801
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
802
|
Grund N, Maier P, Giordano FA, Appelt JU, Zucknick M, Li L, Wenz F, Zeller WJ, Fruehauf S, Allgayer H, Laufs S. Analysis of self-inactivating lentiviral vector integration sites and flanking gene expression in human peripheral blood progenitor cells after alkylator chemotherapy. Hum Gene Ther 2011; 21:943-56. [PMID: 20210626 DOI: 10.1089/hum.2009.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract Hematotoxicity is a major and frequently dose-limiting side effect of chemotherapy. Retroviral methylguanine-DNA-methyltransferase (MGMT; EC 2.1.1.63) gene transfer to primitive hematopoietic progenitor cells (CD34(+) cells) might allow the application of high-dose alkylator chemotherapy with almost mild to absent myelosuppression. Because gammaretroviral vector integration was found in association with malignant or increased proliferation, novel lentiviral vectors with self-inactivating (SIN) capacity might display a safer option for future gene transfer studies. We assessed the influence of chemoselection on integration patterns in 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-treated and untreated human CD34(+) cells transduced with an SIN lentiviral vector carrying the MGMT(P140K) transgene, using ligation-mediated PCR (LM-PCR) and next-generation sequencing. In addition, for the first time, the local influence of the lentiviral provirus on the expression of hit and flanking genes in human CD34(+) cells was analyzed at a clonal level. For each colony, the integration site was detected (LM-PCR) and analyzed (QuickMap), and the expression of hit and flanking genes was measured (quantitative RT-PCR). Analyses of both treated and untreated CD34(+) cells revealed preferential integration into genes. Integration patterns in BCNU-treated cells showed mild, but not significant, differences compared with those found in untreated CD34(+) cells. Most importantly, when analyzing the local influence of the provirus, we saw no significant deregulation of the integration-flanking genes. These findings demonstrate that SIN vector-mediated gene transfer might display a feasible and possibly safe option for MGMT(P140K)-mediated chemoprotection of CD34(+) cells.
Collapse
Affiliation(s)
- N Grund
- Department of Experimental Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
803
|
Thakur A, Hummel J, Sengupta R, Gupta V, Mossman K, Jones K. Retroviral expression of MIR2 decreases both surface MHC class I and the alloimmune CTL response. J Tissue Eng Regen Med 2011; 5:520-8. [DOI: 10.1002/term.344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 07/08/2010] [Indexed: 12/21/2022]
|
804
|
Abstract
Background Most common systems of genetic engineering of mammalian cells are associated with insertional mutagenesis of the modified cells. Insertional mutagenesis is also a popular approach to generate random alterations for gene discovery projects. A better understanding of the interaction of the structural elements within an insertional mutagen and the ability of such elements to influence host genes at various distances away from the insertion site is a matter of considerable practical importance. Methodology/Principal Findings We observed that, in the context of a lentiviral construct, a transcript, which is initiated at an internal CMV promoter/enhancer region and incorporates a splice donor site, is able to extend past a collinear viral LTR and trap exons of host genes, while the polyadenylation signal, which is naturally present in the LTR, is spliced out. Unexpectedly, when a vector, which utilizes this phenomenon, was used to produce mutants with elevated activity of NF-κB, we found mutants, which owed their phenotype to the effect of the insert on a gene located tens or even hundreds of kilobases away from the insertion site. This effect did not result from a CMV-driven transcript, but was sensitive to functional suppression of the insert. Interestingly, despite the long-distance effect, expression of loci most closely positioned to the insert appeared unaffected. Conclusions/Significance We concluded that a polyadenylation signal in a retroviral LTR, when occurring within an intron, is an inefficient barrier against the formation of a hybrid transcript, and that a vector containing a strong enhancer may selectively affect the function of genes far away from its insertion site. These phenomena have to be considered when experimental or therapeutic transduction is performed. In particular, the long-distance effects of insertional mutagenesis bring into question the relevance of the lists of disease-associated retroviral integration targets, which did not undergo functional validation.
Collapse
|
805
|
Vigliano I, Fusco A, Palamaro L, Aloj G, Cirillo E, Salerno MC, Pignata C. γ Chain transducing element: A shared pathway between endocrine and immune system. Cell Immunol 2011; 269:10-5. [DOI: 10.1016/j.cellimm.2011.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
|
806
|
McKay TR, Rahim AA, Buckley SM, Ward NJ, Chan JK, Howe SJ, Waddington SN. Perinatal gene transfer to the liver. Curr Pharm Des 2011; 17:2528-41. [PMID: 21774770 PMCID: PMC3182410 DOI: 10.2174/138161211797247541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 01/08/2023]
Abstract
The liver acts as a host to many functions hence raising the possibility that any one may be compromised by a single gene defect. Inherited or de novo mutations in these genes may result in relatively mild diseases or be so devastating that death within the first weeks or months of life is inevitable. Some diseases can be managed using conventional medicines whereas others are, as yet, untreatable. In this review we consider the application of early intervention gene therapy in neonatal and fetal preclinical studies. We appraise the tools of this technology, including lentivirus, adenovirus and adeno-associated virus (AAV)-based vectors. We highlight the application of these for a range of diseases including hemophilia, urea cycle disorders such as ornithine transcarbamylase deficiency, organic acidemias, lysosomal storage diseases including mucopolysaccharidoses, glycogen storage diseases and bile metabolism. We conclude by assessing the advantages and disadvantages associated with fetal and neonatal liver gene transfer.
Collapse
Affiliation(s)
- Tristan R McKay
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ahad A Rahim
- Institute for Women’s Health, University College London, London, UK
| | | | - Natalie J Ward
- Institute for Women’s Health, University College London, London, UK
| | - Jerry K.Y Chan
- Experimental Fetal Medicine Group, National University of Singapore, Singapore
| | - Steven J Howe
- Institute of Child Health, University College London, London, UK
| | | |
Collapse
|
807
|
Lehto T, Ezzat K, Langel U. Peptide nanoparticles for oligonucleotide delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:397-426. [PMID: 22093225 DOI: 10.1016/b978-0-12-416020-0.00010-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past two decades, different methods have emerged for intervention with gene expression, which can be generally referred to as gene therapy. Oligonucleotides (ONs) and their analogs form the basis of the molecules that can be used to modulate gene expression. Unfortunately, due to their physicochemical properties, these molecules require assistance in their intracellular delivery. Cell-penetrating peptides (CPPs) are one class of nonviral delivery vectors that, because of their remarkable translocation properties, have been intensely utilized for the delivery of ON-based molecules, both in vitro and in vivo. This chapter concentrates on the applications of CPPs that directly form nanoparticles with different ONs and facilitate their intracellular delivery.
Collapse
Affiliation(s)
- Taavi Lehto
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
808
|
Powers JM, Trobridge GD. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies. ACTA ACUST UNITED AC 2011; 2013. [PMID: 24383045 PMCID: PMC3875223 DOI: 10.4172/2157-7633.s3-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.
