801
|
Carvill GL, Mefford HC. Next-Generation Sequencing in Intellectual Disability. J Pediatr Genet 2015; 4:128-35. [PMID: 27617123 DOI: 10.1055/s-0035-1564439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/19/2022]
Abstract
Next-generation sequencing technologies have revolutionized gene discovery in patients with intellectual disability (ID) and led to an unprecedented expansion in the number of genes implicated in this disorder. We discuss the strategies that have been used to identify these novel genes for both syndromic and nonsyndromic ID and highlight the phenotypic and genetic heterogeneity that underpin this condition. Finally, we discuss the future of defining the genetic etiology of ID, including the role of whole-genome sequencing, mosaicism, and the importance of diagnostic testing in ID.
Collapse
Affiliation(s)
- Gemma L Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States
| |
Collapse
|
802
|
Kumar R, Corbett MA, Van Bon BWM, Gardner A, Woenig JA, Jolly LA, Douglas E, Friend K, Tan C, Van Esch H, Holvoet M, Raynaud M, Field M, Leffler M, Budny B, Wisniewska M, Badura-Stronka M, Latos-Bieleńska A, Batanian J, Rosenfeld JA, Basel-Vanagaite L, Jensen C, Bienek M, Froyen G, Ullmann R, Hu H, Love MI, Haas SA, Stankiewicz P, Cheung SW, Baxendale A, Nicholl J, Thompson EM, Haan E, Kalscheuer VM, Gecz J. Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems. Hum Mol Genet 2015; 24:7171-81. [PMID: 26443594 DOI: 10.1093/hmg/ddv414] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.
Collapse
Affiliation(s)
- Raman Kumar
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Mark A Corbett
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | | | - Alison Gardner
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Joshua A Woenig
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Lachlan A Jolly
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Evelyn Douglas
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | - Chuan Tan
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Maureen Holvoet
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Martine Raynaud
- Centre Hospitalier Régional Universitaire, Service de Génétique, 37000 Tours, France
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Melanie Leffler
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases and
| | - Marzena Wisniewska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | | | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | | | - Jill A Rosenfeld
- Signature Genomic Laboratories, Spokane, WA 99207, USA, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lina Basel-Vanagaite
- Raphael Recanati Genetic Institute and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | | | | | - Guy Froyen
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium and
| | - Reinhard Ullmann
- Department of Human Molecular Genetics and, Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - Hao Hu
- Department of Human Molecular Genetics and
| | - Michael I Love
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Baxendale
- South Australian Clinical Genetics Service, SA Pathology, North Adelaide, SA 5006, Australia
| | - Jillian Nicholl
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | - Elizabeth M Thompson
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia, South Australian Clinical Genetics Service, SA Pathology, North Adelaide, SA 5006, Australia
| | - Eric Haan
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia, South Australian Clinical Genetics Service, SA Pathology, North Adelaide, SA 5006, Australia
| | | | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia,
| |
Collapse
|
803
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|
804
|
Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat Genet 2015; 47:1363-9. [PMID: 26437029 PMCID: PMC5988033 DOI: 10.1038/ng.3410] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022]
Abstract
Discovery of most autosomal recessive disease genes has involved analysis of large, often consanguineous, multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of novel dominant causes of rare, genetically heterogenous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios 1,2. Here we analysed 4,125 families with diverse, rare, genetically heterogeneous developmental disorders and identified four novel autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (identifying probands with rare biallelic putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population, and (ii) the phenotypic similarity of patients with the same recessive candidate gene. This new paradigm promises to catalyse discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations, and those caused predominantly by compound heterozygous genotypes.
Collapse
|
805
|
Abstract
Palatogenesis involves the initiation, growth, morphogenesis, and fusion of the primary and secondary palatal shelves from initially separate facial prominences during embryogenesis to form the intact palate separating the oral cavity from the nostrils. The palatal shelves consist mainly of cranial neural crest-derived mesenchymal cells covered by a simple embryonic epithelium. The growth and patterning of the palatal shelves are controlled by reciprocal epithelial-mesenchymal interactions regulated by multiple signaling pathways and transcription factors. During palatal shelf outgrowth, the embryonic epithelium develops a "teflon" coat consisting of a single, continuous layer of periderm cells that prevents the facial prominences and palatal shelves from forming aberrant interepithelial adhesions. Palatal fusion involves not only spatiotemporally regulated disruption of the periderm but also dynamic cellular and molecular processes that result in adhesion and intercalation of the palatal medial edge epithelia to form an intershelf epithelial seam, and subsequent dissolution of the epithelial seam to form the intact roof of the oral cavity. The complexity of regulation of these morphogenetic processes is reflected by the common occurrence of cleft palate in humans. This review will summarize major recent advances and discuss major remaining gaps in the understanding of cellular and molecular mechanisms controlling palatogenesis.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
806
|
Persico AM, Arango C, Buitelaar JK, Correll CU, Glennon JC, Hoekstra PJ, Moreno C, Vitiello B, Vorstman J, Zuddas A. Unmet needs in paediatric psychopharmacology: Present scenario and future perspectives. Eur Neuropsychopharmacol 2015; 25:1513-31. [PMID: 26166453 DOI: 10.1016/j.euroneuro.2015.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/17/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022]
Abstract
Paediatric psychopharmacology holds great promise in two equally important areas of enormous biomedical and social impact, namely the treatment of behavioural abnormalities in children and adolescents, and the prevention of psychiatric disorders with adolescent- or adult-onset. Yet, in striking contrast, pharmacological treatment options presently available in child and adolescent psychiatry are dramatically limited. The most important currently unmet needs in paediatric psychopharmacology are: the frequent off-label prescription of medications to children and adolescents based exclusively on data from randomized controlled studies involving adult patients; the frequent lack of age-specific dose, long-term efficacy and tolerability/safety data; the lack of effective medications for many paediatric psychiatric disorders, most critically autism spectrum disorder; the scarcity and limitations of randomized placebo-controlled trials in paediatric psychopharmacology; the unexplored potential for the prevention of psychiatric disorders with adolescent- and adult-onset; the current lack of biomarkers to predict treatment response and severe adverse effects; the need for better preclinical data to foster the successful development of novel drug therapies; and the effective dissemination of evidence-based treatments to the general public, to better inform patients and families of the benefits and risks of pharmacological interventions during development. Priorities and strategies are proposed to overcome some of these limitations, including the European Child and Adolescent Clinical Psychopharmacology Network, as an overarching Pan-European infrastructure aimed at reliably carrying out much needed psychopharmacological trials in children and adolescents, in order to fill the identified gaps and improve overall outcomes.
