801
|
Sasaki T, Wada T, Kishimoto H, Irie-Sasaki J, Matsumoto G, Goto T, Yao Z, Wakeham A, Mak TW, Suzuki A, Cho SK, Zuniga-Pflucker JC, Oliveira-dos-Santos AJ, Katada T, Nishina H, Penninger JM. The stress kinase mitogen-activated protein kinase kinase (MKK)7 is a negative regulator of antigen receptor and growth factor receptor-induced proliferation in hematopoietic cells. J Exp Med 2001; 194:757-68. [PMID: 11560992 PMCID: PMC2195963 DOI: 10.1084/jem.194.6.757] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dual specificity kinases mitogen-activated protein kinase (MAPK) kinase (MKK)7 and MKK4 are the only molecules known to directly activate the stress kinases stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) in response to environmental or mitogenic stimuli. To examine the physiological role of MKK7 in hematopoietic cells, we used a gene targeting strategy to mutate MKK7 in murine T and B cells and non-lymphoid mast cells. Loss of MKK7 in thymocytes and mature B cells results in hyperproliferation in response to growth factor and antigen receptor stimulation and increased thymic cellularity. Mutation of mkk7 in mast cells resulted in hyperproliferation in response to the cytokines interleukin (IL)-3 and stem cell factor (SCF). SAPK/JNK activation was completely abolished in the absence of MKK7, even though expression of MKK4 was strongly upregulated in mkk7(-/-) mast cell lines, and phosphorylation of MKK4 occurred normally in response to multiple stress stimuli. Loss of MKK7 did not affect activation of extracellular signal-regulated kinase (ERK)1/2 or p38 MAPK. mkk7(-/-) mast cells display reduced expression of JunB and the cell cycle inhibitor p16INK4a and upregulation of cyclinD1. Reexpression of p16INK4a in mkk7(-/-) mast cells abrogates the hyperproliferative response. Apoptotic responses to a variety of stimuli were not affected. Thus, MKK7 is an essential and specific regulator of stress-induced SAPK/JNK activation in mast cells and MKK7 negatively regulates growth factor and antigen receptor-driven proliferation in hematopoietic cells. These results indicate that the MKK7-regulated stress signaling pathway can function as negative regulator of cell growth in multiple hematopoietic lineages.
Collapse
Affiliation(s)
- Takehiko Sasaki
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Teiji Wada
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Hiroyuki Kishimoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-003, Japan
| | - Junko Irie-Sasaki
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Goichi Matsumoto
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Takayuki Goto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-003, Japan
| | - Zhengbin Yao
- Department of Pathology, Amgen Incorporated, Thousand Oaks, CA 91320
| | - Andrew Wakeham
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Tak W. Mak
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Akira Suzuki
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Sarah K. Cho
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | | - Antonio J. Oliveira-dos-Santos
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Toshiaki Katada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-003, Japan
| | - Hiroshi Nishina
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-003, Japan
| | - Josef M. Penninger
- Amgen Institute, Ontario Cancer Institute
- Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| |
Collapse
|
802
|
Suzuki Y, Rahman M, Mitsuya H. Diverse transcriptional response of CD4+ T cells to stromal cell-derived factor SDF-1: cell survival promotion and priming effects of SDF-1 on CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3064-73. [PMID: 11544290 DOI: 10.4049/jimmunol.167.6.3064] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stromal cell-derived factor (SDF)-1 is a ligand for the chemokine receptor CXCR4 which is broadly expressed in lymphocytes, but the effects of SDF-1 on T cells are largely unknown. When examined using complementary DNA microarray, up-regulation of genes which are associated with DNA repair, detoxification, apoptosis, cell morphology, cell adhesion, and signal transduction was seen in CD4(+) T cells upon SDF-1 exposure. SDF-1 was shown to promote CD4(+) T cell survival through the phosphatidylinositol 3-kinase (PI3K)- and mitogen-activated protein kinase (MAPK)-cascades without cell cycle progression. The proapoptotic Bcl-2 antagonistic of cell death protein was also seen inactivated by the SDF-1-mediated activation of MAPK-extracellular signal-regulated kinases (MEK)-extracellular signal-regulated kinase-ribosomal S6 kinases- and PI3K-pathways. Moreover, the genes known to be associated with cell survival were up-regulated upon SDF-1 exposure and were linked to the MAPK-MEK and PI3K-pathways. Thus, SDF-1 promotes cell survival by two mechanisms: posttranslational inactivation of the cell death machinery and an increased transcription of cell survival-related genes. SDF-1 also primed resting CD4(+) T cells for cytokine- and TCR-mediated stimuli. These data suggest that the SDF-1-mediated cell survival combined with its priming function would set T cells to respond to immunologic challenges.
Collapse
Affiliation(s)
- Y Suzuki
- Experimental Retrovirology Section, Center for Cancer Research and HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
803
|
Kraft K, Olbrich H, Majoul I, Mack M, Proudfoot A, Oppermann M. Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 that regulate signaling and receptor internalization. J Biol Chem 2001; 276:34408-18. [PMID: 11448957 DOI: 10.1074/jbc.m102782200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CC chemokine receptor CCR5 mediates chemotaxis of leukocytes and serves as a principal co-receptor for macrophage-tropic human immunodeficiency virus type 1. To identify determinants on the CCR5 carboxyl-terminal domain that regulate receptor signaling and internalization, we generated several CCR5 mutants, which were progressively shortened from the COOH terminus or had carboxyl-terminal serine, cysteine, or leucine residues substituted by alanine and expressed them in RBL-2H3 cells. Using fluorescence resonance energy transfer between beta-arrestin and CCR5 tagged with cyan and yellow variants of green fluorescent protein, we show that high affinity association of the two molecules in living cells requires intact carboxyl-terminal serine phosphorylation sites. Phosphorylation-deficient truncation or Ser/Ala replacement mutants of CCR5 mediated a sustained calcium response and enhanced granular enzyme release in RANTES-stimulated cells. Carboxyl-terminal serine residues are critically involved in CCR5 endocytosis and a dileucine motif, similar to that implicated in the regulation of CXCR2 and CXCR4, contributes to the internalization of CCR5 in a phosphorylation-independent manner. Despite their prominent role in receptor desensitization and internalization, beta-arrestins are dispensable for the CCR5-mediated stimulation of mitogen-activated protein kinase pathways in RBL-2H3 cells. We also show that CCR5 is palmitoylated on carboxyl-terminal cysteine residues. Inhibition of CCR5 palmitoylation by alanine mutagenesis of cysteines or treatment with a palmitate analogue inhibitor profoundly reduces phorbol 12-myristate 13-acetate- and RANTES-induced receptor phosphorylation, homologous desensitization, and internalization. Alanine mutagenesis of serine, cysteine, or leucine residues or the limited carboxyl-terminal truncation of CCR5 did not impair chemokine-stimulated migration of RBL-2H3 cells. Together these results indicate that post-translational modifications of carboxyl-terminal serine and cysteine residues have a significant impact on receptor deactivation and internalization.
Collapse
Affiliation(s)
- K Kraft
- Department of Immunology, University of Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
804
|
Baek KH, Ha SJ, Sung YC. A novel function of phosphorothioate oligodeoxynucleotides as chemoattractants for primary macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2847-54. [PMID: 11509631 DOI: 10.4049/jimmunol.167.5.2847] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorothioate cytosine-guanine oligodeoxynucleotides (CpG PS-ODNs) has been reported to induce Th1 immune responses against coadministered Ags more efficiently than phosphodiester CpG ODNs (CpG PO-ODNs). Here, we demonstrated that PS-ODNs, but not PO-ODNs, have a chemotactic effect on primary macrophages, which is independent of the CpG motif. In addition, the conjugation of a hexameric dG run (dG(6) run) at the 3' terminus reduced the concentration required for the optimal chemotactic activity of PS-ODNs by approximately 10-fold. Endosomal maturation blockers, such as monensin and chloroquine, inhibited the chemotactic effect of PS-ODNs. The inhibition of the activities of p38 mitogen-activated protein (MAP) kinase, and extracellular signal-related kinases (ERKs) as well as phosphoinositide 3-kinase with their specific inhibitors also resulted in suppressing the chemotaxis of primary macrophages induced by PS-ODNs. These results indicate that the PS-ODN-mediated chemotaxis requires the activation of ERKs, p38 MAP kinase, and phosphoinositide 3-kinase as well as endosomal maturation. In addition, the phosphorylations of the p38 MAP kinase, ERKs, and protein kinase B, Akt, were induced by PS-ODN, which were further enhanced by the presence of both a dG(6) run and CpG motifs. Our findings suggest that the chemotactic activity of PS-ODNs may be one of the mechanisms by which PS-ODNs exhibit stronger immunomodulatory activities than PO-ODNs in vivo.