Collapse
Affiliation(s)
- John M Powers
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington, USA
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington, USA ; School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
809
|
Cecchettini A, Rocchiccioli S, Boccardi C, Citti L. Vascular smooth-muscle-cell activation: proteomics point of view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:43-99. [PMID: 21482410 DOI: 10.1016/b978-0-12-386041-5.00002-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular smooth-muscle cells (VSMCs) are the main component of the artery medial layer. Thanks to their great plasticity, when stimulated by external inputs, VSMCs react by changing morphology and functions and activating new signaling pathways while switching others off. In this way, they are able to increase the cell proliferation, migration, and synthetic capacity significantly in response to vascular injury assuming a more dedifferentiated state. In different states of differentiation, VSMCs are characterized by various repertories of activated pathways and differentially expressed proteins. In this context, great interest is addressed to proteomics technology, in particular to differential proteomics. In recent years, many authors have investigated proteomics in order to identify the molecular factors putatively involved in VSMC phenotypic modulation, focusing on metabolic networks linking the differentially expressed proteins. Some of the identified proteins may be markers of pathology and become useful tools of diagnosis. These proteins could also represent appropriately validated targets and be useful either for prevention, if related to early events of atherosclerosis, or for treatment, if specific of the acute, mid, and late phases of the pathology. RNA-dependent gene silencing, obtained against the putative targets with high selective and specific molecular tools, might be able to reverse a pathological drift and be suitable candidates for innovative therapeutic approaches.
Collapse
|
810
|
Segal BH, Veys P, Malech H, Cowan MJ. Chronic granulomatous disease: lessons from a rare disorder. Biol Blood Marrow Transplant 2011; 17:S123-31. [PMID: 21195301 PMCID: PMC3052948 DOI: 10.1016/j.bbmt.2010.09.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 12/24/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare primary immunodeficiency with X-linked or autosomal recessive inheritance involving defects in genes encoding phox proteins, which are the subunits of the phagocyte NADPH oxidase. This results in failure to produce superoxide anion and downstream antimicrobial oxidant metabolites and to activate antimicrobial proteases. Affected patients are susceptible to severe, life-threatening bacterial and fungal infections and excessive inflammation characterized by granulomatous enteritis resembling Crohn's disease and genitourinary obstruction. Early diagnosis of CGD and rapid treatment of infections are critical. Prophylaxis with antibacterial and mold-active antifungal agents and the administration of interferon-γ has significantly improved the natural history of CGD. Currently, the only cure is allogeneic hematopoietic cell transplant (HCT), although there remains controversy as to which patients with CGD should get a transplant. Allele-based HLA typing of alternative donors, improved supportive care measures, and use of reduced toxicity conditioning have resulted in event-free survival (EFS) of at least 80% even with an unrelated donor and even better when the patient has no active infections/inflammation. Gene correction of CGD would eliminate the risks of graft-versus-host disease (GVHD) and the immunoablative chemotherapy required for allogeneic HCT. Based on gene therapy trials in patients with SCID-X1, ADA-SCID, and the early experience with CGD, it is clear that at least some degree of myeloablation will be necessary for CGD as there is no inherent selective growth advantage for gene-corrected cells. Current efforts for gene therapy focus on use of lentivector constructs, which are thought to be safer from the standpoint of insertional mutagenesis and more efficient in transducing hematopoietic stem cells (HSCs).
Collapse
Affiliation(s)
- Brahm H Segal
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | |
Collapse
|
811
|
Cattoglio C, Maruggi G, Bartholomae C, Malani N, Pellin D, Cocchiarella F, Magnani Z, Ciceri F, Ambrosi A, von Kalle C, Bushman FD, Bonini C, Schmidt M, Mavilio F, Recchia A. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion. PLoS One 2010; 5:e15688. [PMID: 21203516 PMCID: PMC3008730 DOI: 10.1371/journal.pone.0015688] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/22/2010] [Indexed: 01/20/2023] Open
Abstract
The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34(+) hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction.
Collapse
Affiliation(s)
- Claudia Cattoglio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Giulietta Maruggi
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Cynthia Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Danilo Pellin
- Center for Statistics in Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Fabienne Cocchiarella
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Zulma Magnani
- Experimental Hematology Unit, PIBIC, Division of Regenerative Medicine, Gene Therapy and Stem Cells, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Hematology Unit, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Alessandro Ambrosi
- Center for Statistics in Biomedical Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chiara Bonini
- Experimental Hematology Unit, PIBIC, Division of Regenerative Medicine, Gene Therapy and Stem Cells, Istituto Scientifico H. San Raffaele, Milan, Italy
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fulvio Mavilio
- IIT Unit of Molecular Neuroscience, Istituto Scientifico H. San Raffaele, Milan, Italy
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Recchia
- Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
812
|
Ohmine K, Li Y, Bauer TR, Hickstein DD, Russell DW. Tracking of specific integrant clones in dogs treated with foamy virus vectors. Hum Gene Ther 2010; 22:217-24. [PMID: 20738155 DOI: 10.1089/hum.2010.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vector integration can lead to proto-oncogene activation and malignancies during hematopoietic stem cell gene therapy. We previously used foamy virus vectors to deliver the CD18 gene under the control of an internal murine stem cell virus promoter and successfully treated dogs with canine leukocyte adhesion deficiency. Here we have tracked the copy numbers of 11 specific proviruses found in these animals for 36-42 months after transplantation, including examples within or near proto-oncogenes, tumor suppressor genes, and genes unrelated to cancer. We found no evidence for clonal expansion of any of the clones, including those with proviruses in the MECOM gene (MDS1-EVI1 complex). These results suggest that although foamy virus vectors may integrate near proto-oncogenes, this does not necessarily lead to clonal expansion and malignancies. Additionally, we show that copy number estimates of these specific proviruses based on linker-mediated PCR results are different from those obtained by quantitative PCR, but can provide a qualitative assessment of provirus levels.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
813
|
Galli C, Perota A, Brunetti D, Lagutina I, Lazzari G, Lucchini F. Genetic engineering including superseding microinjection: new ways to make GM pigs. Xenotransplantation 2010; 17:397-410. [DOI: 10.1111/j.1399-3089.2010.00590.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
814
|
Cattoglio C, Pellin D, Rizzi E, Maruggi G, Corti G, Miselli F, Sartori D, Guffanti A, Di Serio C, Ambrosi A, De Bellis G, Mavilio F. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 2010; 116:5507-17. [PMID: 20864581 DOI: 10.1182/blood-2010-05-283523] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Integration of retroviral vectors in the human genome follows nonrandom patterns that favor insertional deregulation of gene expression and increase the risk of their use in clinical gene therapy. The molecular basis of retroviral target site selection is still poorly understood. We used deep sequencing technology to build genomewide, high-definition maps of > 60 000 integration sites of Moloney murine leukemia virus (MLV)- and HIV-based retroviral vectors in the genome of human CD34(+) multipotent hematopoietic progenitor cells (HPCs) and used gene expression profiling, chromatin immunoprecipitation, and bioinformatics to associate integration to genetic and epigenetic features of the HPC genome. Clusters of recurrent MLV integrations identify regulatory elements (alternative promoters, enhancers, evolutionarily conserved noncoding regions) within or around protein-coding genes and microRNAs with crucial functions in HPC growth and differentiation, bearing epigenetic marks of active or poised transcription (H3K4me1, H3K4me2, H3K4me3, H3K9Ac, Pol II) and specialized chromatin configurations (H2A.Z). Overall, we mapped 3500 high-frequency integration clusters, which represent a new resource for the identification of transcriptionally active regulatory elements. High-definition MLV integration maps provide a rational basis for predicting genotoxic risks in gene therapy and a new tool for genomewide identification of promoters and regulatory elements controlling hematopoietic stem and progenitor cell functions.
