801
|
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, Alilin AN, Karzai FH, Dahut WL, Corey E, Kelly K. A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clin Cancer Res 2018; 24:4332-4345. [PMID: 29748182 PMCID: PMC6125202 DOI: 10.1158/1078-0432.ccr-18-0409] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Purpose: Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high-throughput and mechanistic analysis.Experimental Design: Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested >20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin.Results: All PDX models proliferated as organoids in culture. Greater than 50% could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously reported conditions. In addition, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2-/- organoids, similar to responses observed in patients.Conclusions: The LuCaP PDX/organoid models provide an expansive, genetically characterized platform to investigate the mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC. Clin Cancer Res; 24(17); 4332-45. ©2018 AACR.
Collapse
Affiliation(s)
- Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Caitlin M Tice
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Crystal Tran
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keith H Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Qi Yang
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kerry M McGowen
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Fatima H Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
802
|
Zhang Y, Dong Y, Melkus MW, Yin S, Tang SN, Jiang P, Pramanik K, Wu W, Kim S, Ye M, Hu H, Lu J, Jiang C. Role of P53-Senescence Induction in Suppression of LNCaP Prostate Cancer Growth by Cardiotonic Compound Bufalin. Mol Cancer Ther 2018; 17:2341-2352. [PMID: 30166403 DOI: 10.1158/1535-7163.mct-17-1296] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/13/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
Bufalin is a major cardiotonic compound in the traditional Chinese medicine, Chansu, prepared from toad skin secretions. Cell culture studies have suggested an anticancer potential involving multiple cellular processes, including differentiation, apoptosis, senescence, and angiogenesis. In prostate cancer cell models, P53-dependent and independent caspase-mediated apoptosis and androgen receptor (AR) antagonism have been described for bufalin at micromolar concentrations. Because a human pharmacokinetic study indicated that single nanomolar bufalin was safely achievable in the peripheral circulation, we evaluated its cellular activity within range with the AR-positive and P53 wild-type human LNCaP prostate cancer cells in vitro Our data show that bufalin induced caspase-mediated apoptosis at 20 nmol/L or higher concentration with concomitant suppression of AR protein and its best-known target, PSA and steroid receptor coactivator 1 and 3 (SRC-1, SRC-3). Bufalin exposure induced protein abundance of P53 (not mRNA) and P21CIP1 (CDKN1A), G2 arrest, and increased senescence-like phenotype (SA-galactosidase). Small RNAi knocking down of P53 attenuated bufalin-induced senescence, whereas knocking down of P21CIP1 exacerbated bufalin-induced caspase-mediated apoptosis. In vivo, daily intraperitoneal injection of bufalin (1.5 mg/kg body weight) for 9 weeks delayed LNCaP subcutaneous xenograft tumor growth in NSG SCID mice with a 67% decrease of final weight without affecting body weight. Tumors from bufalin-treated mice exhibited increased phospho-P53 and SA-galactosidase without detectable caspase-mediated apoptosis or suppression of AR and PSA. Our data suggest potential applications of bufalin in therapy of prostate cancer in patients or chemo-interception of prostate precancerous lesions, engaging a selective activation of P53 senescence. Mol Cancer Ther; 17(11); 2341-52. ©2018 AACR.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Yinhui Dong
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Michael W Melkus
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Shutao Yin
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Su-Ni Tang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Peixin Jiang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Kartick Pramanik
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Wei Wu
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Min Ye
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junxuan Lu
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas. .,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania.,Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania
| | - Cheng Jiang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas. .,Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
803
|
Cristofani R, Montagnani Marelli M, Cicardi ME, Fontana F, Marzagalli M, Limonta P, Poletti A, Moretti RM. Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death Dis 2018; 9:889. [PMID: 30166521 PMCID: PMC6117300 DOI: 10.1038/s41419-018-0866-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022]
Abstract
Prostate cancer (PC) is one of the leading causes of death in males. Available treatments often lead to the appearance of chemoresistant foci and metastases, with mechanisms still partially unknown. Within tumour mass, autophagy may promote cell survival by enhancing cancer cells tolerability to different cell stresses, like hypoxia, starvation or those triggered by chemotherapic agents. Because of its connection with the apoptotic pathways, autophagy has been differentially implicated, either as prodeath or prosurvival factor, in the appearance of more aggressive tumours. Here, in three PC cells (LNCaP, PC3, and DU145), we tested how different autophagy inducers modulate docetaxel-induced apoptosis. We selected the mTOR-independent disaccharide trehalose and the mTOR-dependent macrolide lactone rapamycin autophagy inducers. In castration-resistant PC (CRPC) PC3 cells, trehalose specifically prevented intrinsic apoptosis in docetaxel-treated cells. Trehalose reduced the release of cytochrome c triggered by docetaxel and the formation of aberrant mitochondria, possibly by enhancing the turnover of damaged mitochondria via autophagy (mitophagy). In fact, trehalose increased LC3 and p62 expression, LC3-II and p62 (p62 bodies) accumulation and the induction of LC3 puncta. In docetaxel-treated cells, trehalose, but not rapamycin, determined a perinuclear mitochondrial aggregation (mito-aggresomes), and mitochondria specifically colocalized with LC3 and p62-positive autophagosomes. In PC3 cells, rapamycin retained its ability to activate autophagy without evidences of mitophagy even in presence of docetaxel. Interestingly, these results were replicated in LNCaP cells, whereas trehalose and rapamycin did not modify the response to docetaxel in the ATG5-deficient (autophagy resistant) DU145 cells. Therefore, autophagy is involved to alter the response to chemotherapy in combination therapies and the response may be influenced by the different autophagic pathways utilized and by the type of cancer cells.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Maria Elena Cicardi
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Angelo Poletti
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy.
| | - Roberta Manuela Moretti
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
804
|
|
805
|
da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M, Muñoz P. Cancer cell plasticity: Impact on tumor progression and therapy response. Semin Cancer Biol 2018; 53:48-58. [PMID: 30130663 DOI: 10.1016/j.semcancer.2018.08.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
Most tumors exhibit intra-tumor heterogeneity, which is associated with disease progression and an impaired response to therapy. Cancer cell plasticity has been proposed as being an important mechanism that, along with genetic and epigenetic alterations, promotes cancer cell diversity and contributes to intra-tumor heterogeneity. Plasticity endows cancer cells with the capacity to shift dynamically between a differentiated state, with limited tumorigenic potential, and an undifferentiated or cancer stem-like cell (CSC) state, which is responsible for long-term tumor growth. In addition, it confers the ability to transit into distinct CSC states with different competence to invade, disseminate and seed metastasis. Cancer cell plasticity has been linked to the epithelial-to-mesenchymal transition program and relies not only on cell-autonomous mechanisms, but also on signals provided by the tumor microenvironment and/or induced in response to therapy. We provide an overview of the dynamic transition for cancer cell states, the mechanisms governing cell plasticity and their impact on tumor progression, metastasis and therapy response. Understanding the mechanisms involved in cancer cell plasticity will provide insights for establishing new therapeutic interventions.
Collapse
Affiliation(s)
| | - Laura Lorenzo-Sanz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Adrià Bernat-Peguera
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta Lopez-Cerda
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Purificación Muñoz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| |
Collapse
|
806
|
Frank S, Nelson P, Vasioukhin V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Res 2018; 7. [PMID: 30135717 PMCID: PMC6073096 DOI: 10.12688/f1000research.14499.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a disease of mutated and misregulated genes. However, primary prostate tumors have relatively few mutations, and only three genes (
ERG,
PTEN, and
SPOP) are recurrently mutated in more than 10% of primary tumors. On the other hand, metastatic castration-resistant tumors have more mutations, but, with the exception of the androgen receptor gene (
AR), no single gene is altered in more than half of tumors. Structural genomic rearrangements are common, including
ERG fusions, copy gains involving the
MYC locus, and copy losses containing
PTEN. Overall, instead of being associated with a single dominant driver event, prostate tumors display various combinations of modifications in oncogenes and tumor suppressors. This review takes a broad look at the recent advances in PCa research, including understanding the genetic alterations that drive the disease and how specific mutations can sensitize tumors to potential therapies. We begin with an overview of the genomic landscape of primary and metastatic PCa, enabled by recent large-scale sequencing efforts. Advances in three-dimensional cell culture techniques and mouse models for PCa are also discussed, and particular emphasis is placed on the benefits of patient-derived xenograft models. We also review research into understanding how ETS fusions (in particular,
TMPRSS2-ERG) and
SPOP mutations contribute to tumor initiation. Next, we examine the recent findings on the prevalence of germline DNA repair mutations in about 12% of patients with metastatic disease and their potential benefit from the use of poly(ADP-ribose) polymerase (PARP) inhibitors and immune modulation. Lastly, we discuss the recent increased prevalence of AR-negative tumors (neuroendocrine and double-negative) and the current state of immunotherapy in PCa. AR remains the primary clinical target for PCa therapies; however, it does not act alone, and better understanding of supporting mutations may help guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sander Frank
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Departments of Medicine and Urology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
807
|
Zou Y, Qi Z, Guo W, Zhang L, Ruscetti M, Shenoy T, Liu N, Wu H. Cotargeting the Cell-Intrinsic and Microenvironment Pathways of Prostate Cancer by PI3Kα/β/δ Inhibitor BAY1082439. Mol Cancer Ther 2018; 17:2091-2099. [PMID: 30045927 DOI: 10.1158/1535-7163.mct-18-0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
Abstract
Targeting the PI3K pathway is a promising strategy for treating prostate cancers with PTEN-loss. However, current anti-PI3K therapies fail to show long lasting in vivo effects. We find that not only the PI3Kα- and PI3kβ-isoforms, but also PI3Kδ, are associated with the epithelial-mesenchymal transition (EMT), a critical process distinguishing indolent from aggressive prostate cancer. This suggests that cotargeting PI3Kα/β/δ could preempt the rebound activation of the parallel pathways induced by α- or β-isoform-selective inhibitor and prevent EMT. Indeed, BAY1082439, a new selective PI3Kα/β/δ inhibitor, is highly effective in vivo in inhibiting Pten-null prostate cancer growth and preventing EMT in the mutant Pten/Kras metastatic model. The anti-PI3Kδ property of BAY1082439 further blocks B-cell infiltration and lymphotoxin release, which are tumor microenvironment factors that promote castration-resistant growth. Together, our data suggest a new approach for the treatment of prostate cancer by targeting both tumor cells and tumor microenvironment with PI3Kα/β/δ inhibitor. Mol Cancer Ther; 17(10); 2091-9. ©2018 AACR.
