801
|
Lutsiv T, Weir TL, McGinley JN, Neil ES, Wei Y, Thompson HJ. Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses. Nutrients 2021; 13:3992. [PMID: 34836246 PMCID: PMC8625176 DOI: 10.3390/nu13113992] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is involved in the host's metabolism, development, and immunity, which translates to measurable impacts on disease risk and overall health. Emerging evidence supports pulses, i.e., grain legumes, as underutilized nutrient-dense, culinarily versatile, and sustainable staple foods that promote health benefits through modulating the gut microbiota. Herein, the effects of pulse consumption on microbial composition in the cecal content of mice were assessed. Male mice were fed an obesogenic diet formulation with or without 35% of the protein component comprised by each of four commonly consumed pulses-lentil (Lens culinaris L.), chickpea (Cicer arietinum L.), common bean (Phaseolus vulgaris L.), or dry pea (Pisum sativum L.). Mice consuming pulses had distinct microbial communities from animals on the pulse-free diet, as evidenced by β-diversity ordinations. At the phylum level, animals consuming pulses showed an increase in Bacteroidetes and decreases in Proteobacteria and Firmicutes. Furthermore, α-diversity was significantly higher in pulse-fed animals. An ecosystem of the common bacteria that were enhanced, suppressed, or unaffected by most of the pulses was identified. These compositional changes are accompanied by shifts in predicted metagenome functions and are concurrent with previously reported anti-obesogenic physiologic outcomes, suggestive of microbiota-associated benefits of pulse consumption.
Collapse
Affiliation(s)
- Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tiffany L. Weir
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - John N. McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
| | - Elizabeth S. Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
| | - Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
802
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
803
|
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim Microbiome 2021; 3:77. [PMID: 34736528 PMCID: PMC8567652 DOI: 10.1186/s42523-021-00141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Through the rapid development in DNA sequencing methods and tools, microbiome studies on a various number of species were performed during the last decade. This advance makes it possible to analyze hundreds of samples from different species at the same time in order to obtain a general overview of the microbiota. However, there is still uncertainty on the variability of the microbiota of different animal orders and on whether certain bacteria within a species are subject to greater fluctuations than others. This is largely due to the fact that the analysis in most extensive comparative studies is based on only a few samples per species or per study site. In our study, we aim to close this knowledge gap by analyzing multiple individual samples per species including two carnivore suborders Canoidea and Feloidea as well as the orders of herbivore Perissodactyla and Artiodactyla held in different zoos. To assess microbial diversity, 621 fecal samples from 31 species were characterized by sequencing the V3-V4 region of the 16S rRNA gene using Illumina MiSeq. RESULTS We found significant differences in the consistency of microbiota composition and in fecal microbial diversity between carnivore and herbivore species. Whereas the microbiota of Carnivora is highly variable and inconsistent within and between species, Perissodactyla and Ruminantia show fewer differences across species boundaries. Furthermore, low-abundance bacterial families show higher fluctuations in the fecal microbiota than high-abundance ones. CONCLUSIONS Our data suggest that microbial diversity is significantly higher in herbivores than in carnivores, whereas the microbiota in carnivores, unlike in herbivores, varies widely even within species. This high variability has methodological implications and underlines the need to analyze a minimum amount of about 10 samples per species. In our study, we found considerable differences in the occurrence of different bacterial families when looking at just three and six samples. However, from a sample number of 10 onwards, these within-species fluctuations balanced out in most cases and led to constant and more reliable results.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
804
|
Carroccio A, Celano G, Cottone C, Di Sclafani G, Vannini L, D'Alcamo A, Vacca M, Calabrese FM, Mansueto P, Soresi M, Francavilla R, De Angelis M. WHOLE-meal ancient wheat-based diet: Effect on metabolic parameters and microbiota. Dig Liver Dis 2021; 53:1412-1421. [PMID: 34024731 DOI: 10.1016/j.dld.2021.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Ancient wheat varieties are considered to be healthier than modern ones, but the data are not univocal. We investigated changes in hematochemical parameters and evaluated microbiota data before and after a set period on a diet containing a whole-meal ancient wheat mix. PATIENTS AND METHODS 29 cloistered nuns were recruited. The study comprised two consecutive 30-day periods; during the first one (T1), the nuns received wheat-based foods produced with refined "modern" flour ("Simeto"); during the second one (T2) received wheat-based foods produced with an unrefined flour mix composed of "ancient" cultivars. At entry to the study (T0) and at the end of T1 and T2 hematochemical parameters and fecal microbiota and metabolome were evaluated. RESULTS At the end of T2, there was a significant reduction in serum iron, ferritin, creatinine, sodium, potassium, magnesium, total cholesterol, LDL- and HDL-cholesterol and folic acid. Furthermore, increased the abundance of cultivable enterococci, lactic acid bacteria and total anaerobes. The ability of the gut microbiome to metabolize carbohydrates increased after the period of diet containing ancient grain products. Several volatile organic compounds increased after the one month on the diet enriched with ancient grain products. CONCLUSIONS Our data showed the beneficial effects deriving from a diet including ancient whole-meal/unrefined wheat flours.
Collapse
Affiliation(s)
- Antonio Carroccio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy.
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| | | | | | - Lucia Vannini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Viale G. Fanin, 42, Bologna 40127, Italy
| | - Alberto D'Alcamo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| | - Pasquale Mansueto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy
| | - Maurizio Soresi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy
| | - Ruggiero Francavilla
- Department of Biomedical Science and Human Oncology, University "Aldo Moro" of Bari, Piazza Giulio Cesare, 11, Bari 70124, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| |
Collapse
|
805
|
Lu S, Williams BA, Flanagan BM, Yao H, Mikkelsen D, Gidley MJ. Fermentation outcomes of wheat cell wall related polysaccharides are driven by substrate effects as well as initial faecal inoculum. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
806
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
807
|
Lauriero G, Abbad L, Vacca M, Celano G, Chemouny JM, Calasso M, Berthelot L, Gesualdo L, De Angelis M, Monteiro RC. Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Front Immunol 2021; 12:694787. [PMID: 34712223 PMCID: PMC8546224 DOI: 10.3389/fimmu.2021.694787] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis. Several observations suggest that gut microbiota could be implicated in IgAN pathophysiology. Aiming at exploring whether microbiota modulation is able to influence disease outcome, we performed fecal microbiota transplantation (FMT) from healthy controls (HC-sbjs), non-progressor (NP-pts) and progressor (P-pts) IgAN patients to antibiotic-treated humanized IgAN mice (α1KI-CD89Tg), by oral gavage. FMT was able to modulate renal phenotype and inflammation. On one hand, the microbiota from P-pts was able to induce an increase of serum BAFF and galactose deficient-IgA1 levels and a decrease of CD89 cell surface expression on blood CD11b+ cells which was associated with soluble CD89 and IgA1 mesangial deposits. On the other hand, the microbiota from HC-sbjs was able to induce a reduction of albuminuria immediately after gavage, an increased cell surface expression of CD89 on blood CD11b+ cells and a decreased expression of KC chemokine in kidney. Higher serum BAFF levels were found in mice subjected to FMT from IgAN patients. The main bacterial phyla composition and volatile organic compounds profile significantly differed in mouse gut microbiota. Microbiota modulation by FMT influences IgAN phenotype opening new avenues for therapeutic approaches in IgAN.
Collapse
Affiliation(s)
- Gabriella Lauriero
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France.,Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Lilia Abbad
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jonathan M Chemouny
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Laureline Berthelot
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Renato C Monteiro
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| |
Collapse
|
808
|
Does Physical Inactivity Induce Significant Changes in Human Gut Microbiota? New Answers Using the Dry Immersion Hypoactivity Model. Nutrients 2021; 13:nu13113865. [PMID: 34836120 PMCID: PMC8620432 DOI: 10.3390/nu13113865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota, a major contributor to human health, is influenced by physical activity and diet, and displays a functional cross-talk with skeletal muscle. Conversely, few data are available on the impact of hypoactivity, although sedentary lifestyles are widespread and associated with negative health and socio-economic impacts. The study aim was to determine the effect of Dry Immersion (DI), a severe hypoactivity model, on the human gut microbiota composition. Stool samples were collected from 14 healthy men before and after 5 days of DI to determine the gut microbiota taxonomic profiles by 16S metagenomic sequencing in strictly controlled dietary conditions. The α and β diversities indices were unchanged. However, the operational taxonomic units associated with the Clostridiales order and the Lachnospiraceae family, belonging to the Firmicutes phylum, were significantly increased after DI. Propionate, a short-chain fatty acid metabolized by skeletal muscle, was significantly reduced in post-DI stool samples. The finding that intestine bacteria are sensitive to hypoactivity raises questions about their impact and role in chronic sedentary lifestyles.
