801
|
Zhang D, She H, Rheindt FE, Wu L, Wang H, Zhang K, Cheng Y, Song G, Jia C, Qu Y, Olsson U, Alström P, Lei F. Genomic and phenotypic changes associated with alterations of migratory behaviour in a songbird. Mol Ecol 2023; 32:381-392. [PMID: 36326561 DOI: 10.1111/mec.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The seasonal migration of birds is a fascinating natural wonder. Avian migratory behaviour changes are common and are probably a polygenic process as avian migration is governed by multiple correlated components with a variable genetic basis. However, the genetic and phenotypic changes involving migration changes are poorly studied. Using one annotated near-chromosomal level de novo genome assembly, 50 resequenced genomes, hundreds of morphometric data and species distribution information, we investigated population structure and genomic and phenotypic differences associated with differences in migratory behaviour in a songbird species, Yellow-throated Bunting Emberiza elegans (Aves: Emberizidae). Population genomic analyses reveal extensive gene flow between the southern resident and the northern migratory populations of this species. The hand-wing index is significantly lower in the resident populations than in the migratory populations, indicating reduced flight efficiency of the resident populations. Here, we discuss the possibility that nonmigratory populations may have originated from migratory populations though migration loss. We further infer that the alterations of genes related to energy metabolism, nervous system and circadian rhythm may have played major roles in regulating migration change. Our study sheds light on phenotypic and polygenic changes involving migration change.
Collapse
Affiliation(s)
- Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Urban Olsson
- Department of Biology and Environmental Science, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Centre for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
802
|
Zhang J, Zhu J, Zhao B, Nie D, Wang W, Qi Y, Chen L, Li B, Chen B. LTF induces senescence and degeneration in the meniscus via the NF-κB signaling pathway: A study based on integrated bioinformatics analysis and experimental validation. Front Mol Biosci 2023; 10:1134253. [PMID: 37168259 PMCID: PMC10164984 DOI: 10.3389/fmolb.2023.1134253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Background: The functional integrity of the meniscus continually decreases with age, leading to meniscal degeneration and gradually developing into osteoarthritis (OA). In this study, we identified diagnostic markers and potential mechanisms of action in aging-related meniscal degeneration through bioinformatics and experimental verification. Methods: Based on the GSE98918 dataset, common differentially expressed genes (co-DEGs) were screened using differential expression analysis and the WGCNA algorithm, and enrichment analyses based on Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were further performed. Next, the co-DEGs were imported into the STRING database and Cytoscape to construct a protein‒protein interaction (PPI) network and further validated by three algorithms in cytoHubba, receiver operating characteristic (ROC) curve analysis and the external GSE45233 dataset. Moreover, the diagnostic marker lactotransferrin (LTF) was verified in rat models of senescence and replicative cellular senescence via RT‒qPCR, WB, immunohistochemistry and immunofluorescence, and then the potential molecular mechanism was explored by loss of function and overexpression of LTF. Results: According to the analysis of the GSE98918 dataset, we identified 52 co-DEGs (42 upregulated genes and 10 downregulated genes) in the OA meniscus. LTF, screened out by Cytoscape, ROC curve analysis in the GSE98918 dataset and another external GSE45233 dataset, might have good predictive power in meniscal degeneration. Our experimental results showed that LTF expression was statistically increased in the meniscal tissue of aged rats (24 months) and senescent passage 5th (P5) meniscal cells. In P5 meniscal cells, LTF knockdown inhibited the NF-κB signaling pathway and alleviated senescence. LTF overexpression in passage 0 (P0) meniscal cells increased the expression of senescence-associated secretory phenotype (SASP) and induced senescence by activating the NF-κB signaling pathway. However, the senescence phenomenon caused by LTF overexpression could be reversed by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Conclusion: For the first time, we found that increased expression of LTF was observed in the aging meniscus and could induce meniscal senescence and degeneration by activating the NF-κB signaling pathway. These results revealed that LTF could be a potential diagnostic marker and therapeutic target for age-related meniscal degeneration.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiayong Zhu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Boming Zhao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Daibang Nie
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yongjian Qi
- Department of Spine Surgery and Musculoskeletal Tumor, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Liaobin Chen, ; Bin Li, ; Biao Chen,
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Liaobin Chen, ; Bin Li, ; Biao Chen,
| | - Biao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Liaobin Chen, ; Bin Li, ; Biao Chen,
| |
Collapse
|
803
|
He Z, Gao K, Dong L, Liu L, Qu X, Zou Z, Wu Y, Bu D, Guo JC, Zhao Y. Drug screening and biomarker gene investigation in cancer therapy through the human transcriptional regulatory network. Comput Struct Biotechnol J 2023; 21:1557-1572. [PMID: 36879883 PMCID: PMC9984461 DOI: 10.1016/j.csbj.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
A complex and vast biological network regulates all biological functions in the human body in a sophisticated manner, and abnormalities in this network can lead to disease and even cancer. The construction of a high-quality human molecular interaction network is possible with the development of experimental techniques that facilitate the interpretation of the mechanisms of drug treatment for cancer. We collected 11 molecular interaction databases based on experimental sources and constructed a human protein-protein interaction (PPI) network and a human transcriptional regulatory network (HTRN). A random walk-based graph embedding method was used to calculate the diffusion profiles of drugs and cancers, and a pipeline was constructed by using five similarity comparison metrics combined with a rank aggregation algorithm, which can be implemented for drug screening and biomarker gene prediction. Taking NSCLC as an example, curcumin was identified as a potentially promising anticancer drug from 5450 natural small molecules, and combined with differentially expressed genes, survival analysis, and topological ranking, we obtained BIRC5 (survivin), which is both a biomarker for NSCLC and a key target for curcumin. Finally, the binding mode of curcumin and survivin was explored using molecular docking. This work has a guiding significance for antitumor drug screening and the identification of tumor markers.
Collapse
Affiliation(s)
- Zihao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kai Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lei Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinchi Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhengkai Zou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Cheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.,Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
804
|
Cao Y, Du Y, Jia W, Ding J, Yuan J, Zhang H, Zhang X, Tao K, Yang Z. Identification of biomarkers for the diagnosis of chronic kidney disease (CKD) with non-alcoholic fatty liver disease (NAFLD) by bioinformatics analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1125829. [PMID: 36923221 PMCID: PMC10009268 DOI: 10.3389/fendo.2023.1125829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) are closely related to immune and inflammatory pathways. This study aimed to explore the diagnostic markers for CKD patients with NAFLD. METHODS CKD and NAFLD microarray data sets were screened from the GEO database and analyzed the differentially expressed genes (DEGs) in GSE10495 of CKD date set. Weighted Gene Co-Expression Network Analysis (WGCNA) method was used to construct gene coexpression networks and identify functional modules of NAFLD in GSE89632 date set. Then obtaining NAFLD-related share genes by intersecting DEGs of CKD and modular genes of NAFLD. Then functional enrichment analysis of NAFLD-related share genes was performed. The NAFLD-related hub genes come from intersection of cytoscape software and machine learning. ROC curves were used to examine the diagnostic value of NAFLD related hub genes in the CKD data sets and GSE89632 date set of NAFLD. CIBERSORTx was also used to explore the immune landscape in GSE104954, and the correlation between immune infiltration and hub genes expression was investigated. RESULTS A total of 45 NAFLD-related share genes were obtained, and 4 were NAFLD-related hub genes. Enrichment analysis showed that the NAFLD-related share genes were significantly enriched in immune-related pathways, programmed cell death, and inflammatory response. ROC curve confirmed 4 NAFLD-related hub genes in CKD training set GSE104954 and other validation sets. Then they were used as diagnostic markers for CKD. Interestingly, these 4 diagnostic markers of CKD also showed good diagnostic value in the NAFLD date set GSE89632, so these genes may be important targets of NAFLD in the development of CKD. The expression levels of the 4 diagnostic markers for CKD were significantly correlated with the infiltration of immune cells. CONCLUSION 4 NAFLD-related genes (DUSP1, NR4A1, FOSB, ZFP36) were identified as diagnostic markers in CKD patients with NAFLD. Our study may provide diagnostic markers and therapeutic targets for CKD patients with NAFLD.
Collapse
Affiliation(s)
- Yang Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Weili Jia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Juzheng Yuan
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| |
Collapse
|
805
|
Baek M, Chai JC, Choi HI, Yoo E, Binas B, Lee YS, Jung KH, Chai YG. Analysis of differentially expressed long non-coding RNAs in LPS-induced human HMC3 microglial cells. BMC Genomics 2022; 23:853. [PMID: 36575377 PMCID: PMC9795738 DOI: 10.1186/s12864-022-09083-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA). RESULTS We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only one module, showing little or even enhancing effect on the other. CONCLUSIONS These results provide insight into, and a resource for studying, the regulation of microglia-mediated neuroinflammation and its potential therapy by small-molecule BET inhibitors.
Collapse
Affiliation(s)
- Mina Baek
- grid.49606.3d0000 0001 1364 9317Department of Molecular and Life Science, Hanyang University, Ansan, 15588 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Institute of Natural Science and Technology, Hanyang University, Ansan, 15588 Republic of Korea
| | - Jin Choul Chai
- grid.31501.360000 0004 0470 5905College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hae In Choi
- grid.49606.3d0000 0001 1364 9317Department of Bionanotechnology, Hanyang University, Seoul, 04673 Republic of Korea
| | - Eunyoung Yoo
- grid.49606.3d0000 0001 1364 9317Department of Bionanotechnology, Hanyang University, Seoul, 04673 Republic of Korea
| | - Bert Binas
- grid.49606.3d0000 0001 1364 9317Department of Molecular and Life Science, Hanyang University, Ansan, 15588 Republic of Korea
| | - Young Seek Lee
- grid.31501.360000 0004 0470 5905College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kyoung Hwa Jung
- Department of Biopharmaceutical System, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417 Republic of Korea
| | - Young Gyu Chai
- grid.49606.3d0000 0001 1364 9317Department of Molecular and Life Science, Hanyang University, Ansan, 15588 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Bionanotechnology, Hanyang University, Seoul, 04673 Republic of Korea
| |
Collapse
|
806
|
Liu S, Zhou C, Meng G, Wan T, Tang M, Yang C, Murphy RW, Fan Z, Liu Y, Zeng T, Zhao Y, Liu S. Evolution and diversification of Mountain voles (Rodentia: Cricetidae). Commun Biol 2022; 5:1417. [PMID: 36572770 PMCID: PMC9792541 DOI: 10.1038/s42003-022-04371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
The systematics of the Cricetid genus Neodon have long been fraught with uncertainty due to sampling issues and a lack of comprehensive datasets. To gain better insights into the phylogeny and evolution of Neodon, we systematically sampled Neodon across the Hengduan and Himalayan Mountains, which cover most of its range in China. Analyses of skulls, teeth, and bacular structures revealed 15 distinct patterns corresponding to 15 species of Neodon. In addition to morphological analyses, we generated a high-quality reference genome for the mountain vole and generated whole-genome sequencing data for 47 samples. Phylogenomic analyses supported the recognition of six new species, revealing a long-term underestimation of Neodon diversity. We further identified positively selected genes potentially related to high-elevation adaptation. Together, our results illuminate how climate change caused the plateau to become the centre of Neodon origin and diversification and how mountain voles have adapted to the hypoxic high-altitude plateau environment.
