801
|
Zaidan H, Ramaswami G, Golumbic YN, Sher N, Malik A, Barak M, Galiani D, Dekel N, Li JB, Gaisler-Salomon I. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 2018; 19:28. [PMID: 29310578 PMCID: PMC5759210 DOI: 10.1186/s12864-017-4409-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. RESULTS In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. CONCLUSIONS Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.
Collapse
Affiliation(s)
- Hiba Zaidan
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA.,Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, USA
| | - Yaela N Golumbic
- Faculty of Education in Technology and Science, Technion, Haifa, Israel.,Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Noa Sher
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel.,Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Dalia Galiani
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Jin B Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
802
|
Rubio-Casillas A, Fernández-Guasti A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci 2018; 27:599-622. [PMID: 27096778 DOI: 10.1515/revneuro-2015-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.
Collapse
|
803
|
Hasiec M, Misztal T. Adaptive Modifications of Maternal Hypothalamic-Pituitary-Adrenal Axis Activity during Lactation and Salsolinol as a New Player in this Phenomenon. Int J Endocrinol 2018; 2018:3786038. [PMID: 29849616 PMCID: PMC5914094 DOI: 10.1155/2018/3786038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Both basal and stress-induced secretory activities of the hypothalamic-pituitary-adrenal (HPA) axis are distinctly modified in lactating females. On the one hand, it aims to meet the physiological demands of the mother, and on the other hand, the appropriate and stable plasma cortisol level is one of the essential factors for the proper offspring development. Specific adaptations of HPA axis activity to lactation have been extensively studied in several animal species and humans, providing interesting data on the HPA axis plasticity mechanism. However, most of the data related to this phenomenon are derived from studies in rats. The purpose of this review is to highlight these adaptations, with a particular emphasis on stress reaction and differences that occur between species. Existing data on breastfeeding women are also included in several aspects. Finally, data from the experiments in sheep are presented, indicating a new regulatory factor of the HPA axis-salsolinol-which typical role was revealed in lactation. It is suggested that this dopamine derivative is involved in both maintaining basal and suppressing stress-induced HPA axis activities in lactating dams.
Collapse
Affiliation(s)
- Malgorzata Hasiec
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
| |
Collapse
|
804
|
Zhong F, Liu L, Wei JL, Hu ZL, Li L, Wang S, Xu JM, Zhou XF, Li CQ, Yang ZY, Dai RP. Brain-Derived Neurotrophic Factor Precursor in the Hippocampus Regulates Both Depressive and Anxiety-Like Behaviors in Rats. Front Psychiatry 2018; 9:776. [PMID: 30740068 PMCID: PMC6355684 DOI: 10.3389/fpsyt.2018.00776] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Depression and anxiety are two affective disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, it is still elusive whether proBDNF is involved in anxiety, and if so, which brain regions of proBDNF regulate these two affective disorders. The present study aims to investigate the role of proBDNF in the hippocampus in the development of depression and anxiety. Rat models of an anxiety-like phenotype and depression-like phenotype were established by complete Freund's adjuvant intra-plantar injection and chronic restraint stress, respectively. Both rat models developed anxiety-like behaviors as determined by the open field test and elevated plus maze test. However, only rats with depression-like phenotype displayed the lower sucrose consumption in the sucrose preference test and a longer immobility time in the forced swimming test. Sholl analysis showed that the dendritic arborization of granule cells in the hippocampus was decreased in rats with depression-like phenotype but was not changed in rats with anxiety-like phenotype. In addition, synaptophysin was downregulated in the rats with depression-like phenotype but upregulated in the rats with anxiety-like phenotype. In both models, proBDNF was greatly increased in the hippocampus. Intra-hippocampal injection anti-proBDNF antibody greatly ameliorated the anxiety-like and depressive behaviors in the rats. These findings suggest that despite some behavioral and morphological differences between depression and anxiety, hippocampal proBDNF is a common mediator to regulate these two mental disorders.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Jia-Li Wei
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Shuang Wang
- Medical Research Center and Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
| | - Jun-Mei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Xin-Fu Zhou
- Division of Health Sciences, School of Pharmacy and Medical Science and Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhao-Yun Yang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| |
Collapse
|
805
|
Beck A, Franz CE, Xian H, Vuoksimaa E, Tu X, Reynolds CA, Panizzon MS, McKenzie RM, Lyons MJ, Toomey R, Jacobson KC, Hauger RL, Hatton SN, Kremen WS. Mediators of the Effect of Childhood Socioeconomic Status on Late Midlife Cognitive Abilities: A Four Decade Longitudinal Study. Innov Aging 2018; 2:igy003. [PMID: 30465026 PMCID: PMC6176967 DOI: 10.1093/geroni/igy003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Childhood socioeconomic status (cSES) is found to predict later-life cognitive abilities, yet the mechanisms underlying these associations remain unclear. The objective of this longitudinal study was to examine the direct and indirect paths through which cSES influences late midlife cognitive outcomes. RESEARCH DESIGN AND METHODS Participants were 1,009 male twins in the Vietnam Era Twin Study of Aging (VETSA). At mean ages 20 and 62, participants completed a standardized test for general cognitive ability (GCA). The age 62 cognitive assessment also included in-person tests of processing speed, episodic memory, abstract reasoning, working memory, verbal fluency, visual-spatial ability, and executive functions. At mean age 56, participants were interviewed regarding their own and their parents' education and occupation, and completed questionnaires about cognitive leisure activities and sociodemographic information. Multiple mediation analyses were conducted to examine the direct path effects and indirect path effects of cSES through age 20 GCA, adult SES, and cognitive leisure activities on seven cognitive outcomes at age 62, adjusting for age, ethnicity, and non-independence of observations. RESULTS Total (direct plus indirect) effects were significant for all measures with the exception of executive functions. Men from lower cSES backgrounds had poorer cognitive functioning in late midlife. The direct effect of cSES was partially mediated for abstract reasoning, and was fully mediated for the remaining six cognitive outcomes. Total indirect effects accounted for at least half of the total effects in each model, with paths through age 20 GCA explaining most of the total indirect effects. DISCUSSION AND IMPLICATIONS cSES predicted cognitive functioning in late middle age Using multiple mediation models, we show that lower cSES predicts poorer cognition in late midlife primarily through young adult cognitive ability and to a lesser extent through SES in adulthood and engagement in cognitively stimulating activities.
Collapse
Affiliation(s)
- Asad Beck
- Department of Psychology, San Diego State University, California
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Hong Xian
- Department of Biostatistics, St Louis University, Missouri
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Xin Tu
- Department of Family Medicine, University of California San Diego, La Jolla
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Boston University, Massachusetts
| | | | - Ruth M McKenzie
- Department of Psychological and Brain Sciences, Boston University, Massachusetts
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Massachusetts
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Massachusetts
| | - Kristen C Jacobson
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Illinois
| | - Richard L Hauger
- Department of Psychiatry, University of California San Diego, La Jolla
- Center of Excellence for Stress and Mental Health, San Diego VA San Diego Healthcare System, California
| | - Sean N Hatton
- Department of Psychiatry, University of California San Diego, La Jolla
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla
- Center of Excellence for Stress and Mental Health, San Diego VA San Diego Healthcare System, California
| |
Collapse
|
806
|
Levinsohn EA, Ross DA. To Bend and Not Break: The Neurobiology of Stress, Resilience, and Recovery. Biol Psychiatry 2017; 82:e89-e90. [PMID: 29129201 PMCID: PMC5751958 DOI: 10.1016/j.biopsych.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Erik A Levinsohn
- Department of Psychiatry, Yale University, New Haven, Connecticut.