Collapse
|
809
|
Kimmel M, Jin W, Xia K, Lun K, Azcarate-Peril A, Plantinga A, Wu M, Ataei S, Rackers H, Carroll I, Meltzer-Brody S, Fransson E, Knickmeyer R. Metabolite trajectories across the perinatal period and mental health: A preliminary study of tryptophan-related metabolites, bile acids and microbial composition. Behav Brain Res 2021; 418:113635. [PMID: 34755640 DOI: 10.1016/j.bbr.2021.113635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023]
Abstract
Depression and anxiety during pregnancy and postpartum are common, but affected women differ in timing, trajectories, and extent of symptoms. The objective of this pilot, feasibility study is to analyze trajectories of serotonin and tryptophan-related metabolites, bile acid metabolites, and microbial composition, in relation to psychiatric history and current symptoms across the perinatal period. Serum and fecal samples were collected from 30 women at three times points in the perinatal period and assayed with LC-MS/MS and 16S sequencing respectively. We defined mean trajectories for each metabolite, clustered individuals by metabolite trajectories, tested associations between metabolites, and examined metabolite levels in relation to microbial composition. Findings of note include: (1) changes in kynurenine and the ratio of kynurenic acid to kynurenine from second trimester to third trimester were strongly associated with baseline primary and secondary bile acids. (2) Secondary bile acid UDCA and its conjugated forms were associated with lower bacterial diversity and levels of Lachnospiraceae, a taxa known to produce Short Chain Fatty Acids. (3) History of anxiety was associated with UDCA levels, but history of major depression was not associated with any of the bile acids. (4) There was a trend towards lower dietary fiber for those with history of anxiety or depression. Overall, our results reveal substantial temporal variation in tryptophan-related metabolites and in bile acid metabolites over the perinatal period, with marked inter-individual variability. Trajectories of TRP -related metabolites, primary and secondary bile acids, and the absence or presence of microbes that produce Short Chain Fatty Acids (SCFAs) considered in concert have the potential to differentiate individuals based on perinatal adaptations that may impact mental and overall health.
Collapse
Affiliation(s)
- Mary Kimmel
- University of North Carolina-Chapel Hill Department of Psychiatry, United States; Uppsala University, Department of Women and Children's Health, Sweden.
| | - Wanting Jin
- University of North Carolina-Chapel Hill Department of Psychiatry, United States
| | - Kai Xia
- University of North Carolina-Chapel Hill Department of Psychiatry, United States
| | - Kun Lun
- University of North Carolina-Chapel Hill Gillings School of Public Health, United States
| | - Andrea Azcarate-Peril
- University of North Carolina-Chapel Hill Department of Medicine and UNC Microbiome Core, United States
| | - Anna Plantinga
- Williams College Department of Mathematics and Statistics, United States
| | - Michael Wu
- University of North Carolina-Chapel Hill Department of Psychiatry, United States
| | - Shirin Ataei
- University of North Carolina-Chapel Hill Department of Psychiatry, United States
| | - Hannah Rackers
- University of North Carolina-Chapel Hill Department of Psychiatry, United States
| | - Ian Carroll
- University of North Carolina-Chapel Hill School of Public Health Department of Nutrition, United States
| | | | - Emma Fransson
- Uppsala University, Department of Women and Children's Health, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Insitutet Centre for Translational Microbiome Research, Sweden
| | - Rebecca Knickmeyer
- University of North Carolina-Chapel Hill Department of Psychiatry, United States; Michigan State University Department of Pediatrics and Human Development, United States
| |
Collapse
|
810
|
Zakrzewski M, Wilkins SJ, Helman SL, Brilli E, Tarantino G, Anderson GJ, Frazer DM. Supplementation with Sucrosomial® iron leads to favourable changes in the intestinal microbiome when compared to ferrous sulfate in mice. Biometals 2021; 35:27-38. [PMID: 34697758 PMCID: PMC8803775 DOI: 10.1007/s10534-021-00348-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Iron deficiency is one of the most common nutritional deficiencies worldwide and is often treated with oral iron supplements. However, commonly used supplements, including those based on ferrous iron salts, are associated with gastrointestinal side effects and unfavorable changes in the intestinal microbiome. Sucrosomial® iron is a novel iron formulation that is effective at treating iron deficiency, and with fewer gastrointestinal side effects, yet its effect on the gut microbiome has not been examined previously. Thus, we treated mice for two weeks with diets containing either Sucrosomial® iron or ferrous sulfate as the sole iron source and examined bacterial communities in the intestine using 16S Microbial Profiling of DNA extracted from feces collected both prior to and following dietary treatment. Mice treated with Sucrosomial® iron showed an increase in Shannon diversity over the course of the study. This was associated with a decrease in the abundance of the phylum Proteobacteria, which contains many pathogenic species, and an increase in short chain fatty acid producing bacteria such as Lachnospiraceae, Oscillibacter and Faecalibaculum. None of these changes were observed in mice treated with ferrous sulfate. These results suggest that Sucrosomial® iron may have a beneficial effect on the intestinal microbiome when compared to ferrous sulfate and that this form of iron is a promising alternative to ferrous iron salts for the treatment of iron deficiency.
Collapse
Affiliation(s)
- Martha Zakrzewski
- Medical Genomics, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sarah J Wilkins
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Herston, QLD, 4029, Australia.,Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | | | | | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Herston, QLD, 4029, Australia. .,School of Biomedical Sciences, The University of Queensland, St Lucia, Australia. .,School of Biomedical Sciences, The Queensland University of Technology, Gardens Point, Brisbane, Australia.
| |
Collapse
|
811
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in Mediating Very Low-Calorie Ketogenic Diet-Infant Gut Microbiota Relationships and Its Therapeutic Potential in Obesity. Nutrients 2021; 13:3702. [PMID: 34835958 PMCID: PMC8624546 DOI: 10.3390/nu13113702] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
As the very low-calorie ketogenic diet (VLCKD) gains increased interest as a therapeutic approach for many diseases, little is known about its therapeutic use in childhood obesity. Indeed, the role of VLCKD during pregnancy and lactation in influencing short chain fatty acid (SCFA)-producing bacteria and the potential mechanisms involved in the protective effects on obesity are still unclear. Infants are characterized by a diverse gut microbiota composition with higher abundance of SCFA-producing bacteria. Maternal VLCKD during pregnancy and lactation stimulates the growth of diverse species of SCFA-producing bacteria, which may induce epigenetic changes in infant obese gene expression and modulate adipose tissue inflammation in obesity. Therefore, this review aims to determine the mechanistic role of SCFAs in mediating VLCKD-infant gut microbiota relationships and its protective effects on obesity.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
812
|
Multi-Omics Analysis to Generate Hypotheses for Mild Health Problems in Monkeys. Metabolites 2021; 11:metabo11100701. [PMID: 34677416 PMCID: PMC8538200 DOI: 10.3390/metabo11100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Certain symptoms associated with mild sickness and lethargy have not been categorized as definitive diseases. Confirming such symptoms in captive monkeys (Macaca fascicularis, known as cynomolgus monkeys) can be difficult; however, it is possible to observe and analyze their feces. In this study, we investigated the relationship between stool state and various omics data by considering objective and quantitative values of stool water content as a phenotype for analysis. By examining the food intake of the monkeys and assessing their stool, urine, and plasma, we attempted to obtain a comprehensive understanding of the health status of individual monkeys and correlate it with the stool condition. Our metabolomics data strongly suggested that many lipid-related metabolites were correlated with the stool water content. The lipidomic analysis revealed the involvement of saturated and oxidized fatty acids, metallomics revealed the contribution of selenium (a bio-essential trace element), and intestinal microbiota analysis revealed the association of several bacterial species with the stool water content. Based on our results, we hypothesize that the redox imbalance causes minor health problems. However, it is not possible to make a definite conclusion using multi-omics alone, and other hypotheses could be proposed.
Collapse
|
813
|
Liu R, Shi J, Shultz S, Guo D, Liu D. Fecal Bacterial Community of Allopatric Przewalski's Gazelles and Their Sympatric Relatives. Front Microbiol 2021; 12:737042. [PMID: 34630362 PMCID: PMC8499116 DOI: 10.3389/fmicb.2021.737042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Mammal gastrointestinal tracts harbor diverse bacterial communities that play important roles in digestion, development, behavior, and immune function. Although, there is an increasing understanding of the factors that affect microbial community composition in laboratory populations, the impact of environment and host community composition on microbiomes in wild populations is less understood. Given that the composition of bacterial communities can be shaped by ecological factors, particularly exposure to the microbiome of other individuals, inter-specific interactions should impact on microbiome community composition. Here, we evaluated inter-population and inter-specific similarity in the fecal microbiota of Przewalski's gazelle (Procapra przewalskii), an endangered endemic ruminant around Qinghai Lake in China. We compared the fecal bacterial communities of three Przewalski's gazelle populations, with those of two sympatric ruminants, Tibetan gazelle (Procapra picticaudata) and Tibetan sheep (Ovis aries). The fecal bacterial community richness (Chao1, ACE) did not vary across the three Przewalski's gazelle populations, nor did the composition vary between species. In contrast, the managed Przewalski's gazelle population had higher bacterial diversity (Shannon and Simpson) and was more similar to its sympatric Tibetan sheep in beta diversity than the wild Przewalski's gazelle populations. These results suggest that ecological factors like host community composition or diet affect Przewalski's gazelle's gastrointestinal bacterial community. The role of bacterial community composition in maintaining gastrointestinal health should be assessed to improve conservation management of endangered Przewalski's gazelle. More broadly, captive breeding and reintroduction efforts may be impeded, where captive management results in dysbiosis and introduction of pathogenic bacteria. In free ranging populations, where wildlife and livestock co-occur, infection by domestic pathogens and diseases may be an underappreciated threat to wild animals.