Collapse
Affiliation(s)
- Shaoying Liu
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China.
| | - Chengran Zhou
- BGI-Shenzhen, Shenzhen, 518083, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Tao Wan
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China
| | - Mingkun Tang
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China
| | | | - Robert W Murphy
- Reptilia Sanctuary and Education Centre, Concord, ON, L4K 2N6, Canada
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Zhenxin Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China
| | - Tao Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
807
|
Bioinformatics Analysis of miRNAs Targeting TRAF5 in DLBCL Involving in NF- κB Signaling Pathway and Affecting the Apoptosis and Signal Transduction. Genet Res (Camb) 2022; 2022:3222253. [PMID: 36619898 PMCID: PMC9803564 DOI: 10.1155/2022/3222253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma with high heterogeneity. There is an unmet need to investigate valid indicators for the diagnosis and therapy of DLBCL. Methods GEO database was utilized to screen for differentially expressed genes (DEGs) and differential miRNAs in DLBCL tissues. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyse DEGs. Then multiple databases were searched for related miRNAs within DLBCL, TNF receptor-associated factor 5 (TRAF5) and NF-kappa B (NF-κB) signaling pathways. The KOBAS database was used to assist in the screening of miRNAs of interest and construct the regulatory network of miRNA-mRNA. Finally, the expression level and diagnostic performance of miRNAs were analyzed with GEO datasets, and DEGs were identified from the GEPIA database. Results DEGs were significantly concentrated in the NF-κB signaling pathway and cytokine-cytokine receptor interaction, and involved in the process of immune response and protein binding. MiR-15a-5p, miR-147a, miR-192-5p, miR-197-3p, miR-532-5p, and miR-650 were revealed to be targeting TRAF5 and participating in NF-κB signaling pathway and might impact the apoptosis and signal transduction of DLBCL. In the GEPIA database, TRAF5 was significantly overexpressed in DLBCL. The expression of miR-197-3p was upregulated within GEO datasets, while the rest of the miRNAs were downregulated in DLBCL. Conclusions Subsets of miRNAs may participate in the NF-κB signaling pathway by co-targeting TRAF5 and could be prospective biomarkers exploring the pathogenesis of DLBCL.
Collapse
|
808
|
Zhang Y, Dong L, Sun L, Hu X, Wang X, Nie T, Li X, Wang P, Pang P, Pang J, Lu X, Yao K, You X. ML364 exerts the broad-spectrum antivirulence effect by interfering with the bacterial quorum sensing system. Front Microbiol 2022; 13:980217. [PMID: 36619997 PMCID: PMC9813848 DOI: 10.3389/fmicb.2022.980217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Antivirulence strategy has been developed as a nontraditional therapy which would engender a lower evolutionary pressure toward the development of antimicrobial resistance. However, the majority of the antivirulence agents currently in development could not meet clinical needs due to their narrow antibacterial spectrum and limited indications. Therefore, our main purpose is to develop broad-spectrum antivirulence agents that could target on both Gram-positive and Gram-negative pathogens. We discovered ML364, a novel scaffold compound, could inhibit the productions of both pyocyanin of Pseudomonas aeruginosa and staphyloxanthin of Staphylococcus aureus. Further transcriptome sequencing and enrichment analysis showed that the quorum sensing (QS) system of pathogens was mainly disrupted by ML364 treatment. To date, autoinducer-2 (AI-2) of the QS system is the only non-species-specific signaling molecule that responsible for the cross-talk between Gram-negative and Gram-positive species. And further investigation showed that ML364 treatment could significantly inhibit the sensing of AI-2 or its nonborated form DPD signaling in Vibrio campbellii MM32 and attenuate the biofilm formation across multi-species pathogens including Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The results of molecular docking and MM/GBSA free energy prediction showed that ML364 might have higher affinity with the receptors of DPD/AI-2, when compared with DPD molecule. Finally, the in vivo study showed that ML364 could significantly improve the survival rates of systemically infected mice and attenuate bacterial loads in the organs of mice. Overall, ML364 might interfere with AI-2 quorum sensing system to exert broad-spectrum antivirulence effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Youwen Zhang, ✉
| | - Limin Dong
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghe Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengbo Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Xuefu You, ✉
| |
Collapse
|
809
|
Im J, Lee D, Park OJ, Natarajan S, Park J, Yun CH, Han SH. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus growth inhibition by propionate. Front Microbiol 2022; 13:1063650. [PMID: 36620009 PMCID: PMC9814166 DOI: 10.3389/fmicb.2022.1063650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a pathogen that causes a variety of infectious diseases such as pneumonia, endocarditis, and septic shock. Methicillin-resistant S. aureus (MRSA) evades virtually all available treatments, creating the need for an alternative control strategy. Although we previously demonstrated the inhibitory effect of sodium propionate (NaP) on MRSA, the regulatory mechanism of this effect remains unclear. In this study, we investigated the regulatory mechanism responsible for the inhibitory effect of NaP on MRSA using RNA-Seq analysis. Total RNAs were isolated from non-treated and 50 mM NaP-treated S. aureus USA300 for 3 h and transcriptional profiling was conducted by RNA-Seq analysis. A total of 171 differentially expressed genes (DEGs) with log2 fold change ≥2 and p < 0.05 was identified in the NaP treatment group compared with the control group. Among the 171 genes, 131 were up-regulated and 40 were down-regulated. Upon gene ontology (GO) annotation analysis, total 26 specific GO terms in "Biological process," "Molecular function," and "Cellular component" were identified in MRSA treated with NaP for 3 h. "Purine metabolism"; "riboflavin metabolism"; and "glycine, serine, and threonine metabolism" were identified as major altered metabolic pathways among the eight significantly enriched KEGG pathways in MRSA treated with NaP. Furthermore, the MRSA strains deficient in purF, ilvA, ribE, or ribA, which were the up-regulated DEGs in the metabolic pathways, were more susceptible to NaP than wild-type MRSA. Collectively, these results demonstrate that NaP attenuates MRSA growth by altering its metabolic pathways, suggesting that NaP can be used as a potential bacteriostatic agent for prevention of MRSA infection.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | | | | | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea,Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea,*Correspondence: Seung Hyun Han,
| |
Collapse
|
810
|
Sharma T, Sridhar PS, Blackman C, Foote SJ, Allingham JS, Subramaniam R, Loewen MC. Fusarium graminearum Ste3 G-Protein Coupled Receptor: A Mediator of Hyphal Chemotropism and Pathogenesis. mSphere 2022; 7:e0045622. [PMID: 36377914 PMCID: PMC9769807 DOI: 10.1128/msphere.00456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Previous studies on Fusarium species have highlighted the involvement of the Ste2 G-protein-coupled receptor (GPCR) in mediating polarized hyphal growth toward host-released peroxidase. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to Fusarium graminearum chemotropism and pathogenicity. Fgste3Δ deletion strains were found to be compromised in the chemotropic response toward peroxidase, development of lesions on germinating wheat, and infection of Arabidopsis thaliana leaves. In the absence of FgSte3 or FgSte2, F. graminearum cells exposed to peroxidase showed no phosphorylation of the cell-wall integrity, mitogen-activated protein kinase pathway component Mgv1. In addition, transcriptomic gene expression profiling yielded a list of genes involved in cellular reorganization, cell wall remodeling, and infection-mediated responses that were differentially modulated by peroxidase when FgSte3 was present. Deletion of FgSte3 yielded the downregulation of genes associated with mycotoxin biosynthesis and appressorium development, compared to the wild-type strain, both in the presence of peroxidase. Together, these findings contribute to our understanding of the mechanism underlying fungal chemotropism and pathogenesis while raising the novel hypothesis that FgSte2 and FgSte3 are interdependent on each other for the mediation of the redirection of hyphal growth in response to host-derived peroxidase. IMPORTANCE Fusarium head blight of wheat, caused by the filamentous fungus Fusarium graminearum, leads to devastating global food shortages and economic losses. Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to F. graminearum chemotropism and pathogenicity. These findings contribute to our understanding of the mechanisms underlying fungal chemotropism and pathogenesis.
Collapse
Affiliation(s)
- Tanya Sharma
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Pooja S. Sridhar
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Christopher Blackman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Simon J. Foote
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Rajagopal Subramaniam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Michele C. Loewen
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
811
|
Yang Y, Sun Y, Wang Z, Yin M, Sun R, Xue L, Huang X, Wang C, Yan X. Full-length transcriptome and metabolite analysis reveal reticuline epimerase-independent pathways for benzylisoquinoline alkaloids biosynthesis in Sinomenium acutum. FRONTIERS IN PLANT SCIENCE 2022; 13:1086335. [PMID: 36605968 PMCID: PMC9808091 DOI: 10.3389/fpls.2022.1086335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a large family of plant natural products with important pharmaceutical applications. Sinomenium acutum is a medicinal plant from the Menispermaceae family and has been used to treat rheumatoid arthritis for hundreds of years. Sinomenium acutum contains more than 50 BIAs, and sinomenine is a representative BIA from this plant. Sinomenine was found to have preventive and curative effects on opioid dependence. Despite the broad applications of S. acutum, investigation on the biosynthetic pathways of BIAs from S. acutum is limited. In this study, we comprehensively analyzed the transcriptome data and BIAs in the root, stem, leaf, and seed of S. acutum. Metabolic analysis showed a noticeable difference in BIA contents in different tissues. Based on the study of the full-length transcriptome, differentially expressed genes, and weighted gene co-expression network, we proposed the biosynthetic pathways for a few BIAs from S. acutum, such as sinomenine, magnoflorine, and tetrahydropalmatine, and screened candidate genes involved in these biosynthesis processes. Notably, the reticuline epimerase (REPI/STORR), which converts (S)-reticuline to (R)-reticuline and plays an essential role in morphine and codeine biosynthesis, was not found in the transcriptome data of S. acutum. Our results shed light on the biogenesis of the BIAs in S. acutum and may pave the way for the future development of this important medicinal plant.
Collapse
Affiliation(s)
- Yufan Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ying Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- WuXi AppTec (Tianjin) Co., Ltd., Tianjin, China
| | - Zhaoxin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Maojing Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Runze Sun
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lu Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
812
|
In Silico Genome-Wide Mining and Analysis of Terpene Synthase Gene Family in Hevea Brasiliensis. Biochem Genet 2022; 61:1185-1209. [DOI: 10.1007/s10528-022-10311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
|
813
|
Tao G, Jiao C, Wang Y, Zhou Q. Comprehensive analysis of hypoxia-related genes for prognosis, immune features, and drugs treatment strategy in gastric cancer using bulk and single-cell RNA-sequencing. Sci Rep 2022; 12:21739. [PMID: 36526698 PMCID: PMC9758178 DOI: 10.1038/s41598-022-26395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is one of the malignant characteristics of solid tumors and is related to the multiple malignant characteristics of the tumor. No study has not yet reported a systematical analysis of the characteristics of hypoxia from single-cell resolution in gastric cancer. In our research, we investigated the hypoxia features of various types of cells in single-cell resolution, identified hypoxia-related genes by the weighted gene co-expression network analysis method. Through the hypoxia-related genes from single-cell levels, we screened out 13 genes and established a prognostic model. This model performs well in the training dataset and multiple independent verification data sets. We thought that tumor hypoxia might affect the DNA methylation of cells and promote the transcription of genes associated with malignant features, thereby promoting tumor progression. We found that the more tumor associated genes in the high-risk group showed hypomethylation and high hypoxia-risk score group have more tumor-related genes, more immunosuppressive immune cells and more enrichment of cancer -related pathways. The lower risk group is more sensitive to three chemotherapy drugs for gastric cancer. Our study illustrates the crucial role of hypoxia in gastric cancer. Hypoxia-related gene prognostic model has been established and has good performance. Hypoxia-related risk score can also be used to guide a patient's drug treatment strategy.