Collapse
Affiliation(s)
- Antonio M Persico
- Child & Adolescent NeuroPsychiatry Unit, University Campus Bio-Medico, Rome, Italy; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, and Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christoph U Correll
- Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, and Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Pieter J Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Carmen Moreno
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | | | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Zuddas
- Dept. Biomedical Sciences, Child & Adolescent NeuroPsychiatry Unit, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
807
|
Hollstein R, Parry DA, Nalbach L, Logan CV, Strom TM, Hartill VL, Carr IM, Korenke GC, Uppal S, Ahmed M, Wieland T, Markham AF, Bennett CP, Gillessen-Kaesbach G, Sheridan EG, Kaiser FJ, Bonthron DT. HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome. J Med Genet 2015; 52:797-803. [PMID: 26424145 PMCID: PMC4717446 DOI: 10.1136/jmedgenet-2015-103344] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/23/2015] [Indexed: 01/05/2023]
Abstract
Background The genetic aetiology of neurodevelopmental defects is extremely diverse, and the lack of distinctive phenotypic features means that genetic criteria are often required for accurate diagnostic classification. We aimed to identify the causative genetic lesions in two families in which eight affected individuals displayed variable learning disability, spasticity and abnormal gait. Methods Autosomal recessive inheritance was suggested by consanguinity in one family and by sibling recurrences with normal parents in the second. Autozygosity mapping and exome sequencing, respectively, were used to identify the causative gene. Results In both families, biallelic loss-of-function mutations in HACE1 were identified. HACE1 is an E3 ubiquitin ligase that regulates the activity of cellular GTPases, including Rac1 and members of the Rab family. In the consanguineous family, a homozygous mutation p.R219* predicted a truncated protein entirely lacking its catalytic domain. In the other family, compound heterozygosity for nonsense mutation p.R748* and a 20-nt insertion interrupting the catalytic homologous to the E6-AP carboxyl terminus (HECT) domain was present; western blot analysis of patient cells revealed an absence of detectable HACE1 protein. Conclusion HACE1 mutations underlie a new autosomal recessive neurodevelopmental disorder. Previous studies have implicated HACE1 as a tumour suppressor gene; however, since cancer predisposition was not observed either in homozygous or heterozygous mutation carriers, this concept may require re-evaluation.
Collapse
Affiliation(s)
- Ronja Hollstein
- Sektion für Funktionelle Genetik am Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - David A Parry
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | - Lisa Nalbach
- Sektion für Funktionelle Genetik am Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Clare V Logan
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Verity L Hartill
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK Yorkshire Regional Genetics Service, Leeds, UK
| | - Ian M Carr
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | - Georg C Korenke
- Zentrum für Kinder- und Jugendmedizin, Neuropädiatrie, Klinikum Oldenburg, Oldenburg, Germany
| | - Sandeep Uppal
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | | | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | - Eamonn G Sheridan
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK Yorkshire Regional Genetics Service, Leeds, UK
| | - Frank J Kaiser
- Sektion für Funktionelle Genetik am Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - David T Bonthron
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK Yorkshire Regional Genetics Service, Leeds, UK
| |
Collapse
|
808
|
Grozeva D, Carss K, Spasic-Boskovic O, Tejada MI, Gecz J, Shaw M, Corbett M, Haan E, Thompson E, Friend K, Hussain Z, Hackett A, Field M, Renieri A, Stevenson R, Schwartz C, Floyd JAB, Bentham J, Cosgrove C, Keavney B, Bhattacharya S, Hurles M, Raymond FL. Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Hum Mutat 2015; 36:1197-204. [PMID: 26350204 PMCID: PMC4833192 DOI: 10.1002/humu.22901] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022]
Abstract
To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID‐associated genes using targeted next‐generation sequencing. Likely pathogenic rare variants were found in ∼11% of the cases (113 variants in 107/986 individuals: ∼8% of the individuals had a likely pathogenic loss‐of‐function [LoF] variant, whereas ∼3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%–15% yield from array CGH alone.
