23 in skeletal muscle.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Ting Zhao
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Min Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
776
|
Schöpf B, Schäfer G, Weber A, Talasz H, Eder IE, Klocker H, Gnaiger E. Oxidative phosphorylation and mitochondrial function differ between human prostate tissue and cultured cells. FEBS J 2016; 283:2181-96. [DOI: 10.1111/febs.13733] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/09/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Bernd Schöpf
- Division of Genetic Epidemiology Department of Medical Genetics Molecular and Clinical Pharmacology Medical University of Innsbruck Austria
| | - Georg Schäfer
- Division of Experimental Urology Department of Urology Medical University of Innsbruck Austria
- Department of Pathology Medical University of Innsbruck Austria
| | - Anja Weber
- Division of Experimental Urology Department of Urology Medical University of Innsbruck Austria
| | - Heribert Talasz
- Biocenter Section for Clinical Biochemistry Medical University of Innsbruck Austria
| | - Iris E. Eder
- Division of Experimental Urology Department of Urology Medical University of Innsbruck Austria
| | - Helmut Klocker
- Division of Experimental Urology Department of Urology Medical University of Innsbruck Austria
| | - Erich Gnaiger
- Department of General and Transplant Surgery D. Swarovski Research Laboratory Medical University of Innsbruck Austria
| |
Collapse
|
777
|
Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PLoS One 2016; 11:e0154075. [PMID: 27115137 PMCID: PMC4846072 DOI: 10.1371/journal.pone.0154075] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/08/2016] [Indexed: 02/03/2023] Open
Abstract
Aims We investigated whether sprint interval training (SIT) was a time-efficient exercise strategy to improve insulin sensitivity and other indices of cardiometabolic health to the same extent as traditional moderate-intensity continuous training (MICT). SIT involved 1 minute of intense exercise within a 10-minute time commitment, whereas MICT involved 50 minutes of continuous exercise per session. Methods Sedentary men (27±8y; BMI = 26±6kg/m2) performed three weekly sessions of SIT (n = 9) or MICT (n = 10) for 12 weeks or served as non-training controls (n = 6). SIT involved 3x20-second ‘all-out’ cycle sprints (~500W) interspersed with 2 minutes of cycling at 50W, whereas MICT involved 45 minutes of continuous cycling at ~70% maximal heart rate (~110W). Both protocols involved a 2-minute warm-up and 3-minute cool-down at 50W. Results Peak oxygen uptake increased after training by 19% in both groups (SIT: 32±7 to 38±8; MICT: 34±6 to 40±8ml/kg/min; p<0.001 for both). Insulin sensitivity index (CSI), determined by intravenous glucose tolerance tests performed before and 72 hours after training, increased similarly after SIT (4.9±2.5 to 7.5±4.7, p = 0.002) and MICT (5.0±3.3 to 6.7±5.0 x 10−4 min-1 [μU/mL]-1, p = 0.013) (p<0.05). Skeletal muscle mitochondrial content also increased similarly after SIT and MICT, as primarily reflected by the maximal activity of citrate synthase (CS; P<0.001). The corresponding changes in the control group were small for VO2peak (p = 0.99), CSI (p = 0.63) and CS (p = 0.97). Conclusions Twelve weeks of brief intense interval exercise improved indices of cardiometabolic health to the same extent as traditional endurance training in sedentary men, despite a five-fold lower exercise volume and time commitment.
Collapse
Affiliation(s)
- Jenna B. Gillen
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brian J. Martin
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Lauren E. Skelly
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Mark A. Tarnopolsky
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin J. Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- * E-mail:
| |
Collapse
|
778
|
Amino acids trigger down-regulation of superoxide via TORC pathway in the midgut of Rhodnius prolixus. Biosci Rep 2016; 36:BSR20160061. [PMID: 26945025 PMCID: PMC4832317 DOI: 10.1042/bsr20160061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/03/2016] [Indexed: 01/20/2023] Open
Abstract
Sensing incoming nutrients is an important and critical event for intestinal cells to sustain life of the whole organism. The TORC is a major protein complex involved in monitoring the nutritional status and is activated by elevated amino acid concentrations. An important feature of haematophagy is that huge amounts of blood are ingested in a single meal, which results in the release of large quantities of amino acids, together with the haemoglobin prosthetic group, haem, which decomposes hydroperoxides and propagates oxygen-derived free radicals. Our previous studies demonstrated that reactive oxygen species (ROS) levels were diminished in the mitochondria and midgut of the Dengue fever mosquito, Aedes aegypti, immediately after a blood meal. We proposed that this mechanism serves to avoid oxidative damage that would otherwise be induced by haem following a blood meal. Studies also performed in mosquitoes have shown that blood or amino acids controls protein synthesis through TORC activation. It was already proposed, in different models, a link between ROS and TOR, however, little is known about TOR signalling in insect midgut nor about the involvement of ROS in this pathway. Here, we studied the effect of a blood meal on ROS production in the midgut of Rhodnius prolixus We observed that blood meal amino acids decreased ROS levels in the R. prolixus midgut immediately after feeding, via lowering mitochondrial superoxide production and involving the amino acid-sensing TORC pathway.