| | - David A Ross
- Department of Psychiatry, Yale University, New Haven, Connecticut
| |
Collapse
|
807
|
Stress-Induced Hippocampal Volume Loss Is Adult Neurogenesis Independent. Biol Psychiatry 2017; 82:e91-e93. [PMID: 29129202 DOI: 10.1016/j.biopsych.2017.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
|
808
|
Nowacka-Chmielewska MM, Kasprowska-Liśkiewicz D, Barski JJ, Obuchowicz E, Małecki A. The behavioral and molecular evaluation of effects of social instability stress as a model of stress-related disorders in adult female rats. Stress 2017; 20:549-561. [PMID: 28911267 DOI: 10.1080/10253890.2017.1376185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The study aimed to test the hypotheses that chronic social instability stress (CSIS) alters behavioral and physiological parameters and expression of selected genes important for stress response and social behaviors. Adult female Sprague-Dawley rats were subjected to the 4-week CSIS procedure, which involves unpredictable rotation between phases of isolation and overcrowding. Behavioral analyses (Experiment 1) were performed on the same rats before and after CSIS (n = 16) and physiological and biochemical measurements (Experiment 2) were made on further control (CON; n = 7) and stressed groups (CSIS; n = 8). Behaviors in the open field test (locomotor and exploratory activities) and elevated-plus maze (anxiety-related behaviors) indicated anxiety after CSIS. CSIS did not alter the physiological parameters measured, i.e. body weight gain, regularity of estrous cycles, and circulating concentrations of stress hormones and sex steroids. QRT-PCR analysis of mRNA expression levels was performed on amygdala, hippocampus, prefrontal cortex (PFC), and hypothalamus. The main finding is that CSIS alters the mRNA levels for the studied genes in a region-specific manner. Hence, expression of POMC (pro-opiomelanocortin), AVPR1a (arginine vasopressin receptor), and OXTR (oxytocin receptor) significantly increased in the amygdala following CSIS, while in PFC and/or hypothalamus, POMC, AVPR1a, AVPR1b, OXTR, and ERβ (estrogen receptor beta) expression decreased. CSIS significantly reduced expression of CRH-R1 (corticotropin-releasing hormone receptor type 1) in the hippocampus. The directions of change in gene expression and the genes and regions affected indicate a molecular basis for the behavior changes. In conclusion, CSIS may be valuable for further analyzing the neurobiology of stress-related disorders in females.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Behavior, Animal
- Brain/metabolism
- Chronic Disease
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gene Expression
- Hippocampus/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus/metabolism
- Pituitary-Adrenal System/metabolism
- Prefrontal Cortex/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Marta Maria Nowacka-Chmielewska
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Daniela Kasprowska-Liśkiewicz
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Jarosław Jerzy Barski
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
- c Department of Physiology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Ewa Obuchowicz
- d Department of Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Andrzej Małecki
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
| |
Collapse
|
809
|
Gray JD, Kogan JF, Marrocco J, McEwen BS. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol 2017; 13:661-673. [PMID: 28862266 DOI: 10.1038/nrendo.2017.97] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the discovery of glucocorticoid receptors in the hippocampus and other brain regions, research has focused on understanding the effects of glucocorticoids in the brain and their role in regulating emotion and cognition. Glucocorticoids are essential for adaptation to stressors (allostasis) and in maladaptation resulting from allostatic load and overload. Allostatic overload, which can occur during chronic stress, can reshape the hypothalamic-pituitary-adrenal axis through epigenetic modification of genes in the hippocampus, hypothalamus and other stress-responsive brain regions. Glucocorticoids exert their effects on the brain through genomic mechanisms that involve both glucocorticoid receptors and mineralocorticoid receptors directly binding to DNA, as well as by non-genomic mechanisms. Furthermore, glucocorticoids synergize both genomically and non-genomically with neurotransmitters, neurotrophic factors, sex hormones and other stress mediators to shape an organism's present and future responses to a stressful environment. Here, we discuss the mechanisms of glucocorticoid action in the brain and review how glucocorticoids interact with stress mediators in the context of allostasis, allostatic load and stress-induced neuroplasticity.
Collapse
Affiliation(s)
- Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065. USA
| |
Collapse
|
810
|
Corticosteroid-induced dendrite loss and behavioral deficiencies can be blocked by activation of Abl2/Arg kinase. Mol Cell Neurosci 2017; 85:226-234. [PMID: 29107098 DOI: 10.1016/j.mcn.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
Stressor exposure induces neuronal remodeling in specific brain regions. Given the persistence of stress-related illnesses, key next steps in determining the contributions of neural structure to mental health are to identify cell types that fail to recover from stressor exposure and to identify "trigger points" and molecular underpinnings of stress-related neural degeneration. We evaluated dendrite arbor structure on hippocampal CA1 pyramidal neurons before, during, and following prolonged exposure to one key mediator of the stress response - corticosterone (cortisol in humans). Basal dendrite arbors progressively simplified during a 3-week exposure period, and failed to recover when corticosterone was withdrawn. Corticosterone exposure decreased levels of the dendrite stabilization factor Abl2/Arg nonreceptor tyrosine kinase and phosphorylation of its substrates p190RhoGAP and cortactin within 11days, suggesting that disruption of Arg-mediated signaling may trigger dendrite arbor atrophy and, potentially, behavioral abnormalities resulting from corticosterone exposure. To test this, we administered the novel, bioactive Arg kinase activator, 5-(1,3-diaryl-1H-pyrazol-4-yl)hydantoin, 5-[3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl]-2,4-imidazolidinedione (DPH), in conjunction with corticosterone. We found that repeated treatment corrected CA1 arbor structure, otherwise simplified by corticosterone. DPH also corrected corticosterone-induced errors in a hippocampal-dependent reversal learning task and anhedonic-like behavior. Thus, pharmacological compounds that target cytoskeletal regulators, rather than classical neurotransmitter systems, may interfere with stress-associated cognitive decline and mental health concerns.
Collapse
|
811
|
Piccolo LR, Noble KG. Perceived stress is associated with smaller hippocampal volume in adolescence. Psychophysiology 2017; 55:e13025. [PMID: 29053191 DOI: 10.1111/psyp.13025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Perceived stress has been associated with decreased hippocampal, amygdala, and prefrontal cortex volume, as well as decreased memory and executive functioning performance in adulthood. Parents' perceived stress has been linked to decreased hippocampal volume in young children. However, no studies have investigated the links between self-perceived stress and brain structure or function in adolescents. Additionally, findings from previous research with younger or older samples are inconsistent, likely in part due to inconsistencies in participants' age range. In this study, we investigated the associations among self-perceived stress, family socioeconomic factors (family income, parental education), subcortical (hippocampus, amygdala) volumes, prefrontal cortical thickness and surface area, and memory and executive functioning performance in adolescents. One hundred and forty-three participants (12-20 years old) were administered a cognitive battery, a questionnaire to assess perceived stress, and a structural MRI scan. Higher levels of perceived stress were associated with decreased adolescent hippocampal volume. This study provides empirical evidence of how experience may shape brain development in adolescence-a period of plasticity during which it may be possible to intervene and prevent negative developmental outcomes.
Collapse
|
812
|
Nasca C, Bigio B, Zelli D, de Angelis P, Lau T, Okamoto M, Soya H, Ni J, Brichta L, Greengard P, Neve RL, Lee FS, McEwen BS. Role of the Astroglial Glutamate Exchanger xCT in Ventral Hippocampus in Resilience to Stress. Neuron 2017; 96:402-413.e5. [PMID: 29024663 DOI: 10.1016/j.neuron.2017.09.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022]
Abstract
We demonstrate that stress differentially regulates glutamate homeostasis in the dorsal and ventral hippocampus and identify a role for the astroglial xCT in ventral dentate gyrus (vDG) in stress and antidepressant responses. We provide an RNA-seq roadmap for the stress-sensitive vDG. The transcription factor REST binds to xCT promoter in co-occupancy with the epigenetic marker H3K27ac to regulate expression of xCT, which is also reduced in a genetic mouse model of inherent susceptibility to depressive-like behavior. Pharmacologically, modulating histone acetylation with acetyl-L-carnitine (LAC) or acetyl-N-cysteine (NAC) rapidly increases xCT and activates a network with mGlu2 receptors to prime an enhanced glutamate homeostasis that promotes both pro-resilient and antidepressant-like responses. Pharmacological xCT blockage counteracts NAC prophylactic effects. GFAP+-Cre-dependent overexpression of xCT in vDG mimics pharmacological actions in promoting resilience. This work establishes a mechanism by which vDG protection leads to stress resilience and antidepressant responses via epigenetic programming of an xCT-mGlu2 network.