Collapse
Affiliation(s)
- Detelina Grozeva
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Keren Carss
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, United Kingdom
| | - Olivera Spasic-Boskovic
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom.,East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Maria-Isabel Tejada
- Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, BioCruces Health Research Institute, Barakaldo-Bizkaia, 48903, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Madrid, 28029, Spain
| | - Jozef Gecz
- Department of Paediatrics and Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, 5006, Australia
| | - Marie Shaw
- Department of Paediatrics and Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, 5006, Australia
| | - Mark Corbett
- Department of Paediatrics and Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, 5006, Australia
| | - Eric Haan
- Department of Paediatrics and Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, 5006, Australia
| | - Elizabeth Thompson
- Department of Paediatrics and Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, 5006, Australia
| | - Kathryn Friend
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia, 5006, Australia
| | - Zaamin Hussain
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, 2298, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, 2298, Australia
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy
| | | | | | - James A B Floyd
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.,The Genome Centre, John Vane Science Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Jamie Bentham
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, United Kingdom
| | - Catherine Cosgrove
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, United Kingdom
| | - Bernard Keavney
- Cardiovascular Research Group, Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9NT, United Kingdom
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, United Kingdom
| | | | | | | | - Matthew Hurles
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - F Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
809
|
Bcl11a (Ctip1) Controls Migration of Cortical Projection Neurons through Regulation of Sema3c. Neuron 2015; 87:311-25. [PMID: 26182416 DOI: 10.1016/j.neuron.2015.06.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/04/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
During neocortical development, neurons undergo polarization, oriented migration, and layer-type-specific differentiation. The transcriptional programs underlying these processes are not completely understood. Here, we show that the transcription factor Bcl11a regulates polarity and migration of upper layer neurons. Bcl11a-deficient late-born neurons fail to correctly switch from multipolar to bipolar morphology, resulting in impaired radial migration. We show that the expression of Sema3c is increased in migrating Bcl11a-deficient neurons and that Bcl11a is a direct negative regulator of Sema3c transcription. In vivo gain-of-function and rescue experiments demonstrate that Sema3c is a major downstream effector of Bcl11a required for the cell polarity switch and for the migration of upper layer neurons. Our data uncover a novel Bcl11a/Sema3c-dependent regulatory pathway used by migrating cortical neurons.
Collapse
|
810
|
Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, Coe BP, Baker C, Nordenfelt S, Bamshad M, Jorde LB, Posukh OL, Sahakyan H, Watkins WS, Yepiskoposyan L, Abdullah MS, Bravi CM, Capelli C, Hervig T, Wee JTS, Tyler-Smith C, van Driem G, Romero IG, Jha AR, Karachanak-Yankova S, Toncheva D, Comas D, Henn B, Kivisild T, Ruiz-Linares A, Sajantila A, Metspalu E, Parik J, Villems R, Starikovskaya EB, Ayodo G, Beall CM, Di Rienzo A, Hammer MF, Khusainova R, Khusnutdinova E, Klitz W, Winkler C, Labuda D, Metspalu M, Tishkoff SA, Dryomov S, Sukernik R, Patterson N, Reich D, Eichler EE. Global diversity, population stratification, and selection of human copy-number variation. Science 2015; 349:aab3761. [PMID: 26249230 PMCID: PMC4568308 DOI: 10.1126/science.aab3761] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
Abstract
In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide-variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.
Collapse
Affiliation(s)
- Peter H Sudmant
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Swapan Mallick
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Niklas Krumm
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Susanne Nordenfelt
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98119, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Olga L Posukh
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Novosibirsk State University, Novosibirsk 630090, Russia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - W Scott Watkins
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - M Syafiq Abdullah
- Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Claudio M Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE), Centro Científico y Tecnológico-Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET) and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata B1906APO, Argentina
| | | | - Tor Hervig
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | | | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - George van Driem
- Institute of Linguistics, University of Bern, Bern CH-3012, Switzerland
| | | | - Aashish R Jha
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Sena Karachanak-Yankova
- Department of Medical Genetics, National Human Genome Center, Medical University Sofia, Sofia 1431, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, National Human Genome Center, Medical University Sofia, Sofia 1431, Bulgaria
| | - David Comas
- Institut de Biologia Evolutiva [Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra (CSIC-UPF)], Departament de Ciències Experimentals i de la Salut, UPF, Barcelona 08003, Spain
| | - Brenna Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Toomas Kivisild
- Division of Biological Anthropology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Antti Sajantila
- University of Helsinki, Department of Forensic Medicine, Helsinki 00014, Finland
| | - Ene Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. University of Tartu, Department of Evolutionary Biology, Tartu 5101, Estonia
| | - Jüri Parik
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Richard Villems
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Elena B Starikovskaya
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - George Ayodo
- Center for Global Health and Child Development, Kisumu 40100, Kenya
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106-7125, USA
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Rita Khusainova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, Ufa 450054, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450074, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, Ufa 450054, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa 450074, Russia
| | - William Klitz
- Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Cheryl Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Incorporated, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Damian Labuda
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Département de Pédiatrie, Université de Montréal, QC H3T 1C5, Canada
| | - Mait Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Sarah A Tishkoff
- Departments of Biology and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stanislav Dryomov
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Department of Paleolithic Archaeology, Institute of Archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Rem Sukernik
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia. Altai State University, Barnaul 656000, Russia
| | - Nick Patterson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David Reich
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
811
|
Jarema KA, Hunter DL, Shaffer RM, Behl M, Padilla S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol 2015; 52:194-209. [PMID: 26348672 DOI: 10.1016/j.ntt.2015.08.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/06/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022]
Abstract
As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae. Larvae (n≈24 per dose per compound) were exposed to test compounds (0.4-120 μM) at sub-teratogenic concentrations either developmentally or acutely, and locomotor activity was assessed at 6 days post fertilization. When given developmentally, all chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the most effects at the most concentrations. The results indicate that these replacement flame retardants may have developmental or pharmacological effects on the vertebrate nervous system.