Collapse
Affiliation(s)
- Ruoshuang Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Jianbin Shi
- School of Environment, Beijing Normal University, Beijing, China
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Dongsheng Guo
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Dingzhen Liu
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
814
|
Liu X, Zhao K, Jing N, Kong Q, Yang X. Epigallocatechin Gallate (EGCG) Promotes the Immune Function of Ileum in High Fat Diet Fed Mice by Regulating Gut Microbiome Profiling and Immunoglobulin Production. Front Nutr 2021; 8:720439. [PMID: 34616764 PMCID: PMC8488439 DOI: 10.3389/fnut.2021.720439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the regulatory effect of epigallocatechin gallate (EGCG) on the composition of the gut microbiome, the transcriptomic profiling of ileum, and their interplay in high fat diet (HFD) induced obese mice. Intragastric administration of EGCG to C57BL/6J mice for 14 consecutive weeks remarkably decreased HFD induced excessive fat deposition (p < 0.001), and the increment of serum TG, TC, HDL-C (p < 0.05), as well as improved glucose tolerance (p < 0.001). EGCG shifted the gut microbiota mainly by elevating the relative abundance of Parasutterrlla, Bacteroides, and Akkermansia (p < 0.01), decreasing that of norank_f_Erysipelotrichaceae, unclassified_f_Ruminococcaceae, Anaerotruncus, Roseburia, norank_Lachnospiraceae, and Lachnospiraceae_UCG_006 (p < 0.01) at the genus level. In addition, EGCG affected the transcriptomic profiling of ileum, and the differentially expressed (DE) genes after HFD or/and EGCG treatment were mostly enriched in the immune reaction of ileum, such as the GO term of “immune effector process” and “phagocytosis, recognition.” Furthermore, the KEGG category of “immune diseases,” “immune system,” and “infection diseases: bacterial” were commonly enriched by the DE genes of the two treatments. Among those DE genes, 16 immunoglobulins heavy chain variable region encoded genes (Ighvs) and other immunity-related genes, such as complement component 2 (C2), interferon-induced transmembrane protein 1 (Iftm1), polymeric immunoglobulin receptor (pigR), and alanyl aminopeptidase (Anpep), were highly correlated with the shifted microbes in the gut (p < 0.05, absolute r > 0.5). Overall, the results suggested that EGCG ameliorated the HFD induced metabolic disorder mainly by regulating gut microbiome profiling and the immunoglobulin production of ileum, while the genes expressed in the ileum, especially Ighvs, C2, Iftm1, pigR, and Anpep, might play important roles in coordinating the immunity of mice regarding the gut microbes and the host interactions.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Nana Jing
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, and Xi'an Key Laboratory of Characteristic Fruit Storage and Fresh-keeping, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
815
|
Chen L, Wang J, Yi J, Liu Y, Yu Z, Chen S, Liu X. Increased mucin-degrading bacteria by high protein diet leads to thinner mucus layer and aggravates experimental colitis. J Gastroenterol Hepatol 2021; 36:2864-2874. [PMID: 34050560 DOI: 10.1111/jgh.15562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Westernized high-fat diet increases the risk for inflammatory bowel diseases (IBDs), yet with insufficient understanding of the role of high-protein diet. We aimed to identify the effect of high-protein diets from different dietary proteins (casein, whey protein, soy protein) on experimental colitis and its impact on microbiota, structure and function of colonic mucus layer. METHODS Female BALB/c mice were fed by standard diet, high-casein diet (HCD), high whey protein diet or high soy protein diet for 4 weeks. The susceptibility of dextran sulfate sodium (DSS)-induced colitis in mice and thickness of colonic mucus layer were compared after different dietary interventions, associated with the identification of the reversal effect of broad-spectrum antibiotic intervention (0.5 g/L of vancomycin and 1 g/L of neomycin sulfate, metronidazole and ampicillin in drinking water). Further analysis was performed on the synthesis of mucin, microbiota and sialidase involved in degradation of mucus layer. RESULTS High-protein diets aggravated acute DSS-induced colitis independent of protein composition, while broad-spectrum antibiotics reversed this effect. HCD significantly altered the composition of bacteria in the colonic mucus layer, especially Bacteroides thetaiotaomicron and total mucin-degrading bacteria; besides, it increased sialidase concentration and reduced the thickness of mucus layer. However, it exhibited no significant effect on the synthesis of Muc2. Broad-spectrum antibiotics decreased the abundance of mucin-degrading bacteria and sialidase concentration while increased the thickness of mucus layer. CONCLUSION High-protein diet shifts microbial composition and thickness of colonic mucus layer, leading to the aggravation of acute DSS-induced colitis.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Jingyan Wang
- Department of Microbiology, School of Basic Medical Science Central South University, Changsha, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Yajun Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science Central South University, Changsha, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, China
| |
Collapse
|
816
|
Oldenburg M, Rüchel N, Janssen S, Borkhardt A, Gössling KL. The Microbiome in Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13194947. [PMID: 34638430 PMCID: PMC8507905 DOI: 10.3390/cancers13194947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
For almost 30 years, the term "holobiont" has referred to an ecological unit where a host (e.g., human) and all species living in or around it are considered together. The concept highlights the complex interactions between the host and the other species, which, if disturbed may lead to disease and premature aging. Specifically, the impact of microbiome alterations on the etiology of acute lymphoblastic leukemia (ALL) in children is not fully understood, but has been the focus of much research in recent years. In ALL patients, significant reductions in microbiome diversity are already observable at disease onset. It remains unclear whether such alterations at diagnosis are etiologically linked with leukemogenesis or simply due to immunological alteration preceding ALL onset. Regardless, all chemotherapeutic treatment regimens severely affect the microbiome, accompanied by severe side effects, including mucositis, systemic inflammation, and infection. In particular, dominance of Enterococcaceae is predictive of infections during chemotherapy. Long-term dysbiosis, like depletion of Faecalibacterium, has been observed in ALL survivors. Modulation of the microbiome (e.g., by fecal microbiota transplant, probiotics, or prebiotics) is currently being researched for potential protective effects. Herein, we review the latest microbiome studies in pediatric ALL patients.
Collapse
Affiliation(s)
- Marina Oldenburg
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Nadine Rüchel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Stefan Janssen
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, 35390 Gießen, Germany;
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Katharina L. Gössling
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
- Correspondence:
| |
Collapse
|
817
|
Cheng J, Bar H, Tako E. Zinc Status Index (ZSI) for Quantification of Zinc Physiological Status. Nutrients 2021; 13:nu13103399. [PMID: 34684398 PMCID: PMC8541600 DOI: 10.3390/nu13103399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc (Zn) deficiency is estimated to affect over one billion (17%) of the world’s population. Zn plays a key role in various cellular processes such as differentiation, apoptosis, and proliferation, and is used for vital biochemical and structural processes in the body. Widely used biomarkers of Zn status include plasma, whole blood, and urine Zn, which decrease in severe Zn deficiency; however, accurate assessment of Zn status, especially in mild to moderate deficiency, is difficult, as studies with these biomarkers are often contradictory and inconsistent. Thus, sensitive and specific biological markers of Zn physiological status are still needed. In this communication, we provide the Zn status index (ZSI) concept, which consists of a three-pillar formula: (1) the LA:DGLA ratio, (2) mRNA gene expression of Zn-related proteins, and (3) gut microbiome profiling to provide a clear assessment of Zn physiological status and degree of Zn deficiency with respect to assessing dietary Zn manipulation. Analysis of five selected studies found that with lower dietary Zn intake, erythrocyte LA:DGLA ratio increased, mRNA gene expression of Zn-related proteins in duodenal and liver tissues was altered, and gut microbiota populations differed, where the ZSI, a statistical model trained on data from these studies, was built to give an accurate estimation of Zn physiological status. However, the ZSI needs to be tested and refined further to determine its full potential.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
| | - Haim Bar
- Department of Statistics, University of Connecticut, Philip E. Austin Building, Storrs, CT 06269, USA;
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
818
|
Zhang Y, Qu Y, Yang J, Liu J, Li S, He X. A pilot study to investigate the alteration of gut microbial profile in Dip2a knockout mice. Int Microbiol 2021; 25:267-274. [PMID: 34562157 DOI: 10.1007/s10123-021-00211-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023]
Abstract
Accumulating evidence has pointed out that the gut-brain axis plays important roles in the etiology of autism spectrum disorder (ASD). Gut dysbiosis was reported in both ASD human patients and animal models. Dip2a was identified as a human ASD candidate gene. Deletion of Dip2a led to dendritic spine dysfunction and autistic-like behaviors in mice. To further investigate if Dip2a deletion leads to gut dysbiosis, we used 16S rDNA sequencing to study the gut microbiota in Dip2a KO mice. In both co-housed and separated breeding conditions, deletion of Dip2a could affect the gut microbiome composition. The probiotic bacteria, Lactobacillus and Bifidobacterium, became less abundant, while some potentially harmful bacteria, Alistipes, Lachnospiraceae_NK4A136_group, Clostridium, Desulfovibrio, and Enterorhabdus, became more abundant. We further found that probiotic treatment could help to reconstitute the gut microbiome composition in Dip2a KO mice. Altogether, these data showed DIP2A is required for the proper composition of gut microbiota, and the probiotics have potential roles in rectifying the gut microbiota in Dip2a KO mice.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Life Science, Northeast Normal University, Changchun, 130021, China
| | - Yanan Qu
- School of Life Science, Northeast Normal University, Changchun, 130021, China
| | - Jingyuan Yang
- School of Life Science, Northeast Normal University, Changchun, 130021, China
| | - Juxiu Liu
- School of Life Science, Northeast Normal University, Changchun, 130021, China
| | - Shengnan Li
- Jilin Institute of Biology, Changchun, 130012, Jilin, China.