Collapse
Affiliation(s)
- Yongkang Zou
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Zhi Qi
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Weilong Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Marcus Ruscetti
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Tanu Shenoy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Ningshu Liu
- Bayer AG, Drug Discovery TRG Oncology, Berlin, Germany
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China. .,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
808
|
Singh KB, Ji X, Singh SV. Therapeutic Potential of Leelamine, a Novel Inhibitor of Androgen Receptor and Castration-Resistant Prostate Cancer. Mol Cancer Ther 2018; 17:2079-2090. [PMID: 30030299 DOI: 10.1158/1535-7163.mct-18-0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 07/16/2018] [Indexed: 01/31/2023]
Abstract
Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy remains challenging. CRPC is driven by aberrant activation of androgen receptor (AR) through mechanisms ranging from its amplification, mutation, post-translational modification, and expression of splice variants (e.g., AR-V7). Herein, we present experimental evidence for therapeutic vulnerability of CRPC to a novel phytochemical, leelamine (LLM), derived from pine tree bark. Exposure of human prostate cancer cell lines LNCaP (an androgen-responsive cell line with mutant AR), C4-2B (an androgen-insensitive variant of LNCaP), and 22Rv1 (a CRPC cell line with expression of AR-Vs), and a murine prostate cancer cell line Myc-CaP to plasma achievable concentrations of LLM resulted in ligand-dependent (LNCaP) and ligand-independent (22Rv1) growth inhibition in vitro that was accompanied by downregulation of mRNA and/or protein levels of full-length AR as well as its splice variants, including AR-V7. LLM treatment resulted in apoptosis induction in the absence and presence of R1881. In silico modeling followed by luciferase reporter assay revealed a critical role for noncovalent interaction of LLM with Y739 in AR activity inhibition. Substitution of the amine group with an isothiocyanate functional moiety abolished AR and cell viability inhibition by LLM. Administration of LLM resulted in 22Rv1 xenograft growth suppression that was statistically insignificant but was associated with a significant decrease in Ki-67 expression, mitotic activity, expression of full-length AR and AR-V7 proteins, and secretion of PSA. This study identifies a novel chemical scaffold for the treatment of CRPC. Mol Cancer Ther; 17(10); 2079-90. ©2018 AACR.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
809
|
Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer. NPJ Syst Biol Appl 2018; 4:26. [PMID: 29977602 PMCID: PMC6026592 DOI: 10.1038/s41540-018-0064-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 01/27/2023] Open
Abstract
In the United States alone one in five newly diagnosed cancers in men are prostate carcinomas (PCa). Androgen receptor (AR) status and the PI3K-AKT-mTOR signal transduction pathway are critical in PCa. After initial response to single drugs targeting these pathways resistance often emerges, indicating the need for combination therapy. Here, we address the question of efficacy of drug combinations and development of resistance mechanisms to targeted therapy by a systems pharmacology approach. We combine targeted perturbation with detailed observation of the molecular response by mass spectrometry. We hypothesize that the molecular short-term (24 h) response reveals details of how PCa cells adapt to counter the anti-proliferative drug effect. With focus on six drugs currently used in PCa treatment or targeting the PI3K-AKT-mTOR signal transduction pathway, we perturbed the LNCaP clone FGC cell line by a total of 21 treatment conditions using single and paired drug combinations. The molecular response was analyzed by the mass spectrometric quantification of 52 proteins. Analysis of the data revealed a pattern of strong responders, i.e., proteins that were consistently downregulated or upregulated across many of the perturbation conditions. The downregulated proteins, HN1, PAK1, and SPAG5, are potential early indicators of drug efficacy and point to previously less well-characterized response pathways in PCa cells. Some of the upregulated proteins such as 14-3-3 proteins and KLK2 may be useful early markers of adaptive response and indicate potential resistance pathways targetable as part of combination therapy to overcome drug resistance. The potential of 14-3-3ζ (YWHAZ) as a target is underscored by the independent observation, based on cancer genomics of surgical specimens, that its DNA copy number and transcript levels tend to increase with PCa disease progression. The combination of systematic drug perturbation combined with detailed observation of short-term molecular response using mass spectrometry is a potentially powerful tool to discover response markers and anti-resistance targets. Metastatic prostate cancer is often treated with pharmacological agents to prevent the tumor from expanding; however, despite advances in drug development patients often die of the disease. An international research team lead by Ruedi Aebersold (ETH Zürich, Switzerland) and Chris Sander (Dana Faber Cancer Institute, Boston, USA) asked how prostate cancer cells adapt to pharmacological treatment on the molecular protein level and find a general response in their prostate cancer model. Next, they asked if similar changes are found in prostate cancer patients. Indeed, the same proteins upregulated in prostate cancer models are also upregulated in prostate cancer patients. Immediately, this has implications for patient treatment stratification and opens new avenues for drug developments in metastatic prostate cancer.
Collapse
|
810
|
Abstract
The canonical model of RB-mediated tumour suppression developed over the past 30 years is based on the regulation of E2F transcription factors to restrict cell cycle progression. Several additional functions have been proposed for RB, on the basis of which a non-canonical RB pathway can be described. Mechanistically, the non-canonical RB pathway promotes histone modification and regulates chromosome structure in a manner distinct from cell cycle regulation. These functions have implications for chemotherapy response and resistance to targeted anticancer agents. This Opinion offers a framework to guide future studies of RB in basic and clinical research.
Collapse
Affiliation(s)
- Frederick A Dick
- London Regional Cancer Program, Children's Health Research Institute, Western University, London, Ontario, Canada.
- London Regional Cancer Program, Department of Biochemistry, Western University, London, Ontario, Canada.
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
811
|
Poluri RTK, Audet-Walsh É. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss? Front Oncol 2018; 8:246. [PMID: 30009155 PMCID: PMC6033966 DOI: 10.3389/fonc.2018.00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
The PTEN gene encodes for the phosphatase and tensin homolog; it is a tumor suppressor gene that is among the most frequently inactivated genes throughout the human cancer spectrum. The most recent sequencing approaches have allowed the identification of PTEN genomic alterations, including deletion, mutation, or rearrangement in about 50% of prostate cancer (PCa) cases. It appears that mechanisms leading to PTEN inactivation are cancer-specific, comprising gene mutations, small insertions/deletions, copy number alterations (CNAs), promoter hypermethylation, and RNA interference. The examination of publicly available results from deep-sequencing studies of various cancers showed that PCa appears to be the only cancer in which PTEN is lost mostly through CNA. Instead of inactivating mutations, which are seen in other cancers, deletion of the 10q23 locus is the most common form of PTEN inactivation in PCa. By investigating the minimal deleted region at 10q23, several other genes appear to be lost simultaneously with PTEN. Expression data indicate that, like PTEN, these genes are also downregulated upon loss of 10q23. These analyses raise the possibility that 10q23 is lost upon selective pressure not only to inactivate PTEN but also to impair the expression of surrounding genes. As such, several genes from this deleted region, which represents about 500 kb, may also act as tumor suppressors in PCa, requiring further studies on their respective functions in that context.