Collapse
Affiliation(s)
- K H Baek
- National Research Laboratory of DNA Medicine, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | | | | |
Collapse
|
805
|
Abstract
Many important biological processes, including chemotaxis (directional cell movement up a chemoattractant gradient), require a clearly established cell polarity and the ability of the cell to respond to a directional signal. Recent advances using Dictyostelium cells and mammalian leukocytes have provided insights into the biochemical and molecular pathways that control chemotaxis. Phosphoinositide 3-kinase plays a central and possibly pivotal role in establishing and maintaining cell polarity by regulating the subcellular localization and activation of downstream effectors that are essential for regulating cell polarity and proper chemotaxis. This review outlines our present understanding of these pathways.
Collapse
Affiliation(s)
- C Y Chung
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
806
|
Masuyama N, Oishi K, Mori Y, Ueno T, Takahama Y, Gotoh Y. Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J Biol Chem 2001; 276:32799-805. [PMID: 11438550 DOI: 10.1074/jbc.m105431200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Akt is a common mediator of cell survival in a variety of circumstances. Although some candidate Akt targets have been described, the function of Akt is not fully understood, particularly because of the cell type- and context-dependent apoptosis regulation. In this study, we demonstrate that one of the mechanisms by which Akt antagonizes apoptosis involves the inhibition of Nur77, a transcription factor implicated in T-cell receptor-mediated apoptosis. It has been suggested that Akt phosphorylates Nur77 directly, but whether Akt suppresses biological functions of Nur77 remains unknown. We found that Akt inhibited the DNA binding activity of Nur77 and stimulated its association with 14-3-3 in a phosphorylation site-dependent manner. Moreover, we found that expression of Akt suppressed Nur77-induced apoptosis in fibroblasts and activation-induced cell death of T-cell hybridomas. The inhibition of Nur77 by Akt suggests a mechanism that explains how T-cell receptor activation can promote survival in some instances even when Nur77 is induced. Collectively, these results may suggest that Akt is a negative regulator of Nur77 in T-cell apoptosis.
Collapse
Affiliation(s)
- N Masuyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
807
|
Kansra V, Groves C, Gutierrez-Ramos JC, Polakiewicz RD. Phosphatidylinositol 3-kinase-dependent extracellular calcium influx is essential for CX(3)CR1-mediated activation of the mitogen-activated protein kinase cascade. J Biol Chem 2001; 276:31831-8. [PMID: 11432847 DOI: 10.1074/jbc.m009374200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fractalkine, the first member of the CX(3)C chemokine family, induces leukocyte chemotaxis through activation of its high affinity receptor, CX(3)CR1. Like other chemokine receptors, CX(3)CR1 is coupled to a pertussis toxin-sensitive heterotrimeric G(i) protein, which is necessary for rapid rise in the concentration of intracellular calcium. Using a Chinese hamster ovary cell line stably transfected with the CX(3)CR1 receptor, we show that the source of calcium mobilized by fractalkine stimulation is the extracellular pool. Calcium influx is blocked by extracellular calcium chelators, as well as by divalent heavy metals such as Ni(2+), Co(2+), and Cd(2+) without affecting the integrity of intracellular stores. Remarkably, selective phosphoinositide 3-kinase (PI3K) inhibitors, wortmannin and LY294002, abolish the wave extracellular calcium, suggesting that an active PI3K is necessary for this event. The influx of extracellular calcium is in turn required to trigger the activation of the p42/44 mitogen-activated protein/extracellular signal-regulated kinase pathway, but is not necessary for other signals downstream to PI3K, such as phosphorylation of Akt. The potential role of this signaling cascade in fractalkine-mediated chemotaxis is discussed.
Collapse
Affiliation(s)
- V Kansra
- Cell Signaling Technology, Beverly, Massachusetts 01915, USA
| | | | | | | |
Collapse
|
808
|
Fukui Y, Hashimoto O, Sanui T, Oono T, Koga H, Abe M, Inayoshi A, Noda M, Oike M, Shirai T, Sasazuki T. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 2001; 412:826-31. [PMID: 11518968 DOI: 10.1038/35090591] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell migration is a fundamental biological process involving membrane polarization and cytoskeletal dynamics, both of which are regulated by Rho family GTPases. Among these molecules, Rac is crucial for generating the actin-rich lamellipodial protrusion, a principal part of the driving force for movement. The CDM family proteins, Caenorhabditis elegans CED-5, human DOCK180 and Drosophila melanogaster Myoblast City (MBC), are implicated to mediate membrane extension by functioning upstream of Rac. Although genetic analysis has shown that CED-5 and Myoblast City are crucial for migration of particular types of cells, physiological relevance of the CDM family proteins in mammals remains unknown. Here we show that DOCK2, a haematopoietic cell-specific CDM family protein, is indispensable for lymphocyte chemotaxis. DOCK2-deficient mice (DOCK2-/-) exhibited migration defects of T and B lymphocytes, but not of monocytes, in response to chemokines, resulting in several abnormalities including T lymphocytopenia, atrophy of lymphoid follicles and loss of marginal-zone B cells. In DOCK2-/- lymphocytes, chemokine-induced Rac activation and actin polymerization were almost totally abolished. Thus, in lymphocyte migration DOCK2 functions as a central regulator that mediates cytoskeletal reorganization through Rac activation.
Collapse
Affiliation(s)
- Y Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, and CREST, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
809
|
Youn BS, Kim YJ, Mantel C, Yu KY, Broxmeyer HE. Blocking of c-FLIP(L)--independent cycloheximide-induced apoptosis or Fas-mediated apoptosis by the CC chemokine receptor 9/TECK interaction. Blood 2001; 98:925-33. [PMID: 11493434 DOI: 10.1182/blood.v98.4.925] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemokines play a pivotal role in regulating leukocyte migration as well as other biological functions. CC chemokine receptor 9 (CCR9) is a specific receptor for thymus-expressed CC chemokine (TECK). It is shown here that engagement of CCR9 with TECK leads to phosphorylation of Akt (protein kinase B), mitogen-activated protein kinases (MAPKs), glycogen synthase kinase--3 beta (GSK-3 beta), and a forkhead transcription factor, FKHR, in a human T-cell line, MOLT4, that naturally expresses CCR9. By means of chemical inhibitors, it is shown that phosphoinositide-3 kinase (PI-3 kinase), but not MAPK, is required for CCR9-mediated chemotaxis. Akt, GSK-3 beta, FKHR, and MAPK have been previously implicated in cell survival signals in response to an array of death stimuli. When MOLT4 cells, which expressed Fas as well as CXCR4, were stimulated with cycloheximide (CHX), an agonistic anti-Fas antibody, or a combination of these, the cells rapidly underwent apoptosis. However, costimulation of MOLT4 cells with TECK or stromal derived factor--1 significantly blocked CHX-mediated apoptosis, whereas stimulation only with TECK partially blocked Fas-mediated apoptosis. Concomitant with this blocking, cleavage of poly (adenosine 5'-diphosphate--ribose) polymerase and activation of caspase 3 were significantly attenuated, but the expression level of FLICE inhibitory protein c-FLIP(L), which had been shown to be regulated by CHX, was unchanged. This demonstrates that activation of CCR9 leads to phosphorylation of GSK-3 beta and FKHR and provides a cell survival signal to the receptor expressing cells against CHX. It also suggests the existence of a novel pathway leading to CHX-induced apoptosis independently of c-FLIP(L). (Blood. 2001;98:925-933)
Collapse
Affiliation(s)
- B S Youn
- Department of Microbiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
810
|
Abstract
Some 40 years of pharmacogenetic research indicates that knowledge of human genetic diversity is essential to a broader understanding of variation in human drug response, and suggests that drug therapy tailored to the genetic characteristics of the individual may be a realistic goal. Aided by new technologies, molecular studies of genetic polymorphisms of many human enzymes, receptors, and other proteins indicate that only a limited number of important protein variants account for the diversity in drug response, raising the prospect that these variants may be cataloged relatively soon for many human populations. The next great challenge of pharmacogenetics is to pin down the cellular location and effect of these variant proteins on the pathways and networks that govern individual variation in responses to drugs and other exogenous chemicals. In this paper, we will discuss some the current challenges to progress in pharmacogenetics and newer strategies that might be used to improve prospects of drug design and personalized therapy.