Collapse
Affiliation(s)
- Kimberly A Jarema
- Toxicology Assessment Division NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Deborah L Hunter
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel M Shaffer
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Curriculum in Toxicology, University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
812
|
Hempel M, Cremer K, Ockeloen C, Lichtenbelt K, Herkert J, Denecke J, Haack T, Zink A, Becker J, Wohlleber E, Johannsen J, Alhaddad B, Pfundt R, Fuchs S, Wieczorek D, Strom T, van Gassen K, Kleefstra T, Kubisch C, Engels H, Lessel D. De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment. Am J Hum Genet 2015; 97:493-500. [PMID: 26340335 DOI: 10.1016/j.ajhg.2015.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023] Open
Abstract
CHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated individuals affected by intellectual disability with severe speech impairment, motor developmental delay, muscular hypotonia, and similar dysmorphic features including short philtrum and a tented upper and everted lover lip. In addition to two frameshift and one nonsense mutations, we found an identical nonsense mutation, c.1192C>T (p.Arg398*), in two affected individuals. All mutations, if resulting in a stable protein, are predicted to lead to the loss of the functionally important zinc-finger domains in the C terminus of the protein, which regulate CHAMP1 localization to chromosomes and the mitotic spindle, thereby providing a mechanistic understanding for their pathogenicity. We thus establish deleterious de novo mutations in CHAMP1 as a cause of intellectual disability.
Collapse
|
813
|
Johansson MM, Van Geystelen A, Larmuseau MHD, Djurovic S, Andreassen OA, Agartz I, Jazin E. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups. PLoS One 2015; 10:e0137223. [PMID: 26322892 PMCID: PMC4554990 DOI: 10.1371/journal.pone.0137223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The human Y chromosome is almost always excluded from genome-wide investigations of copy number variants (CNVs) due to its highly repetitive structure. This chromosome should not be forgotten, not only for its well-known relevance in male fertility, but also for its involvement in clinical phenotypes such as cancers, heart failure and sex specific effects on brain and behaviour. RESULTS We analysed Y chromosome data from Affymetrix 6.0 SNP arrays and found that the signal intensities for most of 8179 SNP/CN probes in the male specific region (MSY) discriminated between a male, background signals in a female and an isodicentric male containing a large deletion of the q-arm and a duplication of the p-arm of the Y chromosome. Therefore, this SNP/CN platform is suitable for identification of gain and loss of Y chromosome sequences. In a set of 1718 males, we found 25 different CNV patterns, many of which are novel. We confirmed some of these variants by PCR or qPCR. The total frequency of individuals with CNVs was 14.7%, including 9.5% with duplications, 4.5% with deletions and 0.7% exhibiting both. Hence, a novel observation is that the frequency of duplications was more than twice the frequency of deletions. Another striking result was that 10 of the 25 detected variants were significantly overrepresented in one or more haplogroups, demonstrating the importance to control for haplogroups in genome-wide investigations to avoid stratification. NO-M214(xM175) individuals presented the highest percentage (95%) of CNVs. If they were not counted, 12.4% of the rest included CNVs, and the difference between duplications (8.9%) and deletions (2.8%) was even larger. CONCLUSIONS Our results demonstrate that currently available genome-wide SNP platforms can be used to identify duplications and deletions in the human Y chromosome. Future association studies of the full spectrum of Y chromosome variants will demonstrate the potential involvement of gain or loss of Y chromosome sequence in different human phenotypes.
Collapse
Affiliation(s)
- Martin M. Johansson
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
- * E-mail: (MMJ); (EJ)
| | - Anneleen Van Geystelen
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Maarten H. D. Larmuseau
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Elena Jazin
- Department of Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
- * E-mail: (MMJ); (EJ)
| |
Collapse
|
814
|
Tobias AP, Tobias ES. Developing educational iPhone, Android and Windows smartphone cross-platform apps to facilitate understanding of clinical genomics terminology. Appl Transl Genom 2015; 6:15-7. [PMID: 27054073 PMCID: PMC4803764 DOI: 10.1016/j.atg.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/16/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Adam P Tobias
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Edward S Tobias
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
815
|
Delineation of New Disorders and Phenotypic Expansion of Known Disorders Through Whole Exome Sequencing. CURRENT GENETIC MEDICINE REPORTS 2015. [DOI: 10.1007/s40142-015-0079-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
816
|
Chatzimichali EA, Brent S, Hutton B, Perrett D, Wright CF, Bevan AP, Hurles ME, Firth HV, Swaminathan GJ. Facilitating collaboration in rare genetic disorders through effective matchmaking in DECIPHER. Hum Mutat 2015. [PMID: 26220709 PMCID: PMC4832335 DOI: 10.1002/humu.22842] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DECIPHER (https://decipher.sanger.ac.uk) is a web‐based platform for secure deposition, analysis, and sharing of plausibly pathogenic genomic variants from well‐phenotyped patients suffering from genetic disorders. DECIPHER aids clinical interpretation of these rare sequence and copy‐number variants by providing tools for variant analysis and identification of other patients exhibiting similar genotype–phenotype characteristics. DECIPHER also provides mechanisms to encourage collaboration among a global community of clinical centers and researchers, as well as exchange of information between clinicians and researchers within a consortium, to accelerate discovery and diagnosis. DECIPHER has contributed to matchmaking efforts by enabling the global clinical genetics community to identify many previously undiagnosed syndromes and new disease genes, and has facilitated the publication of over 700 peer‐reviewed scientific publications since 2004. At the time of writing, DECIPHER contains anonymized data from ∼250 registered centers on more than 51,500 patients (∼18000 patients with consent for data sharing and ∼25000 anonymized records shared privately). In this paper, we describe salient features of the platform, with special emphasis on the tools and processes that aid interpretation, sharing, and effective matchmaking with other data held in the database and that make DECIPHER an invaluable clinical and research resource.
