801
|
Gravis G. Systemic treatment for metastatic prostate cancer. Asian J Urol 2019; 6:162-168. [PMID: 31061802 PMCID: PMC6488732 DOI: 10.1016/j.ajur.2019.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
Abstract
The management of metastatic prostate cancer (mPCa) has changed over the past ten years. Several new drugs have been approved with significant overall survival benefits in metastatic castration resistant prostate cancer (PCa) including chemotherapy (docetaxel, cabazitaxel), new hormonal therapies (abiraterone, enzalutamide), Radium-223 and immunotherapy. The addition of docetaxel to androgen deprivation therapy (ADT) versus ADT alone in the castration sensitive metastatic setting has gained significant overall survival benefit particularly for high volume disease. More recently two phase III trials have assessed the efficacy of abiraterone plus prednisone plus ADT over ADT alone in newly high risk castrate sensitive mPCa. Determination of the appropriate treatment sequence using these therapies is important for maximizing the clinical benefit in castration sensitive and castration resistant PCa patients. Emerging fields are the identification of new subtypes with molecular characterization and new therapeutic targets.
Collapse
|
802
|
Yedjou CG, Mbemi AT, Noubissi F, Tchounwou SS, Tsabang N, Payton M, Miele L, Tchounwou PB. Prostate Cancer Disparity, Chemoprevention, and Treatment by Specific Medicinal Plants. Nutrients 2019; 11:E336. [PMID: 30720759 PMCID: PMC6412894 DOI: 10.3390/nu11020336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in men. The global burden of this disease is rising. Its incidence and mortality rates are higher in African American (AA) men compared to white men and other ethnic groups. The treatment decisions for PC are based exclusively on histological architecture, prostate-specific antigen (PSA) levels, and local disease state. Despite advances in screening for and early detection of PC, a large percentage of men continue to be diagnosed with metastatic disease including about 20% of men affected with a high mortality rate within the African American population. As such, this population group may benefit from edible natural products that are safe with a low cost. Hence, the central goal of this article is to highlight PC disparity associated with nutritional factors and highlight chemo-preventive agents from medicinal plants that are more likely to reduce PC. To reach this central goal, we searched the PubMed Central database and the Google Scholar website for relevant papers. Our search results revealed that there are significant improvements in PC statistics among white men and other ethnic groups. However, its mortality rate remains significantly high among AA men. In addition, there are limited studies that have addressed the benefits of medicinal plants as chemo-preventive agents for PC treatment, especially among AA men. This review paper addresses this knowledge gap by discussing PC disparity associated with nutritional factors and highlighting the biomedical significance of three medicinal plants (curcumin, garlic, and Vernonia amygdalina) that show a great potential to prevent/treat PC, as well as to reduce its incidence/prevalence and mortality, improve survival rate, and reduce PC-related health disparity.
Collapse
Affiliation(s)
- Clement G Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Ariane T Mbemi
- Natural Chemotherapeutics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Felicite Noubissi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Solange S Tchounwou
- Department of Biology, University of Mississippi, 214 Shoemaker Hall, P.O. Box 1848, MS 38677, USA.
| | - Nole Tsabang
- Department of Animal Biology, Higher Institute of Environmental Sciences, Yaounde P.O.Box 16317, Cameroon.
| | - Marinelle Payton
- Center of Excellence in Minority Health and Health Disparities, School of Public Health, Jackson State University, Jackson Medical Mall-Thad Cochran Center, 350 West Woodrow Wilson Avenue, Jackson, MS 39213, USA.
| | - Lucio Miele
- Department of Genetics, LSU Health Sciences Center, School of Medicine, 533 Bolivar Street, Room 657, New Orleans, LA 70112, USA.
| | - Paul B Tchounwou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| |
Collapse
|
803
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
804
|
Wadosky KM, Shourideh M, Goodrich DW, Koochekpour S. Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate 2019; 79:140-150. [PMID: 30280407 DOI: 10.1002/pros.23719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is diagnosed at the highest rate of all non-cutaneous male cancers in the United States. The androgen-dependent (AD) transcription factor, androgen receptor (AR), drives PCa-but inhibiting AR or androgen biosynthesis induces remission for only a short time. At which point, patients acquire more aggressive castration-resistant (CR) disease with re-activated AR-dependent signaling. To combat treatment resistance, down-regulating AR protein expression has been considered as a potential treatment strategy for CR-PCa. METHODS AD- and CR-PCa cell lines were treated with the well-tolerated FDA-approved oral medicine, riluzole. Expression of full-length or wild-type AR (AR-FL) and constitutively active AR-splice variant 7 (AR-V7) was assessed by immunoblotting. AR-FL/AR-V7 activity was measured using qRT-PCR of AR-target genes. Cytoplasmic [Ca2+ ] levels were measured using a fluorescent Ca2+ indicator microplate assay. Markers of the endoplasmic reticulum stress (ERS) pathway and autophagy were assessed by immunoblotting. Direct interaction between AR and selective autophagy receptor p62 was demonstrated by co-immunoprecipitation. RESULTS We demonstrate that riluzole downregulates AR-FL, mutant ARs, and AR-V7 proteins expression by protein degradation through ERS pathway and selective autophagy. Riluzole also significantly inhibited AR transcription activity by decreasing its target genes expression (PSA, TMPRSS2, and KLK2). CONCLUSIONS We provide key mechanistic insights by which riluzole exerts its anti-tumorigenic effects and induces AR protein degradation via ERS pathways. Our findings support the potential utility of riluzole for treatment of PCa.
Collapse
Affiliation(s)
- Kristine M Wadosky
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mojgan Shourideh
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Shahriar Koochekpour
- Departments of Cancer Genetics and Genomics, Center for Genomics and Pharmacology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
805
|
Borno HT, Small EJ. Apalutamide and its use in the treatment of prostate cancer. Future Oncol 2019; 15:591-599. [PMID: 30426794 PMCID: PMC6391625 DOI: 10.2217/fon-2018-0546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022] Open
Abstract
High-risk nonmetastatic castration-resistant prostate cancer is a lethal disease that previously lacked clear treatment options. Progression to bone metastases is associated with significant morbidity and high cost. Apalutamide, an androgen receptor inhibitor, has substantial clinical response in nonmetastatic castration-resistant prostate cancer. Apalutamide + androgen deprivation therapy is well tolerated and improves metastasis-free survival, progression-free survival and time to symptomatic progression, and is associated with a favorable trend of improved overall survival. Future research is needed to elucidate mechanisms of resistance to treatment with androgen signaling inhibitors.
Collapse
Affiliation(s)
- Hala T Borno
- Division of Hematology/Oncology, Department of Medicine, University of California at San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California at San Francisco, CA 94158, USA
| | - Eric J Small
- Division of Hematology/Oncology, Department of Medicine, University of California at San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California at San Francisco, CA 94158, USA
| |
Collapse
|
806
|
Sheng X, Nenseth HZ, Qu S, Kuzu OF, Frahnow T, Simon L, Greene S, Zeng Q, Fazli L, Rennie PS, Mills IG, Danielsen H, Theis F, Patterson JB, Jin Y, Saatcioglu F. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun 2019; 10:323. [PMID: 30679434 PMCID: PMC6345973 DOI: 10.1038/s41467-018-08152-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
Activation of endoplasmic reticulum (ER) stress/the unfolded protein response (UPR) has been linked to cancer, but the molecular mechanisms are poorly understood and there is a paucity of reagents to translate this for cancer therapy. Here, we report that an IRE1α RNase-specific inhibitor, MKC8866, strongly inhibits prostate cancer (PCa) tumor growth as monotherapy in multiple preclinical models in mice and shows synergistic antitumor effects with current PCa drugs. Interestingly, global transcriptomic analysis reveal that IRE1α-XBP1s pathway activity is required for c-MYC signaling, one of the most highly activated oncogenic pathways in PCa. XBP1s is necessary for optimal c-MYC mRNA and protein expression, establishing, for the first time, a direct link between UPR and oncogene activation. In addition, an XBP1-specific gene expression signature is strongly associated with PCa prognosis. Our data establish IRE1α-XBP1s signaling as a central pathway in PCa and indicate that its targeting may offer novel treatment strategies.
Collapse
Affiliation(s)
- Xia Sheng
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | | | - Su Qu
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Omer F Kuzu
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Turid Frahnow
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Faculty of Business Administration and Economics, Chair DataScience, University Bielefeld, 33615, Bielefeld, Germany
| | - Lukas Simon
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Stephanie Greene
- Fosun Orinove, Inc., Unit 211, Building A4, 218 Xinhu Street, 215000, SuZhou, China
| | - Qingping Zeng
- Fosun Orinove, Inc., Unit 211, Building A4, 218 Xinhu Street, 215000, SuZhou, China
| | - Ladan Fazli
- The Vancouver Prostate Centre, Vancouver, BC, V6H3Z6, Canada
| | - Paul S Rennie
- The Vancouver Prostate Centre, Vancouver, BC, V6H3Z6, Canada
| | - Ian G Mills
- Movember/PCUK Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University of Belfast, Belfast, BT7 1NN, UK
| | - Håvard Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0379, Oslo, Norway
- Center for Cancer Biomedicine, University of Oslo, 0316, Oslo, Norway
- Department of Informatics, University of Oslo, 0316, Oslo, Norway
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, OX3 7LF, UK
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - John B Patterson
- Fosun Orinove, Inc., Unit 211, Building A4, 218 Xinhu Street, 215000, SuZhou, China
| | - Yang Jin
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0379, Oslo, Norway.