Collapse
Affiliation(s)
- Carla Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| | - Benedetta Bigio
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Danielle Zelli
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Paolo de Angelis
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Timothy Lau
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Masahiro Okamoto
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Hideyo Soya
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8574, Japan; Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Jason Ni
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lars Brichta
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
813
|
Wang SS, Mu RH, Li CF, Dong SQ, Geng D, Liu Q, Yi LT. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:417-425. [PMID: 28764913 DOI: 10.1016/j.pnpbp.2017.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/15/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022]
Abstract
Dysregulation of microRNA (miRNA) has been shown to be involved in early observations of depression. MicroRNA-124-3p (miR-124) is the most abundant microRNA in the brain. Previous studies have shown that miR-124 plays a major role in depression. Here we showed that miR-124 directly targeted glucocorticoid receptor (GR) in HEK 293 cells. In addition, inhibition of miR-124 by its antagomir (2nmol/every two days) could reverse the decrease of sucrose preference and the increase of immobility time in mice exposed to chronic corticosterone (CORT, 40mg/kg) injection. Moreover, these effects on behavioral improvement were coupled to the activation of brain-derived neurotrophic factor (BDNF), TrkB, ERK, and CREB, as well as the induction of synaptogenesis and neuronal proliferation. Altogether, our study suggests that miR-124 can be served as a biomarker for depression and a novel target for drug development, and demonstrates that inhibition of miR-124 may be a strategy for treating depression by activating BDNF-TrkB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Shuang-Shuang Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Rong-Hao Mu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Shu-Qi Dong
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
814
|
Xiao X, Zhang H, Wang H, Li Q, Zhang T. Neuroprotective effect of amantadine on corticosterone-induced abnormal glutamatergic synaptic transmission of CA3-CA1 pathway in rat's hippocampal slices. Synapse 2017; 71. [PMID: 28902436 DOI: 10.1002/syn.22010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 01/11/2023]
Abstract
Depression is a psychiatric disorder and chronic stress, leading to altered glucocorticoid secretion patterns, is one of the factors that induce depression. Our previous study showed that amantadine significantly attenuated the impairments of synaptic plasticity and cognitive function a rat model of CUS. However, little is known regarding the underlying mechanism. In the present study, the whole-cell patch-clamp technique was applied to examine the protection effect of amantadine on the hippocampus CA3-CA1 pathway. Evoked excitatory postsynaptic currents (eEPSCs), miniature excitatory postsynaptic currents (mEPSCs), paired-pulse ratio (PPR) and the action potentials of CA3 neurons were recorded. Our data showed that corticosterone increased the amplitude of eEPSCs and decreased the value of paired-pulse ratio (PPR), but both of them were significantly reversed by amantadine. In addition, the frequency of mEPSC was considerably increased by corticosterone, but it was reduced by amantadine. Moreover, we used the Fluo-3/AM image to detect the Ca2+ influx in primary cultured hippocampal neurons. The results showed that the intracellular calcium levels were significantly decreased by amantadine in the corticosterone treated neurons. Additionally, the superoxide dismutase (SOD) and catalase (CAT) activities were reduced by corticosterone, while they were enhanced by either amantadine or low-calcium artificial cerebral spinal fluid (ACSF). These results suggest that amantadine significantly improves corticosterone-induced abnormal glutamatergic synaptic transmission of CA3-CA1 synapses presynaptically and alleviates the activities of antioxidant enzymes via regulating the calcium influx.
Collapse
Affiliation(s)
- Xi Xiao
- Department of Zoology and Developmental Biology, College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University 300071, Tianjin, People's Republic of China
| | - Hui Zhang
- Department of Zoology and Developmental Biology, College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University 300071, Tianjin, People's Republic of China
| | - Hui Wang
- Department of Zoology and Developmental Biology, College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University 300071, Tianjin, People's Republic of China
| | - Qun Li
- Department of Zoology and Developmental Biology, College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University 300071, Tianjin, People's Republic of China
| | - Tao Zhang
- Department of Zoology and Developmental Biology, College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University 300071, Tianjin, People's Republic of China
| |
Collapse
|
815
|
Almonte AG, Ewin SE, Mauterer MI, Morgan JW, Carter ES, Weiner JL. Enhanced ventral hippocampal synaptic transmission and impaired synaptic plasticity in a rodent model of alcohol addiction vulnerability. Sci Rep 2017; 7:12300. [PMID: 28951619 PMCID: PMC5615051 DOI: 10.1038/s41598-017-12531-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been appreciated that adolescence represents a uniquely vulnerable period when chronic exposure to stressors can precipitate the onset of a broad spectrum of psychiatric disorders and addiction in adulthood. However, the neurobiological substrates and the full repertoire of adaptations within these substrates making adolescence a particularly susceptible developmental stage are not well understood. Prior work has demonstrated that a rodent model of adolescent social isolation (aSI) produces robust and persistent increases in phenotypes relevant to anxiety/stressor disorders and alcohol addiction, including anxiogenesis, deficits in fear extinction, and increased ethanol consumption. Here, we used extracellular field recordings in hippocampal slices to investigate adaptations in synaptic function and synaptic plasticity arising from aSI. We demonstrate that this early life stressor leads to enhanced excitatory synaptic transmission and decreased levels of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Further, these changes were largely confined to the ventral hippocampus. As the ventral hippocampus is integral to neurocircuitry that mediates emotional behaviors, our results add to mounting evidence that aSI has profound effects on brain areas that regulate affective states. These studies also lend additional support to our recent proposal of the aSI model as a valid model of alcohol addiction vulnerability.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Madelyn I Mauterer
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James W Morgan
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Eugenia S Carter
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
816
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
817
|
Toufexis D, King SB, Michopoulos V. Socially Housed Female Macaques: a Translational Model for the Interaction of Chronic Stress and Estrogen in Aging. Curr Psychiatry Rep 2017; 19:78. [PMID: 28905316 DOI: 10.1007/s11920-017-0833-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Estrogen's role in cognitive aging remains unclear. Despite evidence implicating stress in pathological aging, the interaction of stress with estrogen on cognition in older women has received little attention, and few animal models exist with which to examine this interaction. RECENT FINDINGS We present evidence that aging socially subordinate female macaques that experience chronic psychosocial stress constitute a suitable model to investigate this. First, we review studies showing that estrogen modulates cognition in animal models, as well as studies demonstrating that estrogen's action on certain types of cognition is impaired by stress. Next, we discuss data showing that middle-aged socially subordinate female macaques exhibit distinct stress-induced phenotypes, and review our investigations indicating that estrogen modulates behavior and physiology differently in subordinate female monkeys. We conclude that socially housed female macaques represent a translational animal model for investigating the interplay of chronic stress and estrogen on cognitive aging in women.
Collapse
Affiliation(s)
- Donna Toufexis
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA.,Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - S Bradley King
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA
| | - Vasiliki Michopoulos
- Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
818
|
Einstein G, Legato MJ, Barros SP, Juster RP, McEwen BS. How the Social Becomes the Biological: The Interaction between the Genome and the Environment. GENDER AND THE GENOME 2017. [DOI: 10.1089/gg.2017.29006.rtl] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Gillian Einstein
- Wilfred and Joyce Posluns Chair in Women's Brain Health and Aging, Department of Psychology, Dalla Lana School of Public Health, Neuroscience and Gender Medicine, Linköping University, Linköping, Sweden
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Marianne J. Legato
- Emerita Professor of Clinical Medicine, Columbia University, New York, New York
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Silvana P. Barros
- Department of Periodontology, School of Dentistry, UNC at Chapel Hill, Chapel Hill, North Carolina
| | - Robert-Paul Juster
- Banting Postdoctoral Research Fellow, Department of Psychiatry, Division of Gender, Sexuality, and Health, Columbia University, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - Bruce S. McEwen
- Alfred E. Mirsky Professor, Head, Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| |
Collapse
|
819
|
Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.278. [PMID: 28544390 PMCID: PMC5626018 DOI: 10.1002/wdev.278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rebecca J Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kristen M Flatt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nathan E Schroeder
- Neuroscience Program and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
820
|
Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog Neurobiol 2017; 156:164-188. [DOI: 10.1016/j.pneurobio.2017.05.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
|
821
|
Gethin JA, Lythe KE, Workman CI, Mayes A, Moll J, Zahn R. Early life stress explains reduced positive memory biases in remitted depression. Eur Psychiatry 2017; 45:59-64. [PMID: 28728096 PMCID: PMC5695977 DOI: 10.1016/j.eurpsy.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND There is contradictory evidence regarding negative memory biases in major depressive disorder (MDD) and whether these persist into remission, which would suggest their role as vulnerability traits rather than correlates of mood state. Early life stress (ELS), common in patients with psychiatric disorders, has independently been associated with memory biases, and confounds MDD versus control group comparisons. Furthermore, in most studies negative biases could have resulted from executive impairments rather than memory difficulties per se. METHODS To investigate whether memory biases are relevant to MDD vulnerability and how they are influenced by ELS, we developed an associative recognition memory task for temporo-spatial contexts of social actions with low executive demands, which were matched across conditions (self-blame, other-blame, self-praise, other-praise). We included fifty-three medication-free remitted MDD (25 with ELS, 28 without) and 24 healthy control (HC) participants without ELS. RESULTS Only MDD patients with ELS showed a reduced bias (accuracy/speed ratio) towards memory for positive vs. negative materials when compared with MDD without ELS and with HC participants; attenuated positive biases correlated with number of past major depressive episodes, but not current symptoms. There were no biases towards self-blaming or self-praising memories. CONCLUSIONS This demonstrates that reduced positive biases in associative memory were specific to MDD patients with ELS rather than a general feature of MDD, and were associated with lifetime recurrence risk which may reflect a scarring effect. If replicated, our results would call for stratifying MDD patients by history of ELS when assessing and treating emotional memories.