Collapse
|
815
|
Al-Allaf FA, Coutelle C, Waddington SN, David AL, Harbottle R, Themis M. LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. Int Arch Med 2010; 3:36. [PMID: 21144047 PMCID: PMC3016243 DOI: 10.1186/1755-7682-3-36] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 12/13/2010] [Indexed: 12/03/2022] Open
Abstract
Coronary artery diseases (CAD) inflict a heavy economical and social burden on most populations and contribute significantly to their morbidity and mortality rates. Low-density lipoprotein receptor (LDLR) associated familial hypercholesterolemia (FH) is the most frequent Mendelian disorder and is a major risk factor for the development of CAD. To date there is no cure for FH. The primary goal of clinical management is to control hypercholesterolaemia in order to decrease the risk of atherosclerosis and to prevent CAD. Permanent phenotypic correction with single administration of a gene therapeutic vector is a goal still needing to be achieved. The first ex vivo clinical trial of gene therapy in FH was conducted nearly 18 years ago. Patients who had inherited LDLR gene mutations were subjected to an aggressive surgical intervention involving partial hepatectomy to obtain the patient's own hepatocytes for ex vivo gene transfer with a replication deficient LDLR-retroviral vector. After successful re-infusion of transduced cells through a catheter placed in the inferior mesenteric vein at the time of liver resection, only low-level expression of the transferred LDLR gene was observed in the five patients enrolled in the trial. In contrast, full reversal of hypercholesterolaemia was later demonstrated in in vivo preclinical studies using LDLR-adenovirus mediated gene transfer. However, the high efficiency of cell division independent gene transfer by adenovirus vectors is limited by their short-term persistence due to episomal maintenance and the cytotoxicity of these highly immunogenic viruses. Novel long-term persisting vectors derived from adeno-associated viruses and lentiviruses, are now available and investigations are underway to determine their safety and efficiency in preparation for clinical application for a variety of diseases. Several novel non-viral based therapies have also been developed recently to lower LDL-C serum levels in FH patients. This article reviews the progress made in the 18 years since the first clinical trial for gene therapy of FH, with emphasis on the development, design, performance and limitations of viral based gene transfer vectors used in studies to ameliorate the effects of LDLR deficiency.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Al-Abedia Campus, P, O, Box 715, Makkah 21955, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
816
|
Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LMS, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M. Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 2010; 29:73-8. [PMID: 21151124 DOI: 10.1038/nbt.1717] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/26/2010] [Indexed: 12/20/2022]
Abstract
Realizing the therapeutic potential of human induced pluripotent stem (iPS) cells will require robust, precise and safe strategies for genetic modification, as cell therapies that rely on randomly integrated transgenes pose oncogenic risks. Here we describe a strategy to genetically modify human iPS cells at 'safe harbor' sites in the genome, which fulfill five criteria based on their position relative to contiguous coding genes, microRNAs and ultraconserved regions. We demonstrate that ∼10% of integrations of a lentivirally encoded β-globin transgene in β-thalassemia-patient iPS cell clones meet our safe harbor criteria and permit high-level β-globin expression upon erythroid differentiation without perturbation of neighboring gene expression. This approach, combining bioinformatics and functional analyses, should be broadly applicable to introducing therapeutic or suicide genes into patient-specific iPS cells for use in cell therapy.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
817
|
Sather BD, Ryu BY, Stirling BV, Garibov M, Kerns HM, Humblet-Baron S, Astrakhan A, Rawlings DJ. Development of B-lineage predominant lentiviral vectors for use in genetic therapies for B cell disorders. Mol Ther 2010; 19:515-25. [PMID: 21139568 DOI: 10.1038/mt.2010.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sustained, targeted, high-level transgene expression in primary B lymphocytes may be useful for gene therapy in B cell disorders. We developed several candidate B-lineage predominant self-inactivating lentiviral vectors (LV) containing alternative enhancer/promoter elements including: the immunoglobulin β (Igβ) (B29) promoter combined with the immunoglobulin µ enhancer (EµB29); and the endogenous BTK promoter with or without Eµ (EµBtkp or Btkp). LV-driven enhanced green fluorescent protein (eGFP) reporter expression was evaluated in cell lines and primary cells derived from human or murine hematopoietic stem cells (HSC). In murine primary cells, EµB29 and EµBtkp LV-mediated high-level expression in immature and mature B cells compared with all other lineages. Expression increased with B cell maturation and was maintained in peripheral subsets. Expression in T and myeloid cells was much lower in percentage and intensity. Similarly, both EµB29 and EµBtkp LV exhibited high-level activity in human primary B cells. In contrast to EµB29, Btkp and EµBtkp LV also exhibited modest activity in myeloid cells, consistent with the expression profile of endogenous Bruton's tyrosine kinase (Btk). Notably, EµB29 and EµBtkp activity was superior in all expression models to an alternative, B-lineage targeted vector containing the EµS.CD19 enhancer/promoter. In summary, EµB29 and EµBtkp LV comprise efficient delivery platforms for gene expression in B-lineage cells.
Collapse
Affiliation(s)
- Blythe D Sather
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | |
Collapse
|
818
|
Ferrua F, Brigida I, Aiuti A. Update on gene therapy for adenosine deaminase-deficient severe combined immunodeficiency. Curr Opin Allergy Clin Immunol 2010; 10:551-6. [PMID: 20966749 DOI: 10.1097/aci.0b013e32833fea85] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The present review describes the recent progress in the treatment of adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) using autologous gene-modified hematopoietic stem cells, comparing immune reconstitution with respect to allogeneic transplant and discussing differences with gene therapy for SCID-X1. RECENT FINDINGS Since 2000, more than 30 ADA-SCID patients have been treated with gene therapy worldwide, with successful outcome in most cases, consisting of progressive immune reconstitution, efficient systemic detoxification, and long-term multilineage engraftment. Gene therapy resulted in restoration of thymic activity and T-cell functions, although the kinetic of reconstitution was slower compared with standard bone marrow transplant. Unlike allogeneic transplant from alternative donors, survival after gene therapy is excellent. In comparison with SCID-X1, ADA-SCID gene therapy presents a better safety profile and engraftment of multilineage transduced stem/progenitor cells, thanks to the use of nonmyeloablative preconditioning. New approaches using safer integrating vectors are being developed, which may lead to safer and effective gene therapy for ADA-SCID and other genetic disorders. SUMMARY In the last decade, gene therapy has been developed as a successful and safe alternative strategy for patients affected by ADA-SCID lacking a compatible sibling donor. The application of innovative vector technology might further improve its efficacy and safety profile.