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0379, Oslo, Norway.
| |
Collapse
|
807
|
Yin Y, Xu L, Chang Y, Zeng T, Chen X, Wang A, Groth J, Foo WC, Liang C, Hu H, Huang J. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway. Mol Cancer 2019; 18:11. [PMID: 30657058 PMCID: PMC6337850 DOI: 10.1186/s12943-019-0941-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background MYCN amplification or N-Myc overexpression is found in approximately 40% NEPC and up to 20% CRPC patients. N-Myc has been demonstrated to drive disease progression and hormonal therapeutic resistance of NEPC/CRPC. Here, we aim to identify the molecular mechanisms underlying the N-Myc-driven therapeutic resistance and provide new therapeutic targets for those N-Myc overexpressed NEPC/CRPC. Methods N-Myc overexpressing stable cell lines for LNCaP and C4–2 were generated by lentivirus infection. ADT-induced senescence was measured by SA-β-gal staining in LNCaP cells in vitro and in LNCaP xenograft tumors in vivo. Migration, cell proliferation and colony formation assays were used to measure the cellular response after overexpressing N-Myc or perturbing the miR-421/ATM pathway. CRISPR-Cas9 was used to knock out ATM in C4–2 cells and MTS cell viability assay was used to evaluate the drug sensitivity of N-Myc overexpressing C4–2 cells in response to Enzalutamide and ATM inhibitor Ku60019 respectively or in combination. Results N-Myc overexpression suppressed ATM expression through upregulating miR-421 in LNCaP cells. This suppression alleviated the ADT-induced senescence in vitro and in vivo. Surprisingly, N-Myc overexpression upregulated ATM expression in C4–2 cells and this upregulation promoted migration and invasion of prostate cancer cells. Further, the N-Myc-induced ATM upregulation in C4–2 cells rendered the cells resistance to Enzalutamide, and inhibition of ATM by CRISPR-Cas9 knockout or ATM inhibitor Ku60019 re-sensitized them to Enzalutamide. Conclusions N-Myc differentially regulating miR-421/ATM pathway contributes to ADT resistance and Enzalutamide resistance development respectively. Combination treatment with ATM inhibitor re-sensitizes N-Myc overexpressed CRPC cells to Enzalutamide. Our findings would offer a potential combination therapeutic strategy using ATM kinase inhibitor and Enzalutamide for the treatment of a subset of mCRPC with N-Myc overexpression that accounts for up to 20% CRPC patients. Electronic supplementary material The online version of this article (10.1186/s12943-019-0941-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Yin
- Department of Urology, First Affilated Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA.,Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Lingfan Xu
- Department of Urology, First Affilated Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Yan Chang
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA.,Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Tao Zeng
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA.,Department of Urology, Jiangxi Province People's Hospital, Nanchang, China
| | - Xufeng Chen
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Aifeng Wang
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Jeff Groth
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Wen-Chi Foo
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Chaozhao Liang
- Department of Urology, First Affilated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hailiang Hu
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Jiaoti Huang
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
808
|
Lee E, Wongvipat J, Choi D, Wang P, Lee YS, Zheng D, Watson PA, Gopalan A, Sawyers CL. GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. eLife 2019; 8:e41913. [PMID: 30644358 PMCID: PMC6336405 DOI: 10.7554/elife.41913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/27/2018] [Indexed: 01/22/2023] Open
Abstract
Genomic amplification of the androgen receptor (AR) is an established mechanism of antiandrogen resistance in prostate cancer. Here, we show that the magnitude of AR signaling output, independent of AR genomic alteration or expression level, also contributes to antiandrogen resistance, through upregulation of the coactivator GREB1. We demonstrate 100-fold heterogeneity in AR output within human prostate cancer cell lines and show that cells with high AR output have reduced sensitivity to enzalutamide. Through transcriptomic and shRNA knockdown studies, together with analysis of clinical datasets, we identify GREB1 as a gene responsible for high AR output. We show that GREB1 is an AR target gene that amplifies AR output by enhancing AR DNA binding and promoting EP300 recruitment. GREB1 knockdown in high AR output cells restores enzalutamide sensitivity in vivo. Thus, GREB1 is a candidate driver of enzalutamide resistance through a novel feed forward mechanism.
Collapse
Affiliation(s)
- Eugine Lee
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - John Wongvipat
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Danielle Choi
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ping Wang
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
| | - Young Sun Lee
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Deyou Zheng
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
- Department of NeurologyAlbert Einstein College of MedicineNew YorkUnited States
- Department of NeuroscienceAlbert Einstein College of MedicineNew YorkUnited States
| | - Philip A Watson
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anuradha Gopalan
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Charles L Sawyers
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
809
|
Molecular Mechanisms Related to Hormone Inhibition Resistance in Prostate Cancer. Cells 2019; 8:cells8010043. [PMID: 30642011 PMCID: PMC6356740 DOI: 10.3390/cells8010043] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Management of metastatic or advanced prostate cancer has acquired several therapeutic approaches that have drastically changed the course of the disease. In particular due to the high sensitivity of prostate cancer cells to hormone depletion, several agents able to inhibit hormone production or binding to nuclear receptor have been evaluated and adopted in clinical practice. However, despite several hormonal treatments being available nowadays for the management of advanced or metastatic prostate cancer, the natural history of the disease leads inexorably to the development of resistance to hormone inhibition. Findings regarding the mechanisms that drive this process are of particular and increasing interest as these are potentially related to the identification of new targetable pathways and to the development of new drugs able to improve our patients' clinical outcomes.
Collapse
|
810
|
Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, Wang M, Zhao L, Xu T, Chinnaswamy K, Delproposto J, Stuckey J, Wang S. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. J Med Chem 2019; 62:941-964. [PMID: 30629437 DOI: 10.1021/acs.jmedchem.8b01631] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report herein the discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69). ARD-69 induces degradation of AR protein in AR-positive prostate cancer cell lines in a dose- and time-dependent manner. ARD-69 achieves DC50 values of 0.86, 0.76, and 10.4 nM in LNCaP, VCaP, and 22Rv1 AR+ prostate cancer cell lines, respectively. ARD-69 is capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression. ARD-69 potently inhibits cell growth in these AR-positive prostate cancer cell lines and is >100 times more potent than AR antagonists. A single dose of ARD-69 effectively reduces the level of AR protein in xenograft tumor tissue in mice. Further optimization of ARD-69 may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.
Collapse
|
811
|
The Role of RB in Prostate Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:301-318. [PMID: 31900914 DOI: 10.1007/978-3-030-32656-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, "non-canonical" roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.
Collapse
|
812
|
Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. Eur Urol 2019; 75:88-99. [DOI: 10.1016/j.eururo.2018.03.028] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022]
|
813
|
Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:351-378. [PMID: 31900917 DOI: 10.1007/978-3-030-32656-2_16] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic or locally advanced prostate cancer (PCa) is typically treated with androgen deprivation therapy (ADT). Initially, PCa responds to the treatment and regresses. However, PCa almost always develops resistance to androgen deprivation and progresses to castrate-resistant prostate cancer (CRPCa), a currently incurable form of PCa. Wnt/β-Catenin signaling is frequently activated in late stage PCa and contributes to the development of therapy resistance. Although activating mutations in the Wnt/β-Catenin pathway are not common in primary PCa, this signaling cascade can be activated through other mechanisms in late stage PCa, including cross talk with other signaling pathways, growth factors and cytokines produced by the damaged tumor microenvironment, release of the co-activator β-Catenin from sequestration after inhibition of androgen receptor (AR) signaling, altered expression of Wnt ligands and factors that modulate the Wnt signaling, and therapy-induced cellular senescence. Research from genetically engineered mouse models indicates that activation of Wnt/β-Catenin signaling in the prostate is oncogenic, enables castrate-resistant PCa growth, induces an epithelial-to-mesenchymal transition (EMT), promotes neuroendocrine (NE) differentiation, and confers stem cell-like features to PCa cells. These important roles of Wnt/β-Catenin signaling in PCa progression underscore the need for the development of drugs targeting this pathway to treat therapy-resistant PCa.
Collapse
|
814
|
Zhao P, Zhu Y, Cheng L, Luo J. Detection of androgen receptor (AR) and AR-V7 in small cell prostate carcinoma: Diagnostic and therapeutic implications. Asian J Urol 2019; 6:109-113. [PMID: 30775254 PMCID: PMC6363596 DOI: 10.1016/j.ajur.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Accepted: 08/30/2018] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Small cell prostate carcinoma (SCPC) is a rare and highly malignant subtype of prostate cancer. SCPC frequently lacks androgen receptor (AR) and prostate-specific antigen (PSA) expression, and often responds poorly to androgen deprivation therapy (ADT). AR splice variant-7 (AR-V7) is a truncated AR protein implicated in resistance to AR-targeting therapies. AR-V7 expression in castration-resistant prostate cancers has been evaluated extensively, and blood-based detection of AR-V7 has been associated with lack of response to abiraterone and enzalutamide. However, whether AR-V7 is expressed in SCPC is not known. METHODS Using validated antibodies, we performed immunohistochemistry (IHC) assay for the full-length AR (AR-FL) and (AR-V7) on post-ADT surgical SCPC specimens. RESULTS Seventy-five percent (9/12) of the specimens showed positive staining for the AR-FL with various intensities. Thirty-three percent (4/12) of the specimens showed positive staining for AR-V7. Among the specimens with positive AR-V7 staining, two samples displayed very weak staining, one sample showed weak-to-moderate staining, and one sample showed strong staining. All positive specimens displayed a heterogeneous pattern of AR-FL/AR-V7 staining. All specimens positive for AR-V7 were also positive for AR-FL. CONCLUSION The study findings support the existence of measurable AR-FL and AR-V7 proteins in SCPC specimens. The results also have implications in detection of AR-V7 in specimens obtained through systemic sampling approaches such as circulating tumor cells. A positive AR-V7 finding by blood-based tests is not impossible in patients with SCPC who often demonstrate low PSA values.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yezi Zhu
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Luo
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
815
|
Nuhn P, De Bono JS, Fizazi K, Freedland SJ, Grilli M, Kantoff PW, Sonpavde G, Sternberg CN, Yegnasubramanian S, Antonarakis ES. Update on Systemic Prostate Cancer Therapies: Management of Metastatic Castration-resistant Prostate Cancer in the Era of Precision Oncology. Eur Urol 2019. [DOI: 10.1016/j.eururo.2018.03.028 [internet]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
816
|
Beltran H, Oromendia C, Danila DC, Montgomery B, Hoimes C, Szmulewitz RZ, Vaishampayan U, Armstrong AJ, Stein M, Pinski J, Mosquera JM, Sailer V, Bareja R, Romanel A, Gumpeni N, Sboner A, Dardenne E, Puca L, Prandi D, Rubin MA, Scher HI, Rickman DS, Demichelis F, Nanus DM, Ballman KV, Tagawa ST. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin Cancer Res 2019; 25:43-51. [PMID: 30232224 PMCID: PMC6320304 DOI: 10.1158/1078-0432.ccr-18-1912] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/12/2018] [Accepted: 09/14/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer that may develop de novo or as a mechanism of treatment resistance. N-myc is capable of driving NEPC progression. Alisertib inhibits the interaction between N-myc and its stabilizing factor Aurora-A, inhibiting N-myc signaling, and suppressing tumor growth. PATIENTS AND METHODS Sixty men were treated with alisertib 50 mg twice daily for 7 days every 21 days. Eligibility included metastatic prostate cancer and at least one: small-cell neuroendocrine morphology; ≥50% neuroendocrine marker expression; new liver metastases without PSA progression; or elevated serum neuroendocrine markers. The primary endpoint was 6-month radiographic progression-free survival (rPFS). Pretreatment biopsies were evaluated by whole exome and RNA-seq and patient-derived organoids were developed. RESULTS Median PSA was 1.13 ng/mL (0.01-514.2), number of prior therapies was 3, and 68% had visceral metastases. Genomic alterations involved RB1 (55%), TP53 (46%), PTEN (29%), BRCA2 (29%), and AR (27%), and there was a range of androgen receptor signaling and NEPC marker expression. Six-month rPFS was 13.4% and median overall survival was 9.5 months (7.3-13). Exceptional responders were identified, including complete resolution of liver metastases and prolonged stable disease, with tumors suggestive of N-myc and Aurora-A overactivity. Patient organoids exhibited concordant responses to alisertib and allowed for the dynamic testing of Aurora-N-myc complex disruption. CONCLUSIONS Although the study did not meet its primary endpoint, a subset of patients with advanced prostate cancer and molecular features supporting Aurora-A and N-myc activation achieved significant clinical benefit from single-agent alisertib.