Collapse
Affiliation(s)
- J A Gethin
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK
| | - K E Lythe
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK
| | - C I Workman
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK
| | - A Mayes
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK
| | - J Moll
- Cognitive and Behavioral Neuroscience Unit, D'Or Institute for Research and Education (IDOR), 22280-080 Rio de Janeiro, RJ, Brazil
| | - R Zahn
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK; Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, King's College London, London SE5 8AZ, UK.
| |
Collapse
|
822
|
Acute or Chronic? A Stressful Question. Trends Neurosci 2017; 40:525-535. [DOI: 10.1016/j.tins.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
|
823
|
Kim Y, Lee HY, Cho SH. Antidepressant Effects of Pharmacopuncture on Behavior and Brain-Derived Neurotrophic Factor (BDNF) Expression in Chronic Stress Model of Mice. J Acupunct Meridian Stud 2017; 10:402-408. [PMID: 29275796 DOI: 10.1016/j.jams.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The present study aimed to investigate the antidepressant effect of the traditional Korean medical pharmacopuncture, Liver Qi Depression (HJ11), in a mouse model of depression induced by exposure to chronic immobilization stress (CIS). METHODS Mice were subjected to 2 hours of immobilization stress daily for 14 days. They were also injected with distilled water (DW) (CIS + DW) or HJ11 at the acupoints HT7, SP6, and GV20 (CIS + HJ11) an hour before stress. The positive control group (CIS + paroxetine) was intraperitoneally injected with paroxetine (10 mg/kg, 14 days). The tail suspension test and the forced swimming test were performed to assess depression-like behaviors. Western blotting was also conducted to seek the change in brain. RESULTS CIS + DW mice showed significantly longer immobile times in the tail suspension test and forced swimming test than sham mice that did not go through daily restraint. Immobility of CIS + HJ11 and that of CIS + paroxetine mice was significantly decreased compared with immobility of CIS + DW mice. Immunoblotting showed that HJ11 increased the expression of brain-derived neurotrophic factor both in the hippocampus and the amygdala. CONCLUSION HJ11 improves depressive-like behaviors in the stress-induced mouse model of depression, and the results indicate that the neuroprotective effect of HJ11, identified by brain-derived neurotrophic factor expression, may play a critical role in its antidepressant effect.
Collapse
Affiliation(s)
- Yunna Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea; College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| | - Hwa-Young Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| | - Seung-Hun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
824
|
Abstract
PURPOSE OF REVIEW PTSD in youth is common and debilitating. In contrast to adult PTSD, relatively little is known about the neurobiology of pediatric PTSD, nor how neurodevelopment may be altered. This review summarizes recent neuroimaging studies in pediatric PTSD and discusses implications for future study. RECENT FINDINGS Pediatric PTSD is characterized by abnormal structure and function in neural circuitry supporting threat processing and emotion regulation. Furthermore, cross-sectional studies suggest that youth with PTSD have abnormal frontolimbic development compared to typically developing youth. Examples include declining hippocampal volume, increasing amygdala reactivity, and declining amygdala-prefrontal coupling with age. Pediatric PTSD is characterized by both overt and developmental abnormalities in frontolimbic circuitry. Notably, abnormal frontolimbic development may contribute to increasing threat reactivity and weaker emotion regulation as youth age. Longitudinal studies of pediatric PTSD are needed to characterize individual outcomes and determine whether current treatments are capable of restoring healthy neurodevelopment.
Collapse
Affiliation(s)
- Ryan J Herringa
- Department of Psychiatry, University of Wisconsin School of Medicine & Public Health, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| |
Collapse
|
825
|
Social isolation suppresses actin dynamics and synaptic plasticity through ADF/cofilin inactivation in the developing rat barrel cortex. Sci Rep 2017; 7:8471. [PMID: 28814784 PMCID: PMC5559554 DOI: 10.1038/s41598-017-08849-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Exposure to a stressful environment early in life can cause psychiatric disorders by disrupting circuit formation. Actin plays central roles in regulating neuronal structure and protein trafficking. We have recently reported that neonatal isolation inactivated ADF/cofilin, the actin depolymerizing factor, resulted in a reduced actin dynamics at spines and an attenuation of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor delivery in the juvenile rat medial prefrontal cortex (mPFC), leading to altered social behaviours. Here, we investigated the impact of neonatal social isolation in the developing rat barrel cortex. Similar to the mPFC study, we detected an increase in stable actin fraction in spines and this resulted in a decreased synaptic AMPA receptor delivery. Thus, we conclude that early life social isolation affects multiple cortical areas with common molecular changes.
Collapse
|
826
|
Lee HY, Lee JS, Kim HG, Kim WY, Lee SB, Choi YH, Son CG. The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model. Altern Ther Health Med 2017; 17:397. [PMID: 28797292 PMCID: PMC5553856 DOI: 10.1186/s12906-017-1902-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
Background Chronic stress contributes to the development of brain disorders, such as neurodegenerative and psychiatric diseases. Oxidative damage is well known as a causative factor for pathogenic process in brain tissues. The aim of this study is to evaluate the neuroprotective effect of a 30% ethanol extract of Aquilariae Lignum (ALE) in repeated stress-induced hippocampal oxidative injury. Methods Fifty BALB/c male mice (12 weeks old) were randomly divided into five groups (n = 10). For 11 consecutive days, each group was orally administered with distilled water, ALE (20 or 80 mg/kg) or N-acetylcysteine (NAC; 100 mg/kg), and then all mice (except unstressed group) were subjected to restraint stress for 6 h. On the final day, brain tissues and sera were isolated, and stress hormones and hippocampal oxidative alterations were examined. We also treated lipopolysaccharide (LPS, 1 μg/mL)-stimulated BV2 microglial cells with ALE (1 and 5 μg/mL) or NAC (10 μM) to investigate the pharmacological mechanism. Results Restraint stress considerably increased the serum levels of corticosterone and adrenaline and the hippocampal levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). ALE administration significantly attenuated the above abnormalities. ALE also significantly normalized the stress-induced activation of astrocytes and microglial cells in the hippocampus as well as the elevation of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). The in vitro assay outcome supplemented ALE could dramatically block NF-κB activation in microglia. The anti-oxidative stress effects of ALE were supported by the results of antioxidant components, 4-hydroxynonenal (4-HNE), NADPH oxidase 2 (NOX2), inducible nitric oxide synthase (iNOS) and NFE2L2 (Nrf2) in the hippocampal tissues. Conclusions We firstly demonstrated the neuroprotective potentials of A. Lignum against hippocampal oxidative injury in repeated restraint stress. The corresponding mechanisms might involve modulations in the release of ROS, pro-inflammatory cytokines and stress hormones.
Collapse
|
827
|
HBK-15 protects mice from stress-induced behavioral disturbances and changes in corticosterone, BDNF, and NGF levels. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
828
|
Cuttler C, Spradlin A, Nusbaum AT, Whitney P, Hinson JM, McLaughlin RJ. Blunted stress reactivity in chronic cannabis users. Psychopharmacology (Berl) 2017; 234:2299-2309. [PMID: 28567696 DOI: 10.1007/s00213-017-4648-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/07/2017] [Indexed: 01/01/2023]
Abstract
RATIONALE One of the most commonly cited reasons for chronic cannabis use is to cope with stress. Consistent with this, cannabis users have shown reduced emotional arousal and dampened stress reactivity in response to negative imagery. OBJECTIVES To our knowledge, the present study represents the first to examine the effects of an acute stress manipulation on subjective stress and salivary cortisol in chronic cannabis users compared to non-users. METHODS Forty cannabis users and 42 non-users were randomly assigned to complete either the stress or no stress conditions of the Maastricht Acute Stress Test (MAST). The stress condition of the MAST manipulates both physiological (placing hand in ice bath) and psychosocial stress (performing math under conditions of social evaluation). Participants gave baseline subjective stress ratings before, during, and after the stress manipulation. Cortisol was measured from saliva samples obtained before and after the stress manipulation. Further, cannabis cravings and symptoms of withdrawal were measured. RESULTS Subjective stress ratings and cortisol levels were significantly higher in non-users in the stress condition relative to non-users in the no stress condition. In contrast, cannabis users demonstrated blunted stress reactivity; specifically, they showed no increase in cortisol and a significantly smaller increase in subjective stress ratings. The stress manipulation had no impact on cannabis users' self-reported cravings or withdrawal symptoms. CONCLUSION Chronic cannabis use is associated with blunted stress reactivity. Future research is needed to determine whether this helps to confer resiliency or vulnerability to stress-related psychopathology as well as the mechanisms underlying this effect.