Collapse
Affiliation(s)
- Guoqiang Tao
- grid.459502.fDepartment of General Surgery, Shanghai Punan Hospital, NO. 279 Linyi Road, Pudong New District, Shanghai, China
| | - Chengwen Jiao
- grid.459502.fDepartment of General Surgery, Shanghai Punan Hospital, NO. 279 Linyi Road, Pudong New District, Shanghai, China
| | - Yong Wang
- grid.459502.fDepartment of General Surgery, Shanghai Punan Hospital, NO. 279 Linyi Road, Pudong New District, Shanghai, China
| | - Qi Zhou
- grid.459502.fDepartment of General Surgery, Shanghai Punan Hospital, NO. 279 Linyi Road, Pudong New District, Shanghai, China
| |
Collapse
|
814
|
Zheng J, Li C, Zheng X. Polystyrene microplastic ingestion induces the damage in digestive gland of Amphioctopus fangsiao at the physiological, inflammatory, metabolome and transcriptomic levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120480. [PMID: 36273692 DOI: 10.1016/j.envpol.2022.120480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are ubiquitous in the aquatic and terrestrial ecosystem, increasingly becoming a serious concern for aquatic organism health. However, information regarding the effects of microplastics on cephalopods is remain limited to date. Amphioctopus fangsiao, an important economic species in cephalopods, can serve as a potential indicator of environmental pollution due to its short life expectancy and high metabolic rates. Here, to explore the toxic effects during the microplastic stress response, we analyzed the growth performance, histopathological damage, oxidative stress biomarkers, metabolomic and transcriptomic response in digestive gland of A. fangsiao under different concentrations (0, 100 and 1000 μg/L) of commercial polystyrene microplastics (MPS) exposure (5 μm, sphere) for 21 days. The results showed that MPS exerted a huge influence on the growth performance of A. fangsiao. The oxidative stress and inflammation in digestive gland of A. fangsiao were also detected after exposure to MPS. In addition, most of the altered metabolites observed in the metabolic analysis were related to inflammation, oxidative stress and glucolipid metabolism. Transcriptome analysis detected the differentially expressed genes (DEGs) and the significantly enriched KEGG pathways associated with glycolipid metabolism, inflammation and DNA damage. Collectively, our results indicate that excessive environmental microplastic exposure will cause toxicity damage and then initiate the detoxification mechanism in A. fangsiao digestive gland to maintain homeostasis. This study revealed that microplastic can cause adverse consequences on cephalopods, providing novel insights into the toxicological effect of microplastic exposure.
Collapse
Affiliation(s)
- Jian Zheng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Xiaodong Zheng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
815
|
Liu Y, Zhang M, Wang R, Li B, Jiang Y, Sun M, Chang Y, Wu J. Comparison of structural variants detected by PacBio-CLR and ONT sequencing in pear. BMC Genomics 2022; 23:830. [PMID: 36517766 PMCID: PMC9753399 DOI: 10.1186/s12864-022-09074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Structural variations (SVs) have recently become a topic of great interest in the area of genetic diversity and trait regulation. As genomic sequencing technologies have rapidly advanced, longer reads have been used to identify SVs at high resolution and with increased accuracy. It is important to choose a suitable sequencing platform and appropriate sequencing depth for SV detection in the pear genome. RESULTS In this study, two types of long reads from sequencing platforms, continuous long reads from Pacific Biosciences (PB-CLR) and long reads from Oxford Nanopore Technologies (ONT), were used to comprehensively analyze and compare SVs in the pear genome. The mapping rate of long reads was higher when the program Minimap2 rather than the other three mapping tools (NGMLR, LRA and Winnowmap2) was used. Three SV detection programs (Sniffles_v2, CuteSV, and Nanovar) were compared, and Nanovar had the highest sensitivity in detecting SVs at low sequencing depth (10-15×). A sequencing depth of 15× was suitable for SV detection in the pear genome using Nanovar. SVs detected by Sniffles_v2 and CuteSV with ONT reads had the high overlap with presence/absence variations (PAVs) in the pear cultivars 'Bartlett' and 'Dangshansuli', both of them with 38% of insertions and 55% of deletions overlapping with PAVs at sequencing depth of 30×. For the ONT sequencing data, over 37,526 SVs spanning ~ 28 Mb were identified by all three software packages for the 'Bartlett' and 'Dangshansuli' genomes. Those SVs were annotated and combined with transcriptome profiles derived from 'Bartlett' and 'Dangshansuli' fruit flesh at 60 days after cross-pollination. Several genes related to levels of sugars, acid, stone cells, and aromatic compounds were identified among the SVs. Transcription factors were then predicted among those genes, and results included bHLH, ERF, and MYB genes. CONCLUSION SV detection is of great significance in exploring phenotypic differences between pear varieties. Our study provides a framework for assessment of different SV software packages and sequencing platforms that can be applied in other plant genome studies. Based on these analyses, ONT sequencing data was determined to be more suitable than PB-CLR for SV detection in the pear genome. This analysis model will facilitate screening of genes related to agronomic traits in other crops.
Collapse
Affiliation(s)
- Yueyuan Liu
- grid.27871.3b0000 0000 9750 7019State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Mingyue Zhang
- grid.440622.60000 0000 9482 4676College of Horticultural Science and engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Runze Wang
- grid.27871.3b0000 0000 9750 7019State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Benping Li
- grid.410753.4Novogene Bioinformatics Institute, Beijing, China
| | - Yafei Jiang
- grid.410753.4Novogene Bioinformatics Institute, Beijing, China
| | - Manyi Sun
- grid.27871.3b0000 0000 9750 7019State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Yaojun Chang
- grid.27871.3b0000 0000 9750 7019State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jun Wu
- grid.27871.3b0000 0000 9750 7019State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
816
|
Wang K, Wen Z, Asiegbu FO. The dark septate endophyte Phialocephala sphaeroides suppresses conifer pathogen transcripts and promotes root growth of Norway spruce. TREE PHYSIOLOGY 2022; 42:2627-2639. [PMID: 35878416 PMCID: PMC9743008 DOI: 10.1093/treephys/tpac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Plant-associated microbes including dark septate endophytes (DSEs) of forest trees play diverse functional roles in host fitness including growth promotion and increased defence. However, little is known about the impact on the fungal transcriptome and metabolites during tripartite interaction involving plant host, endophyte and pathogen. To understand the transcriptional regulation of endophyte and pathogen during co-infection, Norway spruce (Picea abies) seedlings were infected with DSE Phialocephala sphaeroides, or conifer root-rot pathogen Heterobasidion parviporum, or both. Phialocephala sphaeroides showed low but stable transcripts abundance (a decrease of 40%) during interaction with Norway spruce and conifer pathogen. By contrast, H. parviporum transcripts were significantly reduced (92%) during co-infection. With RNA sequencing analysis, P. sphaeroides experienced a shift from cell growth to anti-stress and antagonistic responses, while it repressed the ability of H. parviporum to access carbohydrate nutrients by suppressing its carbohydrate/polysaccharide-degrading enzyme machinery. The pathogen on the other hand secreted cysteine peptidase to restrict free growth of P. sphaeroides. The expression of both DSE P. sphaeroides and pathogen H. parviporum genes encoding plant growth promotion products were equally detected in both dual and tripartite interaction systems. This was further supported by the presence of tryptophan-dependent indolic compound in liquid culture of P. sphaeroides. Norway spruce and Arabidopsis seedlings treated with P. sphaeroides culture filtrate exhibited auxin-like phenotypes, such as enhanced root hairs, and primary root elongation at low concentration but shortened primary root at high concentration. The results suggested that the presence of the endophyte had strong repressive or suppressive effect on H. parviporum transcripts encoding genes involved in nutrient acquisition.
Collapse
Affiliation(s)
- Kai Wang
- Corresponding authors: K.Wang (; ) and F.Asiegbu ()
| | - Zilan Wen
- Department of Forest Sciences, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | | |
Collapse
|
817
|
Lin Z, Li H, Luo W, Xu Y, Xu G, Ji R, Liu Z, Zhang H, Lin Z, Li G, Qiu Y, Qiu S, Tang H. Genome sequence resource of Pectobacterium polaris QK413-1 that causes blackleg on potato in Fujian Province, China. PLANT DISEASE 2022; 107:1151-1158. [PMID: 36510425 DOI: 10.1094/pdis-08-22-1861-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Pectobacterium pathogens cause soft rot and blackleg diseases on many plants and crops, including potatoes. Here we first report a high-quality genome assembly and announcement of the P. polaris strain QK413-1, which causes blackleg disease in potatoes in China. The QK413-1 genome was sequenced and assembled using the PacBio Sequel II and Illumina sequencing platform. The assembled genome has a total size of 5,005,507bp with a GC content of 51.81%, encoding 4782 open reading frames, including 639 virulence genes, 273 drug resistance genes, and 416 secreted proteins. The QK413-1 genome sequence provides a valuable resource for the control of potato blackleg and research into its mechanism.
Collapse
Affiliation(s)
| | - Huawei Li
- Xifeng Road 100Fuzhou, Fujian, China, 350013;
| | | | | | | | | | | | | | | | | | | | | | - Hao Tang
- Fujian Academy of Agricultural Sciences, 107629, Institute of Crop Sciences, Fuzhou, Fujian, China;
| |
Collapse
|
818
|
Hu Z, Wang X, Meng L, Liu W, Wu F, Meng X. Detection of Association Features Based on Gene Eigenvalues and MRI Imaging Using Genetic Weighted Random Forest. Genes (Basel) 2022; 13:2344. [PMID: 36553611 PMCID: PMC9777775 DOI: 10.3390/genes13122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
In the studies of Alzheimer's disease (AD), jointly analyzing imaging data and genetic data provides an effective method to explore the potential biomarkers of AD. AD can be separated into healthy controls (HC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and AD. In the meantime, identifying the important biomarkers of AD progression, and analyzing these biomarkers in AD provide valuable insights into understanding the mechanism of AD. In this paper, we present a novel data fusion method and a genetic weighted random forest method to mine important features. Specifically, we amplify the difference among AD, LMCI, EMCI and HC by introducing eigenvalues calculated from the gene p-value matrix for feature fusion. Furthermore, we construct the genetic weighted random forest using the resulting fused features. Genetic evolution is used to increase the diversity among decision trees and the decision trees generated are weighted by weights. After training, the genetic weighted random forest is analyzed further to detect the significant fused features. The validation experiments highlight the performance and generalization of our proposed model. We analyze the biological significance of the results and identify some significant genes (CSMD1, CDH13, PTPRD, MACROD2 and WWOX). Furthermore, the calcium signaling pathway, arrhythmogenic right ventricular cardiomyopathy and the glutamatergic synapse pathway were identified. The investigational findings demonstrate that our proposed model presents an accurate and efficient approach to identifying significant biomarkers in AD.
Collapse
Affiliation(s)
- Zhixi Hu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xuanyan Wang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Li Meng
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Feng Wu
- School of Electrical & Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| |
Collapse
|
819
|
Zuo JF, Chen Y, Ge C, Liu JY, Zhang YM. Identification of QTN-by-environment interactions and their candidate genes for soybean seed oil-related traits using 3VmrMLM. FRONTIERS IN PLANT SCIENCE 2022; 13:1096457. [PMID: 36578334 PMCID: PMC9792120 DOI: 10.3389/fpls.2022.1096457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Introduction Although seed oil content and its fatty acid compositions in soybean were affected by environment, QTN-by-environment (QEIs) and gene-by-environment interactions (GEIs) were rarely reported in genome-wide association studies. Methods The 3VmrMLM method was used to associate the trait phenotypes, measured in five to seven environments, of 286 soybean accessions with 106,013 SNPs for detecting QTNs and QEIs. Results Seven oil metabolism genes (GmSACPD-A, GmSACPD-B, GmbZIP123, GmSWEET39, GmFATB1A, GmDGAT2D, and GmDGAT1B) around 598 QTNs and one oil metabolism gene GmFATB2B around 54 QEIs were verified in previous studies; 76 candidate genes and 66 candidate GEIs were predicted to be associated with these traits, in which 5 genes around QEIs were verified in other species to participate in oil metabolism, and had differential expression across environments. These genes were found to be related to soybean seed oil content in haplotype analysis. In addition, most candidate GEIs were co-expressed with drought response genes in co-expression network, and three KEGG pathways which respond to drought were enriched under drought stress rather than control condition; six candidate genes were hub genes in the co-expression networks under drought stress. Discussion The above results indicated that GEIs, together with drought response genes in co-expression network, may respond to drought, and play important roles in regulating seed oil-related traits together with oil metabolism genes. These results provide important information for genetic basis, molecular mechanisms, and soybean breeding for seed oil-related traits.