Collapse
Affiliation(s)
- W W Weber
- University of Michigan, Ann Arbor, MI 48109-0632, USA.
| |
Collapse
|
811
|
Mellado M, Rodríguez-Frade JM, Mañes S, Martínez-A C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2001; 19:397-421. [PMID: 11244042 DOI: 10.1146/annurev.immunol.19.1.397] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A broad array of biological responses, including cell polarization, movement, immune and inflammatory responses, and prevention of HIV-1 infection, are triggered by the chemokines, a family of structurally related chemoattractant proteins that bind to specific seven-transmembrane receptors linked to G proteins. Here we discuss one of the early signaling pathways activated by chemokines, the JAK/STAT pathway. Through this pathway, and possibly in conjunction with other signaling pathways, the chemokines promote changes in cellular morphology, collectively known as polarization, required for chemotactic responses. The polarized cell expresses the chemokine receptors at the leading cell edge, to which they are conveyed by rafts, a cholesterol-enriched membrane fraction fundamental to the lateral organization of the plasma membrane. Finally, the mechanisms through which the chemokines promote their effect are discussed in the context of the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- M Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, Madrid, E-28049 Spain
| | | | | | | |
Collapse
|
812
|
Abstract
The cells and mediators that make up the inflammatory response have the potential to injure tissues and contribute to the pathophysiology of many inflammatory diseases. Strategies to reduce neutrophil migration into sites of inflammation and subsequent activation by inhibiting integrin-mediated adhesion hold promise for successful treatment of a variety of inflammatory diseases. New pharmacologic agents that specifically target prostanoid mediators of inflammation by specifically inhibiting the activity of cyclooxygenase 2 are potent antiinflammatory agents with fewer gastrointestinal side effects than nonspecific cyclooxygenase inhibitors. These areas of antiinflammatory research are rapidly yielding drugs with diverse future applications in equine medicine.
Collapse
Affiliation(s)
- S L Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA.
| | | |
Collapse
|
813
|
Gerszten RE, Friedrich EB, Matsui T, Hung RR, Li L, Force T, Rosenzweig A. Role of phosphoinositide 3-kinase in monocyte recruitment under flow conditions. J Biol Chem 2001; 276:26846-51. [PMID: 11278864 DOI: 10.1074/jbc.m011235200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemokines such as the monocyte chemol attractant protein-1 (MCP-1) convert monocyte rolling to firm arrest under physiological flow conditions via integrin activation and simultaneously activate phosphoinositide 3-kinase (PI3K). Here we used adenoviral gene transfer and biochemical inhibitors to manipulate PI3K-dependent pathways in human monocytes. In in vitro lipid kinase assays from purified human monocytes, we showed that MCP-1 activates the "classical" PI3Kalpha pathway and not PI3Kgamma, a PI3K isoform thought to be activated only by the betagamma complex of heterotrimeric G proteins. The activity of PI3Kalpha in purified human monocytes was evident within 30 s. MCP-1-induced monocyte arrest was significantly inhibited both by wortmannin (n = 4; p < 0.01) and LY294002 (n = 4; p < 0.01) with restoration of the rolling phenotype (p < 0.05 for both inhibitors, compared with rolling of control monocytes after MCP-1 treatment). To test the hypothesis that activation of PI3K is sufficient to induce monocyte adhesion, we transduced the monocytic THP-1 cell line with a recombinant adenovirus (Ad) carrying a constitutively active mutant of PI3K (Ad.BD110). We examined the ability of these cells to adhere to human vascular endothelium (HUVEC) transduced with adenoviruses carrying E-selectin, intercellular adhesion molecule-1 (ICAM-1), and VCAM-1. Under flow conditions, ICAM-1- and VCAM-1-dependent firm adhesion of Ad.BD110-transduced THP-1 cells was enhanced compared with THP-1 cells infected with control Ad (n = 4; p < 0.01 for both). Adhesion augmented by constitutive PI3K activation was entirely abrogated by pretreatment with wortmannin (n = 3; p < 0.01). In contrast, a constitutively active Akt construct had no effect on THP-1 adhesion (n = 3; p = NS). We conclude that PI3K activation is necessary and sufficient to enhance monocytic adhesion under physiological flow conditions. BD110-expressing THP-1 cells should provide a useful tool for identifying the signaling pathways downstream of PI3K that are necessary for monocyte recruitment relevant to a variety of human vascular pathologies.
Collapse
Affiliation(s)
- R E Gerszten
- Program in Cardiovascular Gene Therapy, Cardiovascular Research Center and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
814
|
Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M, Tsubata T, Ohashi PS, Koyasu S, Penninger JM, Nakano T, Mak TW. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001; 14:523-34. [PMID: 11371355 DOI: 10.1016/s1074-7613(01)00134-0] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PTEN, a tumor suppressor gene, is essential for embryogenesis. We used the Cre-loxP system to generate a T cell-specific deletion of the Pten gene (Pten(flox/-) mice). All Pten(flox/-) mice develop CD4+ T cell lymphomas by 17 weeks. Pten(flox/-) mice show increased thymic cellularity due in part to a defect in thymic negative selection. Pten(flox/-) mice exhibit elevated levels of B cells and CD4+ T cells in the periphery, spontaneous activation of CD4+ T cells, autoantibody production, and hypergammaglobulinemia. Pten(flox/-) T cells hyperproliferate, are autoreactive, secrete increased levels of Th1/Th2 cytokines, resist apoptosis, and show increased phosphorylation of PKB/Akt and ERK. Peripheral tolerance to SEB is also impaired in Pten(flox/-) mice. PTEN is thus an important regulator of T cell homeostasis and self-tolerance.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Cell Division
- Cytokines/biosynthesis
- DNA-Binding Proteins/metabolism
- Enterotoxins/immunology
- Female
- Genes, Tumor Suppressor
- I-kappa B Proteins
- Immune Tolerance
- Lymphatic Diseases/immunology
- Lymphoma, T-Cell/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/immunology
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Splenomegaly
- Staphylococcus aureus/immunology
- Superantigens/immunology
- Thymus Gland/abnormalities
- Thymus Gland/cytology
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- A Suzuki
- Department of Molecular and Cellular Biology, Osaka University, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
815
|
Kimura M, Mizukami Y, Miura T, Fujimoto K, Kobayashi S, Matsuzaki M. Orphan G protein-coupled receptor, GPR41, induces apoptosis via a p53/Bax pathway during ischemic hypoxia and reoxygenation. J Biol Chem 2001; 276:26453-60. [PMID: 11335718 DOI: 10.1074/jbc.m101289200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Orphan receptors that couple to G protein without known ligands are considered to relate directly to drug discovery. Here, we examine the expression of various orphan receptors in H9c2 cells during ischemic hypoxia and reoxygenation. Among orphan receptors examined, the level of G protein-coupled receptor 41 (GPR41) mRNA increases significantly, with a peak at 2 h after reoxygenation, and recovers to the control level by 3 h after reoxygenation. The level of glyceraldehyde-3-phosphate dehydrogenase mRNA used as an internal control remains almost constant. The levels of c-fos and c-jun mRNA increase significantly with ischemic hypoxia and reoxygenation. The transfection of GPR41 into H9c2 cells results in a significant decrease in cell number, with DNA fragmentation observed by in vitro and in situ assay. The amount of p53 protein increases significantly in the nuclei of cells expressing GPR41, accompanying an increase in the transcriptional activity of p53. Consistent with the activation of p53, the level of bax mRNA is significantly increased, which leads to an increase in Bax protein. Furthermore, the expression of a deletion mutant of a GPR41, which lacks the G protein binding site and shows an attenuation of intracellular phosphorylation signals to H9c2 cells, inhibits cell death and the increase in p53 protein within 24 h after reoxygenation. These observations demonstrate that GPR41 is a novel receptor that activates p53 leading to apoptosis during reoxygenation after ischemic hypoxia in H9c2 cells. We have designated GPR41 as the hypoxia-induced apoptosis receptor, HIA-R.