Collapse
Affiliation(s)
- Raghavendra Tejo Karthik Poluri
- Department of Molecular Medicine, Axe Endocrinologie – Néphrologie du Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Axe Endocrinologie – Néphrologie du Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
812
|
Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M, De Bernardis G, Losa M, Mirenda M, Pasquini E, Rinaldi A, Sumanasuriya S, Lambros MB, Neeb A, Lucianò R, Bravi CA, Nava-Rodrigues D, Dolling D, Prayer-Galetti T, Ferreira A, Briganti A, Esposito A, Barry S, Yuan W, Sharp A, de Bono J, Alimonti A. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 2018; 559:363-369. [PMID: 29950727 DOI: 10.1038/s41586-018-0266-0] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/29/2018] [Indexed: 01/25/2023]
Abstract
Patients with prostate cancer frequently show resistance to androgen-deprivation therapy, a condition known as castration-resistant prostate cancer (CRPC). Acquiring a better understanding of the mechanisms that control the development of CRPC remains an unmet clinical need. The well-established dependency of cancer cells on the tumour microenvironment indicates that the microenvironment might control the emergence of CRPC. Here we identify IL-23 produced by myeloid-derived suppressor cells (MDSCs) as a driver of CRPC in mice and patients with CRPC. Mechanistically, IL-23 secreted by MDSCs can activate the androgen receptor pathway in prostate tumour cells, promoting cell survival and proliferation in androgen-deprived conditions. Intra-tumour MDSC infiltration and IL-23 concentration are increased in blood and tumour samples from patients with CRPC. Antibody-mediated inactivation of IL-23 restored sensitivity to androgen-deprivation therapy in mice. Taken together, these results reveal that MDSCs promote CRPC by acting in a non-cell autonomous manner. Treatments that block IL-23 can oppose MDSC-mediated resistance to castration in prostate cancer and synergize with standard therapies.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Clarissa Spataro
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Diletta Di Mitri
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Veronica Gil
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Mateus Crespo
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Gaston De Bernardis
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Marco Losa
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Michela Mirenda
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Semini Sumanasuriya
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Maryou B Lambros
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Antje Neeb
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Roberta Lucianò
- Division of Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carlo A Bravi
- Division of Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniel Nava-Rodrigues
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - David Dolling
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ana Ferreira
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alberto Briganti
- Division of Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Simon Barry
- IMED Oncology AstraZeneca, Li Ka Shing Centre, Cambridge, UK
| | - Wei Yuan
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Johann de Bono
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland. .,Università della Svizzera italiana, Faculty of Biomedical Sciences, Lugano, Switzerland. .,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland. .,Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
813
|
Hirayama Y, Sadar MD. Does increased expression of glucocorticoid receptor support application of antagonists to this receptor for the treatment of castration resistant prostate cancer? ACTA ACUST UNITED AC 2018; 3. [PMID: 30198014 DOI: 10.21037/amj.2018.06.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
814
|
Zhang S, Cai J, Xie W, Luo H, Yang F. miR-202 suppresses prostate cancer growth and metastasis by targeting PIK3CA. Exp Ther Med 2018; 16:1499-1504. [PMID: 30112070 DOI: 10.3892/etm.2018.6296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miR)-202 has been reported to be involved in the regulation of human cancer progression including bladder cancer, non-small cell lung cancer, pancreatic cancer and esophageal squamous cell carcinoma. However, the function of miR-202 in prostate cancer remains largely unknown. The present study demonstrated that miR-202 was downregulated in human prostate cancer tissues and cell lines. And overexpression of miR-202 significantly inhibited the proliferation, migration and invasion of prostate cancer cells, but induced cell apoptosis. Moreover, miR-202 suppressed tumor growth in vivo. Regarding the underlying mechanism, it was revealed that phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) was a target gene of miR-202 in prostate cancer cells. Overexpression of miR-202 inhibited the mRNA and protein levels of PIK3CA in prostate cancer cells. Moreover, overexpression of PIK3CA abolished the inhibitory effects of miR-202 on prostate cancer cell proliferation, migration and invasion in vitro. Taken together, these findings demonstrated that miR-202 served as a tumor suppressor in prostate cancer by directly targeting PIK3CA.
Collapse
Affiliation(s)
- Shengping Zhang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China
| | - Jiarong Cai
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guandong 510630, P.R. China
| | - Wenjun Xie
- Department of Operating Room, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guandong 510630, P.R. China
| | - Hui Luo
- Department of Operating Room, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guandong 510630, P.R. China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guandong 510630, P.R. China
| |
Collapse
|
815
|
Fernández-Pomares C, Juárez-Aguilar E, Domínguez-Ortiz MÁ, Gallegos-Estudillo J, Herrera-Covarrubias D, Sánchez-Medina A, Aranda-Abreu GE, Manzo J, Hernández ME. Hydroalcoholic extract of the widely used Mexican plant Justicia spicigera Schltdl. exerts a cytostatic effect on LNCaP prostate cancer cells. J Herb Med 2018. [DOI: 10.1016/j.hermed.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
816
|
Utter M, Chakraborty S, Goren L, Feuser L, Zhu YS, Foster DA. Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes. Cancer Lett 2018; 423:28-35. [PMID: 29524555 PMCID: PMC5901760 DOI: 10.1016/j.canlet.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking activation of the androgen receptor by androgens. Androgen deprivation therapy can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study we provide evidence that androgen-insensitive prostate cancer cells have elevated PLD activity relative to the androgen-sensitive prostate cancer cells. PLD activity has been linked with promoting survival in many human cancer cell lines; and consistent with the previous studies, suppression of PLD activity in the prostate cancer cells resulted in apoptotic cell death. Of significance, suppressing the elevated PLD activity in androgen resistant prostate cancer lines also blocked the ability of these cells to migrate and invade Matrigel™. Since survival signals are generally an early event in tumorigenesis, the apparent coupling of survival and metastatic phenotypes implies that metastasis is an earlier event in malignant prostate cancer than generally thought. This finding has implications for screening strategies designed to identify prostate cancers before dissemination.
Collapse
Affiliation(s)
- Matthew Utter
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Sohag Chakraborty
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Limor Goren
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biology Program, Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Lucas Feuser
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA
| | - Yuan-Shan Zhu
- Department of Medicine, Weill-Cornell Medicine, New York, NY, 10065, USA
| | - David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, 10065, USA; Biochemistry Program, Graduate Center of the City University of New York, New York, NY, 10016, USA; Biology Program, Graduate Center of the City University of New York, New York, NY, 10016, USA; Department of Pharmacology, Weill-Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
817
|
Lee HJ, Li J, Vickman RE, Li J, Liu R, Durkes AC, Elzey BD, Yue S, Liu X, Ratliff TL, Cheng JX. Cholesterol Esterification Inhibition Suppresses Prostate Cancer Metastasis by Impairing the Wnt/β-catenin Pathway. Mol Cancer Res 2018; 16:974-985. [PMID: 29545473 PMCID: PMC5984676 DOI: 10.1158/1541-7786.mcr-17-0665] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Dysregulation of cholesterol is a common characteristic of human cancers including prostate cancer. This study observed an aberrant accumulation of cholesteryl ester in metastatic lesions using Raman spectroscopic analysis of lipid droplets in human prostate cancer patient tissues. Inhibition of cholesterol esterification in prostate cancer cells significantly suppresses the development and growth of metastatic cancer lesions in both orthotopic and intracardiac injection mouse models. Gene expression profiling reveals that cholesteryl ester depletion suppresses the metastatic potential through upregulation of multiple regulators that negatively impact metastasis. In addition, Wnt/β-catenin, a vital pathway for metastasis, is downregulated upon cholesteryl ester depletion. Mechanistically, inhibition of cholesterol esterification significantly blocks secretion of Wnt3a through reduction of monounsaturated fatty acid levels, which limits Wnt3a acylation. These results collectively validate cholesterol esterification as a novel metabolic target for treating metastatic prostate cancer. Mol Cancer Res; 16(6); 974-85. ©2018 AACR.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Jie Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Renee E Vickman
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Rui Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Shuhua Yue
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaoqi Liu
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Timothy L Ratliff
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Ji-Xin Cheng
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts
| |
Collapse
|
818
|
Katzenellenbogen JA, Mayne CG, Katzenellenbogen BS, Greene GL, Chandarlapaty S. Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer 2018; 18:377-388. [PMID: 29662238 PMCID: PMC6252060 DOI: 10.1038/s41568-018-0001-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oestrogen receptor-α (ERα), a key driver of breast cancer, normally requires oestrogen for activation. Mutations that constitutively activate ERα without the need for hormone binding are frequently found in endocrine-therapy-resistant breast cancer metastases and are associated with poor patient outcomes. The location of these mutations in the ER ligand-binding domain and their impact on receptor conformation suggest that they subvert distinct mechanisms that normally maintain the low basal state of wild-type ERα in the absence of hormone. Such mutations provide opportunities to probe fundamental issues underlying ligand-mediated control of ERα activity. Instructive contrasts between these ERα mutations and those that arise in the androgen receptor (AR) during anti-androgen treatment of prostate cancer highlight differences in how activation functions in ERs and AR control receptor activity, how hormonal pressures (deprivation versus antagonism) drive the selection of phenotypically different mutants, how altered protein conformations can reduce antagonist potency and how altered ligand-receptor contacts can invert the response that a receptor has to an agonist ligand versus an antagonist ligand. A deeper understanding of how ligand regulation of receptor conformation is linked to receptor function offers a conceptual framework for developing new anti-oestrogens that might be more effective in preventing and treating breast cancer.