Collapse
Affiliation(s)
- Jian-Fang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Yang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
820
|
Si H, Li S, Nan W, Sang J, Xu C, Li Z. Integrated Transcriptome and Microbiota Reveal the Regulatory Effect of 25-Hydroxyvitamin D Supplementation in Antler Growth of Sika Deer. Animals (Basel) 2022; 12:ani12243497. [PMID: 36552417 PMCID: PMC9774409 DOI: 10.3390/ani12243497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The level of plasma 25-hydroxyvitamin D (25(OH)D) is associated with the growth of the antler, a fast-growing bone organ of Cervidae. However, the benefits of 25(OH)D supplementation on antler growth and the underlying mechanisms remain unclear. Here, the antler growth profile and transcriptome, plasma parameters, rumen bacteria, and metabolites (volatile fatty acids and amino acids) were determined in sika deer in a 25(OH)D supplementation group (25(OH)D, n = 8) and a control group (Ctrl, n = 8). 25(OH)D supplementation significantly increased the antler weight and growth rate. The levels of IGF-1,25(OH)D and 1,25-dihydroxyvitamin D were significantly higher in the 25(OH)D group than in the Ctrl group, while the levels of LDL-C were lower. The levels of valerate and branched-chain amino acids in the rumen fluid were significantly different between the 25(OH)D and Ctrl groups. The bacterial diversity indices were not significantly different between the two groups. However, the relative abundances of the butyrate-producing bacteria (families Lachnospiraceae and Succinivibrionaceae) and the pyruvate metabolism pathway were higher in the 25(OH)D group. The transcriptomic profile of the antler was significantly different between the 25(OH)D and Ctrl groups, with 356 up- and 668 down-regulated differentially expressed genes (DEGs) in the 25(OH)D group. The up-regulated DEGs were enriched in the proteinaceous extracellular matrix and collagen, while the down-regulated DEGs were enriched in the immune system and lipid metabolism pathways. Overall, these results provide novel insights into the effects of 25(OH)D supplementation on the host metabolism, rumen microbiota, and antler transcriptome of sika deer.
Collapse
Affiliation(s)
- Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Weixiao Nan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Sang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chao Xu
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Correspondence: (C.X.); (Z.L.)
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (C.X.); (Z.L.)
| |
Collapse
|
821
|
Yu M, Zhang X, Yan J, Guo J, Zhang F, Zhu K, Liu S, Sun Y, Shen W, Wang J. Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey. Genes (Basel) 2022; 13:genes13122339. [PMID: 36553607 PMCID: PMC9777602 DOI: 10.3390/genes13122339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Donkeys, with high economic value for meat, skin and milk production, are important livestock. However, the current insights into reproduction of donkeys are far from enough. To obtain a deeper understanding, the differential expression analysis and weighted gene co-expression network analysis (WGCNA) of transcriptomic data of testicular and epididymis tissues in donkeys were performed. In the result, there were 4313 differentially expressed genes (DEGs) in the two tissues, including 2047 enriched in testicular tissue and 2266 in epididymis tissue. WGCNA identified 1081 hub genes associated with testis development and 6110 genes with epididymal development. Next, the tissue-specific genes were identified with the above two methods, and the gene ontology (GO) analysis revealed that the epididymal-specific genes were associated with gonad development. On the other hand, the testis-specific genes were involved in the formation of sperm flagella, meiosis period, ciliary assembly, ciliary movement, etc. In addition, we found that eca-Mir-711 and eca-Mir-143 likely participated in regulating the development of epididymal tissue. Meanwhile, eca-Mir-429, eca-Mir-761, eca-Mir-200a, eca-Mir-191 and eca-Mir-200b potentially played an important role in regulating the development of testicular tissue. In short, these results will contribute to functional studies of the male reproductive trait in donkeys.
Collapse
Affiliation(s)
- Mubin Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyuan Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiamao Yan
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianhua Guo
- Jiaozhou Agricultural and Rural Bureau, Jiaozhou 266300, China
| | - Fali Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kexin Zhu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: (W.S.); (J.W.)
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: (W.S.); (J.W.)
| |
Collapse
|
822
|
Bu F, Guan R, Wang W, Liu Z, Yin S, Zhao Y, Chai J. Bioinformatics and systems biology approaches to identify the effects of COVID-19 on neurodegenerative diseases: A review. Medicine (Baltimore) 2022; 101:e32100. [PMID: 36626425 PMCID: PMC9750669 DOI: 10.1097/md.0000000000032100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin 150040, Heilongjiang Province, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Wanyu Wang
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Zhao Liu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Jianbo Chai
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| |
Collapse
|
823
|
Detection of Selection Signatures in Anqing Six-End-White Pigs Based on Resequencing Data. Genes (Basel) 2022; 13:genes13122310. [PMID: 36553577 PMCID: PMC9777694 DOI: 10.3390/genes13122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
As a distinguished Chinese indigenous pig breed that exhibits disease resistance and high meat quality, the Anqing six-end-white (AQ) pig represents a valuable germplasm resource for improving the quality of the pig breeding industry. In this study, 24 AQ pigs that were distantly blood-related and 6 Asian Wild Boar (AWB) were selected for 10× deep-genome resequencing. The signatures of the selection were analyzed to explore the genetic basis of their germplasm characteristics and to identify excellent germplasm-related functional genes based on NGS data. A total of 49,289,052 SNPs and 6,186,123 indels were detected across the genome in 30 pigs. Most of the genetic variations were synonym mutations and existed in the intergenic region. We identified 275 selected regions (top 1%) harboring 85 genes by applying a crossover approach based on genetic differentiation (FST) and polymorphism levels (π ratio). Some genes were found to be positively selected in AQ pigs' breeding. The SMPD4 and DDX18 genes were involved in the immune response to pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV). The BCL6 and P2RX6 genes were involved in biological regulation of immune T cells and phagocytes. The SLC7A4 and SPACA4 genes were related to reproductive performance. The MSTN and HIF1A genes were related to fat deposition and muscle development. Moreover, 138 overlapping regions were detected in selected regions and ROH islands of AQ pigs. Additionally, we found that the QTLs with the most overlapping regions were related to back fat thickness, meat color, pH value, fatty acid content, immune cells, parasitic immunity, and bacterial immunity. Based on functional enrichment analysis and QTLs mapping, we conducted further research on the molecular genetic basis of germplasm traits (disease resistance and excellent meat quality). These results are a reliable resource for conserving germplasm resources and exploiting molecular markers of AQ pigs.
Collapse
|
824
|
Zhou Y, Liu J, Wu S, Li W, Zheng Y. Case report: A heterozygous mutation in ZNF462 leads to growth hormone deficiency. Front Genet 2022; 13:1015021. [PMID: 36568367 PMCID: PMC9770794 DOI: 10.3389/fgene.2022.1015021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Weiss-Kruszka syndrome (WSKA) is a rare disease most often caused by mutations in the ZNF462 gene. To screen for hereditary diseases, exons from the patient's genome were sequenced. Genomic PCR experiments followed by Sanger sequencing were used to confirm the mutated genomic regions in the patient and his parents. We report a new mutation site, a heterozygous mutation (NM_021224.6:c.6311dup) in ZNF462 in a male patient of 8 years old. The mutation in the ZNF462 gene caused WSKA. This patient is the first case with WSKA characterized by attention-deficit hyperactivity disorder and complete growth hormone deficiency without pituitary lesions. Our results suggest that the heterozygous mutation in ZNF462 is the direct cause of WSKA in this patient. Mutations in other genes interacting with ZNF462 result in similar symptoms of WSKA. Furthermore, ZNF462 and its interacting proteins ASXL2 and VPS13B may form a protein complex that is important for normal development but awaits more studies to reveal its detailed functions.
Collapse
Affiliation(s)
- Yikun Zhou
- Department of Endocrinology and Metabolism, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,*Correspondence: Yikun Zhou, ; Yun Zheng,
| | - Jianmei Liu
- Department of Endocrinology and Metabolism, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yun Zheng
- Department of Endocrinology and Metabolism, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China,College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China,*Correspondence: Yikun Zhou, ; Yun Zheng,
| |
Collapse
|
825
|
Genomics, Origin and Selection Signals of Loudi Cattle in Central Hunan. BIOLOGY 2022; 11:biology11121775. [PMID: 36552284 PMCID: PMC9775101 DOI: 10.3390/biology11121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Due to the geographical, cultural and environmental variability in Xiangxi, China, distinctive indigenous cattle populations have formed. Among them, Loudi cattle and Xiangxi cattle are the local cattle in Hunan, and the environment in Loudi is relatively more enclosed and humid than that in Xiangxi. To study the genome and origin of Loudi cattle in hot and humid environments, 29 individuals were collected and sequenced by whole-genome resequencing. In addition, genomic data were obtained from public databases for 96 individuals representing different cattle breeds worldwide, including 23 Xiangxi cattle from western Hunan. Genetic analysis indicated that the genetic diversity of Loudi cattle was close to that of Chinese cattle and higher than that of other breeds. Population structure and ancestral origin analysis indicated the relationship between Loudi cattle and other breeds. Loudi has four distinctive seasons, with a stereoscopic climate and extremely rich water resources. Selective sweep analysis revealed candidate genes and pathways associated with environmental adaptation and homeostasis. Our findings provide a valuable source of information on the genetic diversity of Loudi cattle and ideas for population conservation and genome-associated breeding of local cattle in today's extreme climate environment.
Collapse
|
826
|
Tan B, Zeng J, Meng F, Wang S, Xiao L, Zhao X, Hong L, Zheng E, Wu Z, Li Z, Gu T. Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles. BMC Genomics 2022; 23:804. [PMID: 36474138 PMCID: PMC9724443 DOI: 10.1186/s12864-022-09043-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Different types of skeletal myofibers exhibit distinct physiological and metabolic properties that are associated with meat quality traits in livestock. Alternative splicing (AS) of pre-mRNA can generate multiple transcripts from an individual gene by differential selection of splice sites. N6-methyladenosine (m6A) is the most abundant modification in mRNAs, but its regulation for AS in different muscles remains unknown. RESULTS: We characterized AS events and m6A methylation pattern in pig oxidative and glycolytic muscles. A tota1 of 1294 differential AS events were identified, and differentially spliced genes were significantly enriched in processes related to different phenotypes between oxidative and glycolytic muscles. We constructed the regulatory network between splicing factors and corresponding differential AS events and identified NOVA1 and KHDRBS2 as key splicing factors. AS event was enriched in m6A-modified genes, and the methylation level was positively correlated with the number of AS events in genes. The dynamic change in m6A enrichment was associated with 115 differentially skipping exon (SE-DAS) events within 92 genes involving in various processes, including muscle contraction and myofibril assembly. We obtained 23.4% SE-DAS events (27/115) regulated by METTL3-meditaed m6A and experimentally validated the aberrant splicing of ZNF280D, PHE4DIP, and NEB. The inhibition of m6A methyltransferase METTL3 could induce the conversion of oxidative fiber to glycolytic fiber in PSCs. CONCLUSION Our study suggested that m6A modification could contribute to significant difference in phenotypes between oxidative and glycolytic muscles by mediating the regulation of AS. These findings would provide novel insights into mechanisms underlying muscle fiber conversion.
