751
|
Bayesian integration of information in hippocampal place cells. PLoS One 2014; 9:e89762. [PMID: 24603429 PMCID: PMC3945610 DOI: 10.1371/journal.pone.0089762] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/24/2014] [Indexed: 11/29/2022] Open
Abstract
Accurate spatial localization requires a mechanism that corrects for errors, which might arise from inaccurate sensory information or neuronal noise. In this paper, we propose that Hippocampal place cells might implement such an error correction mechanism by integrating different sources of information in an approximately Bayes-optimal fashion. We compare the predictions of our model with physiological data from rats. Our results suggest that useful predictions regarding the firing fields of place cells can be made based on a single underlying principle, Bayesian cue integration, and that such predictions are possible using a remarkably small number of model parameters.
Collapse
|
752
|
Monasson R, Rosay S. Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: collective motion of the activity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032803. [PMID: 24730895 DOI: 10.1103/physreve.89.032803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 06/03/2023]
Abstract
The dynamics of a neural model for hippocampal place cells storing spatial maps is studied. In the absence of external input, depending on the number of cells and on the values of control parameters (number of environments stored, level of neural noise, average level of activity, connectivity of place cells), a "clump" of spatially localized activity can diffuse or remains pinned due to crosstalk between the environments. In the single-environment case, the macroscopic coefficient of diffusion of the clump and its effective mobility are calculated analytically from first principles and corroborated by numerical simulations. In the multienvironment case the heights and the widths of the pinning barriers are analytically characterized with the replica method; diffusion within one map is then in competition with transitions between different maps. Possible mechanisms enhancing mobility are proposed and tested.
Collapse
Affiliation(s)
- R Monasson
- Laboratoire de Physique Théorique de l'ENS, CNRS & UPMC, 24 rue Lhomond, 75005 Paris, France
| | - S Rosay
- Laboratoire de Physique Théorique de l'ENS, CNRS & UPMC, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
753
|
Kandel E, Dudai Y, Mayford M. The Molecular and Systems Biology of Memory. Cell 2014; 157:163-86. [DOI: 10.1016/j.cell.2014.03.001] [Citation(s) in RCA: 661] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/04/2023]
|
754
|
Savin C, Dayan P, Lengyel M. Optimal recall from bounded metaplastic synapses: predicting functional adaptations in hippocampal area CA3. PLoS Comput Biol 2014; 10:e1003489. [PMID: 24586137 PMCID: PMC3937414 DOI: 10.1371/journal.pcbi.1003489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.
Collapse
Affiliation(s)
- Cristina Savin
- Computational & Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Máté Lengyel
- Computational & Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
755
|
Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity. J Neurosci 2014; 34:232-41. [PMID: 24381284 DOI: 10.1523/jneurosci.1199-13.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.
Collapse
|
756
|
Distinct and simultaneously active plasticity mechanisms in mouse hippocampus during different phases of Morris water maze training. Brain Struct Funct 2014; 220:1273-90. [PMID: 24562414 DOI: 10.1007/s00429-014-0722-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/28/2014] [Indexed: 01/30/2023]
Abstract
Although the Morris water maze (MWM) is the most frequently used protocol to examine hippocampus-dependent learning in mice, not much is known about the spatio-temporal dynamics of underlying plasticity processes. Here, we studied molecular and cellular hippocampal plasticity mechanisms during early and late phases of spatial learning in the MWM. Quantitative in situ hybridization for the immediate early genes zif268 and Homer1a (H1a) revealed phase-dependent differences in their expression between areas CA1 and CA3. During the initial learning phase, CA1 expression levels of the molecular plasticity marker H1a, but not of the activity reporter gene zif268, were related to task proficiency; whereas no learning-specific changes could be detected in CA3. Simultaneously, the ratio of surface-expressed NMDAR subunits NR2A and NR2B was downregulated as measured by acute slice biotinylation assay, while the total number of surface NMDARs was unaltered. When intrinsic 'somatic' and synaptic plasticity in the CA1-region of hippocampal slices were examined, we found that early learning promotes intrinsic neuronal plasticity as manifested by a reduction of spike frequency adaptation and postburst afterhyperpolarization. At the synaptic level, however, maintenance of long-term potentiation (LTP) in all learning groups was impaired which is most likely due to 'intrinsic' learning-induced LTP which occluded any further electrically induced LTP. Late learning, in contrast, was characterized by re-normalized H1a, NR2A and NR2B expression and neuronal firing, yet a further strengthening of learning-induced LTP. Together, our data support a precisely timed cascade of complex molecular and subcellular transformations occurring from early to late MWM learning.
Collapse
|
757
|
Newman EL, Climer JR, Hasselmo ME. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade. Hippocampus 2014; 24:643-55. [PMID: 24493379 DOI: 10.1002/hipo.22253] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone.
Collapse
Affiliation(s)
- Ehren L Newman
- Center for Memory and Brain, Department of Psychology, Boston University, 2 Cummington Mall, Boston, Massachusetts
| | | | | |
Collapse
|
758
|
Kaplan BA, Lansner A. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system. Front Neural Circuits 2014; 8:5. [PMID: 24570657 PMCID: PMC3916767 DOI: 10.3389/fncir.2014.00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/09/2014] [Indexed: 01/01/2023] Open
Abstract
Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin-Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian-Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian-Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures.
Collapse
Affiliation(s)
- Bernhard A Kaplan
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology Stockholm, Sweden ; Stockholm Brain Institute, Karolinska Institute Stockholm, Sweden
| | - Anders Lansner
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology Stockholm, Sweden ; Stockholm Brain Institute, Karolinska Institute Stockholm, Sweden ; Department of Numerical Analysis and Computer Science, Stockholm University Stockholm, Sweden
| |
Collapse
|
759
|
Manning JR, Lew TF, Li N, Sekuler R, Kahana MJ. MAGELLAN: a cognitive map-based model of human wayfinding. J Exp Psychol Gen 2014; 143:1314-1330. [PMID: 24490847 DOI: 10.1037/a0035542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In an unfamiliar environment, searching for and navigating to a target requires that spatial information be acquired, stored, processed, and retrieved. In a study encompassing all of these processes, participants acted as taxicab drivers who learned to pick up and deliver passengers in a series of small virtual towns. We used data from these experiments to refine and validate MAGELLAN, a cognitive map-based model of spatial learning and wayfinding. MAGELLAN accounts for the shapes of participants' spatial learning curves, which measure their experience-based improvement in navigational efficiency in unfamiliar environments. The model also predicts the ease (or difficulty) with which different environments are learned and, within a given environment, which landmarks will be easy (or difficult) to localize from memory. Using just 2 free parameters, MAGELLAN provides a useful account of how participants' cognitive maps evolve over time with experience, and how participants use the information stored in their cognitive maps to navigate and explore efficiently.