Collapse
Affiliation(s)
| | - Christopher G Mayne
- Beckman Institute for Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Geoffrey L Greene
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
819
|
Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proc Natl Acad Sci U S A 2018; 115:6810-6815. [PMID: 29844167 DOI: 10.1073/pnas.1718811115] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The constitutively active androgen receptor (AR) splice variant 7 (AR-V7) plays an important role in the progression of castration-resistant prostate cancer (CRPC). Although biomarker studies established the role of AR-V7 in resistance to AR-targeting therapies, how AR-V7 mediates genomic functions in CRPC remains largely unknown. Using a ChIP-exo approach, we show AR-V7 binds to distinct genomic regions and recognizes a full-length androgen-responsive element in CRPC cells and patient tissues. Remarkably, we find dramatic differences in AR-V7 cistromes across diverse CRPC cells and patient tissues, regulating different target gene sets involved in CRPC progression. Surprisingly, we discover that HoxB13 is universally required for and colocalizes with AR-V7 binding to open chromatin across CRPC genomes. HoxB13 pioneers AR-V7 binding through direct physical interaction, and collaborates with AR-V7 to up-regulate target oncogenes. Transcriptional coregulation by HoxB13 and AR-V7 was further supported by their coexpression in tumors and circulating tumor cells from CRPC patients. Importantly, HoxB13 silencing significantly decreases CRPC growth through inhibition of AR-V7 oncogenic function. These results identify HoxB13 as a pivotal upstream regulator of AR-V7-driven transcriptomes that are often cell context-dependent in CRPC, suggesting that HoxB13 may serve as a therapeutic target for AR-V7-driven prostate tumors.
Collapse
|
820
|
Zhang Y, Pitchiaya S, Cieślik M, Niknafs YS, Tien JCY, Hosono Y, Iyer MK, Yazdani S, Subramaniam S, Shukla SK, Jiang X, Wang L, Liu TY, Uhl M, Gawronski AR, Qiao Y, Xiao L, Dhanasekaran SM, Juckette KM, Kunju LP, Cao X, Patel U, Batish M, Shukla GC, Paulsen MT, Ljungman M, Jiang H, Mehra R, Backofen R, Sahinalp CS, Freier SM, Watt AT, Guo S, Wei JT, Feng FY, Malik R, Chinnaiyan AM. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet 2018; 50:814-824. [PMID: 29808028 PMCID: PMC5980762 DOI: 10.1038/s41588-018-0120-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long non-coding RNA 1) as an important long non-coding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by AR protein, ARLNC1 stabilized the AR transcript via RNA-RNA interaction. ARLNC1 knockdown suppressed AR expression, global AR signaling, and prostate cancer growth in vitro and in vivo. Taken together, these data support a role for ARLNC1 in maintaining a positive feedback loop that potentiates AR signaling during prostate cancer progression, and identifies ARLNC1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Yajia Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieślik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jean C-Y Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yasuyuki Hosono
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew K Iyer
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shruthi Subramaniam
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sudhanshu K Shukla
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Xia Jiang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tzu-Ying Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Uhl
- Department of Computer Science and Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Alexander R Gawronski
- School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Saravana M Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kristin M Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lakshmi P Kunju
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Utsav Patel
- New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Mona Batish
- New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Girish C Shukla
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State Univesity, Cleveland, OH, USA
| | - Michelle T Paulsen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Rolf Backofen
- Department of Computer Science and Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Cenk S Sahinalp
- School of Informatics and Computing, Indiana University, Bloomington, IN, USA.,Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | | | | | - John T Wei
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.,Breast Oncology Program, University of Michigan, Ann Arbor, MI, USA.,Departments of Radiation Oncology, Urology, and Medicine, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Rohit Malik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Bristol-Myers Squibb, Princeton, NJ, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan, Ann Arbor, MI, USA. .,Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA. .,Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
821
|
Audet-Walsh É, Vernier M, Yee T, Laflamme C, Li S, Chen Y, Giguère V. SREBF1 Activity Is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer. Mol Cancer Res 2018; 16:1396-1405. [PMID: 29784665 DOI: 10.1158/1541-7786.mcr-17-0410] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/21/2017] [Accepted: 05/09/2018] [Indexed: 11/16/2022]
Abstract
Reprogramming of cellular metabolism is an important feature of prostate cancer, including altered lipid metabolism. Recently, it was observed that the nuclear fraction of mTOR is essential for the androgen-mediated metabolic reprogramming of prostate cancer cells. Herein, it is demonstrated that the androgen receptor (AR) and mTOR bind to regulatory regions of sterol regulatory element-binding transcription factor 1 (SREBF1) to control its expression, whereas dual activation of these signaling pathways also promotes SREBF1 cleavage and its translocation to the nucleus. Consequently, SREBF1 recruitment to regulatory regions of its target genes is induced upon treatment with the synthetic androgen R1881, an effect abrogated upon inhibition of the mTOR signaling pathway. In turn, pharmacologic and genetic inhibition of SREBF1 activity impairs the androgen-mediated induction of the key lipogenic genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1). Consistent with these observations, the expression of the SREBF1, FASN, and SCD1 genes is significantly correlated in human prostate cancer tumor clinical specimens. Functionally, blockade of SREBF1 activity reduces the androgen-driven lipid accumulation. Interestingly, decreased triglyceride accumulation observed upon SREBF1 inhibition is paralleled by an increase in mitochondrial respiration, indicating a potential rewiring of citrate metabolism in prostate cancer cells. Altogether, these data define an AR/mTOR nuclear axis, in the context of prostate cancer, as a novel pathway regulating SREBF1 activity and citrate metabolism.Implications: The finding that an AR/mTOR complex promotes SREBF1 expression and activity enhances our understanding of the metabolic adaptation necessary for prostate cancer cell growth and suggests novel therapeutic approaches to target metabolic vulnerabilities in tumors. Mol Cancer Res; 16(9); 1396-405. ©2018 AACR.
Collapse
Affiliation(s)
| | - Mathieu Vernier
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Tracey Yee
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Chloé Laflamme
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Susan Li
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. .,Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
822
|
Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways. Food Chem Toxicol 2018; 119:98-105. [PMID: 29753870 DOI: 10.1016/j.fct.2018.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Research over decades has progressively explored pharmacological actions of bitter gourd (Momordica charantia). Biologically and pharmacologically active molecules isolated from M. charantia have shown significant anti-cancer activity in cancer cell lines and xenografted mice. In this review spotlight was set on the bioactive compounds isolated from M. charantia that effectively inhibited cancer development and progression via regulation of protein network in cancer cells. We summarize most recent high-quality research work in cancer cell lines and xenografted mice related to tumor suppressive role-play of M. charantia and its bioactive compounds. Although M. charantia mediated health promoting, anti-diabetic, hepatoprotective, anti-inflammatory effects have been extensively investigated, there is insufficient information related to regulation of signaling networks by bioactive molecules obtained from M. charantia in different cancers. M. charantia has been shown to modulate AKT/mTOR/p70S6K signaling, p38MAPK-MAPKAPK-2/HSP-27 pathway, cell cycle regulatory proteins and apoptosis-associated proteins in different cancers. However, still there are visible knowledge gaps related to the drug targets in different cancers because we have not yet developed comprehensive understanding of the M. charantia mediated regulation of signal transduction pathways. To explore these questions, experimental platforms are needed that can prove to be helpful in getting a step closer to personalized medicine.
Collapse
|
823
|
Androgen Receptor Variants and Castration-resistant Prostate Cancer: Looking Back and Looking Forward. Eur Urol 2018; 73:724-726. [DOI: 10.1016/j.eururo.2017.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
|
824
|
Weber H, Garabedian MJ. The mediator complex in genomic and non-genomic signaling in cancer. Steroids 2018; 133:8-14. [PMID: 29157917 PMCID: PMC5864542 DOI: 10.1016/j.steroids.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Mediator is a conserved, multi-subunit macromolecular machine divided structurally into head, middle, and tail modules, along with a transiently associating kinase module. Mediator functions as an integrator of transcriptional regulatory activity by interacting with DNA-bound transcription factors and with RNA polymerase II (Pol II) to both activate and repress gene expression. Mediator has been shown to affect multiple steps in transcription, including chromatin looping between enhancers and promoters, pre-initiation complex formation, transcriptional elongation, and mRNA splicing. Individual Mediator subunits participate in regulation of gene expression by the estrogen and androgen receptors and are altered in a number of endocrine cancers, including breast and prostate cancer. In addition to its role in genomic signaling, MED12 has been implicated in non-genomic signaling by interacting with and activating TGF-beta receptor 2 in the cytoplasm. Recent structural studies have revealed extensive inter-domain interactions and complex architecture of the Mediator-Pol II complex, suggesting that Mediator is capable of reorganizing its conformation and composition to fit cellular needs. We propose that alterations in Mediator subunit expression that occur in various cancers could impact the organization and function of Mediator, resulting in changes in gene expression that promote malignancy. A better understanding of the role of Mediator in cancer could reveal new approaches to the diagnosis and treatment of Mediator-dependent endocrine cancers, especially in settings of therapy resistance.
Collapse
Affiliation(s)
- Hannah Weber
- Departments of Microbiology and Urology, NYU School of Medicine, 550 First Ave, New York, NY 10012, United States
| | - Michael J Garabedian
- Departments of Microbiology and Urology, NYU School of Medicine, 550 First Ave, New York, NY 10012, United States.
| |
Collapse
|
825
|
Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A 2018; 115:E4584-E4593. [PMID: 29712835 DOI: 10.1073/pnas.1802415115] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.