Collapse
Affiliation(s)
- Baohua Tan
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Jiekang Zeng
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fanming Meng
- grid.135769.f0000 0001 0561 6611State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, Guangdong People’s Republic of China
| | - Shanshan Wang
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Liyao Xiao
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xinming Zhao
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Linjun Hong
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Enqin Zheng
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Zhenfang Wu
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, 510642 Guangzhou, China
| | - Zicong Li
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Ting Gu
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
827
|
Ye J, Zhang M, Yuan X, Hu D, Zhang Y, Xu S, Li Z, Li R, Liu J, Sun Y, Wang S, Feng Y, Xu Q, Yang Y, Wei X. Genomic insight into genetic changes and shaping of major inbred rice cultivars in China. THE NEW PHYTOLOGIST 2022; 236:2311-2326. [PMID: 36114658 DOI: 10.1111/nph.18500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/25/2022] [Indexed: 05/28/2023]
Abstract
The annual planting area of major inbred rice (Oryza sativa) cultivars reach more than half of the total annual planting area of inbred rice cultivars in China. However, how the major inbred rice cultivars changed during decades of genetic improvement and why they can be prevalently cultivated in China remains unclear. Here, we investigated the underlying genetic changes of major inbred cultivars and the contributions of landraces and introduced cultivars during the improvement by resequencing a collection of 439 rice accessions including major inbred cultivars, landraces, and introduced cultivars. The results showed that landraces were the main genetic contribution sources of major inbred Xian (Indica) cultivars, while introduced cultivars were that of major inbred Geng (Japonica) cultivars. Selection scans and haplotype frequency analysis shed light on the reflections of some well-known genes in rice improvement, and breeders had different preferences for the Xian's and Geng's breeding. Six candidate regions associated with agronomic traits were identified by genome-wide association mapping, five of which were under positive selection in rice improvement. Our study provides a comprehensive insight into the development of major inbred rice cultivars and lays the foundation for genomics-based breeding in rice.
Collapse
Affiliation(s)
- Junhua Ye
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Mengchen Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaoping Yuan
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dongxiu Hu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuanyuan Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Siliang Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhen Li
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruosi Li
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junrong Liu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yanfei Sun
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shan Wang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yue Feng
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qun Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yaolong Yang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xinghua Wei
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
828
|
Lei T, Zhang J, Zhang Q, Ma X, Xu Y, Zhao Y, Zhang L, Lu Z, Zhao Y. Defining newly formed and tissue-resident bone marrow-derived macrophages in adult mice based on lysozyme expression. Cell Mol Immunol 2022; 19:1333-1346. [PMID: 36348079 PMCID: PMC9708686 DOI: 10.1038/s41423-022-00936-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue-resident macrophages are derived from different precursor cells and display different phenotypes. Reconstitution of the tissue-resident macrophages of inflamed or damaged tissues in adults can be achieved by bone marrow-derived monocytes/macrophages. Using lysozyme (Lysm)-GFP-reporter mice, we found that alveolar macrophages (AMs), Kupffer cells, red pulp macrophages (RpMacs), and kidney-resident macrophages were Lysm-GFP-, whereas all monocytes in the fetal liver, adult bone marrow, and blood were Lysm-GFP+. Donor-derived Lysm-GFP+ resident macrophages gradually became Lysm-GFP- in recipients and developed gene expression profiles characteristic of tissue-resident macrophages. Thus, Lysm may be used to distinguish newly formed and long-term surviving tissue-resident macrophages that were derived from bone marrow precursor cells in adult mice under pathological conditions. Furthermore, we found that Irf4 might be essential for resident macrophage differentiation in all tissues, while cytokine and receptor pathways, mTOR signaling pathways, and fatty acid metabolic processes predominantly regulated the differentiation of RpMacs, Kupffer cells, and kidney macrophages, respectively. Deficiencies in ST2, mechanistic target of rapamycin (mTOR) and fatty acid-binding protein 5 (FABP5) differentially impaired the differentiation of tissue-resident macrophages from bone marrow-derived monocytes/macrophages in the lungs, liver, and kidneys. These results indicate that a combination of shared and unique signaling pathways coordinately shape tissue-resident macrophage differentiation in various tissues.
Collapse
Affiliation(s)
- Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
829
|
Wu X, Zhou X, Chu M, Guo X, Pei J, Xiong L, Ma X, Bao P, Liang C, Yan P. Whole transcriptome analyses and comparison reveal the metabolic differences between oxidative and glycolytic skeletal muscles of yak. Meat Sci 2022; 194:108948. [PMID: 36058093 DOI: 10.1016/j.meatsci.2022.108948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
Mammalian skeletal muscle is composed of various muscle fibers that exhibit different physiological and metabolic features. Muscle fiber type composition has significant influences on the meat quality of livestock. In this study, we comprehensively analyzed the whole transcriptome profiles of the oxidative muscle biceps femoris (BF) and the glycolytic muscle obliquus externus abdominis (OEA) of yak. A total of 1436 mRNAs, 1172 lncRNAs, and 218 circRNAs were differentially expressed in the oxidative muscles compared with the glycolytic muscles. KEGG annotation showed that differentially expressed mRNAs regulated by lncRNA and circRNA were mainly involved in PPAR signaling pathway, citrate cycle (TCA cycle), and PI3K-Akt signaling pathway, which reflect the different metabolic properties between oxidative and glycolytic muscles. In addition, regulatory networks associated with muscle fiber type conversion and mitochondria energy metabolism in muscles were constructed. Our study provides new evidence for a better understanding of the molecular mechanisms underlying skeletal muscle fiber determination and meat quality traits of yak.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xuelan Zhou
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
830
|
Huang H, Gao C, Wang S, Wu F, Wei J, Peng J. Bulk RNA-seq and scRNA-seq analysis reveal an activation of immune response and compromise of secretory function in major salivary glands of obese mice. Comput Struct Biotechnol J 2022; 21:105-119. [PMID: 36544475 PMCID: PMC9735269 DOI: 10.1016/j.csbj.2022.11.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity affects the function of multiple organs/tissues including the exocrine organ salivary glands. However, the effects of obesity on transcriptomes and cell compositions in the salivary glands have yet been studied by bulk RNA-sequencing and single-cell RNA-sequencing. Besides, the cell types in the sublingual gland, one of the three major salivary glands, have yet been characterized by the approach of single-cell RNA-sequencing. In this report, we find that the histological structure of the three major salivary glands are not obviously affected in the obese mice. Bulk RNA-sequencing analysis shows that the most prominent changes observed in the three major salivary glands of the obese mice are the mobilization of transcriptomes related to the immune response and down-regulation of genes related to the secretory function of the salivary glands. Based on single-cell RNA-sequencing analysis, we identify and annotate 17 cell clusters in the sublingual gland for the first time, and find that obesity alters the relative compositions of immune cells and secretory cells in the major glands of obese mice. Integrative analysis of the bulk RNA-sequencing and single-cell RNA-sequencing data confirms the activation of immune response genes and compromise of secretory function in the three major salivary glands of obese mice. Consequently, the secretion of extracellular matrix proteins is significantly reduced in the three major salivary glands of obese mice. These results provide new molecular insights into understanding the effect of obesity on salivary glands.
Collapse
|
831
|
Zarei S, Taghian F, Sharifi G, Abedi H. Alternation of heart microRNA-mRNA network by high-intensity interval training and proanthocyanidin in myocardial ischemia rats: Artificial intelligence and validation experimental. J Food Biochem 2022; 46:e14488. [PMID: 36271618 DOI: 10.1111/jfbc.14488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Heart ischemia is an irreversible condition that occurs via decreased blood flow in vessels by genetic factors, molecular regulators, and environmental conditions. The microRNAs binding to 3´UTR of target genes can influence gene expression and play pivotal roles in several mechanisms identified as a potential biomarker to the pathogenesis. We have screened a pool of microRNAs and mRNAs according to their potential correlation to myocardial ischemia based on artificial intelligence. We constructed the hub genes and mRNA-microRNA networks by R programing language and in silico analysis. Moreover, we calculated the binding affinity of the 3D structure of proanthocyanidin on VEGFα and GATA4 to ameliorate heart tissue after ischemia. Then we treated rats with 300 mg/kg proanthocyanidins and exercised in different intensity and duration times (low, moderate, and high-intensity interval training) for 14 weeks. In the second step, after 14 weeks, isoproterenol hydrochloride was injected into the rats, and myocardial ischemia was induced. We indicated that VEGFα, GATA4, and GJA1 axis associated with miR-27a-3p, miR-499-5p, miR-206-3p, miR-208a-3p are regulatable after 14 weeks of exercise training and proanthocyanidin extract consumption and could prevent myocardial injuries in ischemia. Moreover, we revealed different intensity and duration times, and proanthocyanidin modulated the microRNA-mRNA interaction in rats with myocardial ischemia. Proanthocyanidin consumption as a bioactive compound may significantly ameliorate myocardial dysfunction and offset pathological hallmarks of myocardial ischemia. Moreover, exercise has protective effects on myocardial tissue by reprograming genes and genetic regulator factors. PRACTICAL APPLICATIONS: Complimentary medicine identified Proanthocyanidin and exercise are recognized as effective methods to prevent and improve Myocardial ischemia. According to medical biology servers, we explored the VEGFα, GATA4, and GJA1 axis associated with miR-27a-3p, miR-499-5p, miR-206-3p, miR-208a-3p as a vital pathomechanism of myocardial ischemia. Furthermore, proanthocyanidin extract is the effective compound that could has protective effects on myocardial tissue by reprograming genes and genetic regulator factors. Furthermore, proanthocyanidin and swimming training might recover myocardial dysfunction and regulate the hub genes and mRNA-microRNA networks.
Collapse
Affiliation(s)
- Safar Zarei
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gholamreza Sharifi
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Hassanali Abedi
- Research Center for Noncommunicable Diseases, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
832
|
Wu S, Wang J, Zhao Y, Wen W, Zhang Y, Lu X, Wang C, Liu K, Chen B, Guo X, Zhao C. Characterization and genetic dissection of maize ear leaf midrib acquired by 3D digital technology. FRONTIERS IN PLANT SCIENCE 2022; 13:1063056. [PMID: 36531364 PMCID: PMC9754214 DOI: 10.3389/fpls.2022.1063056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The spatial morphological structure of plant leaves is an important index to evaluate crop ideotype. In this study, we characterized the three-dimensional (3D) data of the ear leaf midrib of maize at the grain-filling stage using the 3D digitization technology and obtained the phenotypic values of 15 traits covering four different dimensions of the ear leaf midrib, of which 13 phenotypic traits were firstly proposed for featuring plant leaf spatial structure. Cluster analysis results showed that the 13 traits could be divided into four groups, Group I, -II, -III and -IV. Group I contains HorizontalLength, OutwardGrowthMeasure, LeafAngle and DeviationTip; Group II contains DeviationAngle, MaxCurvature and CurvaturePos; Group III contains LeafLength and ProjectionArea; Group IV contains TipTop, VerticalHeight, UpwardGrowthMeasure, and CurvatureRatio. To investigate the genetic basis of the ear leaf midrib curve, 13 traits with high repeatability were subjected to genome-wide association study (GWAS) analysis. A total of 828 significantly related SNPs were identified and 1365 candidate genes were annotated. Among these, 29 candidate genes with the highest significant and multi-method validation were regarded as the key findings. In addition, pathway enrichment analysis was performed on the candidate genes of traits to explore the potential genetic mechanism of leaf midrib curve phenotype formation. These results not only contribute to further understanding of maize leaf spatial structure traits but also provide new genetic loci for maize leaf spatial structure to improve the plant type of maize varieties.