Collapse
|
819
|
Romero Z, Torres S, Cobo M, Muñoz P, Unciti JD, Martín F, Molina IJ. A tissue-specific, activation-inducible, lentiviral vector regulated by human CD40L proximal promoter sequences. Gene Ther 2010; 18:364-71. [DOI: 10.1038/gt.2010.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
820
|
Santoni FA, Hartley O, Luban J. Deciphering the code for retroviral integration target site selection. PLoS Comput Biol 2010; 6:e1001008. [PMID: 21124862 PMCID: PMC2991247 DOI: 10.1371/journal.pcbi.1001008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/25/2010] [Indexed: 01/17/2023] Open
Abstract
Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses. When HIV-1, murine leukemia virus (MLV), or other retroviruses infect a cell, the virus generates a DNA copy of the viral RNA genome and ligates the cDNA within host chromosomal DNA. This integration reaction occurs at sites throughout the host cell genome, but little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by comparing the genome-wide binding sites for more than 60 factors with 14 retroviral integration datasets. We borrowed Precision-Recall methods from the Information Retrieval field for extracting information from highly skewed datasets such as these. For MLV and other gammaretroviruses, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. We generated a supermarker by combining high scoring markers. The supermarker localized within 2 kB of 75% of MLV proviruses and predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner. This study identified chromosomal features highly favored for retroviral integration. It also provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses.
Collapse
Affiliation(s)
- Federico Andrea Santoni
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
- Center for Advanced Studies, Research, and Development in Sardinia, Pula, Italy
| | - Oliver Hartley
- Department of Structural Biology and Bioinformatics, University of Geneva, Geneva, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
821
|
Abstract
Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning).Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms.This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.
Collapse
Affiliation(s)
- Fausto Cossu
- Pediatric HSCT Unit, 2 Pediatric Clinic of University, Ospedale Microcitemico, Via Jenner s/n, 09121 Cagliari, Sardinia, Italy.
| |
Collapse
|
822
|
Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Díez IA, Dewey RA, Böhm M, Nowrouzi A, Ball CR, Glimm H, Naundorf S, Kühlcke K, Blasczyk R, Kondratenko I, Maródi L, Orange JS, von Kalle C, Klein C. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010; 363:1918-27. [PMID: 21067383 PMCID: PMC3064520 DOI: 10.1056/nejmoa1003548] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive primary immunodeficiency disorder associated with thrombocytopenia, eczema, and autoimmunity. We treated two patients who had this disorder with a transfusion of autologous, genetically modified hematopoietic stem cells (HSC). We found sustained expression of WAS protein expression in HSC, lymphoid and myeloid cells, and platelets after gene therapy. T and B cells, natural killer (NK) cells, and monocytes were functionally corrected. After treatment, the patients' clinical condition markedly improved, with resolution of hemorrhagic diathesis, eczema, autoimmunity, and predisposition to severe infection. Comprehensive insertion-site analysis showed vector integration that targeted multiple genes controlling growth and immunologic responses in a persistently polyclonal hematopoiesis. (Funded by Deutsche Forschungsgemeinschaft and others; German Clinical Trials Register number, DRKS00000330.).
Collapse
Affiliation(s)
- Kaan Boztug
- Department of Pediatric Hematology-Oncology , Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
823
|
Milsom MD, Williams DA. Gaining the hard yard: pre-clinical evaluation of lentiviral-mediated gene therapy for the treatment of beta-thalassemia. EMBO Mol Med 2010; 2:291-3. [PMID: 20677209 PMCID: PMC3377332 DOI: 10.1002/emmm.201000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy is one potential novel therapeutic avenue for the treatment of inherited monogenic disorders. Diseases of the blood are frequent targets for gene therapy because it is relatively easy to harvest haematopoietic stem cells (HSCs) from the bone marrow, genetically modify the cells ex vivo, and then re-administer the corrected cells back into the patient via intra-venous injection. In this Closeup, Milsom and Williams discuss the work of Roselli et al, who describe the pre-clinical evaluation of the treatment for β-thalassemia in erythroid cells via the genetic correction of patient HSCs using a lentiviral vector.
Collapse
Affiliation(s)
- Michael D Milsom
- Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
824
|
Abstract
The most common translocation in childhood T-cell acute lymphoblastic leukemia (T-ALL) involves the LMO2 locus, resulting in ectopic expression of the LMO2 gene in human thymocytes. The LMO2 gene was also activated in patients with X-linked Severe Combined Immune Deficiency treated with gene therapy because of retroviral insertion in the LMO2 locus. The LMO2 insertions predisposed these children to T-ALL, yet how LMO2 contributes to T cell transformation remains unclear. The LIM (Lin 11, Isl-1, Mec-3) domain containing LMO2 protein regulates erythropoiesis as part of a large transcriptional complex consisting of LMO2, TAL1, E47, GATA1 and LDB1 that recognizes bipartite E-box-GATA1 sites on target genes. Similarly, a TAL1/E47/LMO2/LDB1 complex is observed in human T-ALL and Tal1 and Lmo2 expression in mice results in disease acceleration. To address the mechanism(s) of Tal1/Lmo2 synergy in leukemia, we generated Lmo2 transgenic mice and mated them with mice that express wild-type Tal1 or a DNA-binding mutant of TAL1. Tal1/Lmo2 and MutTAL1/Lmo2 bitransgenic mice exhibit perturbations in thymocyte development due to reduced E47/HEB transcriptional activity and develop leukemia with identical kinetics. These data demonstrate that the DNA-binding activity of Tal1 is not required to cooperate with Lmo2 to cause leukemia in mice and suggest that Lmo2 may cooperate with Tal1 to interfere with E47/HEB function(s).
Collapse
|
825
|
Arnould S, Delenda C, Grizot S, Desseaux C, Pâques F, Silva GH, Smith J. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 2010; 24:27-31. [PMID: 21047873 DOI: 10.1093/protein/gzq083] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Meganucleases (MNs) are highly specific enzymes that can induce homologous recombination in different types of cells, including mammalian cells. Consequently, these enzymes are used as scaffolds for the development of custom gene-targeting tools for gene therapy or cell-line development. Over the past 15 years, the high resolution X-ray structures of several MNs from the LAGLIDADG family have improved our understanding of their protein-DNA interaction and mechanism of DNA cleavage. By developing and utilizing high-throughput screening methods to test a large number of variant-target combinations, we have been able to re-engineer scores of I-CreI derivatives into custom enzymes that target a specific DNA sequence of interest. Such customized MNs, along with wild-type ones, have allowed for exploring a large range of biotechnological applications, including protein-expression cell-line development, genetically modified plants and animals and therapeutic applications such as targeted gene therapy as well as a novel class of antivirals.