Collapse
Affiliation(s)
| | - Timothy F Lew
- Department of Psychology, University of Pennsylvania
| | - Ningcheng Li
- Department of Bioengineering, University of Pennsylvania
| | | | | |
Collapse
|
760
|
Jeffery K. Spatial mapping: graded precision of entorhinal head direction cells. Curr Biol 2014; 24:R113-4. [PMID: 24502783 DOI: 10.1016/j.cub.2013.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Representation of head direction in medial entorhinal cortex shows a gradient of precision, from high directional precision dorsally to low ventrally; this parallels the gradient of spatial scale in place and grid cells, and suggests that the brain constructs spatial maps of varying resolution, perhaps to serve different requirements.
Collapse
Affiliation(s)
- Kate Jeffery
- Institute of Behavioural Neuroscience, Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, UK.
| |
Collapse
|
761
|
Jacobs LF, Menzel R. Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. MOVEMENT ECOLOGY 2014; 2:3. [PMID: 25520814 PMCID: PMC4267593 DOI: 10.1186/2051-3933-2-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/30/2013] [Indexed: 06/04/2023]
Abstract
Space is continuous. But the communities of researchers that study the cognitive map in non-humans are strangely divided, with debate over its existence found among behaviorists but not neuroscientists. To reconcile this and other debates within the field of navigation, we return to the concept of the parallel map theory, derived from data on hippocampal function in laboratory rodents. Here the cognitive map is redefined as the integrated map, which is a construction of dual mechanisms, one based on directional cues (bearing map) and the other on positional cues (sketch map). We propose that the dual navigational mechanisms of pigeons, the navigational map and the familiar area map, could be homologous to these mammalian parallel maps; this has implications for both research paradigms. Moreover, this has implications for the lab. To create a bearing map (and hence integrated map) from extended cues requires self-movement over a large enough space to sample and model these cues at a high resolution. Thus a navigator must be able to move freely to map extended cues; only then should the weighted hierarchy of available navigation mechanisms shift in favor of the integrated map. Because of the paucity of extended cues in the lab, the flexible solutions allowed by the integrated map should be rare, despite abundant neurophysiological evidence for the existence of the machinery needed to encode and map extended cues through voluntary movement. Not only do animals need to map extended cues but they must also have sufficient information processing capacity. This may require a specific ontogeny, in which the navigator's nervous system is exposed to naturally complex spatial contingencies, a circumstance that occurs rarely, if ever, in the lab. For example, free-ranging, flying animals must process more extended cues than walking animals and for this reason alone, the integrated map strategy may be found more reliably in some species. By taking concepts from ethology and the parallel map theory, we propose a path to directly integrating the three great experimental paradigms of navigation: the honeybee, the homing pigeon and the laboratory rodent, towards the goal of a robust, unified theory of animal navigation.
Collapse
Affiliation(s)
- Lucia F Jacobs
- />Department of Psychology, University of California, Mailcode 1650, Berkeley, CA 94520-1650 USA
| | - Randolf Menzel
- />Institut für Biologie, Freie Universität, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| |
Collapse
|
762
|
Onslow ACE, Hasselmo ME, Newman EL. DC-shifts in amplitude in-field generated by an oscillatory interference model of grid cell firing. Front Syst Neurosci 2014; 8:1. [PMID: 24478639 PMCID: PMC3901010 DOI: 10.3389/fnsys.2014.00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022] Open
Abstract
Oscillatory interference models propose a mechanism by which the spatial firing pattern of grid cells can arise from the interaction of multiple oscillators that shift in relative phase. These models produce aspects of the physiological data such as the phase precession dynamics observed in grid cells. However, existing oscillatory interference models did not predict the in-field DC shifts in the membrane potential of grid cells that have been observed during intracellular recordings in navigating animals. Here, we demonstrate that DC shifts can be generated in an oscillatory interference model when half-wave rectified oscillatory inputs are summed by a leaky integrate-and-fire neuron with a long membrane decay constant (100 ms). The non-linear mean of the half-wave rectified input signal is reproduced in the grid cell's membrane potential trace producing the DC shift within field. For shorter values of the decay constant integration is more effective if the input signal, comprising input from 6 head direction selective populations, is temporally spread during in-field epochs; this requires that the head direction selective populations act as velocity controlled oscillators with baseline oscillations that are phase offset from one another. The resulting simulated membrane potential matches several properties of the empirical intracellular recordings, including: in-field DC-shifts, theta-band oscillations, phase precession of both membrane potential oscillations and grid cell spiking activity relative to network theta and a stronger correlation between DC-shift amplitude and firing-rate than between theta-band oscillation amplitude and firing-rate. This work serves to demonstrate that oscillatory interference models can account for the DC shifts in the membrane potential observed during intracellular recordings of grid cells without the need to appeal to attractor dynamics.