Collapse
|
779
|
Snook LA, MacPherson REK, Monaco CMF, Frendo-Cumbo S, Castellani L, Peppler WT, Anderson ZG, Buzelle SL, LeBlanc PJ, Holloway GP, Wright DC. Prior exercise training blunts short-term high-fat diet-induced weight gain. Am J Physiol Regul Integr Comp Physiol 2016; 311:R315-24. [PMID: 27101294 DOI: 10.1152/ajpregu.00072.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/12/2016] [Indexed: 01/02/2023]
Abstract
High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet.
Collapse
Affiliation(s)
- Laelie A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Rebecca E K MacPherson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Cynthia M F Monaco
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Scott Frendo-Cumbo
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Laura Castellani
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Zachary G Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Samyra L Buzelle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
780
|
Mason SA, Della Gatta PA, Snow RJ, Russell AP, Wadley GD. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: Findings of a randomized controlled study. Free Radic Biol Med 2016; 93:227-38. [PMID: 26774673 DOI: 10.1016/j.freeradbiomed.2016.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
AIM/HYPOTHESIS Skeletal muscle insulin resistance and oxidative stress are characteristic metabolic disturbances in people with type 2 diabetes. Studies in insulin resistant rodents show an improvement in skeletal muscle insulin sensitivity and oxidative stress following antioxidant supplementation. We therefore investigated the potential ameliorative effects of antioxidant ascorbic acid (AA) supplementation on skeletal muscle insulin sensitivity and oxidative stress in people with type 2 diabetes. METHODS Participants with stable glucose control commenced a randomized cross-over study involving four months of AA (2 × 500 mg/day) or placebo supplementation. Insulin sensitivity was assessed using a hyperinsulinaemic, euglycaemic clamp coupled with infusion of 6,6-D2 glucose. Muscle biopsies were measured for AA concentration and oxidative stress markers that included basal measures (2',7'-dichlorofluorescin [DCFH] oxidation, ratio of reduced-to-oxidized glutathione [GSH/GSSG] and F2-Isoprostanes) and insulin-stimulated measures (DCFH oxidation). Antioxidant concentrations, citrate synthase activity and protein abundances of sodium-dependent vitamin C transporter 2 (SVCT2), total Akt and phosphorylated Akt (ser473) were also measured in muscle samples. RESULTS AA supplementation significantly increased insulin-mediated glucose disposal (delta rate of glucose disappearance; ∆Rd) (p=0.009), peripheral insulin-sensitivity index (p=0.046), skeletal muscle AA concentration (p=0.017) and muscle SVCT2 protein expression (p=0.008); but significantly decreased skeletal muscle DCFH oxidation during hyperinsulinaemia (p=0.007) when compared with placebo. Total superoxide dismutase activity was also lower following AA supplementation when compared with placebo (p=0.006). Basal oxidative stress markers, citrate synthase activity, endogenous glucose production, HbA1C and muscle Akt expression were not significantly altered by AA supplementation. CONCLUSIONS/INTERPRETATION In summary, oral AA supplementation ameliorates skeletal muscle oxidative stress during hyperinsulinaemia and improves insulin-mediated glucose disposal in people with type 2 diabetes. Findings implicate AA supplementation as a potentially inexpensive, convenient, and effective adjunct therapy in the treatment of insulin resistance in people with type 2 diabetes.