Collapse
Affiliation(s)
- S Arnould
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
826
|
Oram SH, Thoms JAI, Pridans C, Janes ME, Kinston SJ, Anand S, Landry JR, Lock RB, Jayaraman PS, Huntly BJ, Pimanda JE, Göttgens B. A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients. Oncogene 2010; 29:5796-808. [PMID: 20676125 DOI: 10.1038/onc.2010.320] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/20/2010] [Accepted: 06/28/2010] [Indexed: 12/17/2022]
Abstract
The T-cell oncogene Lim-only 2 (LMO2) critically influences both normal and malignant haematopoiesis. LMO2 is not normally expressed in T cells, yet ectopic expression is seen in the majority of T-acute lymphoblastic leukaemia (T-ALL) patients with specific translocations involving LMO2 in only a subset of these patients. Ectopic lmo2 expression in thymocytes of transgenic mice causes T-ALL, and retroviral vector integration into the LMO2 locus was implicated in the development of clonal T-cell disease in patients undergoing gene therapy. Using array-based chromatin immunoprecipitation, we now demonstrate that in contrast to B-acute lymphoblastic leukaemia, human T-ALL samples largely use promoter elements with little influence from distal enhancers. Active LMO2 promoter elements in T-ALL included a previously unrecognized third promoter, which we demonstrate to be active in cell lines, primary T-ALL patients and transgenic mice. The ETS factors ERG and FLI1 previously implicated in lmo2-dependent mouse models of T-ALL bind to the novel LMO2 promoter in human T-ALL samples, while in return LMO2 binds to blood stem/progenitor enhancers in the FLI1 and ERG gene loci. Moreover, LMO2, ERG and FLI1 all regulate the +1 enhancer of HHEX/PRH, which was recently implicated as a key mediator of early progenitor expansion in LMO2-driven T-ALL. Our data therefore suggest that a self-sustaining triad of LMO2/ERG/FLI1 stabilizes the expression of important mediators of the leukaemic phenotype such as HHEX/PRH.
Collapse
Affiliation(s)
- S H Oram
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
827
|
Abstract
After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.
Collapse
|
828
|
Multhaup M, Karlen AD, Swanson DL, Wilber A, Somia NV, Cowan MJ, McIvor RS. Cytotoxicity associated with artemis overexpression after lentiviral vector-mediated gene transfer. Hum Gene Ther 2010; 21:865-75. [PMID: 20163250 DOI: 10.1089/hum.2009.162] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artemis is a hairpin-opening endonuclease involved in nonhomologous end-joining and V(D)J recombination. Deficiency of Artemis results in radiation-sensitive severe combined immunodeficiency (SCID) characterized by complete absence of T and B cells due to an arrest at the receptor recombination stage. We have generated several lentiviral vectors for transduction of the Artemis sequence, intending to complement the deficient phenotype. We found that transduction by a lentiviral vector in which Artemis is regulated by a strong EF-1alpha promoter resulted in a dose-dependent loss of cell viability due to perturbed cell cycle distribution, increased DNA damage, and increased apoptotic cell frequency. This toxic response was not observed in cultures exposed to identical amounts of control vector. Loss of cell viability was also observed in cells transfected with an Artemis expression construct, indicating that toxicity is independent of lentiviral transduction. Reduced toxicity was observed when cells were transduced with a moderate-strength phosphoglycerate kinase promoter to regulate Artemis expression. These results present a novel challenge in the establishment of conditions that support Artemis expression at levels that are nontoxic yet sufficient to correct the T(-)B(-) phenotype, crucial for preclinical studies and clinical application of Artemis gene transfer in the treatment of human SCID-A.
Collapse
Affiliation(s)
- Megan Multhaup
- Gene Therapy Program, Institute of Human Genetics, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
829
|
Jang J, Lee JT, Lee K, Kim S, Kim JY, Yoon K, Kim S. Development of murine leukemia virus-based retroviral vectors with a minimum possibility of cis-activation. Gene Ther 2010; 18:240-9. [PMID: 20944681 DOI: 10.1038/gt.2010.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The possibility of insertional mutagenesis in retroviral gene therapy can be reduced by using a vector lacking the enhancer sequence present in the U3 of the long-terminal repeats. However, such vectors suffer from many pitfalls. We attempted to improve a murine leukemia virus-based retroviral vector containing the enhancer-free U3, first by making it easier to construct a producer line and then by introducing the cellular RPL10 promoter as an internal promoter. The reverse orientation of the expression cassette of the transgene was found to give higher transducing titer and higher-level gene expression. The deletion analysis revealed that the 54-bp-long sequence of U3 (34 and 20 bp present at 5' and 3' extreme ends, respectively) was sufficient for the functions of retroviral vectors. The data from the in vitro cell culture assay indicated that the final construct, ROK, containing all these features, had little cis-activation activity, even if it was placed right upstream from the RNA start site of the neighboring gene. Our data suggested that the newly developed vector might provide increased safety, while still producing high viral titer from a stable producer line and high-level gene expression in various target cells including human CD34(+) stem cells.
Collapse
Affiliation(s)
- J Jang
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
830
|
Swaminathan S, Hood CL, Suzuki K, Kelleher AD. RNA duplexes in transcriptional regulation. Biomol Concepts 2010; 1:285-96. [PMID: 25962003 DOI: 10.1515/bmc.2010.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transcriptional regulation by small RNA molecules, including small interfering RNA and microRNA, has emerged as an important gene expression modulator. The regulatory pathways controlling gene expression, post-transcriptional gene silencing and transcriptional gene silencing (TGS) have been demonstrated in yeast, plants and more recently in human cells. In this review, we discuss the currents models of transcriptional regulation and the main components of the RNA-induced silencing complex and RNA-induced transcriptional silencing complex machinery, as well as confounding off-target effects and gene activation. We also discuss RNA-mediated TGS within the NF-κB motif of the human immunodeficiency virus type 1 5' long tandem repeat promoter region and the associated epigenetic modifications. Finally, we outline the current RNA interference (RNAi) delivery methods and describe the current status of human trials investigating potential RNAi therapeutics for several human diseases.
Collapse
|
831
|
Abstract
The β-thalassaemias are inherited anaemias that form the most common class of monogenic disorders in the world. Treatment options are limited, with allogeneic haematopoietic stem cell transplantation offering the only hope for lifelong cure. However, this option is not available for many patients as a result of either the lack of compatible donors or the increased risk of transplant-related mortality in subjects with organ damage resulting from accumulated iron. The paucity of alternative treatments for patients that fall into either of these categories has led to the development of a revolutionary treatment strategy based on gene therapy. This approach involves replacing allogeneic stem cell transplantation with the transfer of normal globin genes into patient-derived, autologous haematopoietic stem cells. This highly attractive strategy offers several advantages, including bypassing the need for allogeneic donors and the immunosuppression required to achieve engraftment of the transplanted cells and to eliminate the risk of donor-related graft-versus-host disease. This review discusses the many advances that have been made towards this endeavour as well as the hurdles that must still be overcome before gene therapy for β-thalassaemia, as well as many other gene therapy applications, can be widely applied in the clinic.
Collapse
|
832
|
Curtis DJ, McCormack MP. The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia. Clin Cancer Res 2010; 16:5618-23. [PMID: 20861166 DOI: 10.1158/1078-0432.ccr-10-0440] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is commonly caused by the overexpression of oncogenic transcription factors in developing T cells. In a mouse model of one such oncogene, LMO2, the cellular effect is to induce self-renewal of committed T cells in the thymus, which persist long-term while acquiring additional mutations and eventually giving rise to leukemia. These precancerous stem cells (pre-CSC) are intrinsically resistant to radiotherapy, implying that they may be refractory to conventional cancer therapies. However, they depend on an aberrantly expressed stem cell-like self-renewal program for their maintenance, in addition to a specialized thymic microenvironmental niche. Here, we discuss potential approaches for targeting pre-CSCs in T-ALL by using therapies directed at oncogenic transcription factors themselves, downstream self-renewal pathways, and the supportive cell niche.