Collapse
Affiliation(s)
- Himisha Beltran
- Department of Medicine, Weill Cornell Medicine, New York, New York.
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Clara Oromendia
- Department of Biostatistics, Weill Cornell Medicine, New York, New York
| | - Daniel C Danila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Bruce Montgomery
- Department of Medicine, University of Washington, Seattle, Washington
| | - Christopher Hoimes
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | - Ulka Vaishampayan
- Department of Oncology, Wayne State University/Karmanos Cancer Institute, Detroit, Michigan
| | - Andrew J Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University, Durham, North California
| | - Mark Stein
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Jacek Pinski
- Division of Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Juan M Mosquera
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Verena Sailer
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Rohan Bareja
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Alessandro Romanel
- Centre for Integrative Biology (CIBIO), University of Trento, Trento Italy
| | - Naveen Gumpeni
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Andrea Sboner
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Loredana Puca
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Davide Prandi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento Italy
| | - Mark A Rubin
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - David S Rickman
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Francesca Demichelis
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Centre for Integrative Biology (CIBIO), University of Trento, Trento Italy
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Karla V Ballman
- Department of Biostatistics, Weill Cornell Medicine, New York, New York
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| |
Collapse
|
817
|
Strati A, Zavridou M, Bournakis E, Mastoraki S, Lianidou E. Expression pattern of androgen receptors, AR-V7 and AR-567es, in circulating tumor cells and paired plasma-derived extracellular vesicles in metastatic castration resistant prostate cancer. Analyst 2019; 144:6671-6680. [DOI: 10.1039/c9an00999j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Androgen-receptor splice variant 7 (AR-V7) is a highly promising liquid biopsy predictive biomarker showing primary or acquired resistance to novel androgen receptor signaling inhibitors in metastatic castration resistant prostate cancer (mCRPC).
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Greece
| | - Martha Zavridou
- Analysis of Circulating Tumor Cells Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Greece
| | - Evangelos Bournakis
- Oncology Unit
- 2nd Department of Surgery
- Aretaieio Hospital
- Medical School
- National and Kapodistrian University of Athens
| | - Sophia Mastoraki
- Analysis of Circulating Tumor Cells Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Greece
| |
Collapse
|
818
|
Pantel K, Hille C, Scher HI. Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility. Clin Chem 2019; 65:87-99. [DOI: 10.1373/clinchem.2018.287102] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Prostate cancer represents the most common non–skin cancer type in men. Unmet needs include understanding prognosis to determine when intervention is needed and what type, prediction to guide the choice of a systemic therapy, and response indicators to determine whether a treatment is working. Over the past decade, the “liquid biopsy,” characterized by the analysis of tumor cells and tumor cell products such as cell-free nucleic acids (DNA, microRNA) or extracellular vesicles circulating in the blood of cancer patients, has received considerable attention.
CONTENT
Among those biomarkers, circulating tumor cells (CTCs) have been most intensively analyzed in prostate cancer. Here we discuss recent studies on the enumeration and characterization of CTCs in peripheral blood and how this information can be used to develop biomarkers for each of these clinical contexts. We focus on clinical applications in men with metastatic castration-resistant prostate cancer, in whom CTCs are more often detected and at higher numbers, and clinical validation for different contexts of use is most mature.
SUMMARY
The overall goal of CTC-based liquid biopsy testing is to better inform medical decision-making so that patient outcomes are improved.
Collapse
Affiliation(s)
- Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hille
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell College of Medicine, New York, NY
| |
Collapse
|
819
|
Li D, Zhou W, Pang J, Tang Q, Zhong B, Shen C, Xiao L, Hou T. A magic drug target: Androgen receptor. Med Res Rev 2018; 39:1485-1514. [PMID: 30569509 DOI: 10.1002/med.21558] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is closely associated with a group of hormone-related diseases including the cancers of prostate, breast, ovary, pancreas, etc and anabolic deficiencies such as muscle atrophy and osteoporosis. Depending on the specific type and stage of the diseases, AR ligands including not only antagonists but also agonists and modulators are considered as potential therapeutics, which makes AR an extremely interesting drug target. Here, we at first review the current understandings on the structural characteristics of AR, and then address why and how AR is investigated as a drug target for the relevant diseases and summarize the representative antagonists and agonists targeting five prospective small molecule binding sites at AR, including ligand-binding pocket, activation function-2 site, binding function-3 site, DNA-binding domain, and N-terminal domain, providing recent insights from a target and drug development view. Further comprehensive studies on AR and AR ligands would bring fruitful information and push the therapy of AR relevant diseases forward.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinping Pang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingling Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xiao
- School of Life Science, Huzhou University, Huzhou, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
820
|
Barros-Silva JD, Linn DE, Steiner I, Guo G, Ali A, Pakula H, Ashton G, Peset I, Brown M, Clarke NW, Bronson RT, Yuan GC, Orkin SH, Li Z, Baena E. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep 2018; 25:3504-3518.e6. [PMID: 30566873 PMCID: PMC6315111 DOI: 10.1016/j.celrep.2018.11.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
The exact identity of castrate-resistant (CR) cells and their relation to CR prostate cancer (CRPC) is unresolved. We use single-cell gene profiling to analyze the molecular heterogeneity in basal and luminal compartments. Within the luminal compartment, we identify a subset of cells intrinsically resistant to castration with a bi-lineage gene expression pattern. We discover LY6D as a marker of CR prostate progenitors with multipotent differentiation and enriched organoid-forming capacity. Lineage tracing further reveals that LY6D+ CR luminal cells can produce LY6D- luminal cells. In contrast, in luminal cells lacking PTEN, LY6D+ cells predominantly give rise to LY6D+ tumor cells, contributing to high-grade PIN lesions. Gene expression analyses in patients' biopsies indicate that LY6D expression correlates with early disease progression, including progression to CRPC. Our studies thus identify a subpopulation of luminal progenitors characterized by LY6D expression and intrinsic castration resistance. LY6D may serve as a prognostic maker for advanced prostate cancer.
Collapse
Affiliation(s)
- João D Barros-Silva
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Douglas E Linn
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ivana Steiner
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Guoji Guo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adnan Ali
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Hubert Pakula
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Garry Ashton
- Histology Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Isabel Peset
- Imaging Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Michael Brown
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Noel W Clarke
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Department of Surgery, The Christie Hospital, Department of Urology, Salford Royal Hospitals, Manchester, UK
| | | | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Esther Baena
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK.
| |
Collapse
|
821
|
Woo HK, Park J, Ku JY, Lee CH, Sunkara V, Ha HK, Cho YK. Urine-based liquid biopsy: non-invasive and sensitive AR-V7 detection in urinary EVs from patients with prostate cancer. LAB ON A CHIP 2018; 19:87-97. [PMID: 30500003 DOI: 10.1039/c8lc01185k] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Androgen-receptor splice variant 7 (AR-V7) is associated with castration-resistant prostate cancer (CRPC) and resistance to anti-androgen therapy. Despite its clinical importance, the lack of efficient methods for AR-V7 analysis remains a challenge for broader use of this biomarker in routine clinical practice. Herein, we suggest a practical and non-invasive liquid biopsy method for analysis of AR-V7 in the RNA of urine-derived extracellular vesicles (EVs) without the need for blood withdrawal. Urine-derived EVs were isolated by a lab-on-a-disc integrated with six independent nanofiltration units (Exo-Hexa) allowing simultaneous processing of six individual samples. Rapid enrichment of EVs (<30 min) from each 4 mL urine sample was followed by mRNA extraction, and AR-V7 and androgen receptor full-length (AR-FL) mRNA levels in the urinary EVs were quantified by droplet digital polymerase chain reaction (ddPCR) as absolute concentrations (copies per mL). Higher AR-V7 and lower AR-FL expressions were detected in urine-derived EVs from 14 patients with CRPC than in those from 22 patients with hormone-sensitive prostate cancer. Additionally, we found that AR-V7 transcript levels and the AR-V7/AR-FL ratio in urinary EVs were higher in patients with advanced prostate cancer. This study is the first to report that RNA of urine-derived EVs is a reliable source for AR-V7 expression analysis. The proposed method for quantifying AR-V7 in urinary EVs prepared by a lab-on-a-disc is therefore a simple and promising approach to liquid biopsy with great potential for therapeutic impact on prostate cancer.