| | - Xiaoxiao He
- School of Life Science, Northeast Normal University, Changchun, 130021, China. .,Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| |
Collapse
|
819
|
Gao Y, Liu F, Li RW, Li C, Xue C, Tang Q. Microbial Composition and Co-occurrence Patterns in the Gut Microbial Community of Normal and Obese Mice in Response to Astaxanthin. Front Microbiol 2021; 12:671271. [PMID: 34552567 PMCID: PMC8450573 DOI: 10.3389/fmicb.2021.671271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
The changes and interaction of gut microbiota, which respond to dietary supplements, play critical roles on improving human health. The modulating effect of astaxanthin on gut microbiota has been reported. However, little is known about the co-occurrence patterns among microbial taxa in response to astaxanthin. In this study, the gut microbial composition, co-occurrence patterns, and microbial correlations with physiological parameters in astaxanthin-fed normal and obese mice were studied. Astaxanthin altered the microbial composition and co-occurrence patterns in normal and obese mice. Furthermore, astaxanthin gave more profound impacts on microbiota in obesity when compared with normal mice. In group A (normal or obese mice supplemented with astaxanthin), the abundance of Acinetobacter was decreased, and Alistipes was increased by astaxanthin, which also occurred in the MA group (obese mice supplemented with astaxanthin). An operational taxonomic unit (OTU) (GreenGeneID# 4029632) assigned to the genus Bacteroides acted as a connector in the global network of A and MA groups. It may play critical roles in bridging intimate interactions between the host and other bacteria intervened by astaxanthin. Several modules correlated with physiological parameters were detected. For example, modules A12 and MA10 were significantly and negatively correlated with lipopolysaccharide (LPS) and fasting blood glucose (FBG) levels, respectively. A positive correlation was found between the node connectivity of the OTUs belonging to Clostridiaceae with LPS in obese mice, which indicated the role of Clostridiales as a potential pathological marker. Our findings provided a new interpretation of the role of astaxanthin in health and may contribute to further research on microbial community engineering.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Robert W Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD, United States
| | - Chunjun Li
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
820
|
Wagenaar CA, van de Put M, Bisschops M, Walrabenstein W, de Jonge CS, Herrema H, van Schaardenburg D. The Effect of Dietary Interventions on Chronic Inflammatory Diseases in Relation to the Microbiome: A Systematic Review. Nutrients 2021; 13:nu13093208. [PMID: 34579085 PMCID: PMC8464906 DOI: 10.3390/nu13093208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation plays a central role in the pathophysiology of various non-communicable diseases. Dietary interventions can reduce inflammation, in part due to their effect on the gut microbiome. This systematic review aims to determine the effect of dietary interventions, specifically fiber intake, on chronic inflammatory diseases and the microbiome. It aims to form hypotheses on the potential mediating effects of the microbiome on disease outcomes after dietary changes. Included were clinical trials which performed a dietary intervention with a whole diet change or fiber supplement (>5 g/day) and investigated the gut microbiome in patients diagnosed with chronic inflammatory diseases such as cardiovascular disease (CVD), type 2 diabetes (T2DM), and autoimmune diseases (e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD)). The 30 articles which met the inclusion criteria had an overall moderate to high risk of bias and were too heterogeneous to perform a meta-analysis. Dietary interventions were stratified based on fiber intake: low fiber, high fiber, and supplemental fiber. Overall, but most pronounced in patients with T2DM, high-fiber plant-based dietary interventions were consistently more effective at reducing disease-specific outcomes and pathogenic bacteria, as well as increasing microbiome alpha diversity and short-chain fatty acid (SCFA)-producing bacteria, compared to other diets and fiber supplements.
Collapse
Affiliation(s)
- Carlijn A. Wagenaar
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| | - Marieke van de Put
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
| | - Michelle Bisschops
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
| | - Wendy Walrabenstein
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Catharina S. de Jonge
- Department of Radiology and Nuclear Medicine, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers (UMC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Dirkjan van Schaardenburg
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
821
|
Wen C, Li S, Wang J, Zhu Y, Zong X, Wang Y, Jin M. Heat Stress Alters the Intestinal Microbiota and Metabolomic Profiles in Mice. Front Microbiol 2021; 12:706772. [PMID: 34512584 PMCID: PMC8430895 DOI: 10.3389/fmicb.2021.706772] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Heat stress has negative effects on the intestinal health of humans and animals. However, the impact of heat stress on intestinal microbial and metabolic changes remains elusive. Here, we investigated the cecal microbial and metabolic profiles in mice in response to heat stress. Methods The mouse heat stress model was constructed by simulating a high-temperature environment. Twenty mice were randomly assigned to two groups, the control group (CON, 25°C) and the heat treatment group (HS, 40°C from 13:00 to 15:00 every day for 7 days). Serum and cecal contents were collected from the mice for serum biochemical analysis, 16S rRNA high-throughput sequencing, and non-targeted metabolomics. Results Both core body temperature and water intake were significantly increased in the HS group. Serum biochemical indicators were also affected, including significantly increased triglyceride and decreased low-density lipoprotein in the heat stress group. The composition and structure of intestinal microbiota were remarkably altered in the HS group. At the species level, the relative abundance of Candidatus Arthromitus sp. SFB-mouse-Japan and Lactobacillus murinus significantly reduced, while that of Lachnospiraceae bacterium 3-1 obviously increased after HS. Metabolomic analysis of the cecal contents clearly distinguished metabolite changes between the groups. The significantly different metabolites identified were mainly involved in the fatty acid synthesis, purine metabolism, fatty acid metabolism, cyanoamino acid metabolism, glyceride metabolism, and plasmalogen synthesis. Conclusion In summary, high temperature disrupted the homeostatic balance of the intestinal microbiota in mice and also induced significant alterations in intestinal metabolites. This study provides a basis for treating intestinal disorders caused by elevated temperature in humans and animals and can further formulate nutritional countermeasures to reduce heat stress-induced damage.
Collapse
Affiliation(s)
- Chaoyue Wen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiaojiao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimin Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
822
|
Effect of Antarctic krill phospholipid (KOPL) on high fat diet-induced obesity in mice. Food Res Int 2021; 148:110456. [PMID: 34507719 DOI: 10.1016/j.foodres.2021.110456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/28/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Phospholipids are the main lipid components in Antarctic krill oil, and the combination of n-3 polyunsaturated fatty acids (n-3 PUFAs) shows multiple nutritional advantages. At present, the research about Antarctic krill phospholipid (KOPL) mainly focuses on the purification, and there are few reports on the anti-obesity effect. Thus, this study aimed at evaluating the effect of KOPL on the high-fat diet (HFD)-induced obesity mice. All the mice were divided into five groups, which were fed chow diet, HFD, and different doses of KOPL + HFD, respectively. The results showed that KOPL treatment could reduce the weight gain, fat accumulation, and liver tissue damage in HFD-induced mice. KOPL treatment could reduce the levels of serum lipid (TC, TG, L-LDL) and fasting blood glucose in HFD-induced mice, and the inflammatory cytokines (IL-1β and TNF-α) in serum. Further analysis showed that KOPL could promote the normal expression of lipid-synthesis-related genes and proteins, including sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthetase (FAS), and peroxisome proliferator-activated receptor alpha (PPAR-α) in liver tissue. Besides, it inhibited the overexpression of inflammatory cytokine genes (IL-1β and TNF-α), but increased the expression of tight junction genes (ZO-1 and Occludin) in the colon tissue. Additionally, KOPL improved the decrease of diversity and imbalance of intestinal microbiota, which could contribute to its beneficial effects. In summary, the KOPL treatment improves the effects of HFD-induced obese mice by maintaining normal lipid levels, protecting the liver tissue, reducing inflammation response and intestinal damage, and regulating intestinal microbiota abnormalities. It refer to KOPL could be a promising dietary strategy for treating obesity and improving its related metabolic diseases.