Collapse
Affiliation(s)
- David J Curtis
- Rotary Bone Marrow Research Laboratories, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
833
|
Sadelain M, Rivière I, Wang X, Boulad F, Prockop S, Giardina P, Maggio A, Galanello R, Locatelli F, Yannaki E. Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in beta-thalassemia. Ann N Y Acad Sci 2010; 1202:52-8. [PMID: 20712772 DOI: 10.1111/j.1749-6632.2010.05597.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Globin gene transfer in autologous hematopoietic stem cells offers a potentially curative treatment option for patients suffering from beta-thalassemia major who lack an HLA-matched hematopoietic stem cell donor. Based on extensive preclinical investigation, we are initiating a phase I clinical trial using G-CSF mobilized, autologous CD34(+) cells transduced with a vector similar to the original TNS9 vector. Our first mobilizations in adult beta-thalassemic subjects have been well tolerated and yielded the required CD34(+) cell dose. To minimize toxicity to enrolled subjects, and in the absence of a demonstrated requirement for myeloablative conditioning, our trial will use a reduced intensity conditioning regimen. Because low vector titers may adversely affect efficacy and safety, we have focused on vector manufacturing processes. We are now in a position to transfer our globin lentiviral vectors in a clinically relevant dosage (averaging 0.8 vector copy per cell in bulk CD34(+) cells) and to supply clinical grade vector to collaborating centers in the U.S.A. and in Europe. We anticipate that the first U.S. trial of globin gene transfer will start in 2010.
Collapse
Affiliation(s)
- Michel Sadelain
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
834
|
Hoang T. Of mice and men: how an oncogene transgresses the limits and predisposes to T cell acute lymphoblastic leukemia. Sci Transl Med 2010; 2:21ps10. [PMID: 20374994 DOI: 10.1126/scitranslmed.3000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The gene encoding LIM-only 2 (LMO2), an oncogenic transcription factor, is frequently activated in T cell acute lymphoblastic leukemia (T-ALL), but how LMO2 transforms primary hematopoietic cells to induce T-ALL remains an open question. McCormack et al. now show that, in mice, Lmo2 confers self-renewal potential on normally nonrenewing thymocyte progenitor cells, and this property is maintained over four serial transplantations when the cells are transplanted into irradiated mice that lack thymocytes. These leukemia-initiating cells are resistant to irradiation, indicating the need to develop new therapeutic drugs that specifically target the oncogene itself.
Collapse
Affiliation(s)
- Trang Hoang
- Institute for Research in Immunology and Cancer, Departments of Pharmacology, Biochemistry, and Molecular Biology, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
835
|
High-throughput, sensitive quantification of repopulating hematopoietic stem cell clones. J Virol 2010; 84:11771-80. [PMID: 20844053 DOI: 10.1128/jvi.01355-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral vector-mediated gene therapy has been successfully used to correct genetic diseases. However, a number of studies have shown a subsequent risk of cancer development or aberrant clonal growths due to vector insertion near or within proto-oncogenes. Recent advances in the sequencing technology enable high-throughput clonality analysis via vector integration site (VIS) sequencing, which is particularly useful for studying complex polyclonal hematopoietic progenitor/stem cell (HPSC) repopulation. However, clonal repopulation analysis using the current methods is typically semiquantitative. Here, we present a novel system and standards for accurate clonality analysis using 454 pyrosequencing. We developed a bidirectional VIS PCR method to improve VIS detection by concurrently analyzing both the 5' and the 3' vector-host junctions and optimized the conditions for the quantitative VIS sequencing. The assay was validated by quantifying the relative frequencies of hundreds of repopulating HPSC clones in a nonhuman primate. The reliability and sensitivity of the assay were assessed using clone-specific real-time PCR. The majority of tested clones showed a strong correlation between the two methods. This assay permits high-throughput and sensitive assessment of clonal populations and hence will be useful for a broad range of gene therapy, stem cell, and cancer research applications.
Collapse
|
836
|
Zhang F, Frost AR, Blundell MP, Bales O, Antoniou MN, Thrasher AJ. A ubiquitous chromatin opening element (UCOE) confers resistance to DNA methylation-mediated silencing of lentiviral vectors. Mol Ther 2010; 18:1640-9. [PMID: 20588258 PMCID: PMC2956914 DOI: 10.1038/mt.2010.132] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 12/16/2022] Open
Abstract
DNA methylation may restrict the activity of gene transfer vectors due to inadvertent silencing. In P19 embryonic carcinoma cells in vitro, we found that transgene expression regulated by the SFFV LTR and EF1 alpha promoter declined rapidly within 16 days, but for A2UCOE derived from the human HNRPA2B1-CBX3 housekeeping gene locus, remained completely stable. Silencing correlated with extensive epigenetic methylation of CpG sites, whereas the A2UCOE was almost completely resistant. Linking of the A2UCOE upstream of the SFFV LTR protected this element from both DNA methylation and silencing. Analysis of engrafted hematopoietic cells in vivo transduced with the same vectors revealed a similar pattern. The A2UCOE displayed little or no methylation in either primary or secondary graft recipients, and gene expression profiles were highly conserved between the two groups. These studies provide convincing evidence that DNA methylation plays a direct role in regulating self-inactivating (SIN) lentiviral transgene expression, and that the stability of expression from the A2UCOE is, at least in part, due to methylation resistance. The A2UCOE therefore has considerable utility for gene therapy applications where reliable and sustained gene expression is desirable.
Collapse
Affiliation(s)
- Fang Zhang
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
837
|
Waddington SN, Crossley R, Sheard V, Howe SJ, Buckley SMK, Coughlan L, Gilham DE, Hawkins RE, McKay TR. Gene delivery of a mutant TGFβ3 reduces markers of scar tissue formation after cutaneous wounding. Mol Ther 2010; 18:2104-11. [PMID: 20736928 DOI: 10.1038/mt.2010.174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family plays a critical regulatory role in repair and coordination of remodeling after cutaneous wounding. TGFβ1-mediated chemotaxis promotes the recruitment of fibroblasts to the wound site and their resultant myofibroblastic transdifferentiation that is responsible for elastic fiber deposition and wound closure. TGFβ3 has been implicated in an antagonistic role regulating overt wound closure and promoting ordered dermal remodeling. We generated a mutant form of TGFβ3 (mutTGFβ3) by ablating its binding site for the latency-associated TGFβ binding protein (LTBP-1) in order to improve bioavailability and activity. The mutated cytokine is secreted as the stable latency-associated peptide (LAP)-associated form and is activated by normal intracellular and extracellular mechanisms including integrin-mediated activation but is not sequestered. We show localized intradermal transduction using a lentiviral vector expressing the mutTGFβ3 in a mouse skin wounding model reduced re-epithelialization density and fibroblast/myofibroblast transdifferentiation within the wound area, both indicative of reduced scar tissue formation.
Collapse
|
838
|
Stephen SL, Freestone K, Dunn S, Twigg MW, Homer-Vanniasinkam S, Walker JH, Wheatcroft SB, Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens 2010; 2010:646929. [PMID: 20981357 PMCID: PMC2958427 DOI: 10.4061/2010/646929] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022] Open
Abstract
Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis.