Collapse
Affiliation(s)
- Shaun A Mason
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Paul A Della Gatta
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Glenn D Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
| |
Collapse
|
781
|
Salin K, Auer SK, Anderson GJ, Selman C, Metcalfe NB. Inadequate food intake at high temperatures is related to depressed mitochondrial respiratory capacity. ACTA ACUST UNITED AC 2016; 219:1356-62. [PMID: 26944497 DOI: 10.1242/jeb.133025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
Abstract
Animals, especially ectotherms, are highly sensitive to the temperature of their surrounding environment. Extremely high temperature, for example, induces a decline of average performance of conspecifics within a population, but individual heterogeneity in the ability to cope with elevating temperatures has rarely been studied. Here, we examined inter-individual variation in feeding ability and consequent growth rate of juvenile brown trout Salmo trutta acclimated to a high temperature (19°C), and investigated the relationship between these metrics of whole-animal performances and among-individual variation in mitochondrial respiration capacity. Food was provided ad libitum, yet intake varied ten-fold amongst individuals, resulting in some fish losing weight whilst others continued to grow. Almost half of the variation in food intake was related to variability in mitochondrial capacity: low intake (and hence growth failure) was associated with high leak respiration rates within liver and muscle mitochondria, and a lower coupling of muscle mitochondria. These observations, combined with the inability of fish with low food consumption to increase their intake despite ad libitum food levels, suggest a possible insufficient capacity of the mitochondria for maintaining ATP homeostasis. Individual variation in thermal performance is likely to confer variation in the upper limit of an organism's thermal niche and might affect the structure of wild populations in warming environments.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
782
|
Severinsen K, Dalgas U, Overgaard K, Pedersen AR, øRtenblad N, Lund C, Jakobsen JK, Andersen H. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors. Muscle Nerve 2016; 53:748-54. [DOI: 10.1002/mus.24907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Kaare Severinsen
- Department of Neurology; Aarhus University Hospital; Noerrebrogade 44 8000 Aarhus C Denmark
| | - Ulrik Dalgas
- Department of Public Health; Section of Sport Science Aarhus University; Denmark
| | - Kristian Overgaard
- Department of Public Health; Section of Sport Science Aarhus University; Denmark
| | - Asger R. Pedersen
- Hammel Neurorehabilitation and Research Centre; Aarhus University; Denmark
| | - Niels øRtenblad
- University of Southern Denmark, Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), Odense, Denmark and Swedish Winter Sports Research Centre, Department of Health Sciences Mid Sweden University; Sweden
| | | | | | - Henning Andersen
- Department of Neurology; Aarhus University Hospital; Noerrebrogade 44 8000 Aarhus C Denmark
| |
Collapse
|
783
|
Purity matters: A workflow for the valid high-resolution lipid profiling of mitochondria from cell culture samples. Sci Rep 2016; 6:21107. [PMID: 26892142 PMCID: PMC4759577 DOI: 10.1038/srep21107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/15/2016] [Indexed: 11/09/2022] Open
Abstract
Subcellular lipidomics is a novel field of research that requires the careful combination of several pre-analytical and analytical steps. To define a reliable strategy for mitochondrial lipid profiling, we performed a systematic comparison of different mitochondria isolation procedures by western blot analyses and comprehensive high-resolution lipidomics. Using liver-derived HepG2 cells, we compared three common mitochondria isolation methods, differential centrifugation (DC), ultracentrifugation (UC) and a magnetic bead-assisted method (MACS). In total, 397 lipid species, including 32 cardiolipins, could be quantified in only 100 μg (by protein) of purified mitochondria. Mitochondria isolated by UC showed the highest enrichment in the mitochondria-specific cardiolipins as well as their precursors, phosphatidylglycerols. Mitochondrial fractions obtained by the commonly used DC and the more recent MACS method contained substantial contaminations by other organelles. Employing these isolation methods when performing lipidomics analyses from cell culture mitochondria may lead to inaccurate results. To conclude, we present a protocol how to obtain reliable mitochondria-specific lipid profiles from cell culture samples and show that quality controls are indispensable when performing mitochondria lipidomics.
Collapse
|
784
|
Abstract
Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.
Collapse
|
785
|
Christensen PM, Jacobs RA, Bonne T, Flück D, Bangsbo J, Lundby C. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics. J Appl Physiol (1985) 2016; 120:1319-27. [PMID: 26846547 DOI: 10.1152/japplphysiol.00115.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to examine whether improvements in pulmonary oxygen uptake (V̇o2) kinetics following a short period of high-intensity training (HIT) would be associated with improved skeletal muscle mitochondrial function. Ten untrained male volunteers (age 26 ± 2 yr; mean ± SD) performed six HIT sessions (8-12 × 60 s at incremental test peak power; 271 ± 52 W) over a 2-wk period. Before and after the HIT period, V̇o2 kinetics was modeled during moderate-intensity cycling (110 ± 19 W). Mitochondrial function was assessed with high-resolution respirometry (HRR), and maximal activities of oxidative enzymes citrate synthase (CS) and cytochrome c oxidase (COX) were accordingly determined. In response to HIT, V̇o2 kinetics became faster (τ: 20.4 ± 4.4 vs. 28.9 ± 6.1 s; P < 0.01) and fatty acid oxidation (ETFP) and leak respiration (LN) both became elevated (P < 0.05). Activity of CS and COX did not increase in response to training. Both before and after the HIT period, fast V̇o2 kinetics (low τ values) was associated with large values for ETFP, electron transport system capacity (ETS), and electron flow specific to complex II (CIIP) (P < 0.05). Collectively, these findings support that selected measures of mitochondrial function obtained with HRR are important for fast V̇o2 kinetics and better markers than maximal oxidative enzyme activity in describing the speed of the V̇o2 response during moderate-intensity exercise.