Collapse
Affiliation(s)
- Hyun-Kyung Woo
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
822
|
Chen W, Li P, Liu Y, Yang Y, Ye X, Zhang F, Huang H. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J Exp Clin Cancer Res 2018; 37:309. [PMID: 30541589 PMCID: PMC6292114 DOI: 10.1186/s13046-018-0987-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed cancers in men worldwide. Currently available therapies for metastatic prostate cancer are only marginally effective. Therefore, new therapeutic agents are urgently needed to improve patient outcome. Isoalantolactone (IATL), an active sesquiterpene naturally present in many vegetables and medicinal plants, is known to induce cell death and apoptosis in various cancer cell lines. Nevertheless, antitumor mechanisms initiated by IATL in cancer cells have not been fully defined. Methods Cell apoptosis and cellular ROS levels were analyzed by flow cytometry. Western blot and qRT-PCR were used to analyze the protein and mRNA levels of indicated molecules, respectively. Nude mice xenograft model was used to test the effects of IATL on prostate cancer cell growth in vivo. Results In this study, we found that IATL dose-dependently inhibited cancer cell growth and induced apoptosis in PC-3 and DU145 cells. Mechanistically, our data found that IATL induced reactive oxygen species (ROS) production, resulting in the activation of endoplasmic reticulum stress pathway and eventually cell apoptosis in prostate cancer cells. IATL also decreased the protein expression levels of p-STAT3 and STAT3, and the effects of IATL were reversed by pretreatment with N-acetyl-L-cysteine (NAC). In vivo, we found that IATL inhibited the growth of prostate cancer xenografts without exhibiting toxicity. Treatment of mice bearing human prostate cancer xenografts with IATL was also associated with induction of ER stress and inhibtion of STAT3. Conclusion In summary, our results unveil a previously unrecognized mechanism underlying the biological activity of IATL, and provide a novel anti-cancer candidate for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology,
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Li
- Department of Urology,
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Yang
- Department of Urology,
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xueting Ye
- Department of Urology,
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fangyi Zhang
- Department of Urology,
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hang Huang
- Department of Urology,
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
823
|
Aytes A, Giacobbe A, Mitrofanova A, Ruggero K, Cyrta J, Arriaga J, Palomero L, Farran-Matas S, Rubin MA, Shen MM, Califano A, Abate-Shen C. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat Commun 2018; 9:5201. [PMID: 30518758 PMCID: PMC6281610 DOI: 10.1038/s41467-018-07511-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023] Open
Abstract
Deciphering cell-intrinsic mechanisms of metastasis progression in vivo is essential to identify novel therapeutic approaches. Here we elucidate cell-intrinsic drivers of metastatic prostate cancer progression through analyses of genetically engineered mouse models (GEMM) and correlative studies of human prostate cancer. Expression profiling of lineage-marked cells from mouse primary tumors and metastases defines a signature of de novo metastatic progression. Cross-species master regulator analyses comparing this mouse signature with a comparable human signature identifies conserved drivers of metastatic progression with demonstrable clinical and functional relevance. In particular, nuclear receptor binding SET Domain Protein 2 (NSD2) is robustly expressed in lethal prostate cancer in humans, while its silencing inhibits metastasis of mouse allografts in vivo. We propose that cross-species analysis can elucidate mechanisms of metastasis progression, thus providing potential additional therapeutic opportunities for treatment of lethal prostate cancer.
Collapse
Affiliation(s)
- Alvaro Aytes
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA.
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain.
| | - Arianna Giacobbe
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - Antonina Mitrofanova
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, 65 Bergen Street, Newark, NJ, 07101, USA
| | - Katia Ruggero
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain
| | - Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Juan Arriaga
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - Luis Palomero
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain
| | - Sonia Farran-Matas
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Gran Via de L'Hospitalet, 199, 08908, Barcelona, Spain
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department for BioMedical Research, University of Bern, Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - Michael M Shen
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY, 10032, USA.
| | - Cory Abate-Shen
- Department of Urology, Columbia University Irving Medical Center, 160 Fort Washington Ave, New York, NY, 10032, USA.
- Department of Medicine, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Ave, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
824
|
Park S, Kim YS, Kim DY, So I, Jeon JH. PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochim Biophys Acta Rev Cancer 2018; 1870:198-206. [PMID: 30300679 DOI: 10.1016/j.bbcan.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
|
825
|
Russo JW, Liu X, Ye H, Calagua C, Chen S, Voznesensky O, Condulis J, Ma F, Taplin ME, Einstein DJ, Balk SP, Chen S. Phosphorylation of androgen receptor serine 81 is associated with its reactivation in castration-resistant prostate cancer. Cancer Lett 2018; 438:97-104. [PMID: 30217568 PMCID: PMC6186500 DOI: 10.1016/j.canlet.2018.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
Phosphorylation of serine 81 (pS81) in the N-terminal transactivation domain of the androgen receptor (AR) has been linked to its transcriptional activation in prostate cancer (PCa) cell lines, but in vivo studies have been limited. Moreover, the role of pS81 in the reactivation of AR when tumors relapse after androgen deprivation therapy (castration-resistant prostate cancer, CRPC) has not been determined. In this study we validate a pS81 antibody for immunohistochemistry (IHC) and show it yields strong nuclear staining in primary PCa clinical samples and in the VCaP PCa xenograft model. Moreover, this staining was decreased at 7 days post-castration in VCaP xenografts, coinciding with markedly decreased AR transcriptional activity. Staining with the pS81 antibody then was restored when the VCaP xenografts relapsed, which was associated with restoration of AR transcriptional activity. Significantly, analysis of CRPC clinical samples, including tumors that had progressed during treatment with abiraterone, showed strong nuclear staining with the pS81 antibody. Together these findings indicate that AR reactivation in CRPC is associated with S81 phosphorylation, and suggest that IHC for pS81 may be useful as a biomarker of AR activity in CRPC.
Collapse
Affiliation(s)
- Joshua W Russo
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaming Liu
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA; Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Carla Calagua
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Olga Voznesensky
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - James Condulis
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Fen Ma
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - David J Einstein
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
826
|
Geng H, Xue C, Mendonca J, Sun XX, Liu Q, Reardon PN, Chen Y, Qian K, Hua V, Chen A, Pan F, Yuan J, Dang S, Beer TM, Dai MS, Kachhap SK, Qian DZ. Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat Commun 2018; 9:4972. [PMID: 30478344 PMCID: PMC6255907 DOI: 10.1038/s41467-018-07411-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Despite recent advances, the efficacy of androgen/androgen receptor (AR)-targeted therapy remains limited for many patients with metastatic prostate cancer. This is in part because prostate cancers adaptively switch to the androgen/AR-independent pathway for survival and growth, thereby conferring therapy resistance. Tumor hypoxia is considered as a major cause of treatment resistance. However, the exact mechanism is largely unclear. Here we report that chronic-androgen deprivation therapy (ADT) in the condition of hypoxia induces adaptive androgen/AR-independence, and therefore confers resistance to androgen/AR-targeted therapy, e.g., enzalutamide. Mechanistically, this is mediated by glucose-6-phosphate isomerase (GPI), which is transcriptionally repressed by AR in hypoxia, but restored and increased by AR inhibition. In turn, GPI maintains glucose metabolism and energy homeostasis in hypoxia by redirecting the glucose flux from androgen/AR-dependent pentose phosphate pathway (PPP) to hypoxia-induced glycolysis pathway, thereby reducing the growth inhibitory effect of enzalutamide. Inhibiting GPI overcomes the therapy resistance in hypoxia in vitro and increases enzalutamide efficacy in vivo.
Collapse
Affiliation(s)
- Hao Geng
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Changhui Xue
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Janet Mendonca
- Johns Hopkins Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21287, USA
| | - Xiao-Xin Sun
- Department of Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Qiong Liu
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Patrick N Reardon
- NMR Core facility, Oregon State University, Corvallis, OR, 97331, USA
| | - Yingxiao Chen
- Department of Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Kendrick Qian
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vivian Hua
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alice Chen
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Freddy Pan
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Julia Yuan
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sang Dang
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Tomasz M Beer
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mu-Shui Dai
- Department of Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sushant K Kachhap
- Johns Hopkins Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21287, USA
| | - David Z Qian
- OHSU Knight Cancer Institute, Prostate Cancer Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
- Division of Hematology & Medical Oncology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
827
|
Thaper D, Vahid S, Kaur R, Kumar S, Nouruzi S, Bishop JL, Johansson M, Zoubeidi A. Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Sci Rep 2018; 8:17307. [PMID: 30470788 PMCID: PMC6251893 DOI: 10.1038/s41598-018-35612-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Most prostate cancer patients will progress to a castration-resistant state (CRPC) after androgen ablation therapy and despite the development of new potent anti-androgens, like enzalutamide (ENZ), which prolong survival in CRPC, ENZ-resistance (ENZR) rapidly occurs. Re-activation of the androgen receptor (AR) is a major mechanism of resistance. Interrogating our in vivo derived ENZR model, we discovered that transcription factor STAT3 not only displayed increased nuclear localization but also bound to and facilitated AR activity. We observed increased STAT3 S727 phosphorylation in ENZR cells, which has been previously reported to facilitate AR binding. Strikingly, ENZR cells were more sensitive to inhibition with STAT3 DNA-binding inhibitor galiellalactone (GPA500) compared to CRPC cells. Treatment with GPA500 suppressed AR activity and significantly reduced expression of Cyclin D1, thus reducing cell cycle progression into S phase and hindering cell proliferation. In vivo, GPA500 reduced tumor volume and serum PSA in ENZR xenografts. Lastly, the combination of ENZ and GPA500 was additive in the inhibition of AR activity and proliferation in LNCaP and CRPC cells, providing rationale for combination therapy. Overall, these results suggest that STAT3 inhibition is a rational therapeutic approach for ENZR prostate cancer, and could be valuable in CRPC in combination with ENZ.