Collapse
Affiliation(s)
- Sheng Wu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Jinglu Wang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA (DeoxyriboNucleic Acid) Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Weiliang Wen
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Ying Zhang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Xianju Lu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Chuanyu Wang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Kai Liu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Bo Chen
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Xinyu Guo
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Chunjiang Zhao
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| |
Collapse
|
833
|
Hajibabaie F, Abedpoor N, Safavi K, Taghian F. Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. J Food Biochem 2022; 46:e14480. [PMID: 36239429 DOI: 10.1111/jfbc.14480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/14/2023]
Abstract
Cytokine storms lead to cardiovascular diseases (CVDs). Natural herbal compounds are considered the primary source of active agents with the potential to prevent or treat inflammatory-related pathologies such as CVD and diabetes. Flaxseed contains phytochemicals, including secoisolariciresinol diglucoside (SDG), α-linolenic acid (ALA), and lignans, termed "SAL." Hence, we evaluated the effect of the SAL on the H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Here, candidate hub genes, TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7, were selected as effective genes in diabetic cardiovascular pathogenesis based on in-silico analysis and chemoinformatic. Myocardial infarction (MI) was induced using H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Real-time qPCR was conducted to assess the expression level of hub genes. This study indicated that SAL compounds bound to the Il-6, SIRT1, and TNF-α active sites as druggable candidate proteins based on the chemoinformatics analysis. This study displayed that the TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7 network dysfunction in MI models were ameliorated by SAL consumption. Furthermore, SAL compounds improved the function and myogenesis of H9c2 cells in hyperlipidemic and hyperglycemic conditions. Our data suggested that phytochemicals obtained from flaxseed might have proposed potential complementary treatment or preventive strategies for MI. PRACTICAL APPLICATIONS: Phytochemicals obtained from flaxseed (SAL) could reverse diabetic heart dysfunction hallmarks and provide new potential treatment approaches in cardiovascular therapy. SAL could be considered complementary and alternative medicines for treating various disorders/diseases singly or synchronizing with prescription drugs.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
834
|
Transcriptome Level Reveals the Triterpenoid Saponin Biosynthesis Pathway of Bupleurum falcatum L. Genes (Basel) 2022; 13:genes13122237. [PMID: 36553505 PMCID: PMC9777608 DOI: 10.3390/genes13122237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bupleurum falcatum L. is frequently used in traditional herbal medicine in Asia. Saikosaponins (SSs) are the main bioactive ingredients of B. falcatum, but the biosynthetic pathway of SSs is unclear, and the biosynthesis of species-specific phytometabolites is little known. Here we resolved the transcriptome profiles of B. falcatum to identify candidate genes that might be involved in the biosynthesis of SSs. By isoform sequencing (Iso-Seq) analyses of the whole plant, a total of 26.98 Gb of nucleotides were obtained and 124,188 unigenes were identified, and 81,594 unigenes were successfully annotated. A total of 1033 unigenes of 20 families related to the mevalonate (MVA) pathway and methylerythritol phosphate (MEP) pathway of the SS biosynthetic pathway were identified. The WGCNA (weighted gene co-expression network analysis) of these unigenes revealed that only the co-expression module of MEmagenta, which contained 343 unigenes, was highly correlated with the biosynthesis of SSs. Comparing differentially expressed gene analysis and the WGCNA indicated that 130 out of 343 genes of the MEmagenta module exhibited differential expression levels, and genes with the most "hubness" within this module were predicted. Manipulation of these genes might improve the biosynthesis of SSs.
Collapse
|
835
|
Sun L, Liu XP, Yan X, Wu S, Tang X, Chen C, Li G, Hu H, Wang D, Li S. Identification of molecular subtypes based on liquid-liquid phase separation and cross-talk with immunological phenotype in bladder cancer. Front Immunol 2022; 13:1059568. [PMID: 36518754 PMCID: PMC9742536 DOI: 10.3389/fimmu.2022.1059568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mounting evidence has demonstrated that an imbalance in liquid-liquid phase separation (LLPS) can induce alteration in the spatiotemporal coordination of biomolecular condensates, which plays a role in carcinogenesis and cachexia. However, the role of LLPS in the occurrence and progression of bladder cancer (BLCA) remains to be elucidated. Identifying the role of LLPS in carcinogenesis may aid in cancer therapeutics. Methods A total of 1,351 BLCA samples from six cohorts were retrieved from publicly available databases like The Cancer Genome Atlas, Gene Expression Omnibus, and ArrayExpress. The samples were divided into three distinct clusters, and their multi-dimensional heterogeneities were explored. The LLPS patterns of all patients were determined based on the LLPS-related risk score (LLPSRS), and its multifaceted landscape was depicted and experimentally validated at the multi-omics level. Finally, a cytotoxicity-related and LLPSRS-based classifier was established to predict the patient's response to immune checkpoint blockade (ICB) treatment. Results Three LLPS-related subtypes were identified and validated. The differences in prognosis, tumor microenvironment (TME) features, cancer hallmarks, and certain signatures of the three LLPS-related subtypes were validated. LLPSRS was calculated, which could be used as a prognostic biomarker. A close correlation was observed between clinicopathological features, genomic variations, biological mechanisms, immune infiltration in TME, chemosensitivity, and LLPSRS. Furthermore, our classifier could effectively predict immunotherapy response in patients with BLCA. Conclusions Our study identified a novel categorization of BLCA patients based on LLPS. The LLPSRS could predict the prognosis of patients and aid in designing personalized medicine. Further, our binary classifier could effectively predict patients' sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Le Sun
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaojie Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Du Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Sheng Li,
| |
Collapse
|
836
|
Su T, Zhang Z, Han X, Yang F, Wang Z, Cheng Y, Liu H. Systematic Insight of Resveratrol Activated SIRT1 Interactome through Proximity Labeling Strategy. Antioxidants (Basel) 2022; 11:antiox11122330. [PMID: 36552538 PMCID: PMC9774693 DOI: 10.3390/antiox11122330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
SIRT1 functions by regulating the modification of proteins or interacting with other proteins to form complexes. It has been widely studied and found to play significant roles in various biological processes and diseases. However, systematic studies on activated-SIRT1 interactions remain limited. Here, we present a comprehensive SIRT1 interactome under resveratrol stimulation through proximity labeling methods. Our results demonstrated that RanGap1 interacted with SIRT1 in HEK 293T cells and MCF-7 cells. SIRT1 regulated the protein level of RanGap1 and had no obvious effect on RanGap1 transcription. Moreover, the overexpression of Rangap1 increased the ROS level in MCF-7 cells, which sensitized cells to resveratrol and reduced the cell viability. These findings provide evidence that RanGap1 interacts with SIRT1 and influences intracellular ROS, critical signals for mitochondrial functions, cell proliferation and transcription. Additionally, we identified that the SIRT1-RanGap1 interaction affects downstream signals induced by ROS. Overall, our study provides an essential resource for future studies on the interactions of resveratrol-activated SIRT1. There are conflicts about the relationship between resveratrol and ROS in previous reports. However, our data identified the impact of the resveratrol-SIRT1-RanGap1 axis on intracellular ROS.
Collapse
Affiliation(s)
- Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fei Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (Y.C.); (H.L.)
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Correspondence: (Y.C.); (H.L.)
| |
Collapse
|
837
|
Zhang Y, Fan F, Zhang Q, Luo Y, Liu Q, Gao J, Liu J, Chen G, Zhang H. Identification and Functional Analysis of Long Non-Coding RNA (lncRNA) in Response to Seed Aging in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:3223. [PMID: 36501265 PMCID: PMC9737669 DOI: 10.3390/plants11233223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Many lncRNAs have been shown to play a vital role in aging processes. However, how lncRNAs regulate seed aging remains unknown. In this study, we performed whole transcriptome strand-specific RNA sequencing of samples from rice embryos, analyzed the differences in expression of rice seed lncRNAs before and after artificial aging treatment (AAT), and systematically screened 6002 rice lncRNAs. During the AAT period, the expression levels of most lncRNAs (454) were downregulated and only four were upregulated among the 458 differentially expressed lncRNAs (DELs). Cis- or trans-regulated target genes of the four upregulated lncRNAs were mainly related to base repair, while 454 downregulated lncRNAs were related to plant-pathogen interaction, plant hormones, energy metabolism, and secondary metabolism. The pathways of DEL target genes were similar with those of differentially expressed mRNAs (DEGs). A competing endogenous RNA (ceRNA) network composed of 34 lncRNAs, 24 microRNAs (miRNA), and 161 mRNAs was obtained. The cDNA sequence of lncRNA LNC_037529 was obtained by rapid amplification of cDNA ends (RACE) cloning with a total length of 1325 bp, a conserved 5' end, and a non-conserved 3' end. Together, our findings indicate that genome-wide selection for lncRNA downregulation was an important mechanism for rice seed aging. LncRNAs can be used as markers of seed aging in rice. These findings provide a future path to decipher the underlying mechanism associated with lncRNAs in seed aging.
Collapse
Affiliation(s)
- Yixin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fan Fan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qunjie Zhang
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongjian Luo
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qinjian Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiadong Gao
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Liu
- Guangdong Key Lab for Crop Germplasm Resources Preservation and Utilization/Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guanghui Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
838
|
Xie HB, Yan C, Adeola AC, Wang K, Huang CP, Xu MM, Qiu Q, Yin X, Fan CY, Ma YF, Yin TT, Gao Y, Deng JK, Okeyoyin AO, Oluwole OO, Omotosho O, Okoro VMO, Omitogun OG, Dawuda PM, Olaogun SC, Nneji LM, Ayoola AO, Sanke OJ, Luka PD, Okoth E, Lekolool I, Mijele D, Bishop RP, Han J, Wang W, Peng MS, Zhang YP. African Suid Genomes Provide Insights into the Local Adaptation to Diverse African Environments. Mol Biol Evol 2022; 39:6840307. [PMID: 36413509 PMCID: PMC9733430 DOI: 10.1093/molbev/msac256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
African wild suids consist of several endemic species that represent ancient members of the family Suidae and have colonized diverse habitats on the African continent. However, limited genomic resources for African wild suids hinder our understanding of their evolution and genetic diversity. In this study, we assembled high-quality genomes of a common warthog (Phacochoerus africanus), a red river hog (Potamochoerus porcus), as well as an East Asian Diannan small-ear pig (Sus scrofa). Phylogenetic analysis showed that common warthog and red river hog diverged from their common ancestor around the Miocene/Pliocene boundary, putatively predating their entry into Africa. We detected species-specific selective signals associated with sensory perception and interferon signaling pathways in common warthog and red river hog, respectively, which contributed to their local adaptation to savannah and tropical rainforest environments, respectively. The structural variation and evolving signals in genes involved in T-cell immunity, viral infection, and lymphoid development were identified in their ancestral lineage. Our results provide new insights into the evolutionary histories and divergent genetic adaptations of African suids.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xue Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chen-Yu Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yun-Fei Ma
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jia-Kun Deng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Agboola O Okeyoyin
- National Park Service Headquarter, Federal Capital Territory, Abuja 900108, Nigeria
| | - Olufunke O Oluwole
- Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria
| | - Oladipo Omotosho
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Victor M O Okoro
- Department of Animal Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Ofelia G Omitogun
- Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Philip M Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi 970001, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Adeola O Ayoola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo 660213, Nigeria
| | - Pam D Luka
- National Veterinary Research Institute, Vom 930103, Nigeria
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | | | - Richard P Bishop
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | - Wen Wang
- Corresponding authors: E-mails: ; ; ;
| | | | | |
Collapse
|
839
|
Miao Y, Zhang Q, Yuan Z, Wang J, Xu Y, Chai Y, Du M, Yu Q, Zhang L, Jiang Z. Proteomics analysis reveals novel insights into the mechanism of hepatotoxicity induced by Tripterygium wilfordii multiglycoside in mice. Front Pharmacol 2022; 13:1032741. [DOI: 10.3389/fphar.2022.1032741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Tripterygium wilfordii multiglycoside (GTW), extracted and purified from the peeled roots of T. wilfordii Hook.f. (TwHF), is a well-known traditional Chinese medicine and applied to various autoimmune diseases clinically. However, it has been reported to cause severe liver injury. At present, the mechanism underlying GTW-induced hepatotoxicity remain poorly defined. Here, we evaluated the effects of GTW on mouse liver and elucidated the associated mechanisms via label-free proteomics combined with bioinformatics analysis. Male C57BL/6J mice were randomly divided into normal group, a low-dose GTW (70 mg/kg) group and a high-dose GTW (140 mg/kg) group. After 1-week administration, GTW dose-dependently induced hepatotoxicity. Further analysis showed that GTW could act on the intestinal immune network for IgA production pathway, which plays an important role in maintaining intestinal homeostasis and influences the crosstalk between gut and liver. Western blots confirmed that GTW could decrease pIgR protein expression in the liver and ileum, and, as a result, the secretion of IgA into gut lumen was reduced. Further validation showed that intestinal barrier integrity was impaired in GTW-treated mice, promoting bacteria transferring to the liver and triggering proinflammatory response. Our study demonstrated that gut-liver axis may play a vital part in the progression of GTW-induced hepatotoxicity, which provides guidance for basic research and clinical application of GTW.