Collapse
Affiliation(s)
- Peter M Christensen
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark; Team Danmark (Danish Elite Sport Organization), Copenhagen, Denmark
| | - Robert A Jacobs
- Health and Physical Education, School of Teaching and Learning, Western Carolina University, Cullowhee, North Carolina; Department of Physical Therapy, Western Carolina University, Cullowhee, North Carolina; and
| | - Thomas Bonne
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Flück
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Lundby
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
786
|
Park SY, Rossman MJ, Gifford JR, Bharath LP, Bauersachs J, Richardson RS, Abel ED, Symons JD, Riehle C. Exercise training improves vascular mitochondrial function. Am J Physiol Heart Circ Physiol 2016; 310:H821-9. [PMID: 26825520 DOI: 10.1152/ajpheart.00751.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function.
Collapse
Affiliation(s)
- Song-Young Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Leena P Bharath
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
787
|
Wolff JN, Pichaud N, Camus MF, Côté G, Blier PU, Dowling DK. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies. J Evol Biol 2016; 29:736-47. [PMID: 26728607 DOI: 10.1111/jeb.12822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 12/22/2022]
Abstract
The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution.
Collapse
Affiliation(s)
- J N Wolff
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | - N Pichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada.,Départment de Biologie, Université du Québec de Rimouski, Rimouski, QC, Canada
| | - M F Camus
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | - G Côté
- Départment de Biologie, Université du Québec de Rimouski, Rimouski, QC, Canada
| | - P U Blier
- Départment de Biologie, Université du Québec de Rimouski, Rimouski, QC, Canada
| | - D K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| |
Collapse
|
788
|
Søndergård SD, Dela F, Helge JW, Larsen S. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle. Eur J Sport Sci 2016; 16:801-7. [PMID: 26744809 DOI: 10.1080/17461391.2015.1130750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized human skeletal muscle fibres acutely exposed to Actovegin in a low and in a high dose. We found that Actovegin, in the presence of complex I-linked substrates increased the oxidative phosphorylation (OXPHOS) capacity significantly in a concentration-dependent manner (19 ± 3, 31 ± 4 and 45 ± 4 pmol/mg/s). Maximal OXPHOS capacity with complex I and II-linked substrate was increased when the fibres were exposed to the high dose of Actovegin (62 ± 6 and 77 ± 6 pmol/mg/s) (p < .05). The respiratory capacity of the electron transfer system as well as Vmax and Km were also increased in a concentration-dependent manner after Actovegin exposure (70 ± 6, 79 ± 6 and 88 ± 7 pmol/mg/s; 13 ± 2, 25 ± 3 and 37 ± 4 pmol/mg/s; 0.08 ± 0.02, 0.21 ± 0.03 and 0.36 ± 0.03 mM, respectively) (p < .05). In summary, we report for the first time that Actovegin has a marked effect on mitochondrial oxidative function in human skeletal muscle. Mitochondrial adaptations like this are also seen after a training program in human subjects. Whether this improvement translates into an ergogenic effect in athletes and thus reiterates the need to include Actovegin on the World Anti-Doping Agency's active list remains to be investigated.
Collapse
Affiliation(s)
- Stine D Søndergård
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Flemming Dela
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Jørn W Helge
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Steen Larsen
- a Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
789
|
Hoshino D, Kitaoka Y, Hatta H. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo
| |
Collapse
|
790
|
Kilbaugh TJ, Karlsson M, Duhaime AC, Hansson MJ, Elmer E, Margulies SS. Mitochondrial response in a toddler-aged swine model following diffuse non-impact traumatic brain injury. Mitochondrion 2016; 26:19-25. [PMID: 26549476 PMCID: PMC4752861 DOI: 10.1016/j.mito.2015.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/19/2023]
Abstract
Traumatic brain injury (TBI) is an important health problem, and a leading cause of death in children worldwide. Mitochondrial dysfunction is a critical component of the secondary TBI cascades. Mitochondrial response in the pediatric brain has limited investigation, despite evidence that the developing brain's response differs from that of the adult, especially in diffuse non-impact TBI. We performed a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a swine model of diffuse TBI (rapid non-impact rotational injury: RNR), and examined the cortex and hippocampus. A substrate-uncoupler-inhibitor-titration protocol examined the role of the individual complexes as well as the uncoupled maximal respiration. Respiration per mg of tissue was also related to citrate synthase activity (CS) as an attempt to control for variability in mitochondrial content following injury. Diffuse RNR stimulated increased complex II-driven respiration relative to mitochondrial content in the hippocampus compared to shams. LEAK (State 4o) respiration increased in both regions, with decreased respiratory ratios of convergent oxidative phosphorylation through complex I and II, compared to sham animals, indicating uncoupling of oxidative phosphorylation at 24h. The study suggests that proportionately, complex I contribution to convergent mitochondrial respiration was reduced in the hippocampus after RNR, with a simultaneous increase in complex-II driven respiration. Mitochondrial respiration 24h after diffuse TBI varies by location within the brain. We concluded that significant uncoupling of oxidative phosphorylation and alterations in convergent respiration through complex I- and complex II-driven respiration reveals therapeutic opportunities for the injured at-risk pediatric brain.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Ann-Christine Duhaime
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Eskil Elmer
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, BMC A13, SE-221 84 Lund, Sweden.