Collapse
Affiliation(s)
- Carrie Cuttler
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA.
- Translational Addiction Research Center, Washington State University, Pullman, WA, USA.
| | - Alexander Spradlin
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Amy T Nusbaum
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Paul Whitney
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - John M Hinson
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
- Translational Addiction Research Center, Washington State University, Pullman, WA, USA
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164-7620, USA
| |
Collapse
|
829
|
Amso D, Lynn A. Distinctive Mechanisms of Adversity and Socioeconomic Inequality in Child Development: A Review and Recommendations for Evidence-Based Policy. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2017; 4:139-146. [PMID: 30345346 PMCID: PMC6192058 DOI: 10.1177/2372732217721933] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review proposes separate and distinct biological mechanisms for the effects of adversity, more commonly experienced in poverty, and socioeconomic status (SES) on child development. Adversity affects brain and cognitive development through the biological stress response, which confers risk for pathology. Critically, we argue that a different mechanism, enrichment, shapes differences in brain and cognitive development across the SES spectrum. Distinguishing between adversity and SES allows for precise, evidence-based policy recommendations. We offer recommendations designed to ensure equity in children's experiences to help narrow the achievement gap and promote intergenerational mobility.
Collapse
Affiliation(s)
- Dima Amso
- Brown University, Providence, RI, USA
| | | |
Collapse
|
830
|
Antistress effects of N-stearoylethanolamine in rats with chronic social stress. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.04.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
831
|
Berens AE, Jensen SKG, Nelson CA. Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Med 2017; 15:135. [PMID: 28724431 PMCID: PMC5518144 DOI: 10.1186/s12916-017-0895-4] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adverse psychosocial exposures in early life, namely experiences such as child maltreatment, caregiver stress or depression, and domestic or community violence, have been associated in epidemiological studies with increased lifetime risk of adverse outcomes, including diabetes, heart disease, cancers, and psychiatric illnesses. Additional work has shed light on the potential molecular mechanisms by which early adversity becomes "biologically embedded" in altered physiology across body systems. This review surveys evidence on such mechanisms and calls on researchers, clinicians, policymakers, and other practitioners to act upon evidence. OBSERVATIONS Childhood psychosocial adversity has wide-ranging effects on neural, endocrine, immune, and metabolic physiology. Molecular mechanisms broadly implicate disruption of central neural networks, neuroendocrine stress dysregulation, and chronic inflammation, among other changes. Physiological disruption predisposes individuals to common diseases across the life course. CONCLUSIONS Reviewed evidence has important implications for clinical practice, biomedical research, and work across other sectors relevant to public health and child wellbeing. Warranted changes include increased clinical screening for exposures among children and adults, scale-up of effective interventions, policy advocacy, and ongoing research to develop new evidence-based response strategies.
Collapse
Affiliation(s)
- Anne E Berens
- Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Laboratories of Cognitive Neuroscience, Boston Children's Hospital/Harvard Medical School, 1 Autumn Street, Boston, 02215, Massachusetts, USA
| | - Sarah K G Jensen
- Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Laboratories of Cognitive Neuroscience, Boston Children's Hospital/Harvard Medical School, 1 Autumn Street, Boston, 02215, Massachusetts, USA
| | - Charles A Nelson
- Boston Children's Hospital, Boston, Massachusetts, USA. .,Harvard Medical School, Boston, Massachusetts, USA. .,Laboratories of Cognitive Neuroscience, Boston Children's Hospital/Harvard Medical School, 1 Autumn Street, Boston, 02215, Massachusetts, USA. .,Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
832
|
Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J Neurosci 2017; 36:7253-67. [PMID: 27383599 DOI: 10.1523/jneurosci.0319-16.2016] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/02/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Chronic stress-induced aberrant gene expression in the brain and subsequent dysfunctional neuronal plasticity have been implicated in the etiology and pathophysiology of mood disorders. In this study, we examined whether altered expression of small, regulatory, noncoding microRNAs (miRNAs) contributes to the depression-like behaviors and aberrant neuronal plasticity associated with chronic stress. Mice exposed to chronic ultra-mild stress (CUMS) exhibited increased depression-like behaviors and reduced hippocampal expression of the brain-enriched miRNA-124 (miR-124). Aberrant behaviors and dysregulated miR-124 expression were blocked by chronic treatment with an antidepressant drug. The depression-like behaviors are likely not conferred directly by miR-124 downregulation because neither viral-mediated hippocampal overexpression nor intrahippocampal infusion of an miR-124 inhibitor affected depression-like behaviors in nonstressed mice. However, viral-mediated miR-124 overexpression in hippocampal neurons conferred behavioral resilience to CUMS, whereas inhibition of miR-124 led to greater behavioral susceptibility to a milder stress paradigm. Moreover, we identified histone deacetylase 4 (HDAC4), HDAC5, and glycogen synthase kinase 3β (GSK3β) as targets for miR-124 and found that intrahippocampal infusion of a selective HDAC4/5 inhibitor or GSK3 inhibitor had antidepressant-like actions on behavior. We propose that miR-124-mediated posttranscriptional controls of HDAC4/5 and GSK3β expressions in the hippocampus have pivotal roles in susceptibility/resilience to chronic stress. SIGNIFICANCE STATEMENT Depressive disorders are a major public health concern worldwide. Although a clear understanding of the etiology of depression is still lacking, chronic stress-elicited aberrant neuronal plasticity has been implicated in the pathophysiology of depression. We show that the hippocampal expression of microRNA-124 (miR-124), an endogenous small, noncoding RNA that represses gene expression posttranscriptionally, controls resilience/susceptibility to chronic stress-induced depression-like behaviors. These effects on depression-like behaviors may be mediated through regulation of the mRNA or protein expression levels of histone deacetylases HDAC4/5 and glycogen synthase kinase 3β, all highly conserved miR-124 targets. Moreover, miR-124 contributes to stress-induced dendritic hypotrophy and reduced spine density of dentate gyrus granule neurons. Modulation of hippocampal miR-124 pathways may have potential antidepressant effects.
Collapse
|
833
|
Cabrera-Pedraza VR, de Jesús Gómez-Villalobos M, de la Cruz F, Aguilar-Alonso P, Zamudio S, Flores G. Pregnancy improves cognitive deficit and neuronal morphology atrophy in the prefrontal cortex and hippocampus of aging spontaneously hypertensive rats. Synapse 2017; 71:e21991. [DOI: 10.1002/syn.21991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Verónica R. Cabrera-Pedraza
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Fidel de la Cruz
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Sergio Zamudio
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | - Gonzalo Flores
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| |
Collapse
|
834
|
Previous Institutionalization Is Followed by Broader Amygdala-Hippocampal-PFC Network Connectivity during Aversive Learning in Human Development. J Neurosci 2017; 36:6420-30. [PMID: 27307231 DOI: 10.1523/jneurosci.0038-16.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/07/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Early institutional care can be profoundly stressful for the human infant, and, as such, can lead to significant alterations in brain development. In animal models, similar variants of early adversity have been shown to modify amygdala-hippocampal-prefrontal cortex development and associated aversive learning. The current study examined this rearing aberration in human development. Eighty-nine children and adolescents who were either previously institutionalized (PI youth; N = 46; 33 females and 13 males; age range, 7-16 years) or were raised by their biological parents from birth (N = 43; 22 females and 21 males; age range, 7-16 years) completed an aversive-learning paradigm while undergoing functional neuroimaging, wherein visual cues were paired with either an aversive sound (CS+) or no sound (CS-). For the PI youth, better aversive learning was associated with higher concurrent trait anxiety. Both groups showed robust learning and amygdala activation for CS+ versus CS- trials. However, PI youth also exhibited broader recruitment of several regions and increased hippocampal connectivity with prefrontal cortex. Stronger connectivity between the hippocampus and ventromedial PFC predicted significant improvements in future anxiety (measured 2 years later), and this was particularly true within the PI group. These results suggest that for humans as well as for other species, early adversity alters the neurobiology of aversive learning by engaging a broader prefrontal-subcortical circuit than same-aged peers. These differences are interpreted as ontogenetic adaptations and potential sources of resilience. SIGNIFICANCE STATEMENT Prior institutionalization is a significant form of early adversity. While nonhuman animal research suggests that early adversity alters aversive learning and associated neurocircuitry, no prior work has examined this in humans. Here, we show that youth who experienced prior institutionalization, but not comparison youth, recruit the hippocampus during aversive learning. Among youth who experienced prior institutionalization, individual differences in aversive learning were associated with worse current anxiety. However, connectivity between the hippocampus and prefrontal cortex prospectively predicted significant improvements in anxiety 2 years following scanning for previously institutionalized youth. Among youth who experienced prior institutionalization, age-atypical engagement of a distributed set of brain regions during aversive learning may serve a protective function.