Collapse
|
823
|
Wu C, Xiao X, Yang C, Chen J, Yi J, Qiu Y. Mining microbe-disease interactions from literature via a transfer learning model. BMC Bioinformatics 2021; 22:432. [PMID: 34507528 PMCID: PMC8430297 DOI: 10.1186/s12859-021-04346-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background Interactions of microbes and diseases are of great importance for biomedical research. However, large-scale of microbe–disease interactions are hidden in the biomedical literature. The structured databases for microbe–disease interactions are in limited amounts. In this paper, we aim to construct a large-scale database for microbe–disease interactions automatically. We attained this goal via applying text mining methods based on a deep learning model with a moderate curation cost. We also built a user-friendly web interface that allows researchers to navigate and query required information. Results Firstly, we manually constructed a golden-standard corpus and a sliver-standard corpus (SSC) for microbe–disease interactions for curation. Moreover, we proposed a text mining framework for microbe–disease interaction extraction based on a pretrained model BERE. We applied named entity recognition tools to detect microbe and disease mentions from the free biomedical texts. After that, we fine-tuned the pretrained model BERE to recognize relations between targeted entities, which was originally built for drug–target interactions or drug–drug interactions. The introduction of SSC for model fine-tuning greatly improved detection performance for microbe–disease interactions, with an average reduction in error of approximately 10%. The MDIDB website offers data browsing, custom searching for specific diseases or microbes, and batch downloading. Conclusions Evaluation results demonstrate that our method outperform the baseline model (rule-based PKDE4J) with an average \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1$$\end{document}F1-score of 73.81%. For further validation, we randomly sampled nearly 1000 predicted interactions by our model, and manually checked the correctness of each interaction, which gives a 73% accuracy. The MDIDB webiste is freely avaliable throuth http://dbmdi.com/index/
Collapse
Affiliation(s)
- Chengkun Wu
- State Key Laboratory of High-Performance Computing, National University of Defense Technology, Changsha, 410073, China. .,College of Computer, National University of Defense Technology, Changsha, 410073, China.
| | - Xinyi Xiao
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Canqun Yang
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - JinXiang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiacai Yi
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Yanlong Qiu
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
824
|
Fabersani E, Marquez A, Russo M, Ross R, Torres S, Fontana C, Puglisi E, Medina R, Gauffin-Cano P. Lactic Acid Bacteria Strains Differently Modulate Gut Microbiota and Metabolic and Immunological Parameters in High-Fat Diet-Fed Mice. Front Nutr 2021; 8:718564. [PMID: 34568404 PMCID: PMC8458958 DOI: 10.3389/fnut.2021.718564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Dietary strategies, including the use of probiotics as preventive agents that modulate the gut microbiota and regulate the function of adipose tissue, are suitable tools for the prevention or amelioration of obesity and its comorbidities. We aimed to evaluate the effect of lactic acid bacteria (LAB) with different adipo- and immuno-modulatory capacities on metabolic and immunological parameters and intestinal composition microbiota in high-fat-diet-induced in mice fed a high-fat diet Methods: Balb/c weaning male mice were fed a standard (SD) or high-fat diet (HFD) with or without supplementation with Limosilactobacillus fermentum CRL1446 (CRL1446), Lactococcus lactis CRL1434 (CRL1434), or Lacticaseibacillus casei CRL431 (CRL431) for 45 days. Biochemical and immunological parameters, white-adipose tissue histology, gut microbiota composition, and ex vivo cellular functionality (adipocytes and macrophages) were evaluated in SD and HFD mice. Results: CRL1446 and CRL1434 administration, unlike CRL431, induced significant changes in the body and adipose tissue weights and the size of adipocytes. Also, these strains caused a decrease in plasmatic glucose, cholesterol, triglycerides, leptin, TNF-α, IL-6 levels, and an increase of IL-10. The CRL1446 and CRL1434 obese adipocyte in ex vivo functionality assays showed, after LPS stimulus, a reduction in leptin secretion compared to obese control, while with CRL431, no change was observed. In macrophages from obese mice fed with CRL1446 and CRL1434, after LPS stimulus, lower levels of MCP-1, TNF-α, IL-6 compared to obese control were observed. In contrast, CRL431 did not induce modification of cytokine values. Regarding gut microbiota, all strain administration caused a decrease in Firmicutes/Bacteroidetes index and diversity. As well as, related to genus results, all strains increased, mainly the genera Alistipes, Dorea, Barnesiella, and Clostridium XIVa. CRL1446 induced a higher increase in the Lactobacillus genus during the study period. Conclusions: The tested probiotic strains differentially modulated the intestinal microbiota and metabolic/immunological parameters in high-fat-diet-induced obese mice. These results suggest that CRL1446 and CRL1434 strains could be used as adjuvant probiotics strains for nutritional treatment to obesity and overweight. At the same time, the CRL431 strain could be more beneficial in pathologies that require regulation of the immune system.
Collapse
Affiliation(s)
- Emanuel Fabersani
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Antonela Marquez
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
| | - Matías Russo
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
| | - Romina Ross
- Instituto de Biotecnología Farmacéutica y Alimentaria -CONICET, Tucumán, Argentina
- Facultad Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino, Tucumán, Argentina
| | - Sebastián Torres
- Instituto de Bioprospección y Fisiología Vegetal -CONICET, Tucumán, Argentina
| | - Cecilia Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roxana Medina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
| | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos -CONICET, Tucumán, Argentina
- Facultad Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino, Tucumán, Argentina
| |
Collapse
|
825
|
Subacute Exposure to an Environmentally Relevant Dose of Di-(2-ethylhexyl) Phthalate during Gestation Alters the Cecal Microbiome, but Not Pregnancy Outcomes in Mice. TOXICS 2021; 9:toxics9090215. [PMID: 34564366 PMCID: PMC8470982 DOI: 10.3390/toxics9090215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a plasticizer commonly found in polyvinyl chloride, medical equipment, and food packaging. DEHP has been shown to target the reproductive system and alter the gut microbiome in humans and experimental animals. However, very little is known about the impact of DEHP-induced microbiome changes and its effects during pregnancy. Thus, the objective of this study was to investigate the effects of DEHP exposure during pregnancy on the cecal microbiome and pregnancy outcomes. Specifically, this study tested the hypothesis that subacute exposure to DEHP during pregnancy alters the cecal microbiome in pregnant mice, leading to changes in birth outcomes. To test this hypothesis, pregnant dams were orally exposed to corn oil vehicle or 20 µg/kg/day DEHP for 10 days and euthanized 21 days after their last dose. Cecal contents were collected for 16S Illumina and shotgun metagenomic sequencing. Fertility studies were also conducted to examine whether DEHP exposure impacted birth outcomes. Subacute exposure to environmentally relevant doses of DEHP in pregnant dams significantly increased alpha diversity and significantly altered beta diversity. Furthermore, DEHP exposure during pregnancy significantly increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Deferribacteres compared with controls. The affected taxonomic families included Deferribacteraceae, Lachnospiraceae, and Mucisprillum. In addition to changes in the gut microbiota, DEHP exposure significantly altered 14 functional pathways compared with the control. Finally, DEHP exposure did not significantly impact the fertility and birth outcomes compared with the control. Collectively, these data indicate that DEHP exposure during pregnancy shifts the cecal microbiome, but the shifts do not impact fertility and birth outcomes.
Collapse
|
826
|
Seibert B, Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Geiger G, Rajao DS, Ottesen E, Perez DR. Mild and Severe SARS-CoV-2 Infection Induces Respiratory and Intestinal Microbiome Changes in the K18-hACE2 Transgenic Mouse Model. Microbiol Spectr 2021; 9:e0053621. [PMID: 34378965 PMCID: PMC8455067 DOI: 10.1128/spectrum.00536-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/15/2021] [Indexed: 01/27/2023] Open
Abstract
Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths and declining economies around the world. K18-hACE2 mice develop disease resembling severe SARS-CoV-2 infection in a virus dose-dependent manner. The relationship between SARS-CoV-2 and the intestinal or respiratory microbiome is not fully understood. In this context, we characterized the cecal and lung microbiomes of SARS-CoV-2-challenged K18-hACE2 transgenic mice in the presence or absence of treatment with the Mpro inhibitor GC-376. Cecum microbiome showed decreased Shannon and inverse (Inv) Simpson diversity indexes correlating with SARS-CoV-2 infection dosage and a difference of Bray-Curtis dissimilarity distances among control and infected mice. Bacterial phyla such as Firmicutes, particularly, Lachnospiraceae and Oscillospiraceae, were significantly less abundant, while Verrucomicrobia, particularly, the family Akkermansiaceae, were increasingly more prevalent during peak infection in mice challenged with a high virus dose. In contrast to the cecal microbiome, the lung microbiome showed similar microbial diversity among the control, low-, and high-dose challenge virus groups, independent of antiviral treatment. Bacterial phyla in the lungs such as Bacteroidetes decreased, while Firmicutes and Proteobacteria were significantly enriched in mice challenged with a high dose of SARS-CoV-2. In summary, we identified changes in the cecal and lung microbiomes of K18-hACE2 mice with severe clinical signs of SARS-CoV-2 infection. IMPORTANCE The COVID-19 pandemic has resulted in millions of deaths. The host's respiratory and intestinal microbiome can affect directly or indirectly the immune system during viral infections. We characterized the cecal and lung microbiomes in a relevant mouse model challenged with a low or high dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence or absence of an antiviral Mpro inhibitor, GC-376. Decreased microbial diversity and taxonomic abundances of the phyla Firmicutes, particularly, Lachnospiraceae, correlating with infection dosage were observed in the cecum. In addition, microbes within the family Akkermansiaceae were increasingly more prevalent during peak infection, which is observed in other viral infections. The lung microbiome showed similar microbial diversity to that of the control, independent of antiviral treatment. Decreased Bacteroidetes and increased Firmicutes and Proteobacteria were observed in the lungs in a virus dose-dependent manner. These studies add to a better understanding of the complexities associated with the intestinal microbiome during respiratory infections.