| | - Susan S Margulies
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA.
| |
Collapse
|
791
|
MH84: A Novel γ-Secretase Modulator/PPARγ Agonist—Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer’s Disease. Neurochem Res 2015; 41:231-42. [DOI: 10.1007/s11064-015-1765-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
|
792
|
Jiroutková K, Krajčová A, Ziak J, Fric M, Waldauf P, Džupa V, Gojda J, Němcova-Fürstová V, Kovář J, Elkalaf M, Trnka J, Duška F. Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:448. [PMID: 26699134 PMCID: PMC4699339 DOI: 10.1186/s13054-015-1160-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/06/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mitochondrial damage occurs in the acute phase of critical illness, followed by activation of mitochondrial biogenesis in survivors. It has been hypothesized that bioenergetics failure of skeletal muscle may contribute to the development of ICU-acquired weakness. The aim of the present study was to determine whether mitochondrial dysfunction persists until protracted phase of critical illness. METHODS In this single-centre controlled-cohort ex vivo proof-of-concept pilot study, we obtained vastus lateralis biopsies from ventilated patients with ICU-acquired weakness (n = 8) and from age and sex-matched metabolically healthy controls (n = 8). Mitochondrial functional indices were measured in cytosolic context by high-resolution respirometry in tissue homogenates, activities of respiratory complexes by spectrophotometry and individual functional capacities were correlated with concentrations of electron transport chain key subunits from respiratory complexes II, III, IV and V measured by western blot. RESULTS The ability of aerobic ATP synthesis (OXPHOS) was reduced to ~54% in ICU patients (p<0.01), in correlation with the depletion of complexes III (~38% of control, p = 0.02) and IV (~26% of controls, p<0.01) and without signs of mitochondrial uncoupling. When mitochondrial functional indices were adjusted to citrate synthase activity, OXPHOS and the activity of complexes I and IV were not different, whilst the activities of complexes II and III were increased in ICU patients 3-fold (p<0.01) respectively 2-fold (p<0.01). CONCLUSIONS Compared to healthy controls, in ICU patients we have demonstrated a ~50% reduction of the ability of skeletal muscle to synthetize ATP in mitochondria. We found a depletion of complex III and IV concentrations and relative increases in functional capacities of complex II and glycerol-3-phosphate dehydrogenase/complex III.
Collapse
Affiliation(s)
- Kateřina Jiroutková
- Laboratory of Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Ruská 87, Prague, 100 00, Prague 10, Czech Republic.
| | - Adéla Krajčová
- Laboratory of Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Ruská 87, Prague, 100 00, Prague 10, Czech Republic. .,Department of Internal Medicine II, Kralovske Vinohrady University Hospital, Prague, Czech Republic.
| | - Jakub Ziak
- Laboratory of Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Ruská 87, Prague, 100 00, Prague 10, Czech Republic.
| | - Michal Fric
- Department of Anaesthesia and Intensive Care, Kralovske Vinohrady University Hospital, Prague, Czech Republic.
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care, Kralovske Vinohrady University Hospital, Prague, Czech Republic.
| | - Valér Džupa
- Department of Orthopaedic Surgery, Kralovske Vinohrady University Hospital, Prague, Czech Republic.
| | - Jan Gojda
- Department of Internal Medicine II, Kralovske Vinohrady University Hospital, Prague, Czech Republic.
| | - Vlasta Němcova-Fürstová
- Department of Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Jan Kovář
- Department of Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Moustafa Elkalaf
- Laboratory of Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Ruská 87, Prague, 100 00, Prague 10, Czech Republic.
| | - Jan Trnka
- Laboratory of Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Ruská 87, Prague, 100 00, Prague 10, Czech Republic.
| | - František Duška
- Laboratory of Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Ruská 87, Prague, 100 00, Prague 10, Czech Republic. .,Adult Intensive Care Unit, Queen's Medical Centre, Nottingham University Hospital NHS Trust, Nottingham, UK.