Collapse
Affiliation(s)
- Daksh Thaper
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Sahil Kumar
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Shaghayegh Nouruzi
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada. .,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
828
|
High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Sci Rep 2018; 8:17239. [PMID: 30467317 PMCID: PMC6250716 DOI: 10.1038/s41598-018-35417-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023] Open
Abstract
The development of new treatments for castrate resistant prostate cancer (CRPC) must address such challenges as intrinsic tumor heterogeneity and phenotypic plasticity. Combined PTEN/TP53 alterations represent a major genotype of CRPC (25–30%) and are associated with poor outcomes. Using tumor-derived, castration-resistant Pten/Tp53 null luminal prostate cells for comprehensive, high-throughput, mechanism-based screening, we identified several vulnerabilities among >1900 compounds, including inhibitors of: PI3K/AKT/mTOR, the proteasome, the cell cycle, heat shock proteins, DNA repair, NFκB, MAPK, and epigenetic modifiers. HSP90 inhibitors were one of the most active compound classes in the screen and have clinical potential for use in drug combinations to enhance efficacy and delay the development of resistance. To inform future design of rational drug combinations, we tested ganetespib, a potent second-generation HSP90 inhibitor, as a single agent in multiple CRPC genotypes and phenotypes. Ganetespib decreased growth of endogenous Pten/Tp53 null tumors, confirming therapeutic activity in situ. Fifteen human CRPC LuCaP PDX-derived organoid models were assayed for responses to 110 drugs, and HSP90 inhibitors (ganetespib and onalespib) were among the select group of drugs (<10%) that demonstrated broad activity (>75% of models) at high potency (IC50 <1 µM). Ganetespib inhibits multiple targets, including AR and PI3K pathways, which regulate mutually compensatory growth and survival signals in some forms of CRPC. Combined with castration, ganetespib displayed deeper PDX tumor regressions and delayed castration resistance relative to either monotherapy. In all, comprehensive data from near-patient models presents novel contexts for HSP90 inhibition in multiple CRPC genotypes and phenotypes, expands upon HSP90 inhibitors as simultaneous inhibitors of oncogenic signaling and resistance mechanisms, and suggests utility for combined HSP90/AR inhibition in CRPC.
Collapse
|
829
|
Zhu Z, Chung YM, Sergeeva O, Kepe V, Berk M, Li J, Ko HK, Li Z, Petro M, DiFilippo FP, Lee Z, Sharifi N. Loss of dihydrotestosterone-inactivation activity promotes prostate cancer castration resistance detectable by functional imaging. J Biol Chem 2018; 293:17829-17837. [PMID: 30262668 PMCID: PMC6240862 DOI: 10.1074/jbc.ra118.004846] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/17/2018] [Indexed: 11/06/2022] Open
Abstract
Androgens such as testosterone and dihydrotestosterone are a critical driver of prostate cancer progression. Cancer resistance to androgen deprivation therapies ensues when tumors engage metabolic processes that produce sustained androgen levels in the tissue. However, the molecular mechanisms involved in this resistance process are unclear, and functional imaging modalities that predict impending resistance are lacking. Here, using the human LNCaP and C4-2 cell line models of prostate cancer, we show that castration treatment-sensitive prostate cancer cells that normally have an intact glucuronidation pathway that rapidly conjugates and inactivates dihydrotestosterone and thereby limits androgen signaling, become glucuronidation deficient and resistant to androgen deprivation. Mechanistically, using CRISPR/Cas9-mediated gene ablation, we found that loss of UDP glucuronosyltransferase family 2 member B15 (UGT2B15) and UGT2B17 is sufficient to restore free dihydrotestosterone, sustained androgen signaling, and development of castration resistance. Furthermore, loss of glucuronidation enzymatic activity was also detectable with a nonsteroid glucuronidation substrate. Of note, glucuronidation-incompetent cells and the resultant loss of intracellular conjugated dihydrotestosterone were detectable in vivo by 18F-dihydrotestosterone PET. Together, these findings couple a mechanism with a functional imaging modality to identify impending castration resistance in prostate cancers.
Collapse
Affiliation(s)
- Ziqi Zhu
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Yoon-Mi Chung
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | | | | | - Michael Berk
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Jianneng Li
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Hyun-Kyung Ko
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Zhenfei Li
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Marianne Petro
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | | | - Zhenghong Lee
- Departments of Radiology; Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44124
| | - Nima Sharifi
- From the Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute; Department of Urology, Glickman Urological and Kidney Institute; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
830
|
Clocchiatti A, Ghosh S, Procopio MG, Mazzeo L, Bordignon P, Ostano P, Goruppi S, Bottoni G, Katarkar A, Levesque M, Kölblinger P, Dummer R, Neel V, Özdemir BC, Dotto GP. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. J Clin Invest 2018; 128:5531-5548. [PMID: 30395538 DOI: 10.1172/jci99159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/26/2018] [Indexed: 01/16/2023] Open
Abstract
The aging-associated increase of cancer risk is linked with stromal fibroblast senescence and concomitant cancer-associated fibroblast (CAF) activation. Surprisingly little is known about the role of androgen receptor (AR) signaling in this context. We have found downmodulated AR expression in dermal fibroblasts underlying premalignant skin cancer lesions (actinic keratoses and dysplastic nevi) as well as in CAFs from the 3 major skin cancer types, squamous cell carcinomas (SCCs), basal cell carcinomas, and melanomas. Functionally, decreased AR expression in primary human dermal fibroblasts (HDFs) from multiple individuals induced early steps of CAF activation, and in an orthotopic skin cancer model, AR loss in HDFs enhanced tumorigenicity of SCC and melanoma cells. Forming a complex, AR converged with CSL/RBP-Jκ in transcriptional repression of key CAF effector genes. AR and CSL were positive determinants of each other's expression, with BET inhibitors, which counteract the effects of decreased CSL, restoring AR expression and activity in CAFs. Increased AR expression in these cells overcame the consequences of CSL loss and was by itself sufficient to block the growth and tumor-enhancing effects of CAFs on neighboring cancer cells. As such, the findings establish AR as a target for stroma-focused cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Soumitra Ghosh
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Luigi Mazzeo
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pino Bordignon
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Peter Kölblinger
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland.,Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Berna C Özdemir
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,International Cancer Prevention Institute, Epalinges, Switzerland
| |
Collapse
|
831
|
Abstract
Prostate cancer development involves corruption of the normal prostate transcriptional network, following deregulated expression or mutation of key transcription factors. Here, we provide an overview of the transcription factors that are important in normal prostate homeostasis (NKX3-1, p63, androgen receptor [AR]), primary prostate cancer (ETS family members, c-MYC), castration-resistant prostate cancer (AR, FOXA1), and AR-independent castration-resistant neuroendocrine prostate cancer (RB1, p53, N-MYC). We use functional (in vitro and in vivo) as well as clinical data to discuss evidence that unveils their roles in the initiation and progression of prostate cancer, with an emphasis on results of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
832
|
Udager AM, Tomlins SA. Molecular Biomarkers in the Clinical Management of Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030601. [PMID: 29311125 PMCID: PMC6211380 DOI: 10.1101/cshperspect.a030601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer, one of the most common noncutaneous malignancies in men, is a heterogeneous disease with variable clinical outcome. Although the majority of patients harbor indolent tumors that are essentially cured by local therapy, subsets of patients present with aggressive disease or recur/progress after primary treatment. With this in mind, modern clinical approaches to prostate cancer emphasize the need to reduce overdiagnosis and overtreatment via personalized medicine. Advances in our understanding of prostate cancer pathogenesis, coupled with recent technologic innovations, have facilitated the development and validation of numerous molecular biomarkers, representing a range of macromolecules assayed from a variety of patient sample types, to help guide the clinical management of prostate cancer, including early detection, diagnosis, prognostication, and targeted therapeutic selection. Herein, we review the current state of the art regarding prostate cancer molecular biomarkers, emphasizing those with demonstrated utility in clinical practice.
Collapse
Affiliation(s)
- Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5948
- Comprehensive Cancer Center, Michigan Medicine, Ann Arbor, Michigan 48109-0944
- Michigan Center for Translational Pathology, Ann Arbor, Michigan 48109-5940
| |
Collapse
|
833
|
Prekovic S, van den Broeck T, Linder S, van Royen ME, Houtsmuller AB, Handle F, Joniau S, Zwart W, Claessens F. Molecular underpinnings of enzalutamide resistance. Endocr Relat Cancer 2018; 25:R545–R557. [PMID: 30306781 DOI: 10.1530/erc-17-0136] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is among the most common adult malignancies, and the second leading cause of cancer-related death in men. As PCa is hormone dependent, blockade of the androgen receptor (AR) signaling is an effective therapeutic strategy for men with advanced metastatic disease. The discovery of enzalutamide, a compound that effectively blocks the AR axis and its clinical application has led to a significant improvement in survival time. However, the effect of enzalutamide is not permanent, and resistance to treatment ultimately leads to development of lethal disease, for which there currently is no cure. This review will focus on the molecular underpinnings of enzalutamide resistance, bridging the gap between the preclinical and clinical research on novel therapeutic strategies for combating this lethal stage of prostate cancer.