Collapse
|
826
|
Chen R, Dong X, Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int 2018; 122:560-570. [DOI: 10.1111/bju.14207] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruiqi Chen
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
- Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - Xuesen Dong
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| | - Martin Gleave
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
827
|
Prostate Cancer Genomics: Recent Advances and the Prevailing Underrepresentation from Racial and Ethnic Minorities. Int J Mol Sci 2018; 19:ijms19041255. [PMID: 29690565 PMCID: PMC5979433 DOI: 10.3390/ijms19041255] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (CaP) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of male cancer deaths in the United States. Among African American (AA) men, CaP is the most prevalent malignancy, with disproportionately higher incidence and mortality rates. Even after discounting the influence of socioeconomic factors, the effect of molecular and genetic factors on racial disparity of CaP is evident. Earlier studies on the molecular basis for CaP disparity have focused on the influence of heritable mutations and single-nucleotide polymorphisms (SNPs). Most CaP susceptibility alleles identified based on genome-wide association studies (GWAS) were common, low-penetrance variants. Germline CaP-associated mutations that are highly penetrant, such as those found in HOXB13 and BRCA2, are usually rare. More recently, genomic studies enabled by Next-Gen Sequencing (NGS) technologies have focused on the identification of somatic mutations that contribute to CaP tumorigenesis. These studies confirmed the high prevalence of ERG gene fusions and PTEN deletions among Caucasian Americans and identified novel somatic alterations in SPOP and FOXA1 genes in early stages of CaP. Individuals with African ancestry and other minorities are often underrepresented in these large-scale genomic studies, which are performed primarily using tumors from men of European ancestry. The insufficient number of specimens from AA men and other minority populations, together with the heterogeneity in the molecular etiology of CaP across populations, challenge the generalizability of findings from these projects. Efforts to close this gap by sequencing larger numbers of tumor specimens from more diverse populations, although still at an early stage, have discovered distinct genomic alterations. These research findings can have a direct impact on the diagnosis of CaP, the stratification of patients for treatment, and can help to address the disparity in incidence and mortality of CaP. This review examines the progress of understanding in CaP genetics and genomics and highlight the need to increase the representation from minority populations.
Collapse
|
828
|
Chang MT, Penson A, Desai NB, Socci ND, Shen R, Seshan VE, Kundra R, Abeshouse A, Viale A, Cha EK, Hao X, Reuter VE, Rudin CM, Bochner BH, Rosenberg JE, Bajorin DF, Schultz N, Berger MF, Iyer G, Solit DB, Al-Ahmadie HA, Taylor BS. Small-Cell Carcinomas of the Bladder and Lung Are Characterized by a Convergent but Distinct Pathogenesis. Clin Cancer Res 2018; 24:1965-1973. [PMID: 29180607 PMCID: PMC5965261 DOI: 10.1158/1078-0432.ccr-17-2655] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023]
Abstract
Purpose: Small-cell carcinoma of the bladder (SCCB) is a rare and aggressive neuroendocrine tumor with a dismal prognosis and limited treatment options. As SCCB is histologically indistinguishable from small-cell lung cancer, a shared pathogenesis and cell of origin has been proposed. The aim of this study is to determine whether SCCBs arise from a preexisting urothelial carcinoma or share a molecular pathogenesis in common with small-cell lung cancer.Experimental Design: We performed an integrative analysis of 61 SCCB tumors to identify histology- and organ-specific similarities and differences.Results: SCCB has a high somatic mutational burden driven predominantly by an APOBEC-mediated mutational process. TP53, RB1, and TERT promoter mutations were present in nearly all samples. Although these events appeared to arise early in all affected tumors and likely reflect an evolutionary branch point that may have driven small-cell lineage differentiation, they were unlikely the founding transforming event, as they were often preceded by diverse and less common driver mutations, many of which are common in bladder urothelial cancers, but not small-cell lung tumors. Most patient tumors (72%) also underwent genome doubling (GD). Although arising at different chronologic points in the evolution of the disease, GD was often preceded by biallelic mutations in TP53 with retention of two intact copies.Conclusions: Our findings indicate that small-cell cancers of the bladder and lung have a convergent but distinct pathogenesis, with SCCBs arising from a cell of origin shared with urothelial bladder cancer. Clin Cancer Res; 24(8); 1965-73. ©2017 AACRSee related commentary by Oser and Jänne, p. 1775.
Collapse
Affiliation(s)
- Matthew T Chang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Alexander Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil B Desai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam Abeshouse
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eugene K Cha
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueli Hao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard H Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
829
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
830
|
Lee AR, Che N, Lovnicki JM, Dong X. Development of Neuroendocrine Prostate Cancers by the Ser/Arg Repetitive Matrix 4-Mediated RNA Splicing Network. Front Oncol 2018; 8:93. [PMID: 29666783 PMCID: PMC5891588 DOI: 10.3389/fonc.2018.00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
While the use of next-generation androgen receptor pathway inhibition (ARPI) therapy has significantly increased the survival of patients with metastatic prostate adenocarcinoma (AdPC), several groups have reported a treatment-resistant mechanism, whereby cancer cells can become androgen receptor (AR) indifferent and gain a neuroendocrine (NE)-like phenotype. This subtype of castration-resistant prostate cancer has been termed "treatment-induced castration-resistant neuroendocrine prostate cancer" (CRPC-NE). Recent reports indicate that the overall genomic landscapes of castration-resistant tumors with AdPC phenotypes and CRPC-NE are not significantly altered. However, CRPC-NE tumors have been found to contain a NE-specific pattern throughout their epigenome and splicing transcriptome, which are significantly modified. The molecular mechanisms by which CRPC-NE develops remain unclear, but several factors have been implicated in the progression of the disease. Recently, Ser/Arg repetitive matrix 4 (SRRM4), a neuronal-specific RNA splicing factor that is upregulated in CRPC-NE tumors, has been shown to establish a CRPC-NE-unique splicing transcriptome, to induce a NE-like morphology in AdPC cells, and, most importantly, to transform AdPC cells into CRPC-NE xenografts under ARPI. Moreover, the SRRM4-targeted splicing genes are highly enriched in various neuronal processes, suggesting their roles in facilitating a CRPC-NE program. This article will address the importance of SRRM4-mediated alternative RNA splicing in reprogramming translated proteins to facilitate NE differentiation, survival, and proliferation of cells to establish CRPC-NE tumors. In addition, we will discuss the potential roles of SRRM4 in conjunction with other known pathways and factors important for CRPC-NE development, such as the AR pathway, TP53 and RB1 genes, the FOXA family of proteins, and environmental factors. This study aims to explore the multifaceted functions of SRRM4 and SRRM4-mediated splicing in driving a CRPC-NE program as a coping mechanism for therapy resistance, as well as define future SRRM4-targeted therapeutic approaches for treating CRPC-NE or mitigating its development.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Che
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
831
|
Chen M, Pandolfi PP. Preclinical and Coclinical Studies in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030544. [PMID: 29038335 DOI: 10.1101/cshperspect.a030544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Men who develop metastatic castration-resistant prostate cancer (mCRPC) will invariably succumb to their disease. Thus there remains a pressing need for preclinical testing of new drugs and drug combinations for late-stage prostate cancer (PCa). Insights from the mCRPC genomic landscape have revealed that, in addition to sustained androgen receptor (AR) signaling, there are other actionable molecular alterations and distinct molecular subclasses of PCa; however, the rate at which this knowledge translates into patient care via current preclinical testing is painfully slow and inefficient. Here, we will highlight the issues involved and discuss a new translational platform, "the co-clinical trial project," to expedite current preclinical studies and optimize clinical trial and experimental drug testing. With this platform, in vivo preclinical and early clinical studies are closely aligned, enabling in vivo testing of drugs using genetically engineered mouse models (GEMMs) in defined genetic contexts to personalize individual therapies. We will discuss the principles and essential components of this novel paradigm, representative success stories and future therapeutic options for mCRPC that should be explored.
Collapse
Affiliation(s)
- Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
832
|
Labib M, Mohamadi RM, Poudineh M, Ahmed SU, Ivanov I, Huang CL, Moosavi M, Sargent EH, Kelley SO. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat Chem 2018; 10:489-495. [PMID: 29610463 PMCID: PMC5910253 DOI: 10.1038/s41557-018-0025-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
Cell-to-cell variation in gene expression creates a need for techniques that characterize expression at the level of individual cells. This is particularly true for rare circulating tumor cells (CTCs), in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis – single-cell mRNA cytometry – that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enables sorting of CTCs from normal hematopoietic cells. No PCR amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically-important sequences in prostate cancer specimens.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Reza M Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mahla Poudineh
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ivaylo Ivanov
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ching-Lung Huang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Maral Moosavi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Edward H Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Institute for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
833
|
Patel R, Fleming J, Mui E, Loveridge C, Repiscak P, Blomme A, Harle V, Salji M, Ahmad I, Teo K, Hamdy FC, Hedley A, van den Broek N, Mackay G, Edwards J, Sansom OJ, Leung HY. Sprouty2 loss-induced IL6 drives castration-resistant prostate cancer through scavenger receptor B1. EMBO Mol Med 2018; 10:e8347. [PMID: 29540470 PMCID: PMC5887544 DOI: 10.15252/emmm.201708347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal form of treatment-resistant prostate cancer and poses significant therapeutic challenges. Deregulated receptor tyrosine kinase (RTK) signalling mediated by loss of tumour suppressor Sprouty2 (SPRY2) is associated with treatment resistance. Using pre-clinical human and murine mCRPC models, we show that SPRY2 deficiency leads to an androgen self-sufficient form of CRPC Mechanistically, HER2-IL6 signalling axis enhances the expression of androgen biosynthetic enzyme HSD3B1 and increases SRB1-mediated cholesterol uptake in SPRY2-deficient tumours. Systemically, IL6 elevated the levels of circulating cholesterol by inducing host adipose lipolysis and hepatic cholesterol biosynthesis. SPRY2-deficient CRPC is dependent on cholesterol bioavailability and SRB1-mediated tumoral cholesterol uptake for androgen biosynthesis. Importantly, treatment with ITX5061, a clinically safe SRB1 antagonist, decreased treatment resistance. Our results indicate that cholesterol transport blockade may be effective against SPRY2-deficient CRPC.