| |
Collapse
|
793
|
Ultrastructural myocardial changes in seven cats with spontaneous hypertrophic cardiomyopathy. J Vet Cardiol 2015; 17 Suppl 1:S220-32. [DOI: 10.1016/j.jvc.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 11/22/2022]
|
794
|
Morrison D, Hughes J, Della Gatta PA, Mason S, Lamon S, Russell AP, Wadley GD. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med 2015; 89:852-62. [PMID: 26482865 DOI: 10.1016/j.freeradbiomed.2015.10.412] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/22/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND It is clear that reactive oxygen species (ROS) produced during skeletal muscle contraction have a regulatory role in skeletal muscle adaptation to endurance exercise. However, there is much controversy in the literature regarding whether attenuation of ROS by antioxidant supplementation can prevent these cellular adaptations. Therefore, the aim of this study was to determine whether vitamin C and E supplementation attenuates performance and cellular adaptations following acute endurance exercise and endurance training. METHODS A double-blinded, placebo-controlled randomized control trial was conducted in eleven healthy young males. Participants were matched for peak oxygen consumption (VO 2peak) and randomly allocated to placebo or antioxidant (vitamin C (2 × 500 mg/day) and E (400 IU/day)) groups. Following a four-week supplement loading period, participants completed acute exercise (10 × 4 min cycling at 90% VO 2peak, 2 min active recovery). Vastus lateralis muscle samples were collected pre-, immediately-post- and 3h-post-exercise. Participants then completed four weeks of training (3 days/week) using the aforementioned exercise protocol while continuing supplementation. Following exercise training, participants again completed an acute exercise bout with muscle biopsies. RESULTS Acute exercise tended to increase skeletal muscle oxidative stress as measured by oxidized glutathione (GSSG) (P=0.058) and F2-isoprostanes (P=0.056), with no significant effect of supplementation. Acute exercise significantly increased mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM) and PGC related coactivator (PRC), with no effect of supplementation. Following endurance training, supplementation did not prevent significantly increased VO 2peak, skeletal muscle levels of citrate synthase activity or mRNA or protein abundance of cytochrome oxidase subunit 4 (COX IV) (P<0.05). However, following training, vitamin C and E supplementation significantly attenuated increased skeletal muscle superoxide dismutase (SOD) activity and protein abundance of SOD2 and TFAM. CONCLUSION Following acute exercise, supplementation with vitamin C and E did not attenuate skeletal muscle oxidative stress or increased gene expression of mitochondrial biogenesis markers. However, supplementation attenuated some (SOD, TFAM) of the increased skeletal muscle adaptations following training in healthy young men.
Collapse
Affiliation(s)
- Dale Morrison
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia
| | - Jed Hughes
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia
| | - Paul A Della Gatta
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia
| | - Shaun Mason
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia
| | - Glenn D Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia.
| |
Collapse
|
795
|
Porter C, Herndon DN, Bhattarai N, Ogunbileje JO, Szczesny B, Szabo C, Toliver-Kinsky T, Sidossis LS. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics. Burns 2015; 42:112-122. [PMID: 26615714 DOI: 10.1016/j.burns.2015.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Altered skeletal muscle mitochondrial function contributes to the pathophysiological stress response to burns. However, the acute and chronic impact of burn trauma on skeletal muscle bioenergetics remains poorly understood. Here, we determined the temporal relationship between burn trauma and mitochondrial function in murine skeletal muscle local to and distal from burn wounds. Male BALB/c mice (8-10 weeks old) were burned by submersion of the dorsum in water (∼ 95 °C) to create a full thickness burn on ∼ 30% of the body. Skeletal muscle was harvested spinotrapezius underneath burn wounds (local) and the quadriceps (distal) of sham and burn treated mice at 3h, 24h, 4d and 10d post-injury. Mitochondrial respiration was determined in permeabilized myofiber bundles by high-resolution respirometry. Caspase 9 and caspase 3 protein concentration were determined by western blot. In muscle local to burn wounds, respiration coupled to ATP production was significantly diminished at 3h and 24h post-injury (P<0.001), as was mitochondrial coupling control (P<0.001). There was a 5- (P<0.05) and 8-fold (P<0.001) increase in respiration in response to cytochrome at 3h and 24h post burn, respectively, indicating damage to the outer mitochondrial membranes. Moreover, we also observed greater active caspase 9 and caspase 3 in muscle local to burn wounds, indicating the induction of apoptosis. Distal muscle mitochondrial function was unaltered by burn trauma until 10d post burn, where both respiratory capacity (P<0.05) and coupling control (P<0.05) were significantly lower than sham. These data highlight a differential response in muscle mitochondrial function to burn trauma, where the timing, degree and mode of dysfunction are dependent on whether the muscle is local or distal to the burn wound.
Collapse
Affiliation(s)
- Craig Porter
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - David N Herndon
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Nisha Bhattarai
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - John O Ogunbileje
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Labros S Sidossis
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA; Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
796
|
Lundby C, Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol 2015; 101:17-22. [PMID: 26440213 DOI: 10.1113/ep085319] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/24/2015] [Indexed: 01/25/2023]
Abstract
Mitochondrial volume density (Mito(VD)) is composed of two distinct mitochondrial subpopulations--intermyofibrillar mitochondria (Mito(IMF)) and subsarcolemmal mitochondria (Mito(SS)). With exercise training, Mito(VD) may increase by up to 40% and is, for the most part, related to an increase in Mito(IMF). Exercise-induced adaptations in mitochondrial function depend on the intensity of training and appear to be explained predominately by an increased expression of mitochondrial enzymes that facilitate aerobic metabolism. Although mitochondrial content often increases with training, it seems that mitochondrial adaptations are not needed to facilitate maximal oxygen uptake, whereas such adaptations are of greater importance for endurance capacity.