Collapse
|
840
|
Chen X, Zhang H, Liu M, Deng HW, Wu Z. Simultaneous detection of novel genes and SNPs by adaptive p-value combination. Front Genet 2022; 13:1009428. [DOI: 10.3389/fgene.2022.1009428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Combining SNP p-values from GWAS summary data is a promising strategy for detecting novel genetic factors. Existing statistical methods for the p-value-based SNP-set testing confront two challenges. First, the statistical power of different methods depends on unknown patterns of genetic effects that could drastically vary over different SNP sets. Second, they do not identify which SNPs primarily contribute to the global association of the whole set. We propose a new signal-adaptive analysis pipeline to address these challenges using the omnibus thresholding Fisher’s method (oTFisher). The oTFisher remains robustly powerful over various patterns of genetic effects. Its adaptive thresholding can be applied to estimate important SNPs contributing to the overall significance of the given SNP set. We develop efficient calculation algorithms to control the type I error rate, which accounts for the linkage disequilibrium among SNPs. Extensive simulations show that the oTFisher has robustly high power and provides a higher balanced accuracy in screening SNPs than the traditional Bonferroni and FDR procedures. We applied the oTFisher to study the genetic association of genes and haplotype blocks of the bone density-related traits using the summary data of the Genetic Factors for Osteoporosis Consortium. The oTFisher identified more novel and literature-reported genetic factors than existing p-value combination methods. Relevant computation has been implemented into the R package TFisher to support similar data analysis.
Collapse
|
841
|
Li H, Xu C, Meng F, Yao Z, Fan Z, Yang Y, Meng X, Zhan Y, Sun Y, Ma F, Yang J, Yang M, Yang J, Wu Z, Cai G, Zheng E. Genome-Wide Association Studies for Flesh Color and Intramuscular Fat in (Duroc × Landrace × Large White) Crossbred Commercial Pigs. Genes (Basel) 2022; 13:2131. [PMID: 36421806 PMCID: PMC9690869 DOI: 10.3390/genes13112131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 07/30/2023] Open
Abstract
The intuitive impression of pork is extremely important in terms of whether consumers are enthusiastic about purchasing it. Flesh color and intramuscular fat (IMF) are indispensable indicators in meat quality assessment. In this study, we determined the flesh color and intramuscular fat at 45 min and 12 h after slaughter (45 mFC, 45 mIMF, 12 hFC, and 12 hIMF) of 1518 commercial Duroc × Landrace × Large White (DLY) pigs. We performed a single nucleotide polymorphism (SNP) genome-wide association study (GWAS) analysis with 28,066 SNPs. This experiment found that the correlation between 45 mFC and 12 hFC was 0.343. The correlation between 45 mIMF and 12 hIMF was 0.238. The heritability of the traits 45 mFC, 12 hFC, 45 mIMF, and 12 hIMF was 0.112, 0.217, 0.139, and 0.178, respectively, and we identified seven SNPs for flesh color and three SNPs for IMF. Finally, several candidate genes regulating these four traits were identified. Three candidate genes related to flesh color were provided: SNCAIP and PRR16 on SSC2, ST3GAL4 on SSC5, and GALR1 on SSC1. A total of three candidate genes related to intramuscular fat were found, including ABLIM3 on SSC2, DPH5 on SSC4, and DOCK10 on SSC15. Furthermore, GO and KEGG analysis revealed that these genes are involved in the regulation of apoptosis and are implicated in functions such as pigmentation and skeletal muscle metabolism. This study applied GWAS to analyze the scoring results of flesh color and IMF in different time periods, and it further revealed the genetic structure of flesh color and IMF traits, which may provide important genetic loci for the subsequent improvement of pig meat quality traits.
Collapse
Affiliation(s)
- Hao Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fanming Meng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zekai Yao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenfei Fan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yingshan Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xianglun Meng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yuexin Zhan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ying Sun
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fucai Ma
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jifei Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
842
|
Liu C, Liu D, Wang F, Liu Y, Xie J, Xie J, Xie Y. Construction of a novel choline metabolism-related signature to predict prognosis, immune landscape, and chemotherapy response in colon adenocarcinoma. Front Immunol 2022; 13:1038927. [PMID: 36451813 PMCID: PMC9701742 DOI: 10.3389/fimmu.2022.1038927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a common digestive system malignancy with high mortality and poor prognosis. Accumulating evidence indicates that choline metabolism is closely related to tumorigenesis and development. However, the efficacy of choline metabolism-related signature in predicting patient prognosis, immune microenvironment and chemotherapy response has not been fully clarified. METHODS Choline metabolism-related differentially expressed genes (DEGs) between normal and COAD tissues were screened using datasets from The Cancer Genome Atlas (TCGA), Kyoto Encyclopedia of Genes and Genomes (KEGG), AmiGO2 and Reactome Pathway databases. Two choline metabolism-related genes (CHKB and PEMT) were identified by univariate and multivariate Cox regression analyses. TCGA-COAD was the training cohort, and GSE17536 was the validation cohort. Patients in the high- and low-risk groups were distinguished according to the optimal cutoff value of the risk score. A nomogram was used to assess the prognostic accuracy of the choline metabolism-related signature. Calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) were used to improve the clinical applicability of the prognostic signature. Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs in the high- and low-risk groups were performed. KEGG cluster analysis was conducted by the KOBAS-i database. The distribution and expression of CHKB and PEMT in various types of immune cells were analyzed based on single-cell RNA sequencing (scRNA-seq). The CIBERSORT and ESTIMATE algorithms evaluated tumor immune cell infiltration in the high- and low-risk groups. Evaluation of the half maximal inhibitory concentration (IC50) of common chemotherapeutic drugs based on the choline metabolism-related signature was performed. Small molecule compounds were predicted using the Connectivity Map (CMap) database. Molecular docking is used to simulate the binding conformation of small molecule compounds and key targets. By immunohistochemistry (IHC), Western blot, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) experiments, the expression levels of CHKB and PEMT in human, mouse, and cell lines were detected. RESULTS We constructed and validated a choline metabolism-related signature containing two genes (CHKB and PEMT). The overall survival (OS) of patients in the high-risk group was significantly worse than that of patients in the low-risk group. The nomogram could effectively and accurately predict the OS of COAD patients at 1, 3, and 5 years. The DCA curve and CIC demonstrate the clinical utility of the nomogram. scRNA-seq showed that CHKB was mainly distributed in endothelial cells, while PEMT was mainly distributed in CD4+ T cells and CD8+ T cells. In addition, multiple types of immune cells expressing CHKB and PEMT differed significantly. There were significant differences in the immune microenvironment, immune checkpoint expression and chemotherapy response between the two risk groups. In addition, we screened five potential small molecule drugs that targeted treatment for COAD. Finally, the results of IHC, Western blot, and qRT-PCR consistently showed that the expression of CHKB in human, mouse, and cell lines was elevated in normal samples, while PMET showed the opposite trend. CONCLUSION In conclusion, we constructed a choline metabolism-related signature in COAD and revealed its potential application value in predicting the prognosis, immune microenvironment, and chemotherapy response of patients, which may lay an important theoretical basis for future personalized precision therapy.
Collapse
Affiliation(s)
- Cong Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Fangfei Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jun Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
843
|
Zhao G, Fu Y, Yang C, Yang X, Hu X. Exploring the pathogenesis linking traumatic brain injury and epilepsy via bioinformatic analyses. Front Aging Neurosci 2022; 14:1047908. [PMID: 36438009 PMCID: PMC9686289 DOI: 10.3389/fnagi.2022.1047908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2024] Open
Abstract
Traumatic brain injury (TBI) is a serious disease that could increase the risk of epilepsy. The purpose of this article is to explore the common molecular mechanism in TBI and epilepsy with the aim of providing a theoretical basis for the prevention and treatment of post-traumatic epilepsy (PTE). Two datasets of TBI and epilepsy in the Gene Expression Omnibus (GEO) database were downloaded. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and hub gene identification were performed based on the cross-talk genes of aforementioned two diseases. Another dataset was used to validate these hub genes. Moreover, the abundance of infiltrating immune cells was evaluated through Immune Cell Abundance Identifier (ImmuCellAI). The common microRNAs (miRNAs) between TBI and epilepsy were acquired via the Human microRNA Disease Database (HMDD). The overlapped genes in cross-talk genes and target genes predicted through the TargetScan were obtained to construct the common miRNAs-mRNAs network. A total of 106 cross-talk genes were screened out, including 37 upregulated and 69 downregulated genes. Through the enrichment analyses, we showed that the terms about cytokine and immunity were enriched many times, particularly interferon gamma signaling pathway. Four critical hub genes were screened out for co-expression analysis. The miRNA-mRNA network revealed that three miRNAs may affect the shared interferon-induced genes, which might have essential roles in PTE. Our study showed the potential role of interferon gamma signaling pathway in pathogenesis of PTE, which may provide a promising target for future therapeutic interventions.
Collapse
Affiliation(s)
- Gengshui Zhao
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| | - Yongqi Fu
- Department of Endocrinology, The People’s Hospital of Hengshui City, Hengshui, China
| | - Chao Yang
- Department of Orthopedics, The People’s Hospital of Hengshui City, Hengshui, China
| | - Xuehui Yang
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| | - Xiaoxiao Hu
- Department of Neurosurgery, The People’s Hospital of Hengshui City, Hengshui, China
| |
Collapse
|
844
|
Lin C, Zhang L, Zhang X, Wang X, Wang C, Zhang Y, Wang J, Li X, Song Z. Spatiotemporal and Transcriptional Characterization on Tanshinone Initial Synthesis in Salvia miltiorrhiza Roots. Int J Mol Sci 2022; 23:ijms232113607. [PMID: 36362395 PMCID: PMC9655840 DOI: 10.3390/ijms232113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Tanshinones are the bioactive constituents of Danshen (Salvia miltiorrhiza Bunge), which is used in Traditional Chinese Medicine to treat cardiovascular and other diseases, and they synthesize and accumulate in the root periderm of S. miltiorrhiza. However, there is no relevant report on the initial stage of tanshinone synthesis, as well as the root structure and gene expression characteristics. The present study aims to provide new insights into how these bioactive principles begin to synthesize by characterizing possible differences in their biosynthesis and accumulation during early root development from both spatial and temporal aspects. The morphological characteristics and the content of tanshinones in roots of S. miltiorrhiza were investigated in detail by monitoring the seedlings within 65 days after germination (DAGs). The ONT transcriptome sequencing was applied to investigate gene expression patterns. The periderm of the S. miltiorrhiza storage taproot initially synthesized tanshinone on about 30 DAGs. Three critical stages of tanshinone synthesis were preliminarily determined: preparation, the initial synthesis, and the continuous rapid synthesis. The difference of taproots in the first two stages was the smallest, and the differentially expressed genes (DEGs) were mainly enriched in terpene synthesis. Most genes involved in tanshinone synthesis were up regulated during the gradual formation of the red taproot. Plant hormone signal transduction and ABC transport pathways were widely involved in S. miltiorrhiza taproot development. Five candidate genes that may participate in or regulate tanshinone synthesis were screened according to the co-expression pattern. Moreover, photosynthetic ferredoxin (FD), cytochrome P450 reductase (CPR), and CCAAT binding transcription factor (CBF) were predicted to interact with the known downstream essential enzyme genes directly. The above results provide a necessary basis for analyzing the initial synthesis and regulation mechanism of Tanshinones.