Collapse
Affiliation(s)
| | | | - Ernest Mui
- Institute of Cancer Sciences, Glasgow, UK
| | | | | | | | | | - Mark Salji
- Institute of Cancer Sciences, Glasgow, UK
| | - Imran Ahmad
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, Glasgow, UK
| | - Katy Teo
- Institute of Cancer Sciences, Glasgow, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | | | | - Hing Y Leung
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, Glasgow, UK
| |
Collapse
|
834
|
Hearn JWD, Xie W, Nakabayashi M, Almassi N, Reichard CA, Pomerantz M, Kantoff PW, Sharifi N. Association of HSD3B1 Genotype With Response to Androgen-Deprivation Therapy for Biochemical Recurrence After Radiotherapy for Localized Prostate Cancer. JAMA Oncol 2018; 4:558-562. [PMID: 29049492 PMCID: PMC5933377 DOI: 10.1001/jamaoncol.2017.3164] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023]
Abstract
IMPORTANCE The variant HSD3B1 (1245C) allele enhances dihydrotestosterone synthesis and predicts resistance to androgen-deprivation therapy (ADT) for biochemically recurrent prostate cancer after prostatectomy and for metastatic disease. Whether this is true after radiotherapy is unknown. OBJECTIVE To determine whether the HSD3B1 (1245C) allele predicts worse clinical outcomes from ADT for biochemical recurrence after radiotherapy. DESIGN, SETTING, AND PARTICIPANTS The Prostate Clinical Research Information System at Dana-Farber Cancer Institute was used to identify the study cohort, which included men treated with ADT for biochemical recurrence after primary radiotherapy between 1996 and 2013. We retrospectively determined HSD3B1 genotype. MAIN OUTCOMES AND MEASURES Time to progression, time to metastasis, and overall survival according to genotype. Demographic and treatment characteristics were evaluated for confounders. Multivariable analyses were performed to adjust for known prognostic factors. RESULTS A total of 218 eligible men were identified, of whom 213 (98%) were successfully genotyped. Of these, 97 of 213 (46%), 96 of 213 (45%) and 20 of 213 (9%) carried 0, 1, and 2 variant alleles. Overall variant allele frequency was 136 of 426 alleles (32%). Median patient age (interquartile range) was 69 (63-74), 72 (65-78), and 69 (65-77) years for 0, 1, and 2 variant alleles (P = .03). Demographic and treatment factors were otherwise similar. During a median follow-up of 7.9 years, median time to progression was 2.3 years (95% CI, 1.6-3.1 years) with 0 variant alleles, 2.3 years (95% CI, 1.5-3.3 years) with 1 variant allele, and 1.4 years (95% CI, 0.7-3.3 years) with 2 variant alleles (P = .68). Median time to metastasis diminished with the number of variant alleles inherited: 7.4 (95% CI, 6.7-9.7), 5.8 (95% CI, 4.9-6.5), and 4.4 (95% CI, 3.0-5.7) years, with inheritance of 0, 1, and 2 variant alleles, respectively (P = .03). Median OS was 7.7 (95% CI, 6.7-10.3), 6.9 (95% CI, 5.8-8.4), and 7.2 (95% CI, 3.8-7.9) years with inheritance of 0, 1, and 2 variant alleles, respectively (P = .31). On multivariable analysis with 0 variant alleles as the reference, the adjusted hazard ratio for metastasis was 1.19 (95% CI, 0.74-1.92) (P = .48) for 1 variant allele and 2.01 (95% CI, 1.02-3.97) (P = .045) for 2 variant alleles. Multivariable analysis did not demonstrate significant differences in TTP or OS. CONCLUSIONS AND RELEVANCE In this study, the HSD3B1 (1245C) allele was associated with more rapid development of metastases in men treated with ADT for biochemical recurrence after primary radiation therapy for prostate cancer. Notably, 105 of 213 men (49%) had received prior ADT, and 119 of 213 (56%) received an androgen receptor antagonist during salvage treatment, both of which may attenuate the effect of the variant allele.
Collapse
MESH Headings
- Aged
- Alleles
- Androgen Antagonists/therapeutic use
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Pharmacological/analysis
- Biomarkers, Pharmacological/metabolism
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Chemotherapy, Adjuvant
- Combined Modality Therapy
- Disease Progression
- Genetic Association Studies
- Genotype
- Humans
- Male
- Middle Aged
- Multienzyme Complexes/genetics
- Neoplasm Metastasis
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Progesterone Reductase/genetics
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/radiotherapy
- Retrospective Studies
- Steroid Isomerases/genetics
- Treatment Outcome
Collapse
Affiliation(s)
| | - Wanling Xie
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mari Nakabayashi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nima Almassi
- Department of Urology, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Chad A. Reichard
- Department of Urology, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mark Pomerantz
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Philip W. Kantoff
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, New York
| | - Nima Sharifi
- Department of Urology, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
835
|
Awad D, Pulliam TL, Lin C, Wilkenfeld SR, Frigo DE. Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Curr Opin Pharmacol 2018; 41:1-11. [PMID: 29609138 DOI: 10.1016/j.coph.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 02/08/2023]
Abstract
Although androgen deprivation therapy (ADT) is initially effective for the treatment of progressive prostate cancer, it inevitably fails due to the onset of diverse resistance mechanisms that restore androgen receptor (AR) signaling. Thus, AR remains a desired therapeutic target even in the relapsed stages of the disease. Given the difficulties in stopping all AR reactivation mechanisms, we propose that the identification of the driver signaling events downstream of the receptor offer viable, alternative therapeutic targets. Here, we summarize recently described, AR-regulated processes that have been demonstrated to promote prostate cancer. By highlighting these signaling events and describing some of the ongoing efforts to pharmacologically modulate these pathways, our goal is to advocate potential new therapeutic targets that would represent an alternative approach for blocking AR actions.
Collapse
Affiliation(s)
- Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
836
|
Paudyal P, Xie Q, Vaddi PK, Henry MD, Chen S. Inhibiting G protein βγ signaling blocks prostate cancer progression and enhances the efficacy of paclitaxel. Oncotarget 2018; 8:36067-36081. [PMID: 28415604 PMCID: PMC5482639 DOI: 10.18632/oncotarget.16428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/11/2017] [Indexed: 01/29/2023] Open
Abstract
Aberrant activation of G protein-coupled receptors (GPCRs) is implicated in prostate cancer progression, but targeting them has been challenging because multiple GPCRs are involved in cancer progression. In this study, we tested the effect of blocking signaling via a hub through which multiple GPCRs converge — the G-protein Gβγ subunits. Inhibiting Gβγ signaling in several castration-resistant prostate cancer cell lines (i.e. PC3, DU145 and 22Rv1), impaired cell growth and migration in vitro, and halted tumor growth and metastasis in nude mice. The blockade of Gβγ signaling also diminished prostate cancer stem cell-like activities, by reducing tumorsphere formation in vitro and tumor formation in a limiting dilution assay in nude mice. Furthermore, Gβγ blockade enhanced the sensitivity of prostate cancer cells to paclitaxel treatment, both in vitro and in vivo. Together, our results identify a novel function of Gβγ in regulating prostate cancer stem-cell-like activities, and demonstrate that targeting Gβγ signaling is an effective approach in blocking prostate cancer progression and augmenting response to chemotherapy.