Collapse
Affiliation(s)
- M Kimura
- Second Department of Internal Medicine, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | |
Collapse
|
816
|
Zhang XF, Wang JF, Matczak E, Proper JA, Groopman JE. Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 2001; 97:3342-8. [PMID: 11369622 DOI: 10.1182/blood.v97.11.3342] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1), the ligand for the CXCR4 receptor, is a highly efficacious chemoattractant for CD34(+) hematopoietic progenitor cells. However, the SDF-1/CXCR4 signaling pathways that regulate hematopoiesis are still not well defined. This study reports that SDF-1alpha can stimulate the tyrosine phosphorylation of Janus kinase 2 (JAK2) and other members of the JAK/signal transduction and activation of transcription (STAT) family, including JAK1, tyrosine kinase 2, STAT2, and STAT4 in the human progenitor cell line, CTS. SDF-1alpha stimulation of these cells also enhanced the association of JAK2 with phosphatidylinositol 3 (PI3)-kinase. This enhanced association was abolished by pretreatment of cells with AG490, a specific JAK2 inhibitor. Furthermore, pretreatment of CTS cells with AG490 significantly inhibited SDF-1alpha-induced PI3-kinase activity, and inhibition of JAK2 with AG490 ablated the SDF-1alpha-induced tyrosine phosphorylation of multiple focal adhesion proteins (including focal adhesion kinase, related adhesion focal tyrosine kinase, paxillin, CrkII, CrkL, and p130Cas). Chemotaxis assays showed that inhibition of JAK2 diminished SDF-1alpha-induced migration in both CTS cells and CD34(+) human bone marrow progenitor cells. Hence, these results suggest that JAK2 is required for CXCR4 receptor-mediated signaling that regulates cytoskeletal proteins and cell migration through PI3-kinase pathways in hematopoietic progenitor cells. (Blood. 2001;97:3342-3348)
Collapse
Affiliation(s)
- X F Zhang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
817
|
Funamoto S, Milan K, Meili R, Firtel RA. Role of phosphatidylinositol 3' kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in dictyostelium. J Cell Biol 2001; 153:795-810. [PMID: 11352940 PMCID: PMC2192389 DOI: 10.1083/jcb.153.4.795] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We show that cells lacking two Dictyostelium class I phosphatidylinositol (PI) 3′ kinases (PI3K and pi3k1/2-null cells) or wild-type cells treated with the PI3K inhibitor LY294002 are unable to properly polarize, are very defective in the temporal, spatial, and quantitative regulation of chemoattractant-mediated filamentous (F)-actin polymerization, and chemotax very slowly. PI3K is thought to produce membrane lipid-binding sites for localization of PH domain–containing proteins. We demonstrate that in response to chemoattractants three PH domain–containing proteins do not localize to the leading edge in pi3k1/2-null cells, and the translocation is blocked in wild-type cells by LY294002. Cells lacking one of these proteins, phdA-null cells, exhibit defects in the level and kinetics of actin polymerization at the leading edge and have chemotaxis phenotypes that are distinct from those described previously for protein kinase B (PKB) (pkbA)-null cells. Phenotypes of PhdA-dominant interfering mutations suggest that PhdA is an adaptor protein that regulates F-actin localization in response to chemoattractants and links PI3K to the control of F-actin polymerization at the leading edge during pseudopod formation. We suggest that PKB and PhdA lie downstream from PI3K and control different downstream effector pathways that are essential for proper chemotaxis.
Collapse
Affiliation(s)
- Satoru Funamoto
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| | - Kristina Milan
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| | - Ruedi Meili
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| | - Richard A. Firtel
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
818
|
Abstract
Rho proteins and phosphatidylinositide 3-kinases (PI 3-kinases) have been widely implicated in regulating cell motility both in cultured cells and in animal models. Monocytes are recruited from the bloodstream in response to inflammatory signals, and migrate across the endothelial barrier into the tissues, where they differentiate into macrophages and phagocytose bacteria and cells. Studies of monocytes and macrophages have revealed that different Rho family members and PI 3-kinases are not functionally redundant but play unique and distinct roles in motile responses.
Collapse
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK.
| |
Collapse
|
819
|
Lewis CM, Broussard C, Czar MJ, Schwartzberg PL. Tec kinases: modulators of lymphocyte signaling and development. Curr Opin Immunol 2001; 13:317-25. [PMID: 11406363 DOI: 10.1016/s0952-7915(00)00221-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Tec kinases are implicated as important components of the antigen receptor signaling required for proper lymphocyte activation and development. Recent data suggest that these kinases contribute to multiprotein complexes containing LAT and SLP-76 in T cells, and BLNK/SLP-65 in B cells, which are required for activation of PLC-gamma and downstream pathways.
Collapse
Affiliation(s)
- C M Lewis
- National Human Genome Research Institute, National Institutes of Health, 20892, Bethesda, MD, USA
| | | | | | | |
Collapse
|
820
|
Morales-Ruiz M, Lee MJ, Zöllner S, Gratton JP, Scotland R, Shiojima I, Walsh K, Hla T, Sessa WC. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem 2001; 276:19672-7. [PMID: 11278592 DOI: 10.1074/jbc.m009993200] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sphingosine 1-phosphate (SPP) binds to members of the endothelial differentiation gene family (EDG) of receptors and leads to diverse signaling events including cell survival, growth, migration and differentiation. However, the mechanisms of how SPP activates these proangiogenic pathways are poorly understood. Here we show that SPP signals through the EDG-1 receptor to the heterotrimeric G protein G(i), leading to activation of the serine/threonine kinase Akt and phosphorylation of the Akt substrate, endothelial nitric-oxide synthase (eNOS). Inhibition of G(i) signaling, and phosphoinositide 3-kinase (PI 3-kinase) activity resulted in a decrease in SPP-induced endothelial cell chemotaxis. SPP also stimulates eNOS phosphorylation and NO release and these effects are also attenuated by inhibition of G(i) signaling, PI 3-kinase, and Akt. However, inhibition of NO production did not influence SPP-induced chemotaxis but effectively blocked the chemotactic actions of vascular endothelial growth factor. Thus, SPP signals through G(i) and PI 3-kinase leading to Akt activation and eNOS phosphorylation.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cattle
- Cell Movement
- Chemotaxis
- Culture Media, Serum-Free/metabolism
- Dose-Response Relationship, Drug
- Endothelial Growth Factors/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Enzyme Activation
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Genes, Dominant
- Lung/metabolism
- Lymphokines/pharmacology
- Lysophospholipids
- Neovascularization, Physiologic
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type III
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Binding
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptors, Cell Surface/biosynthesis
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine/physiology
- Time Factors
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- M Morales-Ruiz
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
821
|
Abstract
Biochemical experiments have established that the metabolism of inositol phospholipids by phosphoinositide 3-kinases (PI3Ks) and lipid-phosphatases is triggered by many receptors that control T lymphocyte function, including antigen-receptors, costimulatory molecules, cytokines and chemokines. Novel effectors of PI3K have been identified in the immune system and shown to be important in the control of lymphocyte activation. Moreover, key lipid-phosphatases have been identified that act to terminate or modulate PI3K signalling in cells of the immune system.
Collapse
Affiliation(s)
- S G Ward
- Department of Pharmacology, Bath University, Claverton Down, BA2 7AY, Bath, UK
| | | |
Collapse
|
822
|
|
823
|
Bruyninckx WJ, Comerford KM, Lawrence DW, Colgan SP. Phosphoinositide 3-kinase modulation of beta(3)-integrin represents an endogenous "braking" mechanism during neutrophil transmatrix migration. Blood 2001; 97:3251-8. [PMID: 11342456 DOI: 10.1182/blood.v97.10.3251] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During episodes of inflammation, neutrophils (polymorphonuclear leukocytes [PMNs]) encounter subendothelial matrix substrates that may require additional signaling pathways as directives for movement through the extracellular space. Using an in vitro endothelial and epithelial model, inhibitors of phosphoinositide 3-kinase (PI3K) were observed to promote chemoattractant-stimulated migration by as much as 8 +/- 0.3-fold. Subsequent studies indicated that PMNs respond in a similar manner to RGD-containing matrix substrates and that PMN-matrix interactions are potently inhibited by antibodies directed against beta(3)- but not beta(1)-integrin antibodies, and that PI3K inhibitors block beta(3)-integrin dependence. Biochemical analysis of intracellular beta(3)-integrin uncoupling by PI3K inhibitors revealed diminished beta(3)-integrin tyrosine phosphorylation and decreased association with p72(syk). Similarly, the p72(syk) inhibitor piceatannol promoted PMN transmatrix migration, whereas HIV-tat peptide-facilitated loading of peptides corresponding to the beta(3)-integrin cytoplasmic tail identified the functional tyrosine residues for this activity. These data indicate that PI3K-regulated beta(3)-integrin represents a natural "braking" mechanism for PMNs during transit through the extracellular matrix.