Collapse
Affiliation(s)
- Sam L. Stephen
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Katie Freestone
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Sarah Dunn
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Michael W. Twigg
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Shervanthi Homer-Vanniasinkam
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
- Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - John H. Walker
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Stephen B. Wheatcroft
- Academic Unit of Molecular and Vascular Medicine, Faculty of Medicine and Health, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| |
Collapse
|
839
|
Orr SJ, Roessler S, Quigley L, Chan T, Ford JW, O'Connor GM, McVicar DW. Implications for gene therapy-limiting expression of IL-2R gamma c delineate differences in signaling thresholds required for lymphocyte development and maintenance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1393-403. [PMID: 20592278 PMCID: PMC6417809 DOI: 10.4049/jimmunol.0903528] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
X-linked SCID patients are deficient in functional IL-2Rgamma(c) leading to the loss of IL-2/IL-4/IL-7/IL-9/IL-15/IL-21 signaling and a lack of NK and mature T cells. Patients treated with IL-2Rgamma(c) gene therapy have T cells develop; however, their NK cell numbers remain low, suggesting antiviral responses may be compromised. Similarly, IL-2Rgamma(c)(-/-) mice reconstituted with IL-2Rgamma(c) developed few NK cells, and reconstituted T cells exhibited defective proliferative responses suggesting incomplete recovery of IL-2Rgamma(c) signaling. Given the shift toward self-inactivating long terminal repeats with weaker promoters to control the risk of leukemia, we assessed NK and T cell numbers and function in IL-2Rgamma(c)(-/-) mice reconstituted with limiting amounts of IL-2Rgamma(c). Reconstitution resulted in lower IL-2/-15-mediated STAT5 phosphorylation and proliferation in NK and T cells. However, TCR costimulation restored cytokine-driven T cell proliferation to wild-type levels. Vector modifications that improved IL-2Rgamma(c) levels increased cytokine-induced STAT5 phosphorylation in both populations and increased NK cell proliferation demonstrating that IL-2Rgamma(c) levels are limiting. In addition, although the half-lives of both NK and T cells expressing intermediate levels of IL-2Rgamma(c) are reduced compared with wild-type cells, the reduction in NK cell half-live is much more severe than in T cells. Collectively, these data indicate different IL-2Rgamma(c) signaling thresholds for lymphocyte development and proliferation making functional monitoring imperative during gene therapy. Further, our findings suggest that IL-2Rgamma(c) reconstituted T cells may persist more efficiently than NK cells due to compensation for suboptimal IL-2Rgamma(c) signaling by the TCR.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Gene Expression Regulation/immunology
- Genetic Therapy/methods
- Interleukin Receptor Common gamma Subunit/biosynthesis
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/genetics
- Interleukin-15/antagonists & inhibitors
- Interleukin-15/physiology
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Phosphorylation/genetics
- Phosphorylation/immunology
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- STAT5 Transcription Factor/antagonists & inhibitors
- STAT5 Transcription Factor/metabolism
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Severe Combined Immunodeficiency/therapy
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Selinda J Orr
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
840
|
Kustikova O, Brugman M, Baum C. The genomic risk of somatic gene therapy. Semin Cancer Biol 2010; 20:269-78. [DOI: 10.1016/j.semcancer.2010.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 01/08/2023]
|
841
|
Sorrentino B. Assessing the risk of T-cell malignancies in mouse models of SCID-X1. Mol Ther 2010; 18:868-70. [PMID: 20436493 DOI: 10.1038/mt.2010.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Brian Sorrentino
- Division of Experimental Hematology, Department of Hematology, St Jude Children's Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
842
|
|
843
|
Enssle J, Trobridge GD, Keyser KA, Ironside C, Beard BC, Kiem HP. Stable marking and transgene expression without progression to monoclonality in canine long-term hematopoietic repopulating cells transduced with lentiviral vectors. Hum Gene Ther 2010; 21:397-403. [PMID: 19947827 DOI: 10.1089/hum.2009.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lentiviral gene transfer vectors have a number of potential advantages over gammaretroviral vectors including more efficient transduction of nondividing cells, a more favorable integration site profile, and the ability to accommodate large transgenes. Here, we present long-term follow-up data of animals that received lentivirus-transduced CD34-enriched cells. Six long-term surviving dogs were available for analysis. Transgene expression was analyzed from at least 12 months to more than 5 years after transplantation in peripheral blood cells and multiple cell lineages. All animals demonstrated long-term stable transgene expression in peripheral blood myeloid, lymphoid, and red blood cells as well as in platelets. Vector integration sites were analyzed by linear amplification-mediated polymerase chain reaction and showed a polyclonal repopulation pattern in all animals. There was no evidence of any development of monoclonality or leukemia in the animals. The stable long-term multilineage transgene expression, together with detection of the same integration site in myeloid and lymphoid cells, strongly suggests the transduction of long-term repopulating stem cells. Our data demonstrate safe and efficient transduction of multilineage long-term repopulating cells with lentiviral vectors and support the use of such vectors for gene therapy studies in patients.
Collapse
Affiliation(s)
- Joerg Enssle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
844
|
Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, Leiva L, Sorensen R, Debré M, Casanova JL, Blanche S, Durandy A, Bushman FD, Fischer A, Cavazzana-Calvo M. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010; 363:355-64. [PMID: 20660403 PMCID: PMC2957288 DOI: 10.1056/nejmoa1000164] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The outcomes of gene therapy to correct congenital immunodeficiencies are unknown. We reviewed long-term outcomes after gene therapy in nine patients with X-linked severe combined immunodeficiency (SCID-X1), which is characterized by the absence of the cytokine receptor common gamma chain. METHODS The nine patients, who lacked an HLA-identical donor, underwent ex vivo retrovirus-mediated transfer of gamma chain to autologous CD34+ bone marrow cells between 1999 and 2002. We assessed clinical events and immune function on long-term follow-up. RESULTS Eight patients were alive after a median follow-up period of 9 years (range, 8 to 11). Gene therapy was initially successful at correcting immune dysfunction in eight of the nine patients. However, acute leukemia developed in four patients, and one died. Transduced T cells were detected for up to 10.7 years after gene therapy. Seven patients, including the three survivors of leukemia, had sustained immune reconstitution; three patients required immunoglobulin-replacement therapy. Sustained thymopoiesis was established by the persistent presence of naive T cells, even after chemotherapy in three patients. The T-cell-receptor repertoire was diverse in all patients. Transduced B cells were not detected. Correction of the immunodeficiency improved the patients' health. CONCLUSIONS After nearly 10 years of follow-up, gene therapy was shown to have corrected the immunodeficiency associated with SCID-X1. Gene therapy may be an option for patients who do not have an HLA-identical donor for hematopoietic stem-cell transplantation and for whom the risks are deemed acceptable. This treatment is associated with a risk of acute leukemia. (Funded by INSERM and others.)