Collapse
Affiliation(s)
- Angela C E Onslow
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA
| | - Michael E Hasselmo
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA
| | - Ehren L Newman
- Department of Psychology, Center for Memory and Brain, Boston University Boston, MA, USA
| |
Collapse
|
763
|
Vera J, Pezzoli M, Pereira U, Bacigalupo J, Sanhueza M. Electrical resonance in the θ frequency range in olfactory amygdala neurons. PLoS One 2014; 9:e85826. [PMID: 24465729 PMCID: PMC3897534 DOI: 10.1371/journal.pone.0085826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022] Open
Abstract
The cortical amygdala receives direct olfactory inputs and is thought to participate in processing and learning of biologically relevant olfactory cues. As for other brain structures implicated in learning, the principal neurons of the anterior cortical nucleus (ACo) exhibit intrinsic subthreshold membrane potential oscillations in the θ-frequency range. Here we show that nearly 50% of ACo layer II neurons also display electrical resonance, consisting of selective responsiveness to stimuli of a preferential frequency (2–6 Hz). Their impedance profile resembles an electrical band-pass filter with a peak at the preferred frequency, in contrast to the low-pass filter properties of other neurons. Most ACo resonant neurons displayed frequency preference along the whole subthreshold voltage range. We used pharmacological tools to identify the voltage-dependent conductances implicated in resonance. A hyperpolarization-activated cationic current depending on HCN channels underlies resonance at resting and hyperpolarized potentials; notably, this current also participates in resonance at depolarized subthreshold voltages. KV7/KCNQ K+ channels also contribute to resonant behavior at depolarized potentials, but not in all resonant cells. Moreover, resonance was strongly attenuated after blockade of voltage-dependent persistent Na+ channels, suggesting an amplifying role. Remarkably, resonant neurons presented a higher firing probability for stimuli of the preferred frequency. To fully understand the mechanisms underlying resonance in these neurons, we developed a comprehensive conductance-based model including the aforementioned and leak conductances, as well as Hodgkin and Huxley-type channels. The model reproduces the resonant impedance profile and our pharmacological results, allowing a quantitative evaluation of the contribution of each conductance to resonance. It also replicates selective spiking at the resonant frequency and allows a prediction of the temperature-dependent shift in resonance frequency. Our results provide a complete characterization of the resonant behavior of olfactory amygdala neurons and shed light on a putative mechanism for network activity coordination in the intact brain.
Collapse
Affiliation(s)
- Jorge Vera
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Maurizio Pezzoli
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ulises Pereira
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Juan Bacigalupo
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
764
|
Abstract
Primates can store sensory stimulus parameters in working memory for subsequent manipulation, but until now, there has been no demonstration of this capacity in rodents. Here we report tactile working memory in rats. Each stimulus is a vibration, generated as a series of velocity values sampled from a normal distribution. To perform the task, the rat positions its whiskers to receive two such stimuli, "base" and "comparison," separated by a variable delay. It then judges which stimulus had greater velocity SD. In analogous experiments, humans compare two vibratory stimuli on the fingertip. We demonstrate that the ability of rats to hold base stimulus information (for up to 8 s) and their acuity in assessing stimulus differences overlap the performance demonstrated by humans. This experiment highlights the ability of rats to perceive the statistical structure of vibrations and reveals their previously unknown capacity to store sensory information in working memory.
Collapse
|
765
|
Abstract
Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.
Collapse
Affiliation(s)
- Adèle Faucherre
- Département de Physiologie, Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universtités Montpellier 1 & 2, Montpellier, France
| | | |
Collapse
|
766
|
Liang X, Tang Y, Duan L, Cheng S, Luo L, Cao X, Tu B. Adverse effect of sub-chronic exposure to benzo(a)pyrene and protective effect of butylated hydroxyanisole on learning and memory ability in male Sprague-Dawley rat. J Toxicol Sci 2014; 39:739-48. [DOI: 10.2131/jts.39.739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xiao Liang
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Yan Tang
- Department of Occupational and Environmental Medicine, School of Public Health, Luzhou Medical College
| | - Li Duan
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Shuqun Cheng
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Long Luo
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Xianqing Cao
- Experiment center, School of Public Health, Chongqing Medical University
| | - Baijie Tu
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| |
Collapse
|
767
|
Abstract
An ultimate goal of neuroscience is to understand the mechanisms of mammalian intellectual functions, many of which are thought to depend extensively on the cerebral cortex. While this may have been considered a remote objective when Neuron was launched in 1988, neuroscience has now evolved to a stage where it is possible to decipher neural-circuit mechanisms in the deepest parts of the cortex, far away from sensory receptors and motoneurons. In this review, we show how studies of place cells in the hippocampus and grid cells in the entorhinal cortex may provide some of the first glimpses into these mechanisms. We shall review the events that led up to the discovery of grid cells and a functional circuit in the entorhinal cortex and highlight what we currently see as the big questions in this field--questions that, if resolved, will add to our understanding of cortical computation in a general sense.
Collapse
Affiliation(s)
- Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | | |
Collapse
|
768
|
Poucet B, Sargolini F, Song EY, Hangya B, Fox S, Muller RU. Independence of landmark and self-motion-guided navigation: a different role for grid cells. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130370. [PMID: 24366147 DOI: 10.1098/rstb.2013.0370] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent interest in the neural bases of spatial navigation stems from the discovery of neuronal populations with strong, specific spatial signals. The regular firing field arrays of medial entorhinal grid cells suggest that they may provide place cells with distance information extracted from the animal's self-motion, a notion we critically review by citing new contrary evidence. Next, we question the idea that grid cells provide a rigid distance metric. We also discuss evidence that normal navigation is possible using only landmarks, without self-motion signals. We then propose a model that supposes that information flow in the navigational system changes between light and dark conditions. We assume that the true map-like representation is hippocampal and argue that grid cells have a crucial navigational role only in the dark. In this view, their activity in the light is predominantly shaped by landmarks rather than self-motion information, and so follows place cell activity; in the dark, their activity is determined by self-motion cues and controls place cell activity. A corollary is that place cell activity in the light depends on non-grid cells in ventral medial entorhinal cortex. We conclude that analysing navigational system changes between landmark and no-landmark conditions will reveal key functional properties.
Collapse
Affiliation(s)
- Bruno Poucet
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, , Fédération 3C FR 3512, Marseille, France
| | | | | | | | | | | |
Collapse
|
769
|
Mizuseki K, Buzsaki G. Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Philos Trans R Soc Lond B Biol Sci 2013; 369:20120530. [PMID: 24366139 DOI: 10.1098/rstb.2012.0530] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oscillations and synchrony are often used synonymously. However, oscillatory mechanisms involving both excitation and inhibition can generate non-synchronous yet coordinated firing patterns. Using simultaneous recordings from multiple layers of the entorhinal-hippocampal loop, we found that coactivation of principal cell pairs (synchrony) was lowest during exploration and rapid-eye-movement (REM) sleep, associated with theta oscillations, and highest in slow wave sleep. Individual principal neurons had a wide range of theta phase preference. Thus, while theta oscillations reduce population synchrony, they nevertheless coordinate the phase (temporal) distribution of neurons. As a result, multiple cell assemblies can nest within the period of the theta cycle.