Collapse
Affiliation(s)
- Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Silvia Carnaccini
- Tifton Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Elizabeth Ottesen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
827
|
Enzymatic-modified dietary fibre fraction extracted from potato residue regulates the gut microbiotas and production of short-chain fatty acids of C57BL/6 mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
828
|
Wang R, Liu N, Yang Y, Lei Y, Lyu J, Dai Z, Kim IH, Li J, Wu Z, Li D. Flavor supplementation during late gestation and lactation periods increases the reproductive performance and alters fecal microbiota of the sows. ANIMAL NUTRITION 2021; 7:679-687. [PMID: 34430722 PMCID: PMC8367839 DOI: 10.1016/j.aninu.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/15/2020] [Accepted: 01/21/2021] [Indexed: 01/06/2023]
Abstract
This study was conducted to evaluate the effect of flavor on reproductive performance and fecal microbiota of sows during late gestation and lactation. A total of 20 healthy Yorkshire sows were fed a corn-soybean basal diet unsupplemented or supplemented with 0.1% flavor compound from d 90 of gestation to 25 d post-farrowing, and then the piglets were weaned. The reproductive performance and the fecal microbiota of sows were analyzed. Compared with the controls, flavor supplementation in maternal diets increased (P < 0.05) weaning litter weight, litter weight gain, weaning body weight, and average daily gain of piglets. There was a trend of increase in the average daily feed intake of sows (P = 0.09) by maternal dietary flavor addition. The backfat thickness and litter size were not affected by flavor supplementation (P > 0.05). The 16S rRNA analysis showed that flavor supplementation significantly increased the abundance of Phascolarctobacterium (P < 0.05), but significantly decreased genera Terrisporobacter, Alloprevotella, Clostridium_sensu_stricto_1, and Escherichia-shigella (P < 0.05). Spearman correlation analysis showed that Phascolarctobacterum was positively correlated with the average daily feed intake of sows (P < 0.05), the litter weight gain and average daily gain of piglets (P < 0.05). In contrast, Clostridium_sensu_stricto_1 and unclassified_f__Lachnospiraceae were negatively correlated with the litter weight gain and average daily gain of piglets (P < 0.05). Taken together, dietary flavor supplementation improved the reproductive performance of the sows, which was associated with enhanced beneficial microbiota and decreased potentially pathogenic bacteria in the sows.
Collapse
Affiliation(s)
- Renjie Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuchen Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yan Lei
- DadHank Biotechnology Corporation, Chengdu, 611130, China
| | - Jirong Lyu
- DadHank Biotechnology Corporation, Chengdu, 611130, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, 330-714, South Korea
| | - Ju Li
- Henan Yinfa Animal Husbandry Co. Ltd., Zhengzhou, 451100, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
- Corresponding author.
| |
Collapse
|
829
|
Martín-Núñez GM, Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ, Moreno-Indias I. Helicobacter pylori Eradication Therapy Affect the Gut Microbiota and Ghrelin Levels. Front Med (Lausanne) 2021; 8:712908. [PMID: 34458288 PMCID: PMC8387937 DOI: 10.3389/fmed.2021.712908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Antibiotic therapy used to eradicate Helicobacter pylori has been associated with changes in plasma ghrelin and alterations in the gut microbiota. On the other hand, changes in ghrelin levels have been related to changes in gut microbiota composition. Our aim was to evaluate the relationship between changes in the gut microbiota and ghrelin levels in H. pylori infected patients who received antibiotic treatment for its eradication. Methods: A prospective case-control study that included forty H. pylori-positive patients who received eradication therapy (omeprazole, clarithromycin, and amoxicillin) and twenty healthy H. pylori antigen-negative participants. Patients were evaluated, including clinical, anthropometric and dietary variables, before and 2 months after treatment. Gut microbiota composition was analyzed through 16S rRNA amplicon sequencing (IlluminaMiSeq). Results: Changes in gut microbiota profiles and decrease in ghrelin levels were identified after H. pylori eradication treatment. Gut bacteria such as Bifidobacterium longum, Bacteroides, Prevotella, Parabacteroides distasonis, and RS045 have been linked to ghrelin levels fasting and/or post meals. Changes in the abundance of Lachnospiraceae, its genus Blautia, as well as Prevotella stercorea, and Megasphaera have been inversely associated with changes in ghrelin after eradication treatment. Conclusions: Eradication treatment for H. pylori produces changes in the composition of the intestinal microbiota and ghrelin levels. The imbalance between lactate producers such as Blautia, and lactate consumers such as Megasphaera, Lachnospiraceae, or Prevotella, could trigger changes related to ghrelin levels under the alteration of the eradication therapy used for H. pylori. In addition, acetate producing bacteria such as B. longum, Bacteroides, and P. distasonis could also play an important role in ghrelin regulation.
Collapse
Affiliation(s)
- Gracia Mª Martín-Núñez
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Cornejo-Pareja
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Clemente-Postigo
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology, and Immunology, Maimónides Biomedical Research Institute of Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
830
|
Yang F, Wei J, Shen M, Ding Y, Lu Y, Ishaq HM, Li D, Yan D, Wang Q, Zhang R. Integrated Analyses of the Gut Microbiota, Intestinal Permeability, and Serum Metabolome Phenotype in Rats with Alcohol Withdrawal Syndrome. Appl Environ Microbiol 2021; 87:e0083421. [PMID: 34190609 PMCID: PMC8388829 DOI: 10.1128/aem.00834-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
The etiology of alcohol dependence is not completely understood. Increasing evidence reveals that gut microbiota dysbiosis is associated with certain psychiatric disorders, including alcoholism, through the "microbiota-gut-brain" axis. The aims of this study were to evaluate the effect of alcohol abuse on the gut microbiota, intestinal permeability and serum metabolic profile and to determine whether alcohol-induced alterations in gut microbiota are correlated with gut permeability and serum metabolic phenotype changes. 16S rRNA gene high-throughput sequencing and nontarget metabolomics techniques were applied in an alcohol-dependent rat model in the present study. The results showed that alcohol intake altered the composition and structure of the colonic microbiota, especially the relative abundances of commensal microbes in the families Lachnospiraceae and Prevotellaceae, which were significantly decreased. Alcohol-dependent rats developed gut leakiness and a serum metabolic phenotype disorder. The valine, leucine and isoleucine biosynthesis pathways and arginine and proline metabolism pathways were obviously influenced by alcohol intake. Moreover, alcohol consumption disturbed the brain's neurotransmitter homeostasis. Regression analysis showed that alcohol-induced colonic microbiota dysbiosis was strongly associated with increased intestinal permeability and serum metabolic phenotype and neurotransmitter disorders. These results revealed that gut microbiota dysbiosis and serum metabolite alteration might be a cofactor for developing of alcohol dependence. IMPORTANCE Gut microbiota dysbiosis is associated with certain psychiatric disorders through the "microbiota-gut-brain" axis. Here, we revealed that alcohol consumption induced colonic microbiota dysbiosis, increased intestinal permeability, and altered the serum metabolic phenotype in rats, and there was a strong correlation between gut microbiota dysbiosis and serum metabolite disorders. Thus, gut microbiota dysbiosis and serum metabolite alteration may be a cofactor for development of alcohol dependence.
Collapse
Affiliation(s)
- Fan Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Jidong Wei
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mengke Shen
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Yating Ding
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Yufan Lu
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Duan Li
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Dong Yan
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Ruiling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
831
|
Bakir-Gungor B, Bulut O, Jabeer A, Nalbantoglu OU, Yousef M. Discovering Potential Taxonomic Biomarkers of Type 2 Diabetes From Human Gut Microbiota via Different Feature Selection Methods. Front Microbiol 2021; 12:628426. [PMID: 34512559 PMCID: PMC8424122 DOI: 10.3389/fmicb.2021.628426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
Human gut microbiota is a complex community of organisms including trillions of bacteria. While these microorganisms are considered as essential regulators of our immune system, some of them can cause several diseases. In recent years, next-generation sequencing technologies accelerated the discovery of human gut microbiota. In this respect, the use of machine learning techniques became popular to analyze disease-associated metagenomics datasets. Type 2 diabetes (T2D) is a chronic disease and affects millions of people around the world. Since the early diagnosis in T2D is important for effective treatment, there is an utmost need to develop a classification technique that can accelerate T2D diagnosis. In this study, using T2D-associated metagenomics data, we aim to develop a classification model to facilitate T2D diagnosis and to discover T2D-associated biomarkers. The sequencing data of T2D patients and healthy individuals were taken from a metagenome-wide association study and categorized into disease states. The sequencing reads were assigned to taxa, and the identified species are used to train and test our model. To deal with the high dimensionality of features, we applied robust feature selection algorithms such as Conditional Mutual Information Maximization, Maximum Relevance and Minimum Redundancy, Correlation Based Feature Selection, and select K best approach. To test the performance of the classification based on the features that are selected by different methods, we used random forest classifier with 100-fold Monte Carlo cross-validation. In our experiments, we observed that 15 commonly selected features have a considerable effect in terms of minimizing the microbiota used for the diagnosis of T2D and thus reducing the time and cost. When we perform biological validation of these identified species, we found that some of them are known as related to T2D development mechanisms and we identified additional species as potential biomarkers. Additionally, we attempted to find the subgroups of T2D patients using k-means clustering. In summary, this study utilizes several supervised and unsupervised machine learning algorithms to increase the diagnostic accuracy of T2D, investigates potential biomarkers of T2D, and finds out which subset of microbiota is more informative than other taxa by applying state-of-the art feature selection methods.