Collapse
Affiliation(s)
- S Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T van den Broeck
- Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - S Linder
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M E van Royen
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
- Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - A B Houtsmuller
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
- Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - F Handle
- Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
| | - S Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - W Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - F Claessens
- Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
834
|
Li D, Tian G, Wang J, Zhao LY, Co O, Underill ZC, Mymryk JS, Claessens F, Dehm SM, Daaka Y, Liao D. Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate 2018; 78:1140-1156. [PMID: 30009471 PMCID: PMC6424568 DOI: 10.1002/pros.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations or truncation of the ligand-binding domain (LBD) of androgen receptor (AR) underlie treatment resistance for prostate cancer (PCa). Thus, targeting the AR N-terminal domain (NTD) could overcome such resistance. METHODS Luciferase reporter assays after transient transfection of various DNA constructs were used to assess effects of E1A proteins on AR-mediated transcription. Immunofluorescence microscopy and subcellular fractionation were applied to assess intracellular protein localization. Immunoprecipitation and mammalian two-hybrid assays were used to detect protein-protein interactions. qRT-PCR was employed to determine RNA levels. Western blotting was used to detect protein expression in cells. Effects of adenoviruses on prostate cancer cell survival were evaluated with CellTiter-Glo assays. RESULTS Adenovirus 12 E1A (E1A12) binds specifically to the AR. Interestingly, the full-length E1A12 (266 aa) preferentially binds to full-length AR, while the small E1A12 variant (235 aa) interacts more strongly with AR-V7. E1A12 promotes AR nuclear translocation, likely through mediating intramolecular AR NTD-LBD interactions. In the nucleus, AR and E1A12 co-expression in AR-null PCa cells results in E1A12 redistribution from nuclear foci containing CBX4 (also known as Pc2), suggesting a preferential AR-E1A12 interaction over other E1A12 interactors. E1A12 represses AR-mediated transcription in reporter gene assays and endogenous AR target genes such as ATAD2 and MYC in AR-expressing PCa cells. AR-expressing PCa cells are more sensitive to death induced by a recombinant adenovirus expressing E1A12 (Ad-E1A12) than AR-deficient PCa cells, which could be attributed to the increased viral replication promoted by androgen stimulation. Targeting the AR by E1A12 promotes apoptosis in PCa cells that express the full-length AR or C-terminally truncated AR variants. Importantly, inhibition of mTOR signaling that blocks the expression of anti-apoptotic proteins markedly augments Ad-E1A12-induced apoptosis of AR-expressing cells. Mechanistically, Ad-E1A12 infection triggers apoptotic response while activating the PI3K-AKT-mTOR signaling axis; thus, mTOR inhibition enhances apoptosis in AR-expressing PCa cells infected by Ad-E1A12. CONCLUSION Ad12 E1A inhibits AR-mediated transcription and suppresses PCa cell survival, suggesting that targeting the AR by E1A12 might have therapeutic potential for treating advanced PCa with heightened AR signaling.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, P. R. China
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jia Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Affiliated Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Present address: Department of Medicine, University of Florida, Gainesville, FL 32610
| | - Olivia Co
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Zoe C. Underill
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, the University of Western Ontario, London Regional Cancer Centre, Ontario, Canada
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO box 901, 3000 Leuven, Belgium
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Corresponding author: Department of Anatomy and Cell Biology, University of Florida, 1333 Center Drive, Gainesville, Florida, 32610-0235, , Phone: 352-273-8188, Fax: 352-846-1248
| |
Collapse
|
835
|
Cai L, Tsai YH, Wang P, Wang J, Li D, Fan H, Zhao Y, Bareja R, Lu R, Wilson EM, Sboner A, Whang YE, Zheng D, Parker JS, Earp HS, Wang GG. ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Mol Cell 2018; 72:341-354.e6. [PMID: 30270106 PMCID: PMC6214474 DOI: 10.1016/j.molcel.2018.08.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.
Collapse
Affiliation(s)
- Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rohan Bareja
- Meyer Cancer Center and Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Elizabeth M Wilson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrea Sboner
- Meyer Cancer Center and Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
836
|
Elimination of CD4 lowHLA-G + T cells overcomes castration-resistance in prostate cancer therapy. Cell Res 2018; 28:1103-1117. [PMID: 30297869 DOI: 10.1038/s41422-018-0089-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/12/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a main treatment for prostate cancer (PCa) but the disease often recurs and becomes castration-resistant in nearly all patients. Recent data implicate the involvement of immune cells in the development of this castration-resistant prostate cancer (CRPC). In particular, T cells have been found to be expanded in both PCa patients and mouse models shortly after androgen deprivation. However, whether or which of the T cell subtypes play an important role during the development of CRPC is unknown. Here we identified a novel population of CD4lowHLA-G+ T cells that undergo significant expansion in PCa patients after ADT. In mouse PCa models, a similar CD4low T cell population expands during the early stages of CRPC onset. These cells are identified as IL-4-expressing TH17 cells, and are shown to be associated with CRPC onset in patients and essential for the development of CRPC in mouse models. Mechanistically, CD4lowHLA-G+ T cells drive androgen-independent growth of prostate cancer cells by modulating the activity and migration of CD11blowF4/80hi macrophages. Furthermore, following androgen deprivation, elevated PGE2-EP2 signaling inhibited the expression of CD4 in thymocytes, and subsequently induced the polarization of CD4low naïve T cells towards the IL-4-expressing TH17 phenotype via up-regulation of IL23R. Therapeutically, inactivating PGE2 signaling with celecoxib at a time when CD4lowHLA-G+ T cells appeared, but not immediately following androgen deprivation, dramatically suppressed the onset of CRPC. Collectively, our results indicate that an unusual population of CD4lowHLA-G+ T cells is essential for the development of CRPC and point to a new therapeutic avenue of combining ADT with PGE2 inhibition for the treatment of prostate cancer.
Collapse
|
837
|
Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, Liu Y, Wang Z, Shao L, Ittmann M, Gleave M, Han H, Xu F, Liao W, Wang H, Li W. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun 2018; 9:4080. [PMID: 30287808 PMCID: PMC6172226 DOI: 10.1038/s41467-018-06177-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/20/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of aggressive neuroendocrine prostate cancers (NEPC) related to androgen-deprivation therapy (ADT) is rising. NEPC is still poorly understood, such as its neuroendocrine differentiation (NED) and angiogenic phenotypes. Here we reveal that NED and angiogenesis are molecularly connected through EZH2 (enhancer of zeste homolog 2). NED and angiogenesis are both regulated by ADT-activated CREB (cAMP response element-binding protein) that in turn enhances EZH2 activity. We also uncover anti-angiogenic factor TSP1 (thrombospondin-1, THBS1) as a direct target of EZH2 epigenetic repression. TSP1 is downregulated in advanced prostate cancer patient samples and negatively correlates with NE markers and EZH2. Furthermore, castration activates the CREB/EZH2 axis, concordantly affecting TSP1, angiogenesis and NE phenotypes in tumor xenografts. Notably, repressing CREB inhibits the CREB/EZH2 axis, tumor growth, NED, and angiogenesis in vivo. Taken together, we elucidate a new critical pathway, consisting of CREB/EZH2/TSP1, underlying ADT-enhanced NED and angiogenesis during prostate cancer progression.
Collapse
Affiliation(s)
- Yan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dayong Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510513, China
| | - Ting Zhou
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, 201400, China
| | - Haiping Song
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Breast and Thyroid Surgery Center, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mohit Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ning Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Ying Liu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Pathology, Xiangya Hospital and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Long Shao
- Department of Pathology and Immunology, Baylor College of Medicine, and Michael E. DeBakey VAMC, Houston, TX 77030, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, and Michael E. DeBakey VAMC, Houston, TX 77030, USA
| | - Martin Gleave
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Shanghai, 200003, China
| | - Feng Xu
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, 201400, China
| | - Wangjun Liao
- Department of Medical Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbo Wang
- Department of Gynaecology and Obstetrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Division of Oncology, Department of Internal Medicine, and Memorial Herman Cancer Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
838
|
Khurana N, Sikka SC. Targeting Crosstalk between Nrf-2, NF-κB and Androgen Receptor Signaling in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10100352. [PMID: 30257470 PMCID: PMC6210752 DOI: 10.3390/cancers10100352] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress, inflammation and androgen receptor (AR) signaling play a pivotal role in the initiation, development and progression of prostate cancer (PCa). Numerous papers in the literature have documented the interconnection between oxidative stress and inflammation; and how antioxidants can combat the inflammation. It has been shown in the literature that both oxidative stress and inflammation regulate AR, the key receptor involved in the transition of PCa to castration resistant prostate cancer (CRPC). In this review, we discuss about the importance of targeting Nrf-2-antioxidant signaling, NF-κB inflammatory response and AR signaling in PCa. Finally, we discuss about the crosstalk between these three critical pathways as well as how the anti-inflammatory antioxidant phytochemicals like sulforaphane (SFN) and curcumin (CUR), which can also target AR, can be ideal candidates in the chemoprevention of PCa.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Internal Medicine-Medical Oncology, Washington University in St. Louis Medical Campus, 660 S Euclid Ave, St. Louis, MO 63110-1010, USA.
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine,1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
839
|
Mechanism underlying the retarded nuclear translocation of androgen receptor splice variants. SCIENCE CHINA-LIFE SCIENCES 2018; 62:257-267. [PMID: 30267260 DOI: 10.1007/s11427-018-9379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
Abstract
As shown in our previous study, two alternatively spliced androgen receptor (AR) variants, which are exclusively expressed in the granulosa cells of patients with polycystic ovary syndrome, exhibit retarded nuclear translocation compared with wild-type AR. However, researchers have not yet determined whether these abnormalities correlate with heat shock protein 90 (HSP90) and importin α (the former is a generally accepted co-chaperone of AR, and the latter is a component of classical nuclear import complexes). Here, these two variants were mainly retained in cytoplasm with HSP90 and importin α in the presence of dihydrotestosterone (DHT), and their levels in nucleus were significantly reduced, according to the immunofluorescence staining. The binding affinity of two AR variants for importin α was consistently decreased, while it was increased in WT-AR following DHT stimulation, leading to reduced nuclear import, particularly for the insertion-AR (Ins-AR). However, the binding affinities of two AR variants for HSP90 were increased in the absence of DHT compared with WT-AR, which functioned to maintain spatial structural stability, particularly for the deletion-AR (Del-AR). Therefore, the retarded nuclear translocation of two AR variants is associated with HSP90 and importin α, and the abnormal binding affinities for them play critical roles in this process.