Collapse
Affiliation(s)
- W J Bruyninckx
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
824
|
Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, Fernández S, Martín de Ana A, Jones DR, Torán JL, Martínez-A C. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 2001; 20:2497-507. [PMID: 11350939 PMCID: PMC125458 DOI: 10.1093/emboj/20.10.2497] [Citation(s) in RCA: 326] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Revised: 03/20/2001] [Accepted: 03/22/2001] [Indexed: 12/25/2022] Open
Abstract
Chemokine receptors of both the CC and CXC families have been demonstrated to undergo a ligand-mediated homodimerization process required for Ca2+ flux and chemotaxis. We show that, in the chemokine response, heterodimerization is also permitted between given receptor pairs, specifically between CCR2 and CCR5. This has functional consequences, as the CCR2 and CCR5 ligands monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated upon activation, normal T cell-expressed and secreted) cooperate to trigger calcium responses at concentrations 10- to 100-fold lower than the threshold for either chemokine alone. Heterodimerization results in recruitment of each receptor-associated signaling complex, but also recruits dissimilar signaling path ways such as G(q/11) association, and delays activation of phosphatidyl inositol 3-kinase. The consequences are a pertussis toxin-resistant Ca2+ flux and trig gering of cell adhesion rather than chemotaxis. These results show the effect of heterodimer formation on increasing the sensitivity and dynamic range of the chemokine response, and may aid in understanding the dynamics of leukocytes at limiting chemokine concentrations in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain
Corresponding author e-mail:
| |
Collapse
|
825
|
Chung CY, Potikyan G, Firtel RA. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol Cell 2001; 7:937-47. [PMID: 11389841 DOI: 10.1016/s1097-2765(01)00247-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We demonstrate that PI3 kinase and protein kinase B (PKB or Akt) control cell polarity and chemotaxis, in part, through the regulation of PAKa, which is required for myosin II assembly. We demonstrate that PI3K and PKB mediate PAKa's subcellular localization, PAKa's activation in response to chemoattractant stimulation, and chemoattractant-mediated myosin II assembly. Mutation of the PKB phosphorylation site in PAKa to Ala blocks PAKa's activation and inhibits PAKa redistribution in response to chemoattractant stimulation, whereas an Asp substitution leads to an activated protein. Addition of the PI3K inhibitor LY294002 results in a rapid loss of cell polarity and the axial distribution of actin, myosin, and PAKa. These results provide a mechanism by which PI3K regulates chemotaxis.
Collapse
Affiliation(s)
- C Y Chung
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
826
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate the 3′-OH position of the inositol ring of inositol phospholipids, producing three lipid products: PtdIns(3)P, PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). These lipids bind to the pleckstrin homology (PH) domains of proteins and control the activity and subcellular localisation of a diverse array of signal transduction molecules. Three major classes of signalling molecule are regulated by binding of D-3 phosphoinositides to PH domains: guanine-nucleotide-exchange proteins for Ρ family GTPases, the TEC family tyrosine kinases such as BTK and ITK in B and T lymphocytes, respectively, and the AGC superfamily of serine/threonine protein kinases. These molecules are activated by a variety of extracellular stimuli and have been implicated in a wide range of cellular processes, including cell cycle progression, cell growth, cell motility, cell adhesion and cell survival.
Collapse
Affiliation(s)
- D A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK.
| |
Collapse
|
827
|
Kirsch C, Wetzker R, Klinger R. Anionic phospholipids are involved in membrane targeting of PI 3-kinase gamma. Biochem Biophys Res Commun 2001; 282:691-6. [PMID: 11401516 DOI: 10.1006/bbrc.2001.4623] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoinositide 3-kinases (PI 3-kinases) have critical roles in diverse cellular signaling processes and in protein trafficking. In contrast to the class I PI 3-kinases alpha, beta, and delta which bind via src homology 2 (SH2) domains of adaptor proteins to tyrosine kinase receptors, the mechanism of recruitment of the PI 3-kinase gamma to membranes is unknown. We report in vitro experiments using immobilized proteins and small unilamellar vesicles which suggest an involvement of anionic phospholipids in membrane association of PI 3-kinase gamma. Furthermore we provide evidence that the enzyme displays beside the catalytic center a phospholipid binding domain which is essential for enzyme activity.
Collapse
Affiliation(s)
- C Kirsch
- Institute of Biochemistry II, Medical Faculty, University of Jena, Nonnenplan 2, Jena, D-07740, Germany
| | | | | |
Collapse
|
828
|
Okkenhaug K, Wu L, Garza KM, La Rose J, Khoo W, Odermatt B, Mak TW, Ohashi PS, Rottapel R. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat Immunol 2001; 2:325-32. [PMID: 11276203 DOI: 10.1038/86327] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Upon interaction with its ligand, B7, CD28 becomes phosphorylated on tyrosines. One tyrosine in particular (Y170 in mouse CD28, Y173 in human CD28) has received much attention. This is because it permits CD28 to recruit SH2-containing signaling molecules, including phosphoinositide 3 kinase, Grb2 and Gads. Using mice we employed a transgenic approach to express a tyrosine-->phenylalanine mutant form of CD28 that uncouples these SH2-mediated interactions from CD28. The CD28 mutant is unable to up-regulate expression of the prosurvival protein Bcl-xL, rendering the T cells more susceptible to radiation-induced death. Nonetheless, this mutated form of CD28 still prevents the induction of anergy and promotes T cell proliferation, interleukin 2 secretion and B cell help. Thus, we describe a single point mutation within the CD28 cytoplasmic domain that uncouples signals required for proliferation and survival.
Collapse
Affiliation(s)
- K Okkenhaug
- Department of Immunology, University of Toronto, Ontario M5S 1A2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
829
|
Abstract
The process of T cell development in the thymus is tightly regulated, being dependent on the integration of signals required for thymocyte maturation and survival. Rearrangements, expression and signaling of TCR genes play an indispensable role in this developmental program. Recent advances have provided insights into the molecular mechanisms that regulate TCR repertoire formation at the level of alphabeta versus gammadelta T cell fate and CD4(+) versus CD8(+) lineage determination.
Collapse
Affiliation(s)
- L J Berg
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
830
|
Buxadé M, Ramírez-Alvarado M, Fernández-Troy N, MacKenzie S, Casaroli-Marano RP, Vilella R, Espel E. Integrating signals from T-cell receptor and serum by T cells enhance translation of tumour necrosis factor-alpha. Immunology 2001; 102:416-25. [PMID: 11328375 PMCID: PMC1783203 DOI: 10.1046/j.1365-2567.2001.01206.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine produced by several cell types, including T cells upon antigen stimulation. Its production is crucial for the development of an early defence against many pathogens, but its beneficial effects are dependent on the strength and duration of its expression. In this paper we present evidence indicating that serum increases translational efficiency of TNF-alpha in human peripheral blood mononuclear cells stimulated with superantigen. The increase in translation of TNF-alpha due to serum could be inhibited by the phosphatidylinositol (PI) 3-K inhibitors, wortmannin and LY294002, suggesting that PI 3-K is involved in the translational control of TNF-alpha by serum. Similarly to primary T cells, stimulation of Jurkat T cells with superantigen led to TNF-alpha secretion and this was up-regulated by serum. Transfection of Jurkat cells with a constitutively active form of PI 3-Kalpha increased the production of TNF-alpha in cells stimulated with superantigen. Additionally, we used the specific inhibitors targeting ERK kinase and p38 mitogen-activated protein kinase (MAPK), potentially downstream of PI 3-kinase, PD98059 and SB203580. Differently from with PI 3-K inhibitors, the accumulation of TNF-alpha mRNA was inhibited by PD98059 or SB203580. These results suggest that, in T cells, activation of PI 3-K is an important step in controlling TNF-alpha protein synthesis in response to growth factors.
Collapse
Affiliation(s)
- M Buxadé
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
831
|
Abstract
The neutrophil is a critical effector cell in humoral and innate immunity and plays vital roles in phagocytosis and bacterial killing. Discussed here are the neutrophil components necessary for these processes and the diseases in which these components are either lacking or dysfunctional, illustrating that normal neutrophil function is vital for health.
Collapse
Affiliation(s)
- N D Burg
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
832
|
Kranenburg O, Moolenaar WH. Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 2001; 20:1540-6. [PMID: 11313900 DOI: 10.1038/sj.onc.1204187] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are extracellular lipid mediators that signal through distinct members of the Edg/LP subfamily of G protein-coupled receptors (GPCRs). LPA and S1P receptors are expressed in almost every cell type and can couple to multiple G proteins (G(i), G(q) and G(12/13)) to mediate a great variety of responses, ranging from rapid morphological changes to long-term stimulation of cell proliferation. LPA serves as the prototypic GPCR agonist that activates the small GTPases Ras (via G(i)) and RhoA (via G(12/13)), leading to activation of the mitogen-activated protein kinase (MAPK) cascade and reorganization of the actin cytoskeleton, respectively. This review focuses on our current insights into how Ras-MAPK signaling is regulated by GPCR agonists in general, and by LPA in particular.