Collapse
Affiliation(s)
- Burcu Bakir-Gungor
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Osman Bulut
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Amhar Jabeer
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gül University, Kayseri, Turkey
| | - O. Ufuk Nalbantoglu
- Department of Computer Engineering, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center, Zefat Academic College, Zefat, Israel
| |
Collapse
|
832
|
Comparison of Chicken Cecal Microbiota after Metaphylactic Treatment or Following Administration of Feed Additives in a Broiler Farm with Enterococcal Spondylitis History. Pathogens 2021; 10:pathogens10081068. [PMID: 34451532 PMCID: PMC8398815 DOI: 10.3390/pathogens10081068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Minimizing the clinical signs of Enterococcus cecorum infections causing enterococcal spondylitis in broiler herds is successful when initiated as metaphylaxis in the first week of life. Mechanistically, either the Enterococcus species present at that time are reduced by antibiotic treatment or antibiotic treatment might induce changes in intestinal microbiota composition with an indirect and subsequent influence. The aim of the present study was to examine the cecal microbiota of chickens after administering lincospectin or different additives to evaluate whether these additives have lincospectin-like effects on microbiota. Therefore, 157,400 broiler chickens were reared in four chicken houses (~40,000 birds each) on a broiler farm with history of enterococcal spondylitis. Each flock was treated either with lincospectin or water soluble esterified butyrins, Bacillus (B.) licheniformis or palm oil was added via drinking water during the first days of life. Ten birds per house were dissected at days 11, 20 and 33 of life and cecal microbiota were analyzed (16S rRNA gene sequencing). Lincospectin treatment elicited significant changes in the cecal microbiota composition until slaughter age. Among the tested additives, effects of B. licheniformis on cecal microbiota composition were most similar to those seen after the treatment with lincospectin at day 11.
Collapse
|
833
|
Metformin treatment for 8 days impacts multiple intestinal parameters in high-fat high-sucrose fed mice. Sci Rep 2021; 11:16684. [PMID: 34404817 PMCID: PMC8371110 DOI: 10.1038/s41598-021-95117-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although the mechanism of action of the antidiabetic drug metformin is still a matter of discussions, it is well accepted that the gut plays an important role. To gain more insights into the mechanisms occurring in the different regions of the intestine, adult male mice were fed a high-fat-high sucrose (HFS) diet for 8 days and treated with metformin by gavage (300 mg/day/kg body weight) during the HFS diet. Metformin counteracted HFS diet-induced overexpression of a network of genes involved in the transport of glucose and fatty acids in the different regions of the small intestine. It also induced beneficial modification of secondary bile acid profile in the caecum, with a reduction of deoxycholic acid and lithocholic acid levels and increased abundance of ursodeoxycholic acid and tauroursodeoxycholic acid, potentially leading to FRX inhibition. In parallel, metformin treatment was associated with specific changes of the microbiota composition in the lumen of the different regions of the intestine. Metformin induced a marked increase in the abundance of Akkermansia muciniphila in the lumen all along the gut and counteracted the effects of HFS diet on the abundances of some bacterial groups generally associated with metabolic disturbances (f-Lachnospiraceae, f-Petostreptococcaceae, g-Clostidium). Therefore, the present work clearly emphasises the role of all the regions of the intestinal tract in the beneficial action of the antidiabetic drug metformin in a prediabetic mouse model.
Collapse
|
834
|
Kemp JA, Regis de Paiva B, Fragoso Dos Santos H, Emiliano de Jesus H, Craven H, Z Ijaz U, Alvarenga Borges N, G Shiels P, Mafra D. The Impact of Enriched Resistant Starch Type-2 Cookies on the Gut Microbiome in Hemodialysis Patients: A Randomized Controlled Trial. Mol Nutr Food Res 2021; 65:e2100374. [PMID: 34390604 DOI: 10.1002/mnfr.202100374] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Resistant starch type-2 (RS2) can mitigate inflammation and oxidative stress in hemodialysis (HD) patients. However, there is still a lack of knowledge on the impact of the RS2 on the gut microbiota community in these patients. Thus, this study aims to evaluate the effects of enriched RS2 cookies on the gut microbiome in HD patients. METHODS AND RESULTS This comprises a randomized, double-blind, placebo-controlled trial of age-, sex-, and BMI-matched patients and controls. The RS2 group receives enriched RS2 cookies (16 g d-1 of Hi-Maize 260, Ingredion) for 4 weeks, while the placebo group received cookies made with manioc flour. Fecal microbiota composition is evaluated by the 16S ribosomal RNA gene. Analysis of the microbiota reveals that Pielou's evenness is significantly decreased after RS2 supplementation. Notably, it is observed that RS2 intervention upregulates significantly 8 Amplicon Sequencing Variants (ASV's), including Roseburia and Ruminococcus gauvreauii, which are short-chain fatty acids (SCFA) producers. Furthermore, it is associated with the downregulation of 11 ASVs, such as the pro-inflammatory Dialister. CONCLUSIONS RS2 intervention for 4 weeks in HD patients effectively alters SCFA producers in the gut microbiota, suggesting that it could be a good nutritional strategy for patients with chronic kidney disease (CKD) on HD.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Bruna Regis de Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | | | - Hannah Craven
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Umer Z Ijaz
- School of Engineering University of Glasgow, Glasgow, UK
| | - Natalia Alvarenga Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.,Department of Applied Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
835
|
Breitrück A, Weigel M, Hofrichter J, Sempert K, Kerkhoff C, Mohebali N, Mitzner S, Hain T, Kreikemeyer B. Smectite as a Preventive Oral Treatment to Reduce Clinical Symptoms of DSS Induced Colitis in Balb/c Mice. Int J Mol Sci 2021; 22:8699. [PMID: 34445403 PMCID: PMC8395406 DOI: 10.3390/ijms22168699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.
Collapse
Affiliation(s)
- Anne Breitrück
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Jacqueline Hofrichter
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, 4072 St Lucia, Brisbane 4000, Australia;
| | - Claus Kerkhoff
- Department of Human Sciences, School of Human Sciences, University of Osnabrück, 49076 Osnabrück, Germany;
| | - Nooshin Mohebali
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Steffen Mitzner
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| |
Collapse
|
836
|
Otten AT, Bourgonje AR, Peters V, Alizadeh BZ, Dijkstra G, Harmsen HJM. Vitamin C Supplementation in Healthy Individuals Leads to Shifts of Bacterial Populations in the Gut-A Pilot Study. Antioxidants (Basel) 2021; 10:antiox10081278. [PMID: 34439526 PMCID: PMC8389205 DOI: 10.3390/antiox10081278] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbes are crucial to human health, but microbial composition is often disturbed in a number of human diseases. Accumulating evidence points to nutritional modulation of the gut microbiota as a potentially beneficial therapeutic strategy. Vitamin C (ascorbic acid) may be of particular interest as it has known antioxidant and anti-inflammatory properties. In this study, we investigated whether supplementation with high-dose vitamin C may favourably affect the composition of the gut microbiota. In this pilot study, healthy human participants received 1000 mg vitamin C supplementation daily for two weeks. Gut microbiota composition was analysed before and after intervention by performing faecal 16S rRNA gene sequencing. In total, 14 healthy participants were included. Daily supplementation of high-dose vitamin C led to an increase in the relative abundances of Lachnospiraceae (p < 0.05), whereas decreases were observed for Bacteroidetes (p < 0.01), Enterococci (p < 0.01) and Gemmiger formicilis (p < 0.05). In addition, trends for bacterial shifts were observed for Blautia (increase) and Streptococcus thermophilus (decrease). High-dose vitamin C supplementation for two weeks shows microbiota-modulating effects in healthy individuals, with several beneficial shifts of bacterial populations. This may be relevant as these bacteria have anti-inflammatory properties and strongly associate with gut health.