Collapse
Affiliation(s)
- Kenji Mizuseki
- NYU Neuroscience Institute, Langone Medical Center, New York University, , New York, NY 10016, USA
| | | |
Collapse
|
770
|
Mateos-Aparicio P, Murphy R, Storm JF. Complementary functions of SK and Kv7/M potassium channels in excitability control and synaptic integration in rat hippocampal dentate granule cells. J Physiol 2013; 592:669-93. [PMID: 24366266 DOI: 10.1113/jphysiol.2013.267872] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP-spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate.
Collapse
Affiliation(s)
- Pedro Mateos-Aparicio
- Department of Physiology, IMB, University of Oslo, PB 1104 Blindern, 0317 Oslo, Norway.
| | | | | |
Collapse
|
771
|
Abstract
One of the major breakthroughs in neuroscience is the emerging understanding of how signals from the external environment are extracted and represented in the primary sensory cortices of the mammalian brain. The operational principles of the rest of the cortex, however, have essentially remained in the dark. The discovery of grid cells, and their functional organization, opens the door to some of the first insights into the workings of the association cortices, at a stage of neural processing where firing properties are shaped not primarily by the nature of incoming sensory signals but rather by internal self-organizing principles. Grid cells are place-modulated neurons whose firing locations define a periodic triangular array overlaid on the entire space available to a moving animal. The unclouded firing pattern of these cells is rare within the association cortices. In this paper, we shall review recent advances in our understanding of the mechanisms of grid-cell formation which suggest that the pattern originates by competitive network interactions, and we shall relate these ideas to new insights regarding the organization of grid cells into functionally segregated modules.
Collapse
Affiliation(s)
- Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, , MTFS, Olav Kyrres gate 9, NTNU, 7489 Trondheim, Norway
| | | | | |
Collapse
|
772
|
Wills TJ, Muessig L, Cacucci F. The development of spatial behaviour and the hippocampal neural representation of space. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130409. [PMID: 24366148 PMCID: PMC3866458 DOI: 10.1098/rstb.2013.0409] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The role of the hippocampal formation in spatial cognition is thought to be supported by distinct classes of neurons whose firing is tuned to an organism's position and orientation in space. In this article, we review recent research focused on how and when this neural representation of space emerges during development: each class of spatially tuned neurons appears at a different age, and matures at a different rate, but all the main spatial responses tested so far are present by three weeks of age in the rat. We also summarize the development of spatial behaviour in the rat, describing how active exploration of space emerges during the third week of life, the first evidence of learning in formal tests of hippocampus-dependent spatial cognition is observed in the fourth week, whereas fully adult-like spatial cognitive abilities require another few weeks to be achieved. We argue that the development of spatially tuned neurons needs to be considered within the context of the development of spatial behaviour in order to achieve an integrated understanding of the emergence of hippocampal function and spatial cognition.
Collapse
Affiliation(s)
- Thomas J Wills
- Department of Cell and Developmental Biology, University College London, , London WC1E 6BT, UK
| | | | | |
Collapse
|
773
|
Krupic J, Bauza M, Burton S, Lever C, O'Keefe J. How environment geometry affects grid cell symmetry and what we can learn from it. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130188. [PMID: 24366142 PMCID: PMC3866452 DOI: 10.1098/rstb.2013.0188] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian hippocampal formation provides neuronal representations of environmental location but the underlying mechanisms are unclear. The majority of cells in medial entorhinal cortex and parasubiculum show spatially periodic firing patterns. Grid cells exhibit hexagonal symmetry and form an important subset of this more general class. Occasional changes between hexagonal and non-hexagonal firing patterns imply a common underlying mechanism. Importantly, the symmetrical properties are strongly affected by the geometry of the environment. Here, we introduce a field–boundary interaction model where we demonstrate that the grid cell pattern can be formed from competing place-like and boundary inputs. We show that the modelling results can accurately capture our current experimental observations.
Collapse
Affiliation(s)
- Julija Krupic
- Department of Cell and Developmental Biology, University College London, , London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
774
|
Jacobs J. Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130304. [PMID: 24366145 DOI: 10.1098/rstb.2013.0304] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The theta oscillation is a neuroscience enigma. When a rat runs through an environment, large-amplitude theta oscillations (4-10 Hz) reliably appear in the hippocampus's electrical activity. The consistency of this pattern led to theta playing a central role in theories on the neural basis of mammalian spatial navigation and memory. However, in fact, hippocampal oscillations at 4-10 Hz are rare in humans and in some other species. This presents a challenge for theories proposing theta as an essential component of the mammalian brain, including models of place and grid cells. Here, I examine this issue by reviewing recent research on human hippocampal oscillations using direct brain recordings from neurosurgical patients. This work indicates that the human hippocampus does indeed exhibit rhythms that are functionally similar to theta oscillations found in rodents, but that these signals have a slower frequency of approximately 1-4 Hz. I argue that oscillatory models of navigation and memory derived from rodent data are relevant for humans, but that they should be modified to account for the slower frequency of the human theta rhythm.
Collapse
Affiliation(s)
- Joshua Jacobs
- School of Biomedical Engineering, Science and Health Systems, Drexel University, , Philadelphia, PA 19104, USA
| |
Collapse
|
775
|
Xiong J, He C, Li C, Tan G, Li J, Yu Z, Hu Z, Chen F. Changes of dendritic spine density and morphology in the superficial layers of the medial entorhinal cortex induced by extremely low-frequency magnetic field exposure. PLoS One 2013; 8:e83561. [PMID: 24376717 PMCID: PMC3869808 DOI: 10.1371/journal.pone.0083561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/09/2013] [Indexed: 01/20/2023] Open
Abstract
In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 0.5 mT 50 Hz extremely low-frequency magnetic field (ELM) on the dendritic spine density and shape in the superficial layers of the medial entorhinal cortex (MEC). We performed Golgi staining to reveal the dendritic spines of the principal neurons in rats. The results showed that ELM exposure induced a decrease in the spine density in the dendrites of stellate neurons and the basal dendrites of pyramidal neurons at both 14 days and 28 days, which was largely due to the loss of the thin and branched spines. The alteration in the density of mushroom and stubby spines post ELM exposure was cell-type specific. For the stellate neurons, ELM exposure slightly increased the density of stubby spines at 28 days, while it did not affect the density of mushroom spines at the same time. In the basal dendrites of pyramidal neurons, we observed a significant decrease in the mushroom spine density only at the later time point post ELM exposure, while the stubby spine density was reduced at 14 days and partially restored at 28 days post ELM exposure. ELM exposure-induced reduction in the spine density in the apical dendrites of pyramidal neurons was only observed at 28 days, reflecting the distinct vulnerability of spines in the apical and basal dendrites. Considering the changes in spine number and shape are involved in synaptic plasticity and the MEC is a part of neural network that is closely related to learning and memory, these findings may be helpful for explaining the ELM exposure-induced impairment in cognitive functions.