Collapse
Affiliation(s)
- O Kranenburg
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
833
|
Abstract
Heterotrimeric guanine nucleotide binding proteins (G-proteins) mediate the effects of numerous hormones, neurotransmitters or sensory stimuli by coupling their transmembranous receptors to various effectors like enzymes and ion channels. Changes in the activity of these effector molecules eventually lead to the regulation of multiple cellular functions ranging from short term regulatory processes like the control of secretion rates, muscle tonus or metabolic processes to long term effects like regulation of growth and differentiation. Heterotrimeric G-proteins play a pivotal role in this transmembrane signaling process as they take part in processing and sorting of incoming signals as well as in adjusting the sensitivity of the system. This review describes some of the new insights into the biological role of G-protein mediated signaling processes provided by the analysis of mice genetically engineered to lack distinct G-protein alpha-subunits.
Collapse
Affiliation(s)
- S Offermanns
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
834
|
Moniakis J, Funamoto S, Fukuzawa M, Meisenhelder J, Araki T, Abe T, Meili R, Hunter T, Williams J, Firtel RA. An SH2-domain-containing kinase negatively regulates the phosphatidylinositol-3 kinase pathway. Genes Dev 2001; 15:687-98. [PMID: 11274054 PMCID: PMC312652 DOI: 10.1101/gad.871001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHK1 is a novel dual-specificity kinase that contains an SH2 domain in its C-terminal region. We demonstrate that SHK1 is required for proper chemotaxis and phagocytosis. Mutant shk1 null cells lack polarity, move very slowly, and exhibit an elevated and temporally extended chemoattractant-mediated activation of the kinase Akt/PKB. GFP fusions of the PH domain of Akt/PKB or the PH-domain-containing protein CRAC, which become transiently associated with the plasma membrane after a global stimulation with a chemoattractant, remain associated with the plasma membrane for an extended period of time in shk1 null cells. These results suggest that SHK1 is a negative regulator of the PI3K (phosphatidylinositol-3 kinase) pathway. Furthermore, when a chemoattractant gradient is applied to a wild-type cell, these PH-domain-containing proteins and the F-actin-binding protein coronin localize to its leading edge, but in an shk1 null cell they become randomly associated with the plasma membrane and cortex, irrespective of the direction of the chemoattractant gradient, suggesting that SHK1 is required for the proper spatiotemporal control of F-actin levels in chemotaxing cells. Consistent with such functions, SHK1 is localized at the plasma membrane/cortex, and we show that its SH2 domain is required for this localization and the proper function of SHK1.
Collapse
Affiliation(s)
- J Moniakis
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
835
|
Affiliation(s)
- L Koenderman
- Department of Pulmonary Diseases, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
836
|
Cherla RP, Ganju RK. Stromal cell-derived factor 1 alpha-induced chemotaxis in T cells is mediated by nitric oxide signaling pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3067-74. [PMID: 11207257 DOI: 10.4049/jimmunol.166.5.3067] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stromal cell-derived factor 1 alpha (SDF1 alpha) and its cognate chemokine receptor CXCR4 act as potent chemoattractants and regulate trafficking and homing of hematopoietic progenitor cells and lymphocytes. However, the molecular mechanisms regulating SDF1 alpha-driven cell migration are not well defined. In this study, we have explored the roles of the second messenger NO and the transcription factor NF-kappa B in SDF1 alpha-induced T cell migration. SDF1 alpha treatment of Jurkat T cells increased the activity of NO synthase, which catalyzes the generation of NO. We observed that pretreatment of Jurkat cells or activated PBLs with several NO donors significantly enhanced the SDF1 alpha-induced migration, whereas various inhibitors of NO synthase markedly abrogated the chemotactic response in a concentration-dependent manner. Furthermore, we observed that inhibitors of the transcription factor NF-kappa B, which is linked to NO signaling pathways, also significantly blocked the SDF1 alpha-induced chemotactic response. However, these compounds did not have a significant effect on SDF1 alpha-induced mitogen-activated protein kinase activity. In addition, the MAP/Erk kinase kinase inhibitor PD98059 did not abrogate SDF1 alpha-induced chemotaxis. AKT, which has been shown to mediate NO production, was also phosphorylated upon SDF1 alpha stimulation. These studies suggest that NO-related signaling pathways may mediate SDF1 alpha-induced chemotaxis, but not mitogen-activated protein kinase activation.
Collapse
Affiliation(s)
- R P Cherla
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
837
|
Bony C, Roche S, Shuichi U, Sasaki T, Crackower MA, Penninger J, Mano H, Pucéat M. A specific role of phosphatidylinositol 3-kinase gamma. A regulation of autonomic Ca(2)+ oscillations in cardiac cells. J Cell Biol 2001; 152:717-28. [PMID: 11266463 PMCID: PMC2195768 DOI: 10.1083/jcb.152.4.717] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purinergic stimulation of cardiomyocytes turns on a Src family tyrosine kinase-dependent pathway that stimulates PLCgamma and generates IP(3), a breakdown product of phosphatidylinositol 4,5-bisphosphate (PIP2). This signaling pathway closely regulates cardiac cell autonomic activity (i.e., spontaneous cell Ca(2+) spiking). PIP2 is phosphorylated on 3' by phosphoinositide 3-kinases (PI3Ks) that belong to a broad family of kinase isoforms. The product of PI3K, phosphatidylinositol 3,4,5-trisphosphate, regulates activity of PLCgamma. PI3Ks have emerged as crucial regulators of many cell functions including cell division, cell migration, cell secretion, and, via PLCgamma, Ca(2+) homeostasis. However, although PI3Kalpha and -beta have been shown to mediate specific cell functions in nonhematopoietic cells, such a role has not been found yet for PI3Kgamma. We report that neonatal rat cardiac cells in culture express PI3Kalpha, -beta, and -gamma. The purinergic agonist predominantly activates PI3Kgamma. Both wortmannin and LY294002 prevent tyrosine phosphorylation, and membrane translocation of PLCgamma as well as IP(3) generation in ATP-stimulated cells. Furthermore, an anti-PI3Kgamma, but not an anti-PI3Kbeta, injected in the cells prevents the effect of ATP on cell Ca(2+) spiking. A dominant negative mutant of PI3Kgamma transfected in the cells also exerts the same action. The effect of ATP was observed on spontaneous Ca(2+) spiking of wild-type but not of PI3Kgamma(2/2) embryonic stem cell-derived cardiomyocytes. ATP activates the Btk tyrosine kinase, Tec, and induces its association with PLCgamma. A dominant negative mutant of Tec blocks the purinergic effect on cell Ca(2+) spiking. Tec is translocated to the T-tubes upon ATP stimulation of cardiac cells. Both an anti-PI3Kgamma antibody and a dominant negative mutant of PI3Kgamma injected or transfected into cells prevent the latter event. We conclude that PI3Kgamma activation is a crucial step in the purinergic regulation of cardiac cell spontaneous Ca(2+) spiking. Our data further suggest that Tec works in concert with a Src family kinase and PI3Kgamma to fully activate PLCgamma in ATP-stimulated cardiac cells. This cluster of kinases provides the cardiomyocyte with a tight regulation of IP(3) generation and thus cardiac autonomic activity.
Collapse
Affiliation(s)
- Claire Bony
- The French Institute of Health and Medical Research, CNRS UPR1086 Montpellier 34293, France
| | - Serge Roche
- the Center for Research of Macromolecular Biochemistry, CNRS UPR1086 Montpellier 34293, France
| | - Ueno Shuichi
- Division of Functional Genomics, Jichi Medical School, Tochigi, 329-04 Japan
| | - Takehiko Sasaki
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Michael A. Crackower
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Josef Penninger
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Hiroyuki Mano
- Division of Functional Genomics, Jichi Medical School, Tochigi, 329-04 Japan
| | - Michel Pucéat
- the Center for Research of Macromolecular Biochemistry, CNRS UPR1086 Montpellier 34293, France
| |
Collapse
|
838
|
Lian JP, Crossley L, Zhan Q, Huang R, Coffer P, Toker A, Robinson D, Badwey JA. Antagonists of calcium fluxes and calmodulin block activation of the p21-activated protein kinases in neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2643-50. [PMID: 11160327 DOI: 10.4049/jimmunol.166.4.2643] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of approximately 63 and 69 kDa (gamma- and alpha-Pak). Previous studies have shown that products of phosphatidylinositol 3-kinase and tyrosine kinases are required for the activation of Paks. We now report that a variety of structurally distinct compounds which interrupt different stages in calcium/calmodulin (CaM) signaling block activation of the 63- and 69-kDa Paks in fMLP-stimulated neutrophils. These antagonists included selective inhibitors of phospholipase C (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), the intracellular Ca(2+) channel (8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate), CaM (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), and CaM-activated protein kinases (N-[2-(N-(chlorocinnamyl)-N:-methylaminomethyl)phenyl]-N-[2-hydroxyethyl]-4-methoxybenzenesulfonamide). This inhibition was dose-dependent with IC(50) values very similar to those that interrupt CaM-dependent reactions in vitro. In contrast, less active analogues of these compounds (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2,5-pyrrolidinedione; N-(6-aminohexyl)-1-naphthalenesulfonamide; N-(4-aminobutyl)-1-naphthalenesulfonamide; promethazine; 2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine]) did not affect activation of Paks in these cells. CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), but not their less-active analogues (N-(6-aminohexyl)-1-naphthalenesulfonamide; promethazine), were also found to block activation of the small GTPases Ras and Rac in stimulated neutrophils along with the extracellular signal-regulated kinases. These data strongly suggest that the Ca(2+)/CaM complex plays a major role in the activation of a number of enzyme systems in neutrophils that are regulated by small GTPases.