Collapse
Affiliation(s)
- Eleni A Chatzimichali
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Simon Brent
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Benjamin Hutton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Daniel Perrett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Caroline F Wright
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Andrew P Bevan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Helen V Firth
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.,Cambridge University Department of Medical Genetics, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom
| | - Ganesh J Swaminathan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| |
Collapse
|
817
|
DeSanto C, D'Aco K, Araujo GC, Shannon N, Vernon H, Rahrig A, Monaghan KG, Niu Z, Vitazka P, Dodd J, Tang S, Manwaring L, Martir-Negron A, Schnur RE, Juusola J, Schroeder A, Pan V, Helbig KL, Friedman B, Shinawi M. WAC loss-of-function mutations cause a recognisable syndrome characterised by dysmorphic features, developmental delay and hypotonia and recapitulate 10p11.23 microdeletion syndrome. J Med Genet 2015; 52:754-61. [PMID: 26264232 DOI: 10.1136/jmedgenet-2015-103069] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/14/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rare de novo mutations have been implicated as a significant cause of idiopathic intellectual disability. Large deletions encompassing 10p11.23 have been implicated in developmental delay, behavioural abnormalities and dysmorphic features, but the genotype-phenotype correlation was not delineated. Mutations in WAC have been recently reported in large screening cohorts of patients with intellectual disability or autism, but no full phenotypic characterisation was described. METHODS Clinical and molecular characterisation of six patients with loss-of-function WAC mutations identified by whole exome sequencing was performed. Clinical data were obtained by retrospective chart review, parental interviews, direct patient interaction and formal neuropsychological evaluation. RESULTS Five heterozygous de novo WAC mutations were identified in six patients. Three of the mutations were nonsense, and two were frameshift; all are predicted to cause loss of function either through nonsense-mediated mRNA decay or protein truncation. Clinical findings included developmental delay (6/6), hypotonia (6/6), behavioural problems (5/6), eye abnormalities (5/6), constipation (5/6), feeding difficulties (4/6), seizures (2/6) and sleep problems (2/6). All patients exhibited common dysmorphic features, including broad/prominent forehead, synophrys and/or bushy eyebrows, depressed nasal bridge and bulbous nasal tip. Posteriorly rotated ears, hirsutism, deep-set eyes, thin upper lip, inverted nipples, hearing loss and branchial cleft anomalies were also noted. CONCLUSIONS Our case series show that loss-of-function mutations in WAC cause a recognisable genetic syndrome characterised by a neurocognitive phenotype and facial dysmorphism. Our data highly suggest that WAC haploinsufficiency is responsible for most of the phenotypic features associated with deletions encompassing 10p11.23.
Collapse
Affiliation(s)
- Cori DeSanto
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kristin D'Aco
- Division of Genetics, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Gabriel C Araujo
- Department of Psychology, St Louis Children's Hospital, St Louis, Missouri, USA
| | - Nora Shannon
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | -
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Hilary Vernon
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - April Rahrig
- Department of Pediatrics, Advocate Children's Hospital, Park Ridge, Illinois, USA
| | | | - Zhiyv Niu
- Department of Molecular and Human Genetics, Whole Genome Laboratory and Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas, USA
| | | | - Jonathan Dodd
- Department of Psychology, St Louis Children's Hospital, St Louis, Missouri, USA
| | - Sha Tang
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Linda Manwaring
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Arelis Martir-Negron
- Department of Pediatrics, Advocate Children's Hospital, Park Ridge, Illinois, USA Division of Clinical Genetics & Metabolic Disorders, Palm Beach Gardens Outpatient Center, Nicklaus Children's Hospital, Miami, Florida, USA
| | | | | | - Audrey Schroeder
- Division of Genetics, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Vivian Pan
- Department of Pediatrics, Advocate Children's Hospital, Park Ridge, Illinois, USA
| | - Katherine L Helbig
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
818
|
Incorporating Functional Information in Tests of Excess De Novo Mutational Load. Am J Hum Genet 2015; 97:272-83. [PMID: 26235986 DOI: 10.1016/j.ajhg.2015.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022] Open
Abstract
A number of recent studies have investigated the role of de novo mutations in various neurodevelopmental and neuropsychiatric disorders. These studies attempt to implicate causal genes by looking for an excess load of de novo mutations within those genes. Current statistical methods for assessing this excess are based on the implicit assumption that all qualifying mutations in a gene contribute equally to disease. However, it is well established that different mutations can have radically different effects on the ultimate protein product and, as a result, on disease risk. Here, we propose a method, fitDNM, that incorporates functional information in a test of excess de novo mutational load. Specifically, we derive score statistics from a retrospective likelihood that incorporates the probability of a mutation being damaging to gene function. We show that, under the null, the resulting test statistic is distributed as a weighted sum of Poisson random variables and we implement a saddlepoint approximation of this distribution to obtain accurate p values. Using simulation, we have shown that our method outperforms current methods in terms of statistical power while maintaining validity. We have applied this approach to four de novo mutation datasets of neurodevelopmental and neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, schizophrenia, and severe intellectual disability. Our approach also implicates genes that have been implicated by existing methods. Furthermore, our approach provides strong statistical evidence supporting two potentially causal genes: SUV420H1 in autism spectrum disorder and TRIO in a combined analysis of the four neurodevelopmental and neuropsychiatric disorders investigated here.