Collapse
|
845
|
Benabdallah BF, Allard E, Yao S, Friedman G, Gregory PD, Eliopoulos N, Fradette J, Spees JL, Haddad E, Holmes MC, Beauséjour CM. Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 2010; 12:394-9. [PMID: 20331411 DOI: 10.3109/14653240903583803] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Gene-modified mesenchymal stromal cells (MSC) provide a promising tool for cell and gene therapy-based applications by potentially acting as a cellular vehicle for protein-replacement therapy. However, to avoid the risk of insertional mutagenesis, targeted integration of a transgene into a 'safe harbor' locus is of great interest. METHODS We sought to determine whether zinc finger nuclease (ZFN)-mediated targeted addition of the erythropoietin (Epo) gene into the chemokine [C-C motif] receptor 5 (CCR5) gene locus, a putative safe harbor locus, in MSC would result in stable transgene expression in vivo. RESULTS Whether derived from bone marrow (BM), umbilical cord blood (UCB) or adipose tissue (AT), 30-40% of human MSC underwent ZFN-driven targeted gene addition, as determined by a combination of fluorescence-activated cell sorting (FACS)- and polymerase chain reaction (PCR)-based analyzes. An enzyme-linked immunosorbent assay (ELISA)-based analysis of gene-targeted MSC expressing Epo from the CCR5 locus showed that these modified MSC were found to secrete a significant level of Epo (c. 2 IU/10(6)cells/24 h). NOD/SCID/gammaC mice injected with ZFN-modified MSC expressing Epo exhibited significantly higher hematocrit and Epo plasma levels for several weeks post-injection, compared with mice receiving control MSC. CONCLUSIONS These data demonstrate that MSC modified by ZFN-driven targeted gene addition may represent a cellular vehicle for delivery of plasma-soluble therapeutic factors.
Collapse
Affiliation(s)
- Basma F Benabdallah
- Centre Hospitalier Universitaire Ste-Justine, Department of Pharmacology, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
846
|
Paruzynski A, Arens A, Gabriel R, Bartholomae CC, Scholz S, Wang W, Wolf S, Glimm H, Schmidt M, von Kalle C. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 2010; 5:1379-95. [PMID: 20671722 DOI: 10.1038/nprot.2010.87] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-throughput integration site profiling has become a feasible tool to assess vector biosafety and to monitor the cell fate of the gene-corrected cell population in clinical gene therapy studies. Here we report a step-by-step protocol for universal genome-wide and comprehensive integrome analysis that can be performed on >10(2)-10(3) samples of interest in parallel. This assay is composed of fast and cost-efficient non-restrictive linear amplification-mediated PCR; optimized sample preparation for pyrosequencing; and automated bioinformatic data mining, including sequence trimming, alignment to the cellular genome and further annotation. Moreover, the workflow of this large-scale assay can be adapted to any PCR-based method aiming to characterize unknown flanking DNA adjacent to a known DNA region. Thus, in combination with next-generation sequencing technologies, large-scale integrome analysis of > 4 x 10(5)-1 x 10(6) integration site sequences can be accomplished within a single week.
Collapse
Affiliation(s)
- Anna Paruzynski
- Department of Translational Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
847
|
Carpenter MK, Couture LA. Regulatory considerations for the development of autologous induced pluripotent stem cell therapies. Regen Med 2010; 5:569-79. [DOI: 10.2217/rme.10.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem (iPS) cells offer tremendous opportunity for the creation of autologous cellular therapies, in which gene correction or the avoidance of immune response issues are desirable. In addition, iPS cells avoid the ethical concerns raised by the sourcing of human embryonic stem cells (hESCs) from embryos. iPS cells share many characteristics with hESCs and it is anticipated that existing experience with hESCs will translate to rapid progress in moving iPS cell-derived products toward clinical trials. While the potential clinical value for these products is considerable, the nature of current manufacturing paradigms for autologous iPS cell products raises considerable regulatory concerns. Here, the regulatory challenges posed by autologous iPS cell-derived products are examined. We conclude that there will be considerable regulatory concerns primarily relating to reproducibility of the manufacturing process and safety testing within clinically limited time constraints. Demonstrating safety of the final cell product in an autologous setting will be the single greatest obstacle to progressing autologous iPS cell-based therapies into the clinic.
Collapse
Affiliation(s)
| | - Larry A Couture
- Center for Applied Technology Development, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
848
|
Abstract
Lentiviral vectors have remarkable cell entry and gene delivery properties that make them highly attractive for gene therapy. However, all integration-competent gene delivery systems have come under scrutiny for possible adverse insertional events. Circumventing the risk of insertional mutagenesis, integration-deficient human immunodeficiency virus (HIV)-1-derived vectors have been shown to support durable transcription of transgenes in certain nonmitotic cell lineages. In mitotic cell populations, such nonintegrated viral forms are lost during cell division and so have time-limited effects. Hybrid lentiviral vectors that harness the cell entry properties of HIV to facilitate carriage of alternative DNA modification systems into cells may allow durable genetic modification with more favorable integration profiles. Thus, systems, which have previously been plasmid-based such as those based on nuclease-enhanced homologous recombination (HR) and artificial transposons, have been incorporated into the viral genome to allow them to "hitch-hike" into cells that are difficult to transfect. Here, we review recent progress in the development of such hybrid lentiviral systems and consider potential applications of such vectors.
Collapse
Affiliation(s)
- Waseem Qasim
- Molecular Immunology Unit, Institute of Child Health, University College London, London, UK.
| | | | | |
Collapse
|
849
|
Lillicrap D. Hemophilia Gene Therapy: An Overview. TEXTBOOK OF HEMOPHILIA 2010:226-230. [DOI: 10.1002/9781444318555.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
850
|
Weeks RJ, Kees UR, Song S, Morison IM. Silencing of TESTIN by dense biallelic promoter methylation is the most common molecular event in childhood acute lymphoblastic leukaemia. Mol Cancer 2010; 9:163. [PMID: 20573277 PMCID: PMC3224738 DOI: 10.1186/1476-4598-9-163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aberrant promoter DNA methylation has been reported in childhood acute lymphoblastic leukaemia (ALL) and has the potential to contribute to its onset and outcome. However, few reports demonstrate consistent, prevalent and dense promoter methylation, associated with tumour-specific gene silencing. By screening candidate genes, we have detected frequent and dense methylation of the TESTIN (TES) promoter. RESULTS Bisulfite sequencing showed that 100% of the ALL samples (n = 20) were methylated at the TES promoter, whereas the matched remission (n = 5), normal bone marrow (n = 6) and normal PBL (n = 5) samples were unmethylated. Expression of TES in hyperdiploid, TEL-AML+, BCR-ABL+, and E2A-PBX+ subtypes of B lineage ALL was markedly reduced compared to that in normal bone marrow progenitor cells and in B cells. In addition TES methylation and silencing was demonstrated in nine out of ten independent B ALL propagated as xenografts in NOD/SCID mice. CONCLUSION In total, 93% of B ALL samples (93 of 100) demonstrated methylation with silencing or reduced expression of the TES gene. Thus, TES is the most frequently methylated and silenced gene yet reported in ALL. TES, a LIM domain-containing tumour suppressor gene and component of the focal adhesion complex, is involved in adhesion, motility, cell-to-cell interactions and cell signalling. Our data implicate TES methylation in ALL and provide additional evidence for the involvement of LIM domain proteins in leukaemogenesis.
Collapse
Affiliation(s)
- Robert J Weeks
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | | | | | |
Collapse
|