Collapse
Affiliation(s)
- J P Lian
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
839
|
Clayton E, McAdam S, Coadwell J, Chantry D, Turner M. Structural organization of the mouse phosphatidylinositol 3-kinase p110d gene. Biochem Biophys Res Commun 2001; 280:1328-32. [PMID: 11162674 DOI: 10.1006/bbrc.2001.4281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinases are a family of dual specificity lipid/protein kinases. The products of PI3K's, phosphatidylinositol(3,4,5) triphosphate and phosphatidylinositol(3,4) bisphosphate, act as second messengers connecting activated transmembrane receptors to signaling pathways that control gene transcription, proliferation, transformation, programmed cell death, adhesion, migration and vesicular transport. There is evidence that different isoforms of PI3K's activate specific signaling pathways and are thus responsible for integrating cellular responses. The elucidation of the genomic structure of the catalytic subunits is a necessary step for the investigation of the function of PI3K isoforms by inactivation of the gene in vivo. The structural organization of p110alpha, beta, and gamma genes has been previously reported. Here we report the cloning, sequencing, and structural organization of the mouse p110delta gene from a murine 129/Sv genomic library. The p110delta gene consists of 22 exons and spans over 13 kb. Comparison of the genomic structure with that of p110alpha, beta, and gamma demonstrates that the p110delta gene shares its exon structure with p110beta, the most closely related PI3K at the amino acid level.
Collapse
Affiliation(s)
- E Clayton
- Lymphocyte Signaling and Development Laboratory, Babraham Institute, Babraham, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
840
|
Abstract
Since their discovery 13 years ago, chemokines have emerged as the most important regulators of leukocyte trafficking. On target cells, chemokines bind to seven-transmembrane-domain receptors that are coupled to heterotrimeric Gi proteins. The common response of all cells to chemokine stimulation is chemotaxis. In addition, leukocyte activation triggers diverse signal transduction cascades; which cascade is triggered depends on the chemokine and receptor engaged. The selective activation of distinct pathways suggests that the receptors couple not only to G proteins but also to additional downstream effectors. This review discusses recent advances in the elucidation of the signal transduction that occurs in proximity to receptors and that leads to the early biochemical events in leukocyte activation.
Collapse
Affiliation(s)
- M Thelen
- Institute for Research in Biomedicine, CH 6500 Bellinzona, Switzerland.
| |
Collapse
|
841
|
Abstract
Neutrophils are considered to be central to the pathogenesis of most forms of acute lung injury (ALI). For the sake of clarity, neutrophil involvement in ALI can be conceptualized as consisting of sequential stages, beginning with their sequestration in the pulmonary microvasculature, followed by adhesion and activation, and culminating in the production of a microbicidal or "effector" response, such as the generation of reactive oxygen species or release of proteolytic enzymes. Great strides have been made in elucidating these various stages of neutrophil involvement. Recent studies have focused on the intracellular signaling pathways that govern neutrophil activation and have elucidated complex cascades of kinases and other intracellular signaling molecules that allow for amplication of the neutrophil response, yet simultaneously confer specificity of a response. We believe that the inflammatory response in ALI may initially be adaptive, such as the pivotal role played by neutrophils in a bacterial or fungal infection. Ultimately, it is the persistence or the dysregulation of neutrophil activation that may lead to ALI. An increased understanding of how neutrophils function will facilitate the design of therapeutic strategies that retain the beneficial aspects of the inflammatory response, while avoiding unnecessary tissue damage.
Collapse
Affiliation(s)
- W L Lee
- Division of Respirology, Department of Medicine and Critical Care Medicine Program, University of Toronto, Ontario, Canada
| | | |
Collapse
|
842
|
Kim C, Dinauer MC. Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1223-32. [PMID: 11145705 DOI: 10.4049/jimmunol.166.2.1223] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rac2 is a hematopoietic-specific Rho family GTPase implicated as an important constituent of the NADPH oxidase complex and shares 92% amino acid identity with the ubiquitously expressed Rac1. In bone marrow (BM) neutrophils isolated from rac2(-/-) mice generated by gene targeting, we previously reported that PMA-induced superoxide production was reduced by about 4-fold, which was partially corrected in TNF-alpha-primed BM neutrophils and in peritoneal exudate neutrophils. We investigated receptor-mediated activation of the NADPH oxidase in the current study, finding that superoxide production in rac2(-/-) BM and peritoneal exudate neutrophils was normal in response to opsonized zymosan, reduced to 22% of wild type in response to IgG-coated SRBC, and almost absent in response to fMLP. In wild-type murine BM neutrophils, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and Akt was induced by PMA or fMLP, which was decreased in rac2(-/-) neutrophils for ERK1/2 and p38. Activation of p38 by either opsonized zymosan or IgG-coated SRBC was similar in wild-type and rac2(-/-) cells. Inhibition of ERK1/2 or p38 activation using either PD98059 or SB203580, respectively, had only a modest effect on fMLP-elicited superoxide production and no effect on the PMA-induced response. These data provide genetic evidence supporting an important role for Rac2 in regulating neutrophil NADPH oxidase activation downstream of chemoattractant and Fcgamma receptors. The effect of Rac2 deficiency on superoxide production is probably exerted through multiple pathways, including those independent of mitogen-activated protein kinase activation.
Collapse
Affiliation(s)
- C Kim
- The Herman B Wells Center for Pediatric Research, Department of Pediatrics, The James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | |
Collapse
|
843
|
Abstract
Although the process of sequencing the Dictyostelium genome is not complete, it is already producing surprises, including an unexpectedly large number of Ras- and Rho-subfamily GTPases. Members of these families control a wide variety of cellular processes in eukaryotes, including proliferation, differentiation, cell motility and cell polarity. Comparison of small GTPases from Dictyostelium with those from higher eukaryotes provides an intriguing view of their cellular and evolutionary roles. In particular, although mammalian Ras proteins interact with several signalling pathways, the Dictyostelium pathways appear more linear, with each Ras apparently performing a specific cellular function.
Collapse
Affiliation(s)
- A Wilkins
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK CB2 2QH
| | | |
Collapse
|
844
|
Abstract
The directed movement of fibroblasts towards locally released platelet-derived growth factor (PDGF) is a critical event in wound healing. Although recent studies have implicated polarized activation of phosphoinositide (PI) 3-kinase in G protein-mediated chemotaxis, the role of 3' PI lipids in tyrosine kinase-triggered chemotaxis is not well understood. Using evanescent wave microscopy and green fluorescent protein-tagged Akt pleckstrin homology domain (GFP-AktPH) as a molecular sensor, we show that application of a shallow PDGF gradient triggers a markedly steeper gradient in 3' PI lipids in the adhesion zone of fibroblasts. Polar GFP-AktPH gradients, as well as a new type of radial gradient, were measured from front to rear and from the periphery to the center of the adhesion zone, respectively. A strong spatial correlation between polarized 3' PI production and rapid membrane spreading implicates 3' PI lipids as a direct mediator of polarized migration. Analysis of the temporal changes of 3' PI gradients in the adhesion zone revealed a fast diffusion coefficient (0.5 microm(2)/s) and short lifetime of 3' PIs of <1 min. Together, this study suggests that the tyrosine kinase-coupled directional movement of fibroblasts and their radial membrane activity are controlled by local generation and rapid degradation of 3' PI second messengers.