Collapse
|
835
|
Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality. Neuropsychopharmacology 2017; 42:1647-1656. [PMID: 27986975 PMCID: PMC5518893 DOI: 10.1038/npp.2016.281] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/30/2016] [Accepted: 12/02/2016] [Indexed: 01/21/2023]
Abstract
Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst2 or sst4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst2 or sst4, but not sst1 or sst3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst2 agonists selectively produced anxiolytic-like behaviors whereas both sst2 and sst4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst2KO mice and depressive-like behaviors observed in both sst2KO and sst4KO strains. Both hippocampal sst2 and sst4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.
Collapse
|
836
|
Joo WT, Kwak S, Youm Y, Chey J. Brain functional connectivity difference in the complete network of an entire village: the role of social network size and embeddedness. Sci Rep 2017; 7:4465. [PMID: 28667288 PMCID: PMC5493622 DOI: 10.1038/s41598-017-04904-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022] Open
Abstract
Social networks are known to protect cognitive function in old age. For the first time, this study examines how social network size and social network embeddedness measured by k-core score are associated with functional connectivity in the brain using the complete social network of an entire village. According to the results, social network size has both positive and negative associations with functional connectivity; showing no meaningful pattern relative to distance among brain regions. However, older adults deeply embedded in the complete network tend to maintain functional connectivity between long-distance regions even after controlling for other covariates such as age, gender, education, and Mini-Mental State Examination score. Network Based Statistics (NBS) also revealed strong and consistent evidence that social network embeddedness has component-level associations with functional connectivity among brain regions, especially between inferior prefrontal and occipital/parietal lobes.
Collapse
Affiliation(s)
- Won-Tak Joo
- Department of Sociology, University of Wisconsin-Madison, Wisconsin, USA
| | - Seyul Kwak
- Department of Psychology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, South Korea
| | - Yoosik Youm
- Department of Sociology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, South Korea.
| | - Jeanyung Chey
- Department of Psychology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, South Korea.
| |
Collapse
|
837
|
Schlink BR, Peterson SM, Hairston WD, König P, Kerick SE, Ferris DP. Independent Component Analysis and Source Localization on Mobile EEG Data Can Identify Increased Levels of Acute Stress. Front Hum Neurosci 2017; 11:310. [PMID: 28670269 PMCID: PMC5472660 DOI: 10.3389/fnhum.2017.00310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022] Open
Abstract
Mobile electroencephalography (EEG) is a very useful tool to investigate the physiological basis of cognition under real-world conditions. However, as we move experimentation into less-constrained environments, the influence of state changes increases. The influence of stress on cortical activity and cognition is an important example. Monitoring of modulation of cortical activity by EEG measurements is a promising tool for assessing acute stress. In this study, we test this hypothesis and combine EEG with independent component analysis and source localization to identify cortical differences between a control condition and a stressful condition. Subjects performed a stationary shooting task using an airsoft rifle with and without the threat of an experimenter firing a different airsoft rifle in their direction. We observed significantly higher skin conductance responses and salivary cortisol levels (p < 0.05 for both) during the stressful conditions, indicating that we had successfully induced an adequate level of acute stress. We located independent components in five regions throughout the cortex, most notably in the dorsolateral prefrontal cortex, a region previously shown to be affected by increased levels of stress. This area showed a significant decrease in spectral power in the theta and alpha bands less than a second after the subjects pulled the trigger. Overall, our results suggest that EEG with independent component analysis and source localization has the potential of monitoring acute stress in real-world environments.
Collapse
Affiliation(s)
- Bryan R Schlink
- Human Neuromechanics Laboratory, School of Kinesiology, University of Michigan, Ann ArborMI, United States
| | - Steven M Peterson
- Human Neuromechanics Laboratory, School of Kinesiology, University of Michigan, Ann ArborMI, United States
| | - W D Hairston
- Human Research and Engineering Directorate, United States Army Research Laboratory, Aberdeen Proving GroundMD, United States
| | - Peter König
- Institute of Cognitive Science, University of OsnabrückOsnabrück, Germany.,University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Scott E Kerick
- Human Research and Engineering Directorate, United States Army Research Laboratory, Aberdeen Proving GroundMD, United States
| | - Daniel P Ferris
- Human Neuromechanics Laboratory, School of Kinesiology, University of Michigan, Ann ArborMI, United States
| |
Collapse
|
838
|
Lilliecreutz EK, Felixson B, Lundqvist A, Samuelsson K. Effects of guided aerobic exercise and mindfulness after acquired brain injury: a pilot study. EUROPEAN JOURNAL OF PHYSIOTHERAPY 2017. [DOI: 10.1080/21679169.2017.1337220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Eva Kristina Lilliecreutz
- Department of Rehabilitation Medicine, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Felixson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Rehabilitation Medicine, Västervik Hospital, Västervik, Sweden
| | - Anna Lundqvist
- Department of Rehabilitation Medicine, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Kersti Samuelsson
- Department of Rehabilitation Medicine, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
839
|
Jaggar M, Weisstaub N, Gingrich JA, Vaidya VA. 5-HT 2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress. Neurobiol Stress 2017. [PMID: 28626787 PMCID: PMC5470573 DOI: 10.1016/j.ynstr.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A) receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS) on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC) and hippocampus in 5-HT2A receptor knockout (5-HT2A−/−) and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2), trophic factors (Bdnf, Igf1) and immediate early genes (IEGs) (Arc, Fos, Fosb, Egr1-4) in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic.
Collapse
Affiliation(s)
- Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Noelia Weisstaub
- Department of Physiology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Jay A Gingrich
- Department of Psychiatry, Columbia University, New York, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
840
|
Murínová J, Hlaváčová N, Chmelová M, Riečanský I. The Evidence for Altered BDNF Expression in the Brain of Rats Reared or Housed in Social Isolation: A Systematic Review. Front Behav Neurosci 2017; 11:101. [PMID: 28620285 PMCID: PMC5449742 DOI: 10.3389/fnbeh.2017.00101] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
There is evidence that development and maintenance of neural connections are disrupted in major mental disorders, which indicates that neurotrophic factors could play a critical role in their pathogenesis. Stress is a well-established risk factor for psychopathology and recent research suggests that disrupted signaling via brain-derived neurotrophic factor (BDNF) may be involved in mediating the negative effects of stress on the brain. Social isolation of rats elicits chronic stress and is widely used as an animal model of mental disorders such as schizophrenia and depression. We carried out a systematic search of published studies to review current evidence for an altered expression of BDNF in the brain of rats reared or housed in social isolation. Across all age groups (post-weaning, adolescent, adult), majority of the identified studies (16/21) reported a decreased expression of BDNF in the hippocampus. There are far less published data on BDNF expression in other brain regions. Data are also scarce to assess the behavioral changes as a function of BDNF expression, but the downregulation of BDNF seems to be associated with increased anxiety-like symptoms. The reviewed data generally support the putative involvement of BDNF in the pathogenesis of stress-related mental illness. However, the mechanisms linking chronic social isolation, BDNF expression and the elicited behavioral alterations are currently unknown.