Collapse
|
819
|
Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders M, Venselaar H, Helsmoortel C, Cho M, Hoischen A, Vissers LE, Koemans T, Wissink-Lindhout W, Eichler E, Romano C, Van Esch H, Stumpel C, Vreeburg M, Smeets E, Oberndorff K, van Bon B, Shaw M, Gecz J, Haan E, Bienek M, Jensen C, Loeys B, Van Dijck A, Innes A, Racher H, Vermeer S, Di Donato N, Rump A, Tatton-Brown K, Parker M, Henderson A, Lynch S, Fryer A, Ross A, Vasudevan P, Kini U, Newbury-Ecob R, Chandler K, Male A, Dijkstra S, Schieving J, Giltay J, van Gassen K, Schuurs-Hoeijmakers J, Tan P, Pediaditakis I, Haas S, Retterer K, Reed P, Monaghan K, Haverfield E, Natowicz M, Myers A, Kruer M, Stein Q, Strauss K, Brigatti K, Keating K, Burton B, Kim K, Charrow J, Norman J, Foster-Barber A, Kline A, Kimball A, Zackai E, Harr M, Fox J, McLaughlin J, Lindstrom K, Haude K, van Roozendaal K, Brunner H, Chung W, Kooy R, Pfundt R, Kalscheuer V, Mehta S, Katsanis N, Kleefstra T, Kleefstra T. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. Am J Hum Genet 2015; 97:343-52. [PMID: 26235985 DOI: 10.1016/j.ajhg.2015.07.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
820
|
Ogden KK, Ozkan ED, Rumbaugh G. Prioritizing the development of mouse models for childhood brain disorders. Neuropharmacology 2015; 100:2-16. [PMID: 26231830 DOI: 10.1016/j.neuropharm.2015.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
821
|
Houge G, Haesen D, Vissers LELM, Mehta S, Parker MJ, Wright M, Vogt J, McKee S, Tolmie JL, Cordeiro N, Kleefstra T, Willemsen MH, Reijnders MRF, Berland S, Hayman E, Lahat E, Brilstra EH, van Gassen KLI, Zonneveld-Huijssoon E, de Bie CI, Hoischen A, Eichler EE, Holdhus R, Steen VM, Døskeland SO, Hurles ME, FitzPatrick DR, Janssens V. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest 2015; 125:3051-62. [PMID: 26168268 DOI: 10.1172/jci79860] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/27/2015] [Indexed: 12/17/2022] Open
Abstract
Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding-deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance.
Collapse
|
822
|
|
823
|
Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 2015; 25:1030-42. [PMID: 26048245 PMCID: PMC4484386 DOI: 10.1101/gr.186379.114] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
Abstract
The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.
Collapse
Affiliation(s)
- Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer Idol
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisha Xu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Viviana Gallardo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blake Carrington
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - MaryPat Jones
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Ursula Harper
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sunny C Huang
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anupam Prakash
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Johan Ledin
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
824
|
Asinof SK, Sukoff Rizzo SJ, Buckley AR, Beyer BJ, Letts VA, Frankel WN, Boumil RM. Independent Neuronal Origin of Seizures and Behavioral Comorbidities in an Animal Model of a Severe Childhood Genetic Epileptic Encephalopathy. PLoS Genet 2015; 11:e1005347. [PMID: 26125563 PMCID: PMC4488318 DOI: 10.1371/journal.pgen.1005347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
The childhood epileptic encephalopathies (EE’s) are seizure disorders that broadly impact development including cognitive, sensory and motor progress with severe consequences and comorbidities. Recently, mutations in DNM1 (dynamin 1) have been implicated in two EE syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Dnm1 encodes dynamin 1, a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Dnm1Ftfl or “fitful” mice carry a spontaneous mutation in the mouse ortholog of DNM1 and recapitulate many of the disease features associated with human DNM1 patients, providing a relevant disease model of human EE’s. In order to examine the cellular etiology of seizures and behavioral and neurological comorbidities, we engineered a conditional Dnm1Ftfl mouse model of DNM1 EE. Observations of Dnm1Ftfl/flox mice in combination with various neuronal subpopulation specific cre strains demonstrate unique seizure phenotypes and clear separation of major neurobehavioral comorbidities from severe seizures associated with the germline model. This demonstration of pleiotropy suggests that treating seizures per se may not prevent severe comorbidity observed in EE associated with dynamin-1 mutations, and is likely to have implications for other genetic forms of EE. Childhood epilepsy syndromes, such as the early epileptic encephalopathies (EE’s) encompass seizure disorders that manifest early and negatively impact or completely block developmental progression. Recently, mutations in DNM1 (dynamin 1) have been implicated in two EE syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Dynamin 1 is a large multimeric protein that is critical for electro-chemical communication between neurons. To understand the relationship between severe seizures and the cognitive and behavioral developmental outcomes in DNM1 patients, we focus on “fitful” mice that carry a mutation in the dynamin 1 gene. Fitful mice have an EE disorder that is highly reminiscent of the documented human patients. Here, we describe genetic manipulations in the mice that allow us to determine that the seizure activity has independent cellular origins from the developmental and behavioral consequences. This separation confirms that the seizures do not cause the severe developmental delay and abnormal behaviors in this animal model and further suggests that any treatments aimed at controlling the seizures per se may not be effective for some of the most acute neurobehavioral symptoms in these patients.
Collapse
Affiliation(s)
- Samuel K. Asinof
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Alexandra R. Buckley
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, California, United States of America
| | - Barbara J. Beyer
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Verity A. Letts
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wayne N. Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Rebecca M. Boumil
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
825
|
Gibson G, Powell JE, Marigorta UM. Expression quantitative trait locus analysis for translational medicine. Genome Med 2015; 7:60. [PMID: 26110023 PMCID: PMC4479075 DOI: 10.1186/s13073-015-0186-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Expression quantitative trait locus analysis has emerged as an important component of efforts to understand how genetic polymorphisms influence disease risk and is poised to make contributions to translational medicine. Here we review how expression quantitative trait locus analysis is aiding the identification of which gene(s) within regions of association are causal for a disease or phenotypic trait; the narrowing down of the cell types or regulators involved in the etiology of disease; the characterization of drivers and modifiers of cancer; and our understanding of how different environments and cellular contexts can modify gene expression. We also introduce the concept of transcriptional risk scores as a means of refining estimates of individual liability to disease based on targeted profiling of the transcripts that are regulated by polymorphisms jointly associated with disease and gene expression.