Collapse
Affiliation(s)
- Prakash Paudyal
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qing Xie
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Prasanna Kuma Vaddi
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael D Henry
- The Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Urology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Songhai Chen
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
837
|
Thongon N, Zucal C, D'Agostino VG, Tebaldi T, Ravera S, Zamporlini F, Piacente F, Moschoi R, Raffaelli N, Quattrone A, Nencioni A, Peyron JF, Provenzani A. Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA. Cancer Metab 2018. [PMID: 29541451 PMCID: PMC5844108 DOI: 10.1186/s40170-018-0174-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis from nicotinamide, exhibit anticancer effects in preclinical models. However, continuous exposure to NAMPT inhibitors, such as FK866, can induce acquired resistance. Methods We developed FK866-resistant CCRF-CEM (T cell acute lymphoblastic leukemia) and MDA MB231 (breast cancer) models, and by exploiting an integrated approach based on genetic, biochemical, and genome wide analyses, we annotated the drug resistance mechanisms. Results Acquired resistance to FK866 was independent of NAMPT mutations but rather was based on a shift towards a glycolytic metabolism and on lactate dehydrogenase A (LDHA) activity. In addition, resistant CCRF-CEM cells, which exhibit high quinolinate phosphoribosyltransferase (QPRT) activity, also exploited amino acid catabolism as an alternative source for NAD+ production, becoming addicted to tryptophan and glutamine and sensitive to treatment with the amino acid transport inhibitor JPH203 and with l-asparaginase, which affects glutamine exploitation. Vice versa, in line with their low QPRT expression, FK866-resistant MDA MB231 did not rely on amino acids for their resistance phenotype. Conclusions Our study identifies novel mechanisms of resistance to NAMPT inhibition, which may be useful to design more rational strategies for targeting cancer metabolism.
Collapse
Affiliation(s)
- Natthakan Thongon
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Chiara Zucal
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | | | - Toma Tebaldi
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Silvia Ravera
- 2Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Federica Zamporlini
- 3Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Ruxanda Moschoi
- 5Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Nadia Raffaelli
- 3Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Quattrone
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Alessio Nencioni
- 4Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Jean-Francois Peyron
- 5Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Alessandro Provenzani
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| |
Collapse
|
838
|
Jolly MK, Kulkarni P, Weninger K, Orban J, Levine H. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Front Oncol 2018; 8:50. [PMID: 29560343 PMCID: PMC5845637 DOI: 10.3389/fonc.2018.00050] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
It is well known that genetic mutations can drive drug resistance and lead to tumor relapse. Here, we focus on alternate mechanisms-those without mutations, such as phenotypic plasticity and stochastic cell-to-cell variability that can also evade drug attacks by giving rise to drug-tolerant persisters. The phenomenon of persistence has been well-studied in bacteria and has also recently garnered attention in cancer. We draw a parallel between bacterial persistence and resistance against androgen deprivation therapy in prostate cancer (PCa), the primary standard care for metastatic disease. We illustrate how phenotypic plasticity and consequent mutation-independent or non-genetic heterogeneity possibly driven by protein conformational dynamics can stochastically give rise to androgen independence in PCa, and suggest that dynamic phenotypic plasticity should be considered in devising therapeutic dosing strategies designed to treat and manage PCa.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, United States
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| |
Collapse
|
839
|
Le Magnen C, Shen MM, Abate-Shen C. Lineage Plasticity in Cancer Progression and Treatment. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:271-289. [PMID: 29756093 PMCID: PMC5942183 DOI: 10.1146/annurev-cancerbio-030617-050224] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Historically, it has been widely presumed that differentiated cells are determined during development and become irreversibly committed to their designated fates. In certain circumstances, however, differentiated cells can display plasticity by changing their identity, either by dedifferentiation to a progenitor-like state or by transdifferentiation to an alternative differentiated cell type. Such cellular plasticity can be triggered by physiological or oncogenic stress, or it can be experimentally induced through cellular reprogramming. Notably, physiological stresses that promote plasticity, such as severe tissue damage, inflammation, or senescence, also represent hallmarks of cancer. Furthermore, key drivers of cellular plasticity include major oncogenic and tumor suppressor pathways and can be exacerbated by drug treatment. Thus, plasticity may help cancer cells evade detection and treatment. We propose that cancer can be considered as a disease of excess plasticity, a notion that has important implications for intervention and treatment.
Collapse
Affiliation(s)
- Clémentine Le Magnen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Urology and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
840
|
Miyamoto DT, Lee RJ, Kalinich M, LiCausi JA, Zheng Y, Chen T, Milner JD, Emmons E, Ho U, Broderick K, Silva E, Javaid S, Kwan TT, Hong X, Dahl DM, McGovern FJ, Efstathiou JA, Smith MR, Sequist LV, Kapur R, Wu CL, Stott SL, Ting DT, Giobbie-Hurder A, Toner M, Maheswaran S, Haber DA. An RNA-Based Digital Circulating Tumor Cell Signature Is Predictive of Drug Response and Early Dissemination in Prostate Cancer. Cancer Discov 2018; 8:288-303. [PMID: 29301747 PMCID: PMC6342192 DOI: 10.1158/2159-8290.cd-16-1406] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 11/22/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022]
Abstract
Blood-based biomarkers are critical in metastatic prostate cancer, where characteristic bone metastases are not readily sampled, and they may enable risk stratification in localized disease. We established a sensitive and high-throughput strategy for analyzing prostate circulating tumor cells (CTC) using microfluidic cell enrichment followed by digital quantitation of prostate-derived transcripts. In a prospective study of 27 patients with metastatic castration-resistant prostate cancer treated with first-line abiraterone, pretreatment elevation of the digital CTCM score identifies a high-risk population with poor overall survival (HR = 6.0; P = 0.01) and short radiographic progression-free survival (HR = 3.2; P = 0.046). Expression of HOXB13 in CTCs identifies 6 of 6 patients with ≤12-month survival, with a subset also expressing the ARV7 splice variant. In a second cohort of 34 men with localized prostate cancer, an elevated preoperative CTCL score predicts microscopic dissemination to seminal vesicles and/or lymph nodes (P < 0.001). Thus, digital quantitation of CTC-specific transcripts enables noninvasive monitoring that may guide treatment selection in both metastatic and localized prostate cancer.Significance: There is an unmet need for biomarkers to guide prostate cancer therapies, for curative treatment of localized cancer and for application of molecularly targeted agents in metastatic disease. Digital quantitation of prostate CTC-derived transcripts in blood specimens is predictive of abiraterone response in metastatic cancer and of early dissemination in localized cancer. Cancer Discov; 8(3); 288-303. ©2018 AACR.See related commentary by Heitzer and Speicher, p. 269This article is highlighted in the In This Issue feature, p. 253.
Collapse
MESH Headings
- Aged
- Androstenes/pharmacology
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/genetics
- Humans
- Male
- Middle Aged
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/pathology
- Prospective Studies
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/mortality
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Neoplasm/analysis
- RNA, Neoplasm/genetics
- Receptors, Androgen/genetics
- Treatment Outcome
Collapse
Affiliation(s)
- David T Miyamoto
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard J Lee
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Kalinich
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Joseph A LiCausi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Yu Zheng
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Tianqi Chen
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - John D Milner
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Erin Emmons
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Uyen Ho
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Erin Silva
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Sarah Javaid
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Xin Hong
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Douglas M Dahl
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Francis J McGovern
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason A Efstathiou
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew R Smith
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ravi Kapur
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Chin-Lee Wu
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Shannon L Stott
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mehmet Toner
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
- Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
841
|
Alshaker H, Wang Q, Kawano Y, Arafat T, Böhler T, Winkler M, Cooper C, Pchejetski D. Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. Oncotarget 2018; 7:80943-80956. [PMID: 27821815 PMCID: PMC5348367 DOI: 10.18632/oncotarget.13115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Resistance to docetaxel is a key problem in current prostate cancer management. Sphingosine kinase 1 (SK1) and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways have been implicated in prostate cancer chemoresistance. Here we investigated whether their combined targeting may re-sensitize prostate cancer cells to docetaxel.In hormone-insensitive PC-3 and DU145 prostate cancer cells the mTOR inhibitor everolimus (RAD001) alone did not lead to significant cell death, however, it strongly sensitized cells to low levels (5 nM) of docetaxel. We show that mTOR inhibition has led to a decrease in hypoxia-inducible factor-1α (HIF-1α) protein levels and SK1 mRNA. HIF-1α accumulation induced by CoCl2 has led to a partial chemoresistance to RAD001/docetaxel combination. SK1 overexpression has completely protected prostate cancer cells from RAD001/docetaxel effects. Using gene knockdown and CoCl2 treatment we showed that SK1 mRNA expression is downstream of HIF-1α. In a human xenograft model in nude mice single RAD001 and docetaxel therapies induced 23% and 15% reduction in prostate tumor volume, respectively, while their combination led to a 58% reduction. RAD001 alone or in combination with docetaxel has suppressed intratumoral mTOR and SK1 signaling, however as evidenced by tumor size, it required docetaxel for clinical efficacy. Combination therapy was well tolerated and had similar levels of toxicity to docetaxel alone.Overall, our data demonstrate a new mechanism of docetaxel sensitization in prostate cancer. This provides a mechanistic basis for further clinical application of RAD001/docetaxel combination in prostate cancer therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, UK.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qi Wang
- School of Medicine, University of East Anglia, Norwich, UK
| | - Yoshiaki Kawano
- Department of Urology, University of Kumamoto, Kumamoto, Japan
| | - Tawfiq Arafat
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Torsten Böhler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | | |
Collapse
|
842
|
Shah B, Zhao X, Silva AS, Shain KH, Tao J. Resistance to Ibrutinib in B Cell Malignancies: One Size Does Not Fit All. Trends Cancer 2018; 4:197-206. [PMID: 29506670 DOI: 10.1016/j.trecan.2018.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Ibrutinib resistance, as a result of coordinated rewiring of signaling networks and enforced tumor microenvironment (TME)-lymphoma interactions, drives unrestrained proliferation and disease progression. To combat resistance mechanisms, we must identify the compensatory resistance pathways and the central modulators of reprogramming events. Targeting the transcriptome and kinome reprogramming of lymphoma cells represents a rational approach to mitigate ibrutinib resistance in B cell malignancies. However, with the apparent heterogeneity and plasticity of tumors shown in therapy response, a one size fits all approach may be unattainable. To this end, a reliable and real-time drug screening platform to tailor effective individualized therapies in patients with B cell malignancies is warranted. Here, we describe the complexity of ibrutinib resistance in B cell lymphomas and the current approaches, including a drug screening assay, which has the potential to further explore the mechanisms of ibrutinib resistance and to design effective individualized combination therapies to overcome resistance and disable aggressive lymphomas (see Outstanding Questions).