Collapse
|
840
|
Kita Y, Goto T, Akamatsu S, Yamasaki T, Inoue T, Ogawa O, Kobayashi T. Castration-Resistant Prostate Cancer Refractory to Second-Generation Androgen Receptor Axis-Targeted Agents: Opportunities and Challenges. Cancers (Basel) 2018; 10:cancers10100345. [PMID: 30248934 PMCID: PMC6210307 DOI: 10.3390/cancers10100345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/23/2023] Open
Abstract
Second-generation androgen receptor axis-targeted (ARAT) agents, namely abiraterone and enzalutamide, enable stronger blockade of the androgen receptor (AR) axis and longer survival of men with castration-resistant prostate cancer (CRPC). However, the extent of the improved survival remains insufficient and the majority of patients eventually develop resistance to these novel agents. Some patients develop resistance against ARAT treatment through mechanisms termed “complete AR independence” or “AR indifference”, and no longer require activation of the AR axis. However, a considerable proportion of CRPC patients remain persistently dependent on AR or its downstream signaling pathways. Ligand-independent activation of the AR, an AR axis-dependent mechanism, is mediated by truncated forms of ARs that lack the ligand-binding domain (LBD), arising as products of AR splicing variants or nonsense mutations of AR. Post-translational modifications of ARs can also contribute to ligand-independent transactivation of the AR. Other mechanisms for AR axis activation are mediated by pathways that bypass the AR. Recent studies revealed that the glucocorticoid receptor can upregulate a similar transcription program to that of the AR, thus bypassing the AR. ARAT agents are essentially ineffective for CRPC driven by these AR-independent mechanisms. This review article describes recent efforts to overcome these refractory machineries for the development of next-generation AR axis blockade in CRPC.
Collapse
Affiliation(s)
- Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Toshinari Yamasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
841
|
Tassinari M, Cimino-Reale G, Nadai M, Doria F, Butovskaya E, Recagni M, Freccero M, Zaffaroni N, Richter SN, Folini M. Down-Regulation of the Androgen Receptor by G-Quadruplex Ligands Sensitizes Castration-Resistant Prostate Cancer Cells to Enzalutamide. J Med Chem 2018; 61:8625-8638. [PMID: 30188709 DOI: 10.1021/acs.jmedchem.8b00502] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stabilization of the G-quadruplexes (G4s) within the androgen receptor (AR) gene promoter to block transcription may represent an innovative approach to interfere with aberrant AR signaling in castration resistant prostate cancer (CRPC). A library of differently functionalized naphthalene diimides (NDIs) was screened for their ability to stabilize AR G4s: the core-extended NDI (7) stood out as the most promising ligand. AR-positive cells were remarkably sensitive to 7 in comparison to AR-negative CRCP or normal prostate epithelial cells; 7 induced remarkable impairment of AR mRNA and protein amounts and significant perturbations in the expression levels of KLK3 and of genes involved in the activation of AR program via feedback mechanisms. Moreover, 7 synergistically interacted with Enzalutamide, an inhibitor of AR signaling used in second-line therapies. Overall, our data show that stabilization of AR G4s may represent an alternative treatment options for CRPC and other malignancies relying on aberrant androgen signaling.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Graziella Cimino-Reale
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Matteo Nadai
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Filippo Doria
- Department of Chemistry , University of Pavia , v. le Taramelli 10 , 27100 , Pavia , Italy
| | - Elena Butovskaya
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Marta Recagni
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Mauro Freccero
- Department of Chemistry , University of Pavia , v. le Taramelli 10 , 27100 , Pavia , Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Sara N Richter
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Marco Folini
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| |
Collapse
|
842
|
Blee AM, He Y, Yang Y, Ye Z, Yan Y, Pan Y, Ma T, Dugdale J, Kuehn E, Kohli M, Jimenez R, Chen Y, Xu W, Wang L, Huang H. TMPRSS2-ERG Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in PTEN and TP53-Mutated Prostate Cancer. Clin Cancer Res 2018; 24:4551-4565. [PMID: 29844131 PMCID: PMC6139075 DOI: 10.1158/1078-0432.ccr-18-0653] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 01/10/2023]
Abstract
Purpose: Deletions or mutations in PTEN and TP53 tumor suppressor genes have been linked to lineage plasticity in therapy-resistant prostate cancer. Fusion-driven overexpression of the oncogenic transcription factor ERG is observed in approximately 50% of all prostate cancers, many of which also harbor PTEN and TP53 alterations. However, the role of ERG in lineage plasticity of PTEN/TP53-altered tumors is unclear. Understanding the collective effect of multiple mutations within one tumor is essential to combat plasticity-driven therapy resistance.Experimental Design: We generated a Pten-negative/Trp53-mutated/ERG-overexpressing mouse model of prostate cancer and integrated RNA-sequencing with ERG chromatin immunoprecipitation-sequencing (ChIP-seq) to identify pathways regulated by ERG in the context of Pten/Trp53 alteration. We investigated ERG-dependent sensitivity to the antiandrogen enzalutamide and cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib in human prostate cancer cell lines, xenografts, and allografted mouse tumors. Trends were evaluated in TCGA, SU2C, and Beltran 2016 published patient cohorts and a human tissue microarray.Results: Transgenic ERG expression in mice blocked Pten/Trp53 alteration-induced decrease of AR expression and downstream luminal epithelial genes. ERG directly suppressed expression of cell cycle-related genes, which induced RB hypophosphorylation and repressed E2F1-mediated expression of mesenchymal lineage regulators, thereby restricting adenocarcinoma plasticity and maintaining antiandrogen sensitivity. In ERG-negative tumors, CDK4/6 inhibition delayed tumor growth.Conclusions: Our studies identify a previously undefined function of ERG to restrict lineage plasticity and maintain antiandrogen sensitivity in PTEN/TP53-altered prostate cancer. Our findings suggest ERG fusion as a biomarker to guide treatment of PTEN/TP53-altered, RB1-intact prostate cancer. Clin Cancer Res; 24(18); 4551-65. ©2018 AACR.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yinhui Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tao Ma
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joseph Dugdale
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Emily Kuehn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
843
|
Chen S, Cai C, Sowalsky AG, Ye H, Ma F, Yuan X, Simon NI, Gray NS, Balk SP. BMX-Mediated Regulation of Multiple Tyrosine Kinases Contributes to Castration Resistance in Prostate Cancer. Cancer Res 2018; 78:5203-5215. [PMID: 30012673 PMCID: PMC6139052 DOI: 10.1158/0008-5472.can-17-3615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/21/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer responds to therapies that suppress androgen receptor (AR) activity (androgen deprivation therapy, ADT) but invariably progresses to castration-resistant prostate cancer (CRPC). The Tec family nonreceptor tyrosine kinase BMX is activated downstream of PI3K and has been implicated in regulation of multiple pathways and in the development of cancers including prostate cancer. However, its precise mechanisms of action, and particularly its endogenous substrates, remain to be established. Here, we demonstrate that BMX expression in prostate cancer is suppressed directly by AR via binding to the BMX gene and that BMX expression is subsequently rapidly increased in response to ADT. BMX contributed to CRPC development in cell line and xenograft models by positively regulating the activities of multiple receptor tyrosine kinases through phosphorylation of a phosphotyrosine-tyrosine (pYY) motif in their activation loop, generating pYpY that is required for full kinase activity. To assess BMX activity in vivo, we generated a BMX substrate-specific antibody (anti-pYpY) and found that its reactivity correlated with BMX expression in clinical samples, supporting pYY as an in vivo substrate. Inhibition of BMX with ibrutinib (developed as an inhibitor of the related Tec kinase BTK) or another BMX inhibitor BMX-IN-1 markedly enhanced the response to castration in a prostate cancer xenograft model. These data indicate that increased BMX in response to ADT contributes to enhanced tyrosine kinase signaling and the subsequent emergence of CRPC, and that combination therapies targeting AR and BMX may be effective in a subset of patients.Significance: The tyrosine kinase BMX is negatively regulated by androgen and contributes to castration-resistant prostate cancer by enhancing the phosphorylation and activation of multiple receptor tyrosine kinases following ADT. Cancer Res; 78(18); 5203-15. ©2018 AACR.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Amino Acid Motifs
- Androgen Antagonists/therapeutic use
- Androgens/metabolism
- Animals
- Antibodies/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Male
- Mice
- Mice, Inbred ICR
- Mice, SCID
- Neoplasm Transplantation
- Phosphorylation
- Piperidines
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Protein Binding
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptors, Androgen/metabolism
- Sequence Analysis, RNA
- Signal Transduction
- Tissue Array Analysis
Collapse
Affiliation(s)
- Sen Chen
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Fen Ma
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Xin Yuan
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Nicholas I Simon
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
844
|
Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski CM, Donoghue MTA, Jonsson P, Penson A, Shen R, Pareja F, Kundra R, Middha S, Cheng ML, Zehir A, Kandoth C, Patel R, Huberman K, Smyth LM, Jhaveri K, Modi S, Traina TA, Dang C, Zhang W, Weigelt B, Li BT, Ladanyi M, Hyman DM, Schultz N, Robson ME, Hudis C, Brogi E, Viale A, Norton L, Dickler MN, Berger MF, Iacobuzio-Donahue CA, Chandarlapaty S, Scaltriti M, Reis-Filho JS, Solit DB, Taylor BS, Baselga J. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell 2018; 34:427-438.e6. [PMID: 30205045 PMCID: PMC6327853 DOI: 10.1016/j.ccell.2018.08.008] [Citation(s) in RCA: 658] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/15/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
We integrated the genomic sequencing of 1,918 breast cancers, including 1,501 hormone receptor-positive tumors, with detailed clinical information and treatment outcomes. In 692 tumors previously exposed to hormonal therapy, we identified an increased number of alterations in genes involved in the mitogen-activated protein kinase (MAPK) pathway and in the estrogen receptor transcriptional machinery. Activating ERBB2 mutations and NF1 loss-of-function mutations were more than twice as common in endocrine resistant tumors. Alterations in other MAPK pathway genes (EGFR, KRAS, among others) and estrogen receptor transcriptional regulators (MYC, CTCF, FOXA1, and TBX3) were also enriched. Altogether, these alterations were present in 22% of tumors, mutually exclusive with ESR1 mutations, and associated with a shorter duration of response to subsequent hormonal therapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms, Male/drug therapy
- Breast Neoplasms, Male/genetics
- Breast Neoplasms, Male/pathology
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genomics
- Humans
- MAP Kinase Signaling System/genetics
- Male
- Middle Aged
- Mutation
- Neurofibromin 1/genetics
- Neurofibromin 1/metabolism
- Prospective Studies
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Young Adult
Collapse
Affiliation(s)
- Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew T Chang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guotai Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neil Vasan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyan Cai
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig M Bielski
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip Jonsson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael L Cheng
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cyriac Kandoth
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruchi Patel
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kety Huberman
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lillian M Smyth
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Komal Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tiffany A Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chau Dang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wen Zhang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clifford Hudis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maura N Dickler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - José Baselga
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
845
|
Yan J, Cua DJ, Teng MW. IL-23 promotes the development of castration-resistant prostate cancer. Immunol Cell Biol 2018; 96:883-885. [PMID: 30194885 DOI: 10.1111/imcb.12195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | | | - Michele Wl Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
846
|
Li Q, Deng Q, Chao HP, Liu X, Lu Y, Lin K, Liu B, Tang GW, Zhang D, Tracz A, Jeter C, Rycaj K, Calhoun-Davis T, Huang J, Rubin MA, Beltran H, Shen J, Chatta G, Puzanov I, Mohler JL, Wang J, Zhao R, Kirk J, Chen X, Tang DG. Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nat Commun 2018; 9:3600. [PMID: 30190514 PMCID: PMC6127155 DOI: 10.1038/s41467-018-06067-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Expression of androgen receptor (AR) in prostate cancer (PCa) is heterogeneous but the functional significance of AR heterogeneity remains unclear. Screening ~200 castration-resistant PCa (CRPC) cores and whole-mount sections (from 89 patients) reveals 3 AR expression patterns: nuclear (nuc-AR), mixed nuclear/cytoplasmic (nuc/cyto-AR), and low/no expression (AR-/lo). Xenograft modeling demonstrates that AR+ CRPC is enzalutamide-sensitive but AR-/lo CRPC is resistant. Genome editing-derived AR+ and AR-knockout LNCaP cell clones exhibit distinct biological and tumorigenic properties and contrasting responses to enzalutamide. RNA-Seq and biochemical analyses, coupled with experimental combinatorial therapy, identify BCL-2 as a critical therapeutic target and provide proof-of-concept therapeutic regimens for both AR+/hi and AR-/lo CRPC. Our study links AR expression heterogeneity to distinct castration/enzalutamide responses and has important implications in understanding the cellular basis of prostate tumor responses to AR-targeting therapies and in facilitating development of novel therapeutics to target AR-/lo PCa cells/clones.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Molecular Targeted Therapy
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology,, Wuhan University, 430079, Wuhan, China
| | - Qu Deng
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
- Program in Molecular Carcinogenesis, University of Texas Graduate School for Biomedical Sciences (GSBS), Houston, TX, 77030, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
- Program in Molecular Carcinogenesis, University of Texas Graduate School for Biomedical Sciences (GSBS), Houston, TX, 77030, USA
| | - Xin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Gregory W Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Dingxiao Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University of School of Medicine, Durham, NC, 27710, USA
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, 10021, USA
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ruizhe Zhao
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xin Chen
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
847
|
Belic J, Graf R, Bauernhofer T, Cherkas Y, Ulz P, Waldispuehl‐Geigl J, Perakis S, Gormley M, Patel J, Li W, Geigl JB, Smirnov D, Heitzer E, Gross M, Speicher MR. Genomic alterations in plasma DNA from patients with metastasized prostate cancer receiving abiraterone or enzalutamide. Int J Cancer 2018; 143:1236-1248. [PMID: 29574703 PMCID: PMC6099279 DOI: 10.1002/ijc.31397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
In patients with metastatic castrate-resistant prostate cancer (mCRPC), circulating tumor DNA (ctDNA) analysis offers novel opportunities for the development of non-invasive biomarkers informative of treatment response with novel agents targeting the androgen-receptor (AR) pathway, such as abiraterone or enzalutamide. However, the relationship between ctDNA abundance, detectable somatic genomic alterations and clinical progression of mCRPC remains unexplored. Our study aimed to investigate changes in plasma DNA during disease progression and their associations with clinical variables in mCRPC patients. We analyzed ctDNA in two cohorts including 94 plasma samples from 25 treatment courses (23 patients) and 334 plasma samples from 125 patients, respectively. We conducted whole-genome sequencing (plasma-Seq) for genome-wide profiling of somatic copy number alterations and targeted sequencing of 31 prostate cancer-associated genes. The combination of plasma-Seq with targeted AR analyses identified prostate cancer-related genomic alterations in 16 of 25 (64%) treatment courses in the first cohort, in which we demonstrated that AR amplification does not always correlate with poor abiraterone and enzalutamide therapy outcome. As we observed a wide variability of ctDNA levels, we evaluated ctDNA levels and their association with clinical parameters and included the second, larger cohort for these analyses. Employing altogether 428 longitudinal plasma samples from 148 patients, we identified the presence of bone metastases, increased lactate dehydrogenase and prostate-specific antigen (PSA) as having the strongest association with high ctDNA levels. In summary, ctDNA alterations are observable in the majority of patients with mCRPC and may eventually be useful to guide clinical decision-making in this setting.
Collapse
Affiliation(s)
- Jelena Belic
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Ricarda Graf
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Thomas Bauernhofer
- Division of OncologyMedical University of Graz, Auenbruggerplatz 15A‐8036GrazAustria
| | - Yauheniya Cherkas
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Peter Ulz
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Julie Waldispuehl‐Geigl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Samantha Perakis
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Michael Gormley
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Jaymala Patel
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Weimin Li
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Jochen B. Geigl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Denis Smirnov
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Mitchell Gross
- Lawrence J. Ellison Institute for Transformative Medicine of USC, USC Westside Cancer Center, University of Southern California, 9033 Wilshire Blvd, Suite 300Beverly HillsCA90211USA
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| |
Collapse
|
848
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
849
|
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, Alilin AN, Karzai FH, Dahut WL, Corey E, Kelly K. A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clin Cancer Res 2018; 24:4332-4345. [PMID: 29748182 PMCID: PMC6125202 DOI: 10.1158/1078-0432.ccr-18-0409] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Purpose: Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high-throughput and mechanistic analysis.Experimental Design: Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested >20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin.Results: All PDX models proliferated as organoids in culture. Greater than 50% could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously reported conditions. In addition, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2-/- organoids, similar to responses observed in patients.Conclusions: The LuCaP PDX/organoid models provide an expansive, genetically characterized platform to investigate the mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC. Clin Cancer Res; 24(17); 4332-45. ©2018 AACR.
Collapse
Affiliation(s)
- Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Caitlin M Tice
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Crystal Tran
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keith H Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Qi Yang
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kerry M McGowen
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Fatima H Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
850
|
Zhang Y, Dong Y, Melkus MW, Yin S, Tang SN, Jiang P, Pramanik K, Wu W, Kim S, Ye M, Hu H, Lu J, Jiang C. Role of P53-Senescence Induction in Suppression of LNCaP Prostate Cancer Growth by Cardiotonic Compound Bufalin. Mol Cancer Ther 2018; 17:2341-2352. [PMID: 30166403 DOI: 10.1158/1535-7163.mct-17-1296] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/13/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
Bufalin is a major cardiotonic compound in the traditional Chinese medicine, Chansu, prepared from toad skin secretions. Cell culture studies have suggested an anticancer potential involving multiple cellular processes, including differentiation, apoptosis, senescence, and angiogenesis. In prostate cancer cell models, P53-dependent and independent caspase-mediated apoptosis and androgen receptor (AR) antagonism have been described for bufalin at micromolar concentrations. Because a human pharmacokinetic study indicated that single nanomolar bufalin was safely achievable in the peripheral circulation, we evaluated its cellular activity within range with the AR-positive and P53 wild-type human LNCaP prostate cancer cells in vitro Our data show that bufalin induced caspase-mediated apoptosis at 20 nmol/L or higher concentration with concomitant suppression of AR protein and its best-known target, PSA and steroid receptor coactivator 1 and 3 (SRC-1, SRC-3). Bufalin exposure induced protein abundance of P53 (not mRNA) and P21CIP1 (CDKN1A), G2 arrest, and increased senescence-like phenotype (SA-galactosidase). Small RNAi knocking down of P53 attenuated bufalin-induced senescence, whereas knocking down of P21CIP1 exacerbated bufalin-induced caspase-mediated apoptosis. In vivo, daily intraperitoneal injection of bufalin (1.5 mg/kg body weight) for 9 weeks delayed LNCaP subcutaneous xenograft tumor growth in NSG SCID mice with a 67% decrease of final weight without affecting body weight. Tumors from bufalin-treated mice exhibited increased phospho-P53 and SA-galactosidase without detectable caspase-mediated apoptosis or suppression of AR and PSA. Our data suggest potential applications of bufalin in therapy of prostate cancer in patients or chemo-interception of prostate precancerous lesions, engaging a selective activation of P53 senescence. Mol Cancer Ther; 17(11); 2341-52. ©2018 AACR.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Yinhui Dong
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Michael W Melkus
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Shutao Yin
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Su-Ni Tang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Peixin Jiang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Kartick Pramanik
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Wei Wu
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Min Ye
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junxuan Lu
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas. .,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.,Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania
| | - Cheng Jiang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas. .,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|