Collapse
Affiliation(s)
- Carsten Lundby
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Robert A Jacobs
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Health and Physical Education, School of Teaching and Learning, Western Carolina University, Cullowhee, NC, USA.,Physical Therapy Department, Western Carolina University, Cullowhee, NC, USA
| |
Collapse
|
797
|
Granata C, Oliveira RSF, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J 2015; 30:959-70. [PMID: 26572168 DOI: 10.1096/fj.15-276907] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/28/2015] [Indexed: 12/28/2022]
Abstract
Exercise training has been associated with increased mitochondrial content and respiration. However, no study to date has compared in parallel how training at different intensities affects mitochondrial respiration and markers of mitochondrial biogenesis. Twenty-nine healthy men performed 4 wk (12 cycling sessions) of either sprint interval training [SIT; 4-10 × 30-s all-out bouts at ∼200% of peak power output (WPeak)], high-intensity interval training (HIIT; 4-7 × 4-min intervals at ∼90% WPeak), or sublactate threshold continuous training (STCT; 20-36 min at ∼65% WPeak). The STCT and HIIT groups were matched for total work. Resting biopsy samples (vastus lateralis) were obtained before and after training. The maximal mitochondrial respiration in permeabilized muscle fibers increased significantly only after SIT (25%). Similarly, the protein content of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α, p53, and plant homeodomain finger-containing protein 20 (PHF20) increased only after SIT (60-90%). Conversely, citrate synthase activity, and the protein content of TFAM and subunits of the electron transport system complexes remained unchanged throughout. Our findings suggest that training intensity is an important factor that regulates training-induced changes in mitochondrial respiration and that there is an apparent dissociation between training-induced changes in mitochondrial respiration and mitochondrial content. Moreover, changes in the protein content of PGC-1α, p53, and PHF20 are more strongly associated with training-induced changes in mitochondrial respiration than mitochondrial content.
Collapse
Affiliation(s)
- Cesare Granata
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Rodrigo S F Oliveira
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Jonathan P Little
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - David J Bishop
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
798
|
Bourdier G, Flore P, Sanchez H, Pepin JL, Belaidi E, Arnaud C. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size. Am J Physiol Heart Circ Physiol 2015; 310:H279-89. [PMID: 26566725 DOI: 10.1152/ajpheart.00448.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Chronic intermittent hypoxia (IH) is described as the major detrimental factor leading to cardiovascular morbimortality in obstructive sleep apnea (OSA) patients. OSA patients exhibit increased infarct size after a myocardial event, and previous animal studies have shown that chronic IH could be the main mechanism. Endoplasmic reticulum (ER) stress plays a major role in the pathophysiology of cardiovascular disease. High-intensity training (HIT) exerts beneficial effects on the cardiovascular system. Thus, we hypothesized that HIT could prevent IH-induced ER stress and the increase in infarct size. Male Wistar rats were exposed to 21 days of IH (21-5% fraction of inspired O2, 60-s cycle, 8 h/day) or normoxia. After 1 wk of IH alone, rats were submitted daily to both IH and HIT (2 × 24 min, 15-30m/min). Rat hearts were either rapidly frozen to evaluate ER stress by Western blot analysis or submitted to an ischemia-reperfusion protocol ex vivo (30 min of global ischemia/120 min of reperfusion). IH induced cardiac proapoptotic ER stress, characterized by increased expression of glucose-regulated protein kinase 78, phosphorylated protein kinase-like ER kinase, activating transcription factor 4, and C/EBP homologous protein. IH-induced myocardial apoptosis was confirmed by increased expression of cleaved caspase-3. These IH-associated proapoptotic alterations were associated with a significant increase in infarct size (35.4 ± 3.2% vs. 22.7 ± 1.7% of ventricles in IH + sedenary and normoxia + sedentary groups, respectively, P < 0.05). HIT prevented both the IH-induced proapoptotic ER stress and increased myocardial infarct size (28.8 ± 3.9% and 21.0 ± 5.1% in IH + HIT and normoxia + HIT groups, respectively, P = 0.28). In conclusion, these findings suggest that HIT could represent a preventive strategy to limit IH-induced myocardial ischemia-reperfusion damages in OSA patients.