Collapse
Affiliation(s)
- Greg Gibson
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Joseph E Powell
- Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, QLD 4072 Australia ; The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072 Australia
| | - Urko M Marigorta
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
826
|
Hehir-Kwa JY, Pfundt R, Veltman JA. Exome sequencing and whole genome sequencing for the detection of copy number variation. Expert Rev Mol Diagn 2015; 15:1023-32. [PMID: 26088785 DOI: 10.1586/14737159.2015.1053467] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many laboratories now use genomic microarrays as their first-tier diagnostic test for copy number variation (CNV) detection. In addition, whole exome sequencing is increasingly being offered as a diagnostic test for heterogeneous disorders. Although mostly used for the detection of point mutations and small insertion-deletions, exome sequencing can also be used to call CNVs, allowing combined small and large variant analysis. Whole genome sequencing in addition to these advantages also offers the potential to characterize CNVs to unprecedented levels of accuracy, providing position and orientation information. In this review, we discuss the clinical potential of CNV identification in whole exome sequencing and whole genome sequencing data and the implications this has on diagnostic laboratories.
Collapse
Affiliation(s)
- Jayne Y Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
827
|
Jamuar SS, Tan EC. Clinical application of next-generation sequencing for Mendelian diseases. Hum Genomics 2015; 9:10. [PMID: 26076878 PMCID: PMC4482154 DOI: 10.1186/s40246-015-0031-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/01/2015] [Indexed: 01/25/2023] Open
Abstract
Over the past decade, next-generation sequencing (NGS) has led to an exponential increase in our understanding of the genetic basis of Mendelian diseases. NGS allows for the analysis of multiple regions of the genome in one single reaction and has been shown to be a cost-effective and efficient tool in investigating patients with Mendelian diseases. More recently, NGS has been successfully deployed in the clinics, with a reported diagnostic yield of ~25 %. However, recommendations on clinical implementation of NGS are still evolving with numerous key challenges that impede the widespread use of genetics in everyday medicine. These challenges include when to order, on whom to order, what type of test to order, and how to interpret and communicate the results, including incidental findings, to the patient and family. In this review, we discuss these challenges and suggest guidelines on implementing NGS in the routine clinical workflow.
Collapse
Affiliation(s)
- Saumya Shekhar Jamuar
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ene-Choo Tan
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore. .,KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore, Singapore.
| |
Collapse
|
828
|
Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 2015. [PMID: 26048245 DOI: 10.1101/gr.186379.114.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.
Collapse
Affiliation(s)
- Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer Idol
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisha Xu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Viviana Gallardo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blake Carrington
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - MaryPat Jones
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Ursula Harper
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sunny C Huang
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anupam Prakash
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Johan Ledin
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
829
|
Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. SCIENCE ADVANCES 2015; 1:e1500447. [PMID: 26601204 PMCID: PMC4640607 DOI: 10.1126/sciadv.1500447] [Citation(s) in RCA: 623] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 05/25/2023]
Abstract
Over the past 4 years, nearly 100 exome sequencing studies have revealed the high frequency of mutations in the genes encoding the subunits of ATP-dependent chromatin remodelers in human cancer. Most of these mutations are within the genes encoding subunits of the BAF (Brg/Brahma-associated factors) or mSWI/SNF complex, which is one of two dozen predicted ATP-dependent chromatin remodeling complexes in mammals. Considering BAF complexes as a single entity, the 15 subunits encoded by 29 genes are mutated in >20% of human cancer, across a broad range of tumor types. These observations demonstrate that there is little redundancy in the oncogenic function of BAF complexes with the other remodeling complexes, underscoring their unique roles. Several important conclusions emerge from these genomic data: specific subunits appear to be mutated in specific cancers, highlighting tissue-specific protective roles; mutations can function as tumor suppressors or oncogenes; mutations can be homozygous or, more commonly, heterozygous, implying their dosage-sensitive roles in an unknown yet fundamental process used to suppress the genesis of cancer. These new human genetic findings paired with biochemical studies are challenging old ideas on how chromatin remodeling complexes function, generating new hypotheses with respect to their normal and oncogenic mechanisms and highlighting potential avenues for therapeutic intervention in human cancer.
Collapse
Affiliation(s)
- Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerald R. Crabtree
- Howard Hughes Medical Institute, Departments of Pathology and Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
830
|
Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:419-36. [PMID: 25892534 PMCID: PMC4609214 DOI: 10.1002/em.21943] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 05/19/2023]
Abstract
Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. Environ. Mol. Mutagen. 56:419-436, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza Room 604B, Houston, Texas
| |
Collapse
|
831
|
Wagnon JL, Meisler MH. Recurrent and Non-Recurrent Mutations of SCN8A in Epileptic Encephalopathy. Front Neurol 2015; 6:104. [PMID: 26029160 PMCID: PMC4432670 DOI: 10.3389/fneur.2015.00104] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023] Open
Abstract
Mutations of the voltage-gated sodium channel SCN8A have been identified in approximately 1% of nearly 1,500 children with early-infantile epileptic encephalopathies (EIEE) who have been tested by DNA sequencing. EIEE caused by mutation of SCN8A is designated EIEE13 (OMIM #614558). Affected children have seizure onset before 18 months of age as well as developmental and cognitive disabilities, movement disorders, and a high incidence of sudden death (SUDEP). EIEE13 is caused by de novo missense mutations of evolutionarily conserved residues in the Nav1.6 channel protein. One-third of the mutations are recurrent, and many occur at CpG dinucleotides. In this review, we discuss the effect of pathogenic mutations on the structure of the channel protein, the rate of recurrent mutation, and changes in channel function underlying this devastating disorder.