Collapse
Affiliation(s)
- Jiaxiang Xiong
- Department of Physiology, Third Military Medical University, Chongqing, PR China
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, PR China
| | - Chao Li
- Department of Physiology, Third Military Medical University, Chongqing, PR China
| | - Gang Tan
- Department of Physiology, Third Military Medical University, Chongqing, PR China
| | - Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, PR China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, PR China
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, PR China
- * E-mail: (ZH); (FC)
| | - Fang Chen
- Department of Physiology, Third Military Medical University, Chongqing, PR China
- * E-mail: (ZH); (FC)
| |
Collapse
|
776
|
Berényi A, Somogyvári Z, Nagy AJ, Roux L, Long JD, Fujisawa S, Stark E, Leonardo A, Harris TD, Buzsáki G. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J Neurophysiol 2013; 111:1132-49. [PMID: 24353300 DOI: 10.1152/jn.00785.2013] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function.
Collapse
Affiliation(s)
- Antal Berényi
- New York University Neuroscience Institute, School of Medicine, New York University, New York, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
777
|
Orchard J, Yang H, Ji X. Does the entorhinal cortex use the Fourier transform? Front Comput Neurosci 2013; 7:179. [PMID: 24376415 PMCID: PMC3858727 DOI: 10.3389/fncom.2013.00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
Some neurons in the entorhinal cortex (EC) fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4–12 Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed “theta precession.” Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011) exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labor for implementing spatial maps: position vs. map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF) neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all.
Collapse
Affiliation(s)
- Jeff Orchard
- Centre for Theoretical Neuroscience, University of Waterloo Waterloo, ON, Canada ; David R. Cheriton School of Computer Science, University of Waterloo Waterloo, ON, Canada
| | - Hao Yang
- David R. Cheriton School of Computer Science, University of Waterloo Waterloo, ON, Canada
| | - Xiang Ji
- Centre for Theoretical Neuroscience, University of Waterloo Waterloo, ON, Canada ; David R. Cheriton School of Computer Science, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
778
|
Wiener-Vacher SR, Hamilton DA, Wiener SI. Vestibular activity and cognitive development in children: perspectives. Front Integr Neurosci 2013; 7:92. [PMID: 24376403 PMCID: PMC3858645 DOI: 10.3389/fnint.2013.00092] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/21/2013] [Indexed: 01/24/2023] Open
Abstract
Vestibular signals play an essential role in oculomotor and static and dynamic posturomotor functions. Increasing attention is now focusing on their impact on spatial and non-spatial cognitive functions. Movements of the head in space evoke vestibular signals that make important contributions during the development of brain representations of body parts relative to one another as well as representations of body orientation and position within the environment. A central nervous system pathway relays signals from the vestibular nuclei to the hippocampal system where this input is indispensable for neuronal responses selective for the position and orientation of the head in space. One aspect of the hippocampal systems’ processing to create episodic and contextual memories is its role in spatial orientation and navigation behaviors that require processing of relations between background cues. These are also impaired in adult patients with vestibular deficits. However little is known about the impact of vestibular loss on cognitive development in children. This is investigated here with a particular emphasis upon the hypothetical mechanisms and potential impact of vestibular loss at critical ages on the development of respective spatial and non-spatial cognitive processes and their brain substrates.
Collapse
Affiliation(s)
- Sylvette R Wiener-Vacher
- Vestibular and Oculomotor Evaluation Unit, Department of Otorhinolaryngology, Robert Debré Pediatric Hospital Paris, France
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico Albuquerque, NM, USA
| | - Sidney I Wiener
- Laboratoire de Physiologie de la Perception et de l'Action, UMR-7152, Centre National de la Recherche Scientifique - Collège de France Paris, France ; Memolife Laboratory of Excellence, Paris Science and Letters University Paris, France
| |
Collapse
|
779
|
Lutz CC, Robinson GE. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight. ACTA ACUST UNITED AC 2013; 216:2031-8. [PMID: 23678099 DOI: 10.1242/jeb.084905] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.
Collapse
Affiliation(s)
- Claudia C Lutz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
780
|
Villacorta-Atienza JA, Makarov VA. Neural network architecture for cognitive navigation in dynamic environments. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013; 24:2075-2087. [PMID: 24805224 DOI: 10.1109/tnnls.2013.2271645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Navigation in time-evolving environments with moving targets and obstacles requires cognitive abilities widely demonstrated by even simplest animals. However, it is a long-standing challenging problem for artificial agents. Cognitive autonomous robots coping with this problem must solve two essential tasks: 1) understand the environment in terms of what may happen and how I can deal with this and 2) learn successful experiences for their further use in an automatic subconscious way. The recently introduced concept of compact internal representation (CIR) provides the ground for both the tasks. CIR is a specific cognitive map that compacts time-evolving situations into static structures containing information necessary for navigation. It belongs to the class of global approaches, i.e., it finds trajectories to a target when they exist but also detects situations when no solution can be found. Here we extend the concept of situations with mobile targets. Then using CIR as a core, we propose a closed-loop neural network architecture consisting of conscious and subconscious pathways for efficient decision-making. The conscious pathway provides solutions to novel situations if the default subconscious pathway fails to guide the agent to a target. Employing experiments with roving robots and numerical simulations, we show that the proposed architecture provides the robot with cognitive abilities and enables reliable and flexible navigation in realistic time-evolving environments. We prove that the subconscious pathway is robust against uncertainty in the sensory information. Thus if a novel situation is similar but not identical to the previous experience (because of, e.g., noisy perception) then the subconscious pathway is able to provide an effective solution.