Collapse
Affiliation(s)
- Jason M. Haugh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Franca Codazzi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
- Neuroscience Department, Dibit, San Raffaele Scientific Institute, Milan, Italy 20132
| | - Mary Teruel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Tobias Meyer
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
845
|
Sano S, Kira M, Takagi S, Yoshikawa K, Takeda J, Itami S. Two distinct signaling pathways in hair cycle induction: Stat3-dependent and -independent pathways. Proc Natl Acad Sci U S A 2000; 97:13824-9. [PMID: 11087819 PMCID: PMC17660 DOI: 10.1073/pnas.240303097] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hair follicle is an epidermal derivative that undergoes cycles of growth, involution, and rest. The hair cycle has well-orchestrated kinetics regulated by interactions between mesenchymal and epithelial cells, although the intracellular signals remain unclear. We previously established keratinocyte-specific Stat3-disrupted mice, by which we demonstrated that signal transducer and activator of transcription 3 (Stat3) is required for wound healing and anagen progression in the hair cycle. Growth factor-dependent migration of Stat3-disrupted keratinocytes was severely impaired, suggesting that not only wound healing but also telogen-to-anagen progression required organized keratinocyte migration in response to mesenchymal stimuli. In the present study, to examine whether Stat3 activation in keratinocytes is a prerequisite for hair cycle progression, we applied methods for experimental anagen induction to Stat3-disrupted mice. It was demonstrated that anagen was successfully induced in Stat3-disrupted as well as wild-type mice by chemical or mechanical stimulation, i.e. , by topical application of phorbol 12-myristate 13-acetate (PMA) or by hair plucking, respectively. This result indicated that anagen in these methods occurred in the absence of Stat3. Furthermore, PMA stimulated the migration of Stat3-disrupted keratinocytes in vitro, supporting a hypothesis that the protein kinase C (PKC) and Stat3 pathways occur independently in the postnatal anagen induction. Both Stat3-dependent and -independent migration of keratinocytes was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin. Therefore, we infer that entry into anagen is mediated by at least two distinct signaling pathways: Stat3-dependent pathway for spontaneous hair cycling and Stat3-independent (probably PKC-dependent) pathway for exogenously induced hair cycling, whereas both pathways require PI3K activation.
Collapse
Affiliation(s)
- S Sano
- Departments of Dermatology and Social and Environmental Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
846
|
Abstract
Small-molecule inhibitors of several intracellular signaling proteins, mostly protein kinases, show tremendous selectivity and potency. The complexity and redundancy of signaling pathways presents opportunities for therapeutic selectivity and some clinical results are remarkable. New strategies are being developed to interfere with previously intractable targets, such as protein-protein interactions.
Collapse
Affiliation(s)
- F McCormick
- Cancer Research Institute, 2340 Sutter Street, San Francisco, CA 94115, USA.
| |
Collapse
|
847
|
Martens HJ, Geenen V. Focal adhesion kinases: interest in immunoendocrinology, developmental biology, and cancer. Endocrine 2000; 13:233-42. [PMID: 11216633 DOI: 10.1385/endo:13:3:233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Revised: 05/01/2000] [Accepted: 05/10/2000] [Indexed: 12/27/2022]
Abstract
The research field on focal adhesion-related kinases started a decade ago, but the term focal adhesion was introduced for the first time nearly 20 yr before. Since its identification, many studies have enlightened the role of the first intermediate of focal adhesion-related signals in a large number of biologic and physiologic processes. In this review, we try to integrate the most recent data about the known focal adhesion-related kinases, and we focus on three topics in which they deserve great interest: neuroendocrine-immune interactions, developmental biology, and proliferative diseases.
Collapse
Affiliation(s)
- H J Martens
- Department of Medicine, Institute of Pathology, University of Liege, Liege-Sart Tilman, Belgium.
| | | |
Collapse
|
848
|
Kovala AT, Harvey KA, McGlynn P, Boguslawski G, Garcia JG, English D. High-efficiency transient transfection of endothelial cells for functional analysis. FASEB J 2000; 14:2486-94. [PMID: 11099466 DOI: 10.1096/fj.00-0147com] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The definition of signaling pathways in endothelial cells has been hampered by the difficulty of transiently transfecting these cells with high efficiency. This investigation was undertaken to develop an efficient technique for the transfection of endothelial cells for functional analyses. Cells cotransfected with plasmid expressing green fluorescent protein (GFP) and the plasmid of interest were isolated by fluorescence-activated cell sorting (FACS) based on GFP expression. In the sorted cell population, a 2.5-fold enhancement in the number of cells expressing the gene of interest was observed, as confirmed by FACS analysis and Western blotting. Sorted cells retained functional properties, as demonstrated by chemotaxis to the agonist sphingosine 1-phosphate (SPP). To demonstrate the usefulness of this method for defining cellular signaling pathways, cells were cotransfected with plasmids encoding GFP and the carboxyl-terminal domain of the beta-adrenergic receptor kinase (beta ARKct), which inhibits signaling through the beta gamma dimer of heterotrimeric G-proteins. SPP-induced chemotaxis in sorted cells coexpressing beta ARKct was inhibited by 80%, demonstrating that chemotaxis was driven by a beta gamma-dependent pathway. However, no significant inhibition was observed in cells transfected with betaARKct but not enriched by sorting. Thus, we have developed a method for enriching transfected cells that allows the elucidation of crucial mechanisms of endothelial cell activation and function. This method should find wide applicability in studies designed to define pathways responsible for regulation of motility and other functions in these dynamic cells.
Collapse
Affiliation(s)
- A T Kovala
- Experimental Cell Research Program, Methodist Research Institute, Clarian Health Partners, Inc., Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
849
|
Miyamoto S, Kimball SR, Safer B. Signal transduction pathways that contribute to increased protein synthesis during T-cell activation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:28-42. [PMID: 11072066 DOI: 10.1016/s0167-4781(00)00208-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein synthesis rates were maximally stimulated in human lymphocytes by ionomycin and the phorbol ester PMA (I+P), which promotes proliferation, whereas PMA alone, which does not promote proliferation, stimulated protein synthesis to a lesser degree. Three translation-associated activities, eIF4E phosphorylation, eIF2B activity and 4E-BP1 phosphorylation also increased with stimulation by I+P and PMA, but only 4E-BP1 phosphorylation was differentially stimulated by these conditions. Correspondingly, signaling pathways activated in T cells were probed for their connection to these activities. Immunosuppressants FK506 and rapamycin partially blocked the protein synthesis rate increases by I+P stimulation. FK506 had less of an inhibitory effect with PMA stimulation suggesting that its mechanism mostly affected ionomycin-activated signals. I+P and PMA equally stimulated phosphorylation of ERK1/2, but I+P more strongly stimulated Akt, and p70(S6K) phosphorylation. An inhibitor that blocks ERK1/2 phosphorylation only slightly reduced protein synthesis rates stimulated by I+P or PMA, but greatly reduced eIF4E phosphorylation and eIF2B activity. In contrast, inhibitors of the PI-3 kinase and mTOR pathways strongly blocked early protein synthesis rate stimulated by I+P and PMA and also blocked 4E-BP1 phosphorylation and release of eIF4E suggesting that these pathways regulate protein synthesis activities, which are important for proliferation in T cells.
Collapse
Affiliation(s)
- S Miyamoto
- Molecular Hematology Branch, NHLBI, Bethesda, MD 20892-1654, USA.
| | | | | |
Collapse
|
850
|
D'Amico G, Frascaroli G, Bianchi G, Transidico P, Doni A, Vecchi A, Sozzani S, Allavena P, Mantovani A. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat Immunol 2000; 1:387-91. [PMID: 11062497 DOI: 10.1038/80819] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As originally demonstrated for the interleukin 1 (IL-1) type II receptor, some primary proinflammatory cytokines from the IL-1 and tumor necrosis factor families are regulated by decoy receptors that are structurally incapable of signaling. Here we report that concomitant exposure to proinflammatory signals and IL-10 generates functional decoy receptors in the chemokine system. Inflammatory signals, which cause dendritic cell (DC) maturation and migration to lymphoid organs, induce a chemokine receptor switch, with down-regulation of inflammatory receptors (such as CCR1, CCR2, CCR5) and induction of CCR7. Concomitant exposure to lipopolysaccharide (LPS) and IL-10 blocks the chemokine receptor switch associated with DC maturation. LPS + IL-10-treated DCs showed low expression of CCR7 and high expression of CCR1, CCR2 and CCR5. These receptors were unable to elicit migration. We provide evidence that uncoupled receptors, expressed on LPS + IL-10-treated cells, sequester and scavenge inflammatory chemokines. Similar results were obtained for monocytes exposed to activating signals and IL-10. Thus, in an inflammatory environment, IL-10 generates functional decoy receptors on DC and monocytes, which act as molecular sinks and scavengers for inflammatory chemokines.
Collapse
Affiliation(s)
- G D'Amico
- Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|