Collapse
Affiliation(s)
- Guillaume Bourdier
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Patrice Flore
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Hervé Sanchez
- Institut de Recherche Biomédicale des Armées, Operational Environments, Brétigny/Orge, France
| | - Jean-Louis Pepin
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Elise Belaidi
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| | - Claire Arnaud
- Grenoble Alpes University, HP2 Laboratory, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1042, Grenoble, France; and
| |
Collapse
|
799
|
Jacobs RA, Lundby AKM, Fenk S, Gehrig S, Siebenmann C, Flück D, Kirk N, Hilty MP, Lundby C. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol 2015; 594:1151-66. [PMID: 26339730 DOI: 10.1113/jp271118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 12/11/2022] Open
Abstract
The role of hypoxia on skeletal muscle mitochondria is controversial. Studies superimposing exercise training on hypoxic exposure demonstrate an increase in skeletal muscle mitochondrial volume density (Mito(VD)) over equivalent normoxic training. In contrast, reductions in both skeletal muscle mass and Mito(VD) have been reported following mountaineering expeditions. These observations may, however, be confounded by negative energy balance, which may obscure the results. Accordingly we sought to examine the effects of high altitude hypoxic exposure on mitochondrial characteristics, with emphasis on Mito(VD), while minimizing changes in energy balance. For this purpose, skeletal muscle biopsies were obtained from nine lowlanders at sea level (Pre) and following 7 and 28 days of exposure to 3454 m. Maximal ergometer power output, whole body weight and composition, leg lean mass and skeletal muscle fibre area all remained unchanged following the altitude exposure. Transmission electron microscopy determined that intermyofibrillar (IMF) Mito(VD) was augmented (P = 0.028) by 11.5 ± 9.2% from Pre (5.05 ± 0.9%) to 28 Days (5.61 ± 0.04%). In contrast, there was no change in subsarcolemmal (SS) Mito(VD). As a result, total Mito(VD) (IMF + SS) was increased (P = 0.031) from 6.20 ± 1.5% at Pre to 6.62 ± 1.4% at 28 Days (7.8 ± 9.3%). At the same time no changes in mass-specific respiratory capacities, mitochondrial protein or antioxidant content were found. This study demonstrates that skeletal muscle Mito(VD) may increase with 28 days acclimation to 3454 m.
Collapse
Affiliation(s)
- Robert A Jacobs
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland.,Health and Physical Education, School of Teaching and Learning, Western Carolina University, Cullowhee, NC, USA.,Physical Therapy Department, Western Carolina University, Cullowhee, NC, USA
| | | | - Simone Fenk
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | - Saskia Gehrig
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | - Christoph Siebenmann
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland.,Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Solna, Sweden
| | - Daniela Flück
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | - Niels Kirk
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | | | - Carsten Lundby
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| |
Collapse
|
800
|
Bharadwaj MS, Tyrrell DJ, Leng I, Demons JL, Lyles MF, Carr JJ, Nicklas BJ, Molina AJA. Relationships between mitochondrial content and bioenergetics with obesity, body composition and fat distribution in healthy older adults. BMC OBESITY 2015; 2:40. [PMID: 26448868 PMCID: PMC4594906 DOI: 10.1186/s40608-015-0070-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Background Mitochondrial function declines with age; however, the relationship between adiposity and mitochondrial function among older adults is unclear. This study examined relationships between skeletal muscle mitochondrial content and electron transport chain complex 2 driven respiration with whole body and thigh composition, body fat distribution, and insulin sensitivity in older adults. Methods 25 healthy, sedentary, weight-stable men (N = 13) and women (N = 12) >65 years of age, with a BMI range of 18-35 kg/m2, participated in this study. Vastus lateralis biopsies were analyzed for citrate synthase (CS) activity and succinate mediated respiration of isolated mitochondria. Whole body and thigh composition were measured by DXA and CT. HOMA-IR was calculated using fasting glucose and insulin as an estimate of insulin sensitivity. Results Similar to reports in middle-aged adults, skeletal muscle CS activity was negatively correlated with BMI (R = −0.43) in our cohort of older adults. Higher total and thigh adiposity were correlated with lower CS activity independent of BMI (R = −0.50 and −0.71 respectively). Maximal complex 2 driven mitochondrial respiration was negatively correlated with lower body adiposity in males (R = −0.66). In this cohort of non-diabetic older adults, both HOMA-IR and insulin were positively correlated with CS activity when controlling for BMI (R = 0.57 and 0.66 respectively). Conclusions Adiposity and body composition are correlated with skeletal muscle mitochondrial content and electron transport chain function in healthy, sedentary, community dwelling, older adults. Specific relationships of mitochondrial bioenergetics with gender and insulin sensitivity are also apparent. Trial registration ClinicalTrials.gov identifier NCT01049698 Electronic supplementary material The online version of this article (doi:10.1186/s40608-015-0070-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish S Bharadwaj
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Daniel J Tyrrell
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Iris Leng
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Jamehl L Demons
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Mary F Lyles
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - J Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Barbara J Nicklas
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Anthony J A Molina
- Sticht Center on Aging & Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|