Collapse
|
781
|
Zawadzki JA, Girard TA, Foussias G, Rodrigues A, Siddiqui I, Lerch JP, Grady C, Remington G, Wong AHC. Simulating real world functioning in schizophrenia using a naturalistic city environment and single-trial, goal-directed navigation. Front Behav Neurosci 2013; 7:180. [PMID: 24324418 PMCID: PMC3840323 DOI: 10.3389/fnbeh.2013.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To develop a virtual reality platform that would serve as a functionally meaningful measure of cognition in schizophrenia and that would also complement standard batteries of cognitive tests during clinical trials for cognitive treatments in schizophrenia, be amenable to human neuroimaging research, yet lend itself to neurobiological comparison with rodent analogs. METHOD Thirty-three patients with schizophrenia and 33 healthy controls matched for age, sex, video gaming experience, and education completed eight rapid, single-trial virtual navigation tasks within a naturalistic virtual city. Four trials tested their ability to find different targets seen during the passive viewing of a closed path that led them around different city blocks. Four subsequent trials tested their ability to return to four different starting points after viewing a path that took them several blocks away from the starting position. RESULTS Individuals with schizophrenia had difficulties in way-finding, measured as distance travelled to find targets previously encountered within the virtual city. They were also more likely not to notice the target during passive viewing, less likely to find novel shortcuts to targets, and more likely to become lost and fail completely in finding the target. Total travel distances across all eight trials strongly correlated (negatively) with neurocognitive measures and, for 49 participants who completed the Quality of Life Scale, psychosocial functioning. CONCLUSION Single-trial, goal-directed navigation in a naturalistic virtual environment is a functionally meaningful measure of cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- John A. Zawadzki
- Institute of Medical Science, University of TorontoON, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Todd A. Girard
- Department of Psychology, Ryerson UniversityToronto, ON, Canada
| | - George Foussias
- Institute of Medical Science, University of TorontoON, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
- Department of Psychiatry, University of TorontoON, Canada
| | - Alicia Rodrigues
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
- Collaborative Program in Neuroscience, University of TorontoON, Canada
| | - Ishraq Siddiqui
- Institute of Medical Science, University of TorontoON, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Jason P. Lerch
- Department of Medical Biophysics, University of TorontoON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick ChildrenToronto, ON, Canada
| | - Cheryl Grady
- Departments of Psychology and Psychiatry, University of TorontoON, Canada
- Rotman Research Institute at BaycrestToronto, ON, Canada
| | - Gary Remington
- Institute of Medical Science, University of TorontoON, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
- Department of Psychiatry, University of TorontoON, Canada
| | - Albert H. C. Wong
- Institute of Medical Science, University of TorontoON, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
- Department of Psychiatry, University of TorontoON, Canada
| |
Collapse
|
782
|
Carretero-Guillen A, Pacheco-Calderon R, Delgado-Garcia JM, Gruart A. Involvement of Hippocampal Inputs and Intrinsic Circuit in the Acquisition of Context and Cues During Classical Conditioning in Behaving Rabbits. Cereb Cortex 2013; 25:1278-89. [DOI: 10.1093/cercor/bht321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
783
|
Yartsev MM. Eppendorf. Space bats: multidimensional spatial representation in the bat. Science 2013; 342:573-4. [PMID: 24179214 DOI: 10.1126/science.1245809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Michael M Yartsev
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
784
|
Is there a left hemispheric asymmetry for tool affordance processing? Neuropsychologia 2013; 51:2690-701. [DOI: 10.1016/j.neuropsychologia.2013.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/14/2013] [Indexed: 11/22/2022]
|
785
|
Heitmann S, Boonstra T, Breakspear M. A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex. PLoS Comput Biol 2013; 9:e1003260. [PMID: 24204220 PMCID: PMC3814333 DOI: 10.1371/journal.pcbi.1003260] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 07/27/2013] [Indexed: 11/19/2022] Open
Abstract
Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons — the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands. Physiological studies in humans and monkeys have revealed spatially organized waves of neuronal activity that propagate across the cortex during sensory or behavioral tasks. However the functional role of such waves remains elusive. In the present study, we use numerical simulation to investigate whether wave patterns may serve as a basis for neural coding in cortex. Specifically, we propose a theoretical dendritic mechanism which permits neurons to respond selectively to the morphological properties of waves. In this proposal, the arrangement of excitatory and inhibitory receptors within the dendritic receptor field constitutes a spatial filter of the incoming wave patterns. The proposed mechanism allows the neuron to discriminate waves based on wavelength and orientation, thereby providing a basis for neural decoding. We explore this concept in the context of the descending motor system where the pyramidal tract neurons of motor cortex monosynaptically innervate motor neurons in the spinal cord. Pyramidal tract neurons have broad dendritic fields which make them ideal candidates for spatial filters of waves in motor cortex. Our model demonstrates how wave patterns in motor cortex can be transformed into a descending motor drive which replicates some fundamental oscillatory properties of human motor physiology.
Collapse
Affiliation(s)
- Stewart Heitmann
- School of Psychiatry, The University of New South Wales, Sydney, Australia
- The Black Dog Institute, Sydney, Australia
- * E-mail:
| | - Tjeerd Boonstra
- School of Psychiatry, The University of New South Wales, Sydney, Australia
- The Black Dog Institute, Sydney, Australia
- Research Institute MOVE, VU University, Amsterdam, The Netherlands
| | - Michael Breakspear
- School of Psychiatry, The University of New South Wales, Sydney, Australia
- The Black Dog Institute, Sydney, Australia
- Queensland Institute of Medical Research, Brisbane, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
786
|
Plescia F, Sardo P, Rizzo V, Cacace S, Marino RAM, Brancato A, Ferraro G, Carletti F, Cannizzaro C. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study. Behav Brain Res 2013; 258:193-201. [PMID: 24149069 DOI: 10.1016/j.bbr.2013.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 11/16/2022]
Abstract
Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory.