Collapse
Affiliation(s)
- Jacy L Wagnon
- Department of Human Genetics, University of Michigan , Ann Arbor, MI , USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
832
|
Loveday C, Tatton-Brown K, Clarke M, Westwood I, Renwick A, Ramsay E, Nemeth A, Campbell J, Joss S, Gardner M, Zachariou A, Elliott A, Ruark E, van Montfort R, Rahman N. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum Mol Genet 2015; 24:4775-9. [PMID: 25972378 PMCID: PMC4527483 DOI: 10.1093/hmg/ddv182] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/11/2015] [Indexed: 11/25/2022] Open
Abstract
Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B’, beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B’, gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B’, delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10−10). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10−5). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions.
Collapse
Affiliation(s)
| | - Katrina Tatton-Brown
- Division of Genetics and Epidemiology, Medical Genetics Unit, St George's University of London, London, UK, Cancer Genetics Unit, Royal Marsden Hospital, London, UK
| | | | - Isaac Westwood
- Cancer Research UK Cancer Therapeutics Unit and Division of Structural Biology, Institute of Cancer Research, London, UK
| | | | | | - Andrea Nemeth
- Department of Clinical Genetics, Churchill Hospital, Oxford, UK
| | - Jennifer Campbell
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Shelagh Joss
- West of Scotland Genetic Services, Southern General Hospital, Scotland, UK, Yorkshire Regional Clinical Genetics Service, Chapel Allerton Hospital, Leeds, UK and
| | - McKinlay Gardner
- Genetic Health Service New Zealand, Wellington Hospital, Wellington, NZ
| | | | | | | | - Rob van Montfort
- Cancer Research UK Cancer Therapeutics Unit and Division of Structural Biology, Institute of Cancer Research, London, UK
| | | | - Nazneen Rahman
- Division of Genetics and Epidemiology, Cancer Genetics Unit, Royal Marsden Hospital, London, UK,
| |
Collapse
|
833
|
Wei W, Fitzgerald TW, Fitzgerald T, Ayub Q, Massaia A, Smith BH, Smith BB, Dominiczak AF, Dominiczak AA, Morris AD, Morris AA, Porteous DJ, Porteous DD, Hurles ME, Tyler-Smith C, Xue Y. Copy number variation in the human Y chromosome in the UK population. Hum Genet 2015; 134:789-800. [PMID: 25957587 PMCID: PMC4460274 DOI: 10.1007/s00439-015-1562-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
Abstract
We have assessed copy number variation (CNV) in the male-specific part of the human Y chromosome discovered by array comparative genomic hybridization (array-CGH) in 411 apparently healthy UK males, and validated the findings using SNP genotype intensity data available for 149 of them. After manual curation taking account of the complex duplicated structure of Y-chromosomal sequences, we discovered 22 curated CNV events considered validated or likely, mean 0.93 (range 0–4) per individual. 16 of these were novel. Curated CNV events ranged in size from <1 kb to >3 Mb, and in frequency from 1/411 to 107/411. Of the 24 protein-coding genes or gene families tested, nine showed CNV. These included a large duplication encompassing the AMELY and TBL1Y genes that probably has no phenotypic effect, partial deletions of the TSPY cluster and AZFc region that may influence spermatogenesis, and other variants with unknown functional implications, including abundant variation in the number of RBMY genes and/or pseudogenes, and a novel complex duplication of two segments overlapping the AZFa region and including the 3′ end of the UTY gene.
Collapse
Affiliation(s)
- Wei Wei
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
834
|
King DA, Jones WD, Crow YJ, Dominiczak AF, Foster NA, Gaunt TR, Harris J, Hellens SW, Homfray T, Innes J, Jones EA, Joss S, Kulkarni A, Mansour S, Morris AD, Parker MJ, Porteous DJ, Shihab HA, Smith BH, Tatton-Brown K, Tolmie JL, Trzaskowski M, Vasudevan PC, Wakeling E, Wright M, Plomin R, Timpson NJ, Hurles ME. Mosaic structural variation in children with developmental disorders. Hum Mol Genet 2015; 24:2733-45. [PMID: 25634561 PMCID: PMC4406290 DOI: 10.1093/hmg/ddv033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023] Open
Abstract
Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2–1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case–control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e − 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e − 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic–phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders.
Collapse
Affiliation(s)
- Daniel A King
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Wendy D Jones
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Yanick J Crow
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK
| | - Anna F Dominiczak
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nicola A Foster
- University Hospitals of Leicester, NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jade Harris
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK
| | - Stephen W Hellens
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Tessa Homfray
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - Josie Innes
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK, Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, MAHSC, Manchester M13 9WL, UK
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow DD1 9SY, UK
| | - Abhijit Kulkarni
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - Sahar Mansour
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - Andrew D Morris
- School of Molecular, Genetic and Population Health Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Western Bank, Sheffield, UK
| | - David J Porteous
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hashem A Shihab
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Blair H Smith
- School of Medicine, Dundee University, Mackenzie Building, Kirsty Semple Way, Ninewells Hospital and Medical School, Dundee DD2 4RB, UK
| | - Katrina Tatton-Brown
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - John L Tolmie
- West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow DD1 9SY, UK
| | - Maciej Trzaskowski
- King's College London, MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London SE5 8AF, UK and
| | - Pradeep C Vasudevan
- University Hospitals of Leicester, NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Emma Wakeling
- North West Thames Regional Genetics Service, North West London Hospitals NHS Trust, Watford Rd, Harrow HA1 3UJ, UK
| | - Michael Wright
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Robert Plomin
- King's College London, MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London SE5 8AF, UK and
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | | | | |
Collapse
|