Collapse
Affiliation(s)
- Jana Murínová
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
| | - Nataša Hlaváčová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Magdaléna Chmelová
- Laboratory of Pharmacological Neuroendocrinology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of SciencesBratislava, Slovakia
| | - Igor Riečanský
- Laboratory of Cognitive Neuroscience, Institute of Normal and Pathological Physiology, Slovak Academy of SciencesBratislava, Slovakia
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of ViennaVienna, Austria
| |
Collapse
|
841
|
Segi-Nishida E. The Effect of Serotonin-Targeting Antidepressants on Neurogenesis and Neuronal Maturation of the Hippocampus Mediated via 5-HT1A and 5-HT4 Receptors. Front Cell Neurosci 2017; 11:142. [PMID: 28559799 PMCID: PMC5432636 DOI: 10.3389/fncel.2017.00142] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
Abstract
Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) specifically increase serotonin (5-HT) levels in the synaptic cleft and are widely used to treat mood and anxiety disorders. There are 14 established subtypes of 5-HT receptors in rodents, each of which has regionally different expression patterns. Many preclinical studies have suggested that the hippocampus, which contains abundant 5-HT1A and 5-HT4 receptor subtypes in the dentate gyrus (DG), is critically involved in the mechanisms of action of antidepressants. This review article will analyze studies demonstrating regulation of hippocampal functions and hippocampus-dependent behaviors by SSRIs and similar serotonergic agents. Multiple studies indicate that 5-HT1A and 5-HT4 receptor signaling in the DG contributes to SSRI-mediated promotion of neurogenesis and increased neurotrophic factors expression. Chronic SSRI treatment causes functions and phenotypes of mature granule cells (GCs) to revert to immature-like phenotypes defined as a "dematured" state in the DG, and to increase monoamine reactivity at the dentate-to-CA3 synapses, via 5-HT4 receptor signaling. Behavioral studies demonstrate that the 5-HT1A receptors on mature GCs are critical for expression of antidepressant effects in the forced swim test and in novelty suppressed feeding; such studies also note that 5-HT4 receptors mediate neurogenesis-dependent antidepressant activity in, for example, novelty-suppressed feeding. Despite their limitations, the collective results of these studies describe a potential new mechanism of action, in which 5-HT1A and 5-HT4 receptor signaling, either independently or cooperatively, modulates the function of the hippocampal DG at multiple levels, any of which could play a critical role in the antidepressant actions of 5-HT-enhancing drugs.
Collapse
Affiliation(s)
- Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of ScienceTokyo, Japan
| |
Collapse
|
842
|
Gomes FV, Grace AA. Prefrontal Cortex Dysfunction Increases Susceptibility to Schizophrenia-Like Changes Induced by Adolescent Stress Exposure. Schizophr Bull 2017; 43:592-600. [PMID: 28003467 PMCID: PMC5464092 DOI: 10.1093/schbul/sbw156] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress during adolescence is a risk factor for schizophrenia, and medial prefrontal cortex (mPFC) dysfunction is proposed to interfere with stress control, increasing the susceptibility to stress. We evaluated the impact of different stressful events during adolescence (restraint stress [RS], footshock [FS], or the combination of FS and RS) on behaviors correlated with schizophrenia in rats as adults. At adulthood, animals were tested for anxiety responses (elevated plus-maze), cognitive function (novel-object recognition test) and dopamine (DA) system responsivity (locomotor response to amphetamine and DA neuron activity in the ventral tegmental area (VTA) using in vivo electrophysiology). All adolescent stressors impaired weight gain and induced anxiety-like responses in adults. FS and FS + RS also disrupted cognitive function. Interestingly, only the combination of FS and RS induced a DA hyper-responsivity as indicated by augmented locomotor response to amphetamine and increased number of spontaneously active DA neurons which was confined to the lateral VTA. Additionally, prelimbic (pl) mPFC lesions triggered a DA hyper-responsivity in animals exposed to FS alone during adolescence. Our results are consistent with previous studies showing long-lasting changes induced by stressful events during adolescence. The impact on DA system activity, however, seems to depend on intense multiple stressors. Our data also suggest that plPFC dysfunction increases the vulnerability to stress in terms of changes in the DA system. Hence, stress during adolescence could be a precipitating factor for the transition to schizophrenia, and stress control at this vulnerable period may circumvent these changes to prevent the emergence of psychosis.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
843
|
Paquola C, Bennett MR, Hatton SN, Hermens DF, Lagopoulos J. Utility of the cumulative stress and mismatch hypotheses in understanding the neurobiological impacts of childhood abuse and recent stress in youth with emerging mental disorder. Hum Brain Mapp 2017; 38:2709-2721. [PMID: 28256777 PMCID: PMC6866861 DOI: 10.1002/hbm.23554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 11/08/2022] Open
Abstract
Childhood abuse has an enduring impact on the brain's stress system. Whether the effects of childhood abuse and adulthood stress are additive (cumulative stress hypothesis) or interactive (mismatch hypothesis) is widely disputed, however. The primary aim of this study was to test the utility of the cumulative stress and mismatch hypotheses in understanding brain and behaviour. We recruited 64 individuals (aged 14-26) from a specialised clinic for assessment and early intervention of mental health problems in young people. A T1-weighted MRI, a resting state fMRI and clinical assessment were acquired from each participant. Grey matter estimates and resting state functional connectivity (rsFC) of the hippocampus, amygdala and anterior cingulate cortex (ACC) were determined using segmentation and seed-to-voxel rsFC analyses. We explored the effects of childhood abuse and recent stress on the structure and function of the regions of interest within general linear models. Worse psychiatric symptoms were significantly related to higher levels of life time stress. Individuals with mismatched childhood and recent stress levels had reduced left hippocampal volume, reduced ACC-ventrolateral prefrontal cortex rsFC and greater ACC-hippocampus rsFC, compared to individuals with matched childhood and recent stress levels. These results show specific utility of the cumulative stress hypothesis in understanding psychiatric symptomatology and of the mismatch hypothesis in modelling hippocampal grey matter, prefrontal rsFC, and prefrontal-hippocampal rsFC. We provide novel evidence for the enduring impact of childhood abuse on stress reactivity in a clinical population, and demonstrate the distinct effects of stress in different systems. Hum Brain Mapp 38:2709-2721, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Casey Paquola
- Clinical Research Unit, Brain & Mind CentreUniversity of SydneyNew South Wales2050Australia
| | - Maxwell R Bennett
- Clinical Research Unit, Brain & Mind CentreUniversity of SydneyNew South Wales2050Australia
| | - Sean N Hatton
- Clinical Research Unit, Brain & Mind CentreUniversity of SydneyNew South Wales2050Australia
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia
| | - Daniel F. Hermens
- Clinical Research Unit, Brain & Mind CentreUniversity of SydneyNew South Wales2050Australia
| | - Jim Lagopoulos
- Clinical Research Unit, Brain & Mind CentreUniversity of SydneyNew South Wales2050Australia
- Sunshine Coast Mind and NeuroscienceUniversity of the Sunshine CoastQueensland4558Australia
| |
Collapse
|
844
|
Gomes FV, Grace AA. Adolescent Stress as a Driving Factor for Schizophrenia Development-A Basic Science Perspective. Schizophr Bull 2017; 43:486-489. [PMID: 28419390 PMCID: PMC5464111 DOI: 10.1093/schbul/sbx033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia has been associated with heightened stress responsivity in adolescence that precedes onset of psychosis. We now report that multiple stressors during adolescence in normal rats leads to deficits in adults analogous to that seen in schizophrenia patients. Moreover, impairment of stress control by lesion of the prelimbic prefontal cortex in adolescence caused previously subthreshold levels of stress to induce these deficit states when tested as adults. Thus, predisposition to stress hyper-responsivity, or exposure to substantial stressors, during adolescence can trigger a cascade of events that result in a schizophrenia-like profile in adults. This data can provide crucial information with respect to identifying markers for schizophrenia vulnerability early in life and, by mitigating the impact of stressors, prevent the transition to psychosis.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
845
|
Seo MK, Choi CM, McIntyre RS, Cho HY, Lee CH, Mansur RB, Lee Y, Lee JH, Kim YH, Park SW, Lee JG. Effects of escitalopram and paroxetine on mTORC1 signaling in the rat hippocampus under chronic restraint stress. BMC Neurosci 2017; 18:39. [PMID: 28446154 PMCID: PMC5405541 DOI: 10.1186/s12868-017-0357-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have suggested that the activation of mammalian target of rapamycin (mTOR) signaling may be related to antidepressant action. Therefore, the present study evaluated whether antidepressant drugs would exert differential effects on mTOR signaling in the rat hippocampus under conditions of chronic restraint stress. Male Sprague–Dawley rats were subjected to restraint stress for 6 h/days for 21 days with either escitalopram (10 mg/kg) or paroxetine (10 mg/kg) administered after the chronic stress procedure. Western blot analyses were used to assess changes in the levels of phospho-Ser2448-mTOR, phospho-Thr37/46-4E-BP-1, phospho-Thr389-p70S6 K, phospho-Ser422-eIF4B, phospho-Ser240/244-S6, phospho-Ser473-Akt, and phospho-Thr202/Tyr204-ERK in the hippocampus. Results Chronic restraint stress significantly decreased the levels of phospho-mTOR complex 1 (mTORC1), phospho-4E-BP-1, phospho-p70S6 K, phospho-eIF4B, phospho-S6, phospho-Akt, and phospho-ERK (p < 0.05); the administration of escitalopram and paroxetine increased the levels of all these proteins (p < 0.05 or 0.01). Additionally, chronic restraint stress reduced phospho-mTORC1 signaling activities in general, while escitalopram and paroxetine prevented these changes in phospho-mTORC1 signaling activities. Conclusion These findings provide further data that contribute to understanding the possible relationships among mTOR activity, stress, and antidepressant drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0357-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea
| | - Cheol Min Choi
- Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Hye Yeon Cho
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea
| | - Chan Hong Lee
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Jae-Hon Lee
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Young Hoon Kim
- Department of Psychiatry, Gongju National Hospital, Gongju, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea. .,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada. .,Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|
846
|
Interactions of early-life stress with the genome and epigenome: from prenatal stress to psychiatric disorders. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
847
|
Depressive-Like Behaviors Are Regulated by NOX1/NADPH Oxidase by Redox Modification of NMDA Receptor 1. J Neurosci 2017; 37:4200-4212. [PMID: 28314819 DOI: 10.1523/jneurosci.2988-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 01/08/2023] Open
Abstract
Involvement of reactive oxygen species (ROS) has been suggested in the development of psychiatric disorders. NOX1 is a nonphagocytic form of NADPH oxidase whose expression in the nervous system is negligible compared with other NOX isoforms. However, NOX1-derived ROS increase inflammatory pain and tolerance to opioid analgesia. To clarify the role of NOX1 in the brain, we examined depressive-like behaviors in mice deficient in Nox1 (Nox1-/Y). Depressive-like behaviors induced by chronic social defeat stress or administration of corticosterone (CORT) were significantly ameliorated in Nox1-/Y Generation of ROS was significantly elevated in the prefrontal cortex (PFC) of mice administrated with CORT, while NOX1 mRNA was upregulated only in the ventral tegmental area (VTA) among brain areas responsible for emotional behaviors. Delivery of miRNA against NOX1 to VTA restored CORT-induced depressive-like behaviors in wild-type (WT) littermates. Administration of CORT to WT, but not to Nox1-/Y, significantly reduced transcript levels of brain-derived neurotrophic factor (bdnf), with a concomitant increase in DNA methylation of the promoter regions in bdnf Delivery of miRNA against NOX1 to VTA restored the level of BDNF mRNA in WT PFC. Redox proteome analyses demonstrated that NMDA receptor 1 (NR1) was among the molecules redox regulated by NOX1. In cultured cortical neurons, hydrogen peroxide significantly suppressed NMDA-induced upregulation of BDNF transcripts in NR1-expressing cells but not in cells harboring mutant NR1 (C744A). Together, these findings suggest a key role of NOX1 in depressive-like behaviors through NR1-mediated epigenetic modification of bdnf in the mesoprefrontal projection.SIGNIFICANCE STATEMENT NADPH oxidase is a source of reactive oxygen species (ROS) that have been implicated in the pathogenesis of various neurological disorders. We presently showed the involvement of a nonphagocytic type of NADPH oxidase, NOX1, in major depressive disorders, including behavioral, biochemical, and anatomical changes in mice. The oxidation of NR1 by NOX1-derived ROS was demonstrated in prefrontal cortex (PFC), which may be causally linked to the downregulation of BDNF, promoting depressive-like behaviors. Given that NOX1 is upregulated only in VTA but not in PFC, mesocortical projections appear to play a crucial role in NOX1-dependent depressive-like behaviors. Our study is the first to present the potential molecular mechanism underlying the development of major depression through the NOX1-induced oxidation of NR1 and epigenetic modification of bdnf.
Collapse
|
848
|
Murphy MO, Cohn DM, Loria AS. Developmental origins of cardiovascular disease: Impact of early life stress in humans and rodents. Neurosci Biobehav Rev 2017; 74:453-465. [PMID: 27450581 PMCID: PMC5250589 DOI: 10.1016/j.neubiorev.2016.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesizes that environmental insults during childhood programs the individual to develop chronic disease in adulthood. Emerging epidemiological data strongly supports that early life stress (ELS) given by the exposure to adverse childhood experiences is regarded as an independent risk factor capable of predicting future risk of cardiovascular disease. Experimental animal models utilizing chronic behavioral stress during postnatal life, specifically maternal separation (MatSep) provides a suitable tool to elucidate molecular mechanisms by which ELS increases the risk to develop cardiovascular disease, including hypertension. The purpose of this review is to highlight current epidemiological studies linking ELS to the development of cardiovascular disease and to discuss the potential molecular mechanisms identified from animal studies. Overall, this review reveals the need for future investigations to further clarify the molecular mechanisms of ELS in order to develop more personalized therapeutics to mitigate the long-term consequences of chronic behavioral stress including cardiovascular and heart disease in adulthood.
Collapse
Affiliation(s)
- M O Murphy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - D M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - A S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
849
|
de Araújo Costa Folha OA, Bahia CP, de Aguiar GPS, Herculano AM, Coelho NLG, de Sousa MBC, Shiramizu VKM, de Menezes Galvão AC, de Carvalho WA, Pereira A. Effect of chronic stress during adolescence in prefrontal cortex structure and function. Behav Brain Res 2017; 326:44-51. [PMID: 28238824 DOI: 10.1016/j.bbr.2017.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 01/20/2023]
Abstract
Critical periods of plasticity (CPPs) are defined by developmental intervals wherein neuronal circuits are most susceptible to environmental influences. The CPP of the prefrontal cortex (PFC), which controls executive functions, extends up to early adulthood and, like other cortical areas, reflects the maturation of perineuronal nets (PNNs) surrounding the cell bodies of specialized inhibitory interneurons. The aim of the present work was to evaluate the effect of chronic stress on both structure and function of the adolescent's rat PFC. We subjected P28 rats to stressful situations for 7, 15 and 35days and evaluated the spatial distribution of histochemically-labeled PNNs in both the Medial Prefrontal Cortex (MPFC) and the Orbitofrontal Cortex (OFC) and PFC-associated behavior as well. Chronic stress affects PFC development, slowing PNN maturation in both the (MPFC) and (OFC) while negatively affecting functions associated with these areas. We speculate upon the risks of prolonged exposure to stressful environments in human adolescents and the possibility of stunted development of executive functions.
Collapse
Affiliation(s)
- Otávio Augusto de Araújo Costa Folha
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Carlomagno Pacheco Bahia
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Gisele Priscila Soares de Aguiar
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Anderson Manoel Herculano
- Laboratory of Experimental Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Correa, 1, 66075-110 Belém, PA, Brazil
| | - Nicole Leite Galvão Coelho
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Maria Bernardete Cordeiro de Sousa
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Victor Kenji Medeiros Shiramizu
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Ana Cecília de Menezes Galvão
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Walther Augusto de Carvalho
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Antonio Pereira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil; Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil.
| |
Collapse
|
850
|
Bagot RC, Cates HM, Purushothaman I, Vialou V, Heller EA, Yieh L, LaBonté B, Peña CJ, Shen L, Wittenberg GM, Nestler EJ. Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles. Biol Psychiatry 2017; 81:285-295. [PMID: 27569543 PMCID: PMC5164982 DOI: 10.1016/j.biopsych.2016.06.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical. METHODS We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. RESULTS We identified similar numbers of responders and nonresponders after ketamine or imipramine treatment. Ketamine induced more expression changes in the hippocampus; imipramine induced more expression changes in the nucleus accumbens and amygdala. Transcriptional profiles in treatment responders were most similar in the PFC. Nonresponse reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptibility-associated transcriptional changes and induced resilience-associated transcription in the PFC. CONCLUSIONS We generated a uniquely large resource of gene expression data in four interconnected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by antidepressant drugs and in both reversing susceptibility- and inducing resilience-associated molecular adaptations. In addition, we found region-specific effects of each drug, suggesting both common and unique effects of imipramine versus ketamine.
Collapse
Affiliation(s)
- Rosemary C. Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hannah M. Cates
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vincent Vialou
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elizabeth A Heller
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lynn Yieh
- Janssen Research & Development, LLC, Titusville, NJ and LaJolla, CA
| | - Benoit LaBonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Catherine J. Peña
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute , Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|