Collapse
Affiliation(s)
- Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, V. Vespro 129, 90127 Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
787
|
Kim S, Borst G, Thompson WL, Hopkins RO, Kosslyn SM, Squire LR. Sparing of spatial mental imagery in patients with hippocampal lesions. Learn Mem 2013; 20:657-63. [PMID: 24136183 PMCID: PMC3799416 DOI: 10.1101/lm.031633.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In four experiments, we explored the capacity for spatial mental imagery in patients with hippocampal lesions, using tasks that minimized the role of learning and memory. On all four tasks, patients with hippocampal lesions performed as well as controls. Nonetheless, in separate tests, the patients were impaired at remembering the materials that had been used to assess mental imagery. The findings suggest that the hippocampus is not needed for constructing many forms of spatial imagery but is needed for the formation of long-term memory. In future studies of the neural organization of spatial mental imagery, it will be important to separate the contribution of spatial processing from the contribution of learning and memory.
Collapse
Affiliation(s)
- Soyun Kim
- Veterans Affairs San Diego Healthcare System, San Diego, California 92161, USA
| | | | | | | | | | | |
Collapse
|
788
|
Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1. J Neurosci 2013; 33:12337-51. [PMID: 23884940 DOI: 10.1523/jneurosci.3680-12.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions.
Collapse
|
789
|
|
790
|
Mitchinson B, Prescott TJ. Whisker movements reveal spatial attention: a unified computational model of active sensing control in the rat. PLoS Comput Biol 2013; 9:e1003236. [PMID: 24086120 PMCID: PMC3784505 DOI: 10.1371/journal.pcbi.1003236] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention.
Collapse
Affiliation(s)
- Ben Mitchinson
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| | - Tony J. Prescott
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
791
|
Hawkins RD. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain. Learn Mem 2013; 20:580-91. [PMID: 24049187 PMCID: PMC3768196 DOI: 10.1101/lm.031237.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca2+ and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer’s disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| |
Collapse
|
792
|
Arnold AEGF, Protzner AB, Bray S, Levy RM, Iaria G. Neural network configuration and efficiency underlies individual differences in spatial orientation ability. J Cogn Neurosci 2013; 26:380-94. [PMID: 24047389 DOI: 10.1162/jocn_a_00491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Spatial orientation is a complex cognitive process requiring the integration of information processed in a distributed system of brain regions. Current models on the neural basis of spatial orientation are based primarily on the functional role of single brain regions, with limited understanding of how interaction among these brain regions relates to behavior. In this study, we investigated two sources of variability in the neural networks that support spatial orientation--network configuration and efficiency--and assessed whether variability in these topological properties relates to individual differences in orientation accuracy. Participants with higher accuracy were shown to express greater activity in the right supramarginal gyrus, the right precentral cortex, and the left hippocampus, over and above a core network engaged by the whole group. Additionally, high-performing individuals had increased levels of global efficiency within a resting-state network composed of brain regions engaged during orientation and increased levels of node centrality in the right supramarginal gyrus, the right primary motor cortex, and the left hippocampus. These results indicate that individual differences in the configuration of task-related networks and their efficiency measured at rest relate to the ability to spatially orient. Our findings advance systems neuroscience models of orientation and navigation by providing insight into the role of functional integration in shaping orientation behavior.
Collapse
|
793
|
Scharfman HE, Chao MV. The entorhinal cortex and neurotrophin signaling in Alzheimer's disease and other disorders. Cogn Neurosci 2013; 4:123-35. [PMID: 24168199 PMCID: PMC3836904 DOI: 10.1080/17588928.2013.826184] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A major problem in the field of neurodegeneration is the basis of selective vulnerability of subsets of neurons to disease. In aging, Alzheimer's disease (AD), and other disorders such as temporal lobe epilepsy, the superficial layers of the entorhinal cortex (EC) are an area of selective vulnerability. In AD, it has been suggested that the degeneration of these neurons may play a role in causing the disease because it occurs at an early stage. Therefore, it is important to define the distinctive characteristics of the EC that make this region particularly vulnerable. It has been shown that neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical to the maintenance of the cortical neurons in the adult brain, and specifically the EC. Here we review the circuitry, distinctive functions, and neurotrophin-dependence of the EC that are relevant to its vulnerability. We also suggest that a protein that is critical to the actions of BDNF, the ARMS/Kidins220 scaffold protein, plays an important role in neurotrophic support of the EC.
Collapse
Affiliation(s)
- Helen E Scharfman
- a Departments of Child & Adolescent Psychiatry, Physiology & Neuroscience and Psychiatry , New York University Langone Medical Center , New York , NY , USA
| | | |
Collapse
|
794
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
795
|
Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdóttir HN, Stackman RW. The rodent hippocampus is essential for nonspatial object memory. Curr Biol 2013; 23:1685-90. [PMID: 23954431 DOI: 10.1016/j.cub.2013.07.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Elucidating the role of the rodent hippocampus in object recognition memory is critical for establishing the appropriateness of rodents as models of human memory and for their use in the development of memory disorder treatments. In mammals, spatial memory and nonspatial memory depend upon the hippocampus and associated medial temporal lobe (MTL) structures. Although well established in humans, the role of the rodent hippocampus in object memory remains highly debated due to conflicting findings across temporary and permanent hippocampal lesion studies and evidence that the perirhinal cortex may support object memory. In the current studies, we used intrahippocampal muscimol microinfusions to transiently inactivate the male C57BL/6J mouse hippocampus at distinct stages during the novel object recognition (NOR) task: during object memory encoding and consolidation, just consolidation, and/or retrieval. We also assessed the effect of temporary hippocampal inactivation when objects were presented in different contexts, thus eliminating the spatial or contextual components of the task. Lastly, we assessed extracellular dorsal hippocampal glutamate efflux and firing properties of hippocampal neurons while mice performed the NOR task. Our results reveal a clear and compelling role of the rodent hippocampus in nonspatial object memory.