Collapse
Affiliation(s)
- Caicai Lin
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Lin Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xia Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xin Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Chaoyang Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Yufeng Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Jianhua Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Xingfeng Li
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| | - Zhenqiao Song
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| |
Collapse
|
845
|
Song F, Kotolloshi R, Gajda M, Hölzer M, Grimm MO, Steinbach D. Reduced IQGAP2 Promotes Bladder Cancer through Regulation of MAPK/ERK Pathway and Cytokines. Int J Mol Sci 2022; 23:ijms232113508. [PMID: 36362301 PMCID: PMC9655856 DOI: 10.3390/ijms232113508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The progression of non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) is a major challenge in urologic oncology. However, understanding of the molecular processes remains limited. The dysregulation of IQGAP2 is becoming increasingly evident in most tumor entities, and it plays a role in multiple oncogenic pathways, so we evaluated the role of IQGAP2 in bladder cancer. IQGAP2 was downregulated in tumors compared with normal urothelium tissues and cells. IQGAP2 effectively attenuated bladder cancer cell growth independently from apoptosis. Reduced IQGAP2 promoted EMT in bladder cancer cells via activation of the MAPK/ERK pathway. In addition, IQGAP2 might influence key cellular processes, such as proliferation and metastasis, through the regulation of cytokines. In conclusion, we suggest that IQGAP2 plays a tumor-suppressing role in bladder cancer, possibly via inhibiting the MAPK/ERK pathway and reducing cytokines.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Roland Kotolloshi
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Mieczyslaw Gajda
- Section of Pathology, Department of Forensic Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
846
|
Du TQ, Liu R, Zhang Q, Luo H, Liu Z, Sun S, Wang X. EZH2 as a Prognostic Factor and Its Immune Implication with Molecular Characterization in Prostate Cancer: An Integrated Multi-Omics in Silico Analysis. Biomolecules 2022; 12:1617. [PMID: 36358967 PMCID: PMC9687944 DOI: 10.3390/biom12111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Prostate cancer (PCa) is a type of potentially fatal malignant tumor. Immunotherapy has shown a lot of potential for various types of solid tumors, but the benefits have been less impressive in PCa. Enhancer of zeste homolog 2 (EZH2) is one of the three core subunits of the polycomb repressive complex 2 that has histone methyltransferase activity, and the immune effects of EZH2 in PCa are still unclear. The purpose of this study was to explore the potential of EZH2 as a prognostic factor and an immune therapeutic biomarker for PCa, as well as the expression pattern and biological functions. All analyses in this study were based on publicly available databases, mainly containing Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), UCSCXenaShiny, and TISIDB. We performed differential expression analysis, developed a prognostic model, and explored potential associations between EZH2 and DNA methylation modifications, tumor microenvironment (TME), immune-related genes, tumor mutation burden (TMB), tumor neoantigen burden (TNB), and representative mismatch repair (MMR) genes. We also investigated the molecular and immunological characterizations of EZH2. Finally, we predicted immunotherapeutic responses based on EZH2 expression levels. We found that EZH2 was highly expressed in PCa, was associated with a poor prognosis, and may serve as an independent prognostic factor. EZH2 expression in PCa was associated with DNA methylation modifications, TME, immune-related genes, TMB, TNB, and MMR. By gene set enrichment analysis and gene set variation analysis, we found that multiple functions and pathways related to tumorigenesis, progression, and immune activation were enriched. Finally, we inferred that immunotherapy may be more effective for PCa patients with low EZH2 expression. In conclusion, our study showed that EZH2 could be a potentially efficient predictor of prognosis and immune response in PCa patients.
Collapse
Affiliation(s)
- Tian-Qi Du
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Graduate School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
847
|
Wang X, Wang M, Wang L, Feng H, He X, Chang S, Wang D, Wang L, Yang J, An G, Wang X, Kong L, Geng Z, Wang E. Whole-plant microbiome profiling reveals a novel geminivirus associated with soybean stay-green disease. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2159-2173. [PMID: 35869670 PMCID: PMC9616524 DOI: 10.1111/pbi.13896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Microbiota colonize every accessible plant tissue and play fundamental roles in plant growth and health. Soybean stay-green syndrome (SGS), a condition that causes delayed leaf senescence (stay-green), flat pods and abnormal seeds of soybean, has become the most serious disease of soybean in China. However, the direct cause of SGS is highly debated, and little is known about how SGS affect soybean microbiome dynamics, particularly the seed microbiome. We studied the bacterial, fungal, and viral communities associated with different soybean tissues with and without SGS using a multi-omics approach, and investigated the possible pathogenic agents associated with SGS and how SGS affects the assembly and functions of plant-associated microbiomes. We obtained a comprehensive view of the composition, function, loads, diversity, and dynamics of soybean microbiomes in the rhizosphere, root, stem, leaf, pod, and seed compartments, and discovered that soybean SGS was associated with dramatically increased microbial loads and dysbiosis of the bacterial microbiota in seeds. Furthermore, we identified a novel geminivirus that was strongly associated with soybean SGS, regardless of plant cultivar, sampling location, or harvest year. This whole-plant microbiome profiling of soybean provides the first demonstration of geminivirus infection associated with microbiota dysbiosis, which might represent a general microbiological symptom of plant diseases.
Collapse
Affiliation(s)
- Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Like Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huan Feng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- Northwest A&F UniversityYanglingChina
| | - Xin He
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of AgricultureHenan UniversityKaifengChina
| | - Shihao Chang
- Zhoukou Academy of Agricultural SciencesZhoukouChina
| | - Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of AgricultureHenan UniversityKaifengChina
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Guoyong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of AgricultureHenan UniversityKaifengChina
| | | | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of AgronomyShandong Agricultural UniversityTaianChina
| | - Zhen Geng
- Zhoukou Academy of Agricultural SciencesZhoukouChina
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
848
|
Jin Q, Li W, Yu W, Zeng M, Liu J, Xu P. Analysis and identification of potential type II helper T cell (Th2)-Related key genes and therapeutic agents for COVID-19. Comput Biol Med 2022; 150:106134. [PMID: 36201886 PMCID: PMC9528635 DOI: 10.1016/j.compbiomed.2022.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
Abstract
COVID-19 pandemic poses a severe threat to public health. However, so far, there are no effective drugs for COVID-19. Transcriptomic changes and key genes related to Th2 cells in COVID-19 have not been reported. These genes play an important role in host interactions with SARS-COV-2 and may be used as promising target. We analyzed five COVID-19-associated GEO datasets (GSE157103, GSE152641, GSE171110, GSE152418, and GSE179627) using the xCell algorithm and weighted gene co-expression network analysis (WGCNA). Results showed that 5 closely correlated modular genes to COVID-19 and Th2 cell enrichment levels, including purple, blue, pink, tan and turquoise, were intersected with differentially expressed genes (DEGs) and 648 shared genes were obtained. GO and KEGG pathway enrichment analyses revealed that they were enriched in cell proliferation, differentiation, and immune responses after virus infection. The most significantly enriched pathway involved the regulation of viral life cycle. Three key genes, namely CCNB1, BUB1, and UBE2C, may clarify the pathogenesis of COVID-19 associated with Th2 cells. 11 drug candidates were identified that could down-regulate three key genes using the cMAP database and demonstrated strong drugs binding energies aganist the three keygenes using molecular docking methods. BUB1, CCNB1 and UBE2C were identified key genes for COVID-19 and could be promising therapeutic targets.
Collapse
Affiliation(s)
- Qiying Jin
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wanxi Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wendi Yu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Maosen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jinyuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
849
|
Vaish S, Parveen R, Singh N, Gupta D, Basantani MK. Computational insights into diverse aspects of glutathione S-transferase gene family in Papaver somniferum. JOURNAL OF PLANT RESEARCH 2022; 135:823-852. [PMID: 36066757 DOI: 10.1007/s10265-022-01408-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Plant glutathione S-transferases are an ancient protein superfamily having antioxidant activity. These proteins are primarily involved in diverse plant functions such as plant growth and development, secondary metabolism, signaling pathways and defense against biotic and abiotic stresses. The current study aimed to comprehensively identify and characterize the GST gene family in the medicinally important crop Papaver somniferum. A total of 93 GST proteins were identified belonging to eight GST classes and found to be majorly localized in the cytoplasm. All GST genes were found on eleven opium chromosomes. Gene duplication analysis showed segmental duplication as a key factor for opium GST gene family expansion under strong purifying selection. Phylogenetic analysis with gymnosperm, angiosperm and bryophyte revealed the evolution of GSTs earlier than their division into separate groups and also prior to the divergence of monocot and dicot. The secondary structure prediction showed the dominance of α-helices indicative of PsomGSTs as structurally stable and elastic proteins. Gene architecture showed the conservation of number of exons across the classes. MEME analysis revealed only a few class specific and many across class conserved motifs. Ser was found to be the active site residue of tau, phi, theta and zeta class and Cys was catalytic residue of DHAR, lambda and GHR class. Promoter analyses identified many cis-acting regulatory elements related to hormonal, cellular, stress and light response functions. Ser was the key phosphorylation site. Only three glycosylation sites were found across the 93 PsomGSTs. 3D structure prediction was also performed and was validated. Interactome analyses revealed the correlation of PsomGSTs with glutathione metabolizing proteins. Gene enrichment analysis and KEGG pathway analyzed the involvement of PsomGSTs in three major pathways i.e. glutathione metabolism, tyrosine metabolism and ascorbate metabolism. The outcome revealed high model quality of PsomGSTs. The results of the current study will be of potential significance to understand the functional and structural importance of the GST gene family in opium, a medicinally important crop.
Collapse
Affiliation(s)
- Swati Vaish
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Reshma Parveen
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Nootan Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Divya Gupta
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Mahesh Kumar Basantani
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh, 225003, India.
| |
Collapse
|
850
|
Chen Y, Xu X, Chen Z, Huang B, Wang X, Fan X. DNA methylation alternation in Stanford- A acute aortic dissection. BMC Cardiovasc Disord 2022; 22:455. [PMID: 36309656 PMCID: PMC9618190 DOI: 10.1186/s12872-022-02882-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute aortic dissection (AAD) is a life-threatening cardiovascular disease. Recent studies have shown that DNA methylation may be associated with the pathological mechanism of AAD, but the panorama of DNA methylation needs to be explored. Methods DNA methylation patterns were screened using Infinium Human Methylation 450 K BeadChip in the aortic tissues from 4 patients with Stanford-A AAD and 4 controls. Gene enrichment was analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO). DNA methylation levels of candidate genes were determined by pyrosequencing in the replication cohort including 16 patients with AAD and 7 controls. Protein expression level of candidate gene was assessed by Western blot. Results A total of 589 differentially methylated positions including 315 hypomethylated and 274 hypermethylated positions were found in AAD group. KEGG analysis demonstrated that differentially methylated position-associated genes were enriched in MAPK signaling pathway, TNF signaling pathway and apoptosis pathway, et al. GO analysis demonstrated that differentially methylated position-associated genes were enriched in protein binding, angiogenesis and heart development et al. The differential DNA methylation in five key genes, including Fas, ANGPT2, DUSP6, FARP1 and CARD6, was authenticated in the independent replication cohort. The protein expression level of the Fas was increased by 1.78 times, indicating the possible role of DNA methylation in regulation of gene expression. Conclusion DNA methylation was markedly changed in the aortic tissues of Stanford-A AAD and associated with gene dysregulation, involved in AAD progression. Supplementary Information The online version contains supplementary material available at10.1186/s12872-022-02882-5.
Collapse
|