Collapse
Affiliation(s)
- Bijal Shah
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaohong Zhao
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth H Shain
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jianguo Tao
- Department of Hematopathology and Laboratory Medicine and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
843
|
Kim K, Watson PA, Lebdai S, Jebiwott S, Somma AJ, La Rosa S, Mehta D, Murray KS, Lilja H, Ulmert D, Monette S, Scherz A, Coleman JA. Androgen Deprivation Therapy Potentiates the Efficacy of Vascular Targeted Photodynamic Therapy of Prostate Cancer Xenografts. Clin Cancer Res 2018; 24:2408-2416. [PMID: 29463549 DOI: 10.1158/1078-0432.ccr-17-3474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Purpose: WST11 vascular targeted photodynamic therapy (VTP) is a local ablation approach relying upon rapid, free radical-mediated destruction of tumor vasculature. A phase III trial showed that VTP significantly reduced disease progression when compared with active surveillance in patients with low-risk prostate cancer. The aim of this study was to identify a druggable pathway that could be combined with VTP to improve its efficacy and applicability to higher risk prostate cancer tumors.Experimental Design: Transcriptome analysis of VTP-treated tumors (LNCaP-AR xenografts) was used to identify a candidate pathway for combination therapy. The efficacy of the combination therapy was assessed in mice bearing LNCaP-AR or VCaP tumors.Results: Gene set enrichment analysis identifies the enrichment of androgen-responsive gene sets within hours after VTP treatment, suggesting that the androgen receptor (AR) may be a viable target in combination with VTP. We tested this hypothesis in mice bearing LNCaP-AR xenograft tumors by using androgen deprivation therapy (ADT), degarelix, in combination with VTP. Compared with either ADT or VTP alone, a single dose of degarelix in concert with VTP significantly inhibited tumor growth. A sharp decline in serum prostate-specific antigen (PSA) confirmed AR inhibition in this group. Tumors treated by VTP and degarelix displayed intense terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining 7 days after treatment, supporting an increased apoptotic frequency underlying the effect on tumor inhibition.Conclusions: Improvement of local tumor control following androgen deprivation combined with VTP provides the rationale and preliminary protocol parameters for clinical trials in patients presented with locally advanced prostate cancer. Clin Cancer Res; 24(10); 2408-16. ©2018 AACR.
Collapse
Affiliation(s)
- Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Souhil Lebdai
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Université Pierre and Marie Currie Paris 6, Paris, France
| | - Sylvia Jebiwott
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander J Somma
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen La Rosa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dipti Mehta
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katie S Murray
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hans Lilja
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - David Ulmert
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Avigdor Scherz
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan A Coleman
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
844
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
845
|
Abstract
INTRODUCTION The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.
Collapse
Affiliation(s)
- Takuma Uo
- a Department of Medicine , University of Washington , Seattle , WA , USA
| | - Stephen R Plymate
- a Department of Medicine , University of Washington , Seattle , WA , USA.,b Geriatrics Research Education and Clinical Center VA Puget Sound Health Care System , Seattle , WA , USA
| | - Cynthia C Sprenger
- a Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
846
|
Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L, Pan Y, Hinten M, Zhang J, Karnes RJ, Kohli M, Westendorf JJ, Li B, Zhu R, Huang H, Xu W. PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 24:834-846. [PMID: 29167276 PMCID: PMC5816982 DOI: 10.1158/1078-0432.ccr-17-2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023]
Abstract
Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood.Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivoResults: We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivoPten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9.Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834-46. ©2017 AACR.
Collapse
Affiliation(s)
- Yinhui Yang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yang Bai
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jiaxiang Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Linlin Ma
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Hinten
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jennifer J Westendorf
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Runzhi Zhu
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas.
- Department for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
847
|
Bernemann C, Steinestel J, Humberg V, Bögemann M, Schrader AJ, Lennerz JK. Performance comparison of two androgen receptor splice variant 7 (AR-V7) detection methods. BJU Int 2018; 122:219-226. [PMID: 29359890 DOI: 10.1111/bju.14146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To compare the performance of two established androgen receptor splice variant 7 (AR-V7) mRNA detection systems, as paradoxical responses to next-generation androgen-deprivation therapy in AR-V7 mRNA-positive circulating tumour cells (CTC) of patients with castration-resistant prostate cancer (CRPC) could be related to false-positive classification using detection systems with different sensitivities. MATERIALS AND METHODS We compared the performance of two established mRNA-based AR-V7 detection technologies using either SYBR Green or TaqMan chemistries. We assessed in vitro performance using eight genitourinary cancer cell lines and serial dilutions in three AR-V7-positive prostate cancer cell lines, as well as in 32 blood samples from patients with CRPC. RESULTS Both assays performed identically in the cell lines and serial dilutions showed identical diagnostic thresholds. Performance comparison in 32 clinical patient samples showed perfect concordance between the assays. In particular, both assays determined AR-V7 mRNA-positive CTCs in three patients with unexpected responses to next-generation anti-androgen therapy. Thus, technical differences between the assays can be excluded as the underlying reason for the unexpected responses to next-generation anti-androgen therapy in a subset of AR-V7 patients. CONCLUSIONS Irrespective of the method used, patients with AR-V7 mRNA-positive CRPC should not be systematically precluded from an otherwise safe treatment option.
Collapse
Affiliation(s)
| | - Julie Steinestel
- Urology, University of Muenster Medical Center, Muenster, Germany
| | - Verena Humberg
- Urology, University of Muenster Medical Center, Muenster, Germany
| | - Martin Bögemann
- Urology, University of Muenster Medical Center, Muenster, Germany
| | | | - Jochen K Lennerz
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
848
|
ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Sci Rep 2018; 8:2338. [PMID: 29402961 PMCID: PMC5799174 DOI: 10.1038/s41598-018-20161-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFβ signalling from tumour suppressive to oncogenic (i.e. induction of SLUG, PAI-1 and suppression of CDH1, DSP, CDKN1A). Supporting such a role, CAV1 knockdown led to growth arrest and inhibition of cell invasion in prostate cancer cell lines. Rationalized RNAi screening and high-content microscopy in search for CAV1 upstream regulators revealed integrin beta1 (ITGB1) and integrin associated proteins as CAV1 regulators. Our work suggests TGFβ signalling and beta1 integrins as potential therapeutic targets in PCa over-expressing CAV1, and contributes to better understand the paradoxical dual role of TGFβ in tumour biology.
Collapse
|
849
|
Zhu S, Zhao D, Yan L, Jiang W, Kim JS, Gu B, Liu Q, Wang R, Xia B, Zhao JC, Song G, Mi W, Wang RF, Shi X, Lam HM, Dong X, Yu J, Chen K, Cao Q. BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nat Commun 2018; 9:500. [PMID: 29402932 PMCID: PMC5799368 DOI: 10.1038/s41467-018-02863-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/04/2018] [Indexed: 01/10/2023] Open
Abstract
BMI1, a polycomb group (PcG) protein, plays a critical role in epigenetic regulation of cell differentiation and proliferation, and cancer stem cell self-renewal. BMI1 is upregulated in multiple types of cancer, including prostate cancer. As a key component of polycomb repressive complex 1 (PRC1), BMI1 exerts its oncogenic functions by enhancing the enzymatic activities of RING1B to ubiquitinate histone H2A at lysine 119 and repress gene transcription. Here, we report a PRC1-independent role of BMI1 that is critical for castration-resistant prostate cancer (CRPC) progression. BMI1 binds the androgen receptor (AR) and prevents MDM2-mediated AR protein degradation, resulting in sustained AR signaling in prostate cancer cells. More importantly, we demonstrate that targeting BMI1 effectively inhibits tumor growth of xenografts that have developed resistance to surgical castration and enzalutamide treatment. These results suggest that blocking BMI1 alone or in combination with anti-AR therapy can be more efficient to suppress prostate tumor growth.
Collapse
Affiliation(s)
- Sen Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Dongyu Zhao
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Lin Yan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jung-Sun Kim
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Bingnan Gu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Qipeng Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Rui Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Bo Xia
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Song
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, Beijing, 100034, China
| | - Wenyi Mi
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, 98195, USA.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 999078, China
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, V6H 3Z6, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA. .,Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
850
|
Akamatsu S, Inoue T, Ogawa O, Gleave ME. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018; 25:345-351. [PMID: 29396873 DOI: 10.1111/iju.13526] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
Collapse
Affiliation(s)
- Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Martin E Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|