Collapse
Affiliation(s)
- Sarah J Cohen
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431-0991, USA
| | | | | | | | | | | |
Collapse
|
796
|
Spiers HJ, Hayman RMA, Jovalekic A, Marozzi E, Jeffery KJ. Place field repetition and purely local remapping in a multicompartment environment. Cereb Cortex 2013; 25:10-25. [PMID: 23945240 PMCID: PMC4400414 DOI: 10.1093/cercor/bht198] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hippocampal place cells support spatial memory using sensory information from the environment and self-motion information to localize their firing fields. Currently, there is disagreement about whether CA1 place cells can use pure self-motion information to disambiguate different compartments in environments containing multiple visually identical compartments. Some studies report that place cells can disambiguate different compartments, while others report that they do not. Furthermore, while numerous studies have examined remapping, there has been little examination of remapping in different subregions of a single environment. Is remapping purely local or do place fields in neighboring, unaffected, regions detect the change? We recorded place cells as rats foraged across a 4-compartment environment and report 3 new findings. First, we find that, unlike studies in which rats foraged in 2 compartments, place fields showed a high degree of spatial repetition with a slight degree of rate-based discrimination. Second, this repetition does not diminish with extended experience. Third, remapping was found to be purely local for both geometric change and contextual change. Our results reveal the limited capacity of the path integrator to drive pattern separation in hippocampal representations, and suggest that doorways may play a privileged role in segmenting the neural representation of space.
Collapse
Affiliation(s)
- Hugo J Spiers
- Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, UK
| | - Robin M A Hayman
- Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, UK
| | - Aleksandar Jovalekic
- Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, UK Axona Ltd, Unit 4U St Albans Enterprise Centre, St Albans, UK
| | - Elizabeth Marozzi
- Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, UK
| | - Kathryn J Jeffery
- Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, UK
| |
Collapse
|
797
|
Buzsáki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23393413 PMCID: PMC3553572 DOI: 10.31887/dcns.2012.14.4/gbuzsaki] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or "chunk" neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms.
Collapse
Affiliation(s)
- György Buzsáki
- NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
798
|
Clark B, Rice JP, Akers KG, Candelaria-Cook FT, Taube JS, Hamilton DA. Lesions of the dorsal tegmental nuclei disrupt control of navigation by distal landmarks in cued, directional, and place variants of the Morris water task. Behav Neurosci 2013; 127:566-81. [PMID: 23731069 PMCID: PMC3997071 DOI: 10.1037/a0033087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Navigation depends on a network of neural systems that accurately monitor an animal's spatial orientation in an environment. Within this navigation system are head direction (HD) cells which discharge as a function of an animal's directional heading, providing an animal with a neural compass to guide ongoing spatial behavior. Experiments were designed to test this hypothesis by damaging the dorsal tegmental nucleus (DTN), a midbrain structure that plays a critical role in the generation of the rodent HD cell signal, and evaluating landmark based navigation using variants of the Morris water task. In Experiments 1 and 2, shams and DTN-lesioned rats were trained to navigate toward a cued platform in the presence of a constellation of distal landmarks located outside the pool. After reaching a training criteria, rats were tested in three probe trials in which (a) the cued platform was completely removed from the pool, (b) the pool was repositioned and the cued platform remained in the same absolute location with respect to distal landmarks, or (c) the pool was repositioned and the cued platform remained in the same relative location in the pool. In general, DTN-lesioned rats required more training trials to reach performance criterion, were less accurate to navigate to the platform position when it was removed, and navigated directly to the cued platform regardless of its position in the pool, indicating a general absence of control over navigation by distal landmarks. In Experiment 3, DTN and control rats were trained in directional and place navigation variants of the water task where the pool was repositioned for each training trial and a hidden platform was placed either in the same relative location (direction) in the pool or in the same absolute location (place) in the distal room reference frame. DTN-lesioned rats were initially impaired in the direction task, but ultimately performed as well as controls. In the place task, DTN-lesioned rats were severely impaired and displayed little evidence of improvement over the course of training. Together, these results support the conclusion that the DTN is required for accurate landmark navigation.
Collapse
Affiliation(s)
- Benjamin Clark
- Department of Psychological and Brain Sciences, Dartmouth College,
Hanover, NH
| | - James P. Rice
- Department of Psychology, University of New Mexico, Albuquerque,
NM
| | | | | | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Dartmouth College,
Hanover, NH
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, Albuquerque,
NM
- Department of Neurosciences, University of New Mexico, Albuquerque,
NM
| |
Collapse
|
799
|
Kornblith S, Cheng X, Ohayon S, Tsao DY. A network for scene processing in the macaque temporal lobe. Neuron 2013; 79:766-81. [PMID: 23891401 DOI: 10.1016/j.neuron.2013.06.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 11/17/2022]
Abstract
Spatial navigation is a complex process, but one that is essential for any mobile organism. We localized a region in the macaque occipitotemporal sulcus that responds preferentially to images of scenes. Single-unit recording revealed that this region, which we term the lateral place patch (LPP), contained a large concentration of scene-selective single units. These units were not modulated by spatial layout alone but were instead modulated by a combination of spatial and nonspatial factors, with individual units coding specific scene parts. We further demonstrate by microstimulation that LPP is connected with extrastriate visual areas V4V and DP and a scene-selective medial place patch in the parahippocampal gyrus, revealing a ventral network for visual scene processing in the macaque.
Collapse
Affiliation(s)
- Simon Kornblith
- Division of Biology and Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
800
|
Lu L, Leutgeb JK, Tsao A, Henriksen EJ, Leutgeb S, Barnes CA, Witter MP, Moser MB, Moser EI. Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat Neurosci 2013; 16:1085-93. [PMID: 23852116 DOI: 10.1038/nn.3462] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/10/2013] [Indexed: 11/09/2022]
Abstract
In the hippocampus, spatial and non-spatial parameters may be represented by a dual coding scheme, in which coordinates in space are expressed by the collective firing locations of place cells and the diversity of experience at these locations is encoded by orthogonal variations in firing rates. Although the spatial signal may reflect input from medial entorhinal cortex, the sources of the variations in firing rate have not been identified. We found that rate variations in rat CA3 place cells depended on inputs from the lateral entorhinal cortex (LEC). Hippocampal rate remapping, induced by changing the shape or the color configuration of the environment, was impaired by lesions in those parts of the ipsilateral LEC that provided the densest input to the hippocampal recording position. Rate remapping was not observed in LEC itself. The findings suggest that LEC inputs are important for efficient rate coding in the hippocampus.
Collapse
Affiliation(s)
- Li Lu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|