Collapse
Affiliation(s)
- Antonius T. Otten
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
| | - Vera Peters
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Behrooz Z. Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-361-3480
| |
Collapse
|
837
|
Schaan AP, Sarquis D, Cavalcante GC, Magalhães L, Sacuena ERP, Costa J, Fonseca D, Mello VJ, Guerreiro JF, Ribeiro-Dos-Santos Â. The structure of Brazilian Amazonian gut microbiomes in the process of urbanisation. NPJ Biofilms Microbiomes 2021; 7:65. [PMID: 34354062 PMCID: PMC8342711 DOI: 10.1038/s41522-021-00237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Shifts in subsistence strategy among Native American people of the Amazon may be the cause of typically western diseases previously linked to modifications of gut microbial communities. Here, we used 16S ribosomal RNA sequencing to characterise the gut microbiome of 114 rural individuals, namely Xikrin, Suruí and Tupaiú, and urban individuals from Belém city, in the Brazilian Amazon. Our findings show the degree of potential urbanisation occurring in the gut microbiome of rural Amazonian communities characterised by the gradual loss and substitution of taxa associated with rural lifestyles, such as Treponema. Comparisons to worldwide populations indicated that Native American groups are similar to South American agricultural societies and urban groups are comparable to African urban and semi-urban populations. The transitioning profile observed among traditional populations is concerning in light of increasingly urban lifestyles. Lastly, we propose the term “tropical urban” to classify the microbiome of urban populations living in tropical zones.
Collapse
Affiliation(s)
- Ana Paula Schaan
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Dionison Sarquis
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Giovanna C Cavalcante
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Leandro Magalhães
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Eliene R P Sacuena
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - John Costa
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Dennyson Fonseca
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Vanessa J Mello
- Laboratório de Análises Clínicas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - João F Guerreiro
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil. .,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|
838
|
Costa LM, Mendes MM, Oliveira AC, Magalhães KG, Shivappa N, Hebert JR, da Costa THM, Botelho PB. Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: a cross-sectional study. Eur J Nutr 2021; 61:341-355. [PMID: 34351455 DOI: 10.1007/s00394-021-02649-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine whether there is an association between the inflammatory potential of the diet, measured by the dietary inflammatory index (DII®), and the composition of intestinal microbiota in adults with functional constipation (FC). METHODS A cross-sectional study was carried out with 68 adults with FC. Energy-adjusted DII (E-DII) was calculated from data obtained from food surveys, serum inflammation markers were measured and the composition of the intestinal microbiota was evaluated using the 16S rRNA gene sequencing method. Participants were assigned into two groups: anti-inflammatory diet (AD: E-DII < 0) and pro-inflammatory diet (PD: E-DII ≥ 0). Associations of E-DII scores with microbial diversity and composition were examined using differences between the E-DII groups and linear and hierarchical regression. RESULTS E- DII was inversely correlated with relative abundance of Hungatella spp. and Bacteroides fragilis and positively correlated with Bacteroides thetaiotaomicron and Bacteroides caccae (p < 0.05). B. fragilis was positively correlated with IL-10. The AD group had higher relative abundances for the genus Blautia and Hungatella, lower abundances of Bacteroides thetaiotamicron and Bacteroides spp. (p < 0.05), as well as higher frequency of evacuation (p = 0.02) and lower use of laxatives (p = 0.05). The AD group showed a reduction in the abundance of Desulfovibrio spp. and Butyrivibrio, Butyrivibrio crossotus, Bacteroides clarus, Bacteroides coprophilus and Bacteroides intestinalis (all p < 0.05). The greater abundance of Bacteroides clarus increased the individual's chance of performing a manual evacuation maneuver. CONCLUSION Therefore, the results of this study demonstrated that the inflammatory potential of the diet is associated with the gut microbiota in individuals with FC.
Collapse
Affiliation(s)
- Lorena M Costa
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Marcela M Mendes
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Amanda C Oliveira
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasília, Brasília, DF, Brazil
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - Teresa H M da Costa
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Patrícia B Botelho
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil.
- Campus Universitário Darcy Ribeiro-Faculdade de Ciências da Saúde, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
839
|
LaGamma EF, Hu F, Pena Cruz F, Bouchev P, Nankova BB. Bacteria - derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiol Stress 2021; 15:100376. [PMID: 34401412 PMCID: PMC8358200 DOI: 10.1016/j.ynstr.2021.100376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome co-evolved with their mammalian host over thousands of years. This commensal relationship serves a pivotal role in various metabolic, physiological, and immunological processes. Recently we discovered impaired adrenal catecholamine stress responses in germ-free mice suggesting developmental modification of the reflex arc or absence of an ongoing microbiome signal. To determine whether maturational arrest or an absent bacteria-derived metabolite was the cause, we tested whether depleting gut microbiome in young adult animals could also alter the peripheral stress responses to insulin-induced hypoglycemia. Groups of C57Bl6 male mice were given regular water (control) or a cocktail of non-absorbable broad-spectrum antibiotics (Abx) in the drinking water for two weeks before injection with insulin or saline. Abx mice displayed a profound decrease in microbial diversity and abundance of Bacteroidetes and Firmicutes, plus a markedly enlarged caecum and no detectable by-products of bacterial fermentation (sp. short chain fatty acids, SCFA). Tonic and stress-induced epinephrine levels were attenuated. Recolonization (Abx + R) restored bacterial diversity, but not the sympathoadrenal system responsiveness or caecal acetate, propionate and butyrate levels. In contrast, corticosterone (HPA) and glucagon (parasympathetic) resting values and responses to hypoglycemia remained similar across all conditions. Oral supplementation with SCFA improved epinephrine responses to hypoglycaemia. Whole genome shotgun sequence profiling of fecal samples from control, Abx and Abx + R cohorts identified nine microbes (SCFA producers) absent from both Abx and Abx + R groups. These results implicate gut microbiome depletion plus its attendant reduction in SCFA signalling in adversely affecting the release of epinephrine in response to hypoglycemia. We speculate that regardless of postnatal age, a mutable microbiome messaging system exists throughout life. Unravelling these mechanisms could lead to new therapeutic possibilities through controlled manipulation of the gut microbiota and its ability to alter systemic neurotransmitter responsiveness. Gut microbiome depletion affects sympathoadrenal medullary stress axis. Recolonization restores bacterial diversity, but not the epinephrine response to hypoglycaemia. SCFA supplement during antibiotic treatment improves tonic and stress-induced epinephrine release. Delayed recovery of several SCFA producers after recolonization modulates peripheral catecholaminergic pathways.
Collapse
Affiliation(s)
- Edmund F. LaGamma
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
| | - Fernando Pena Cruz
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Philip Bouchev
- Ridgefield High School, Junior, Ridgefield, CT, 06877, USA
| | - Bistra B. Nankova
- Division of Newborn Medicine, Departments of Pediatrics, Biochemistry and Molecular Biology, New York Medical College, USA
- Corresponding author. Department of Pediatrics, Biochemistry and Molecular Biology, Division of Newborn Medicine, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
840
|
Platonova EY, Shaposhnikov MV, Lee HY, Lee JH, Min KJ, Moskalev A. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
841
|
Lundberg R, Scharch C, Sandvang D. The link between broiler flock heterogeneity and cecal microbiome composition. Anim Microbiome 2021; 3:54. [PMID: 34332648 PMCID: PMC8325257 DOI: 10.1186/s42523-021-00110-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite low genetic variation of broilers and deployment of considerate management practices, there still exists considerable body weight (BW) heterogeneity within broiler flocks which adversely affects the commercial value. The purpose of this study was to investigate the role of the cecal microbiome in weight differences between animals. Understanding how the gut microbiome may contribute to flock heterogeneity helps to pave the road for identifying methods to improve flock uniformity and performance. RESULTS Two hundred eighteen male broiler chicks were housed in the same pen, reared for 37 days, and at study end the 25 birds with highest BW (Big) and the 25 birds with lowest BW (Small) were selected for microbiome analysis. Cecal contents were analyzed by a hybrid metagenomic sequencing approach combining long and short read sequencing. We found that Big birds displayed higher microbial alpha diversity, higher microbiome uniformity (i.e. lower beta diversity within the group of Big birds), higher levels of SCFA-producing and health-associated bacterial taxa such as Lachnospiraceae, Faecalibacterium, Butyricicoccus and Christensenellales, and lower levels of Akkermansia muciniphila and Escherichia coli as compared to Small birds. CONCLUSION Cecal microbiome characteristics could be linked to the size of broiler chickens. Differences in alpha diversity, beta diversity and taxa abundances all seem to be directly associated with growth differences observed in an otherwise similar broiler flock.
Collapse
Affiliation(s)
- Randi Lundberg
- Chr. Hansen A/S, Boege Allé 10-12, 2970, Hoersholm, Denmark.
| | | | | |
Collapse
|
842
|
Surono IS, Jalal F, Bahri S, Romulo A, Kusumo PD, Manalu E, Yusnita, Venema K. Differences in immune status and fecal SCFA between Indonesian stunted children and children with normal nutritional status. PLoS One 2021; 16:e0254300. [PMID: 34324500 PMCID: PMC8320972 DOI: 10.1371/journal.pone.0254300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/23/2021] [Indexed: 01/12/2023] Open
Abstract
We recently showed that the gut microbiota composition of stunted children was different from that of children with normal nutritional status. Here, we compared immune status and fecal microbial metabolite concentrations between stunted and normal children, and we correlated macronutrient intake (including energy), metabolites and immune status to microbiota composition. The results show that macronutrient intake was lower in stunted children for all components, but after correction for multiple comparison significant only for energy and fat. Only TGF-β was significantly different between stunted children and children of normal nutritional status after correction for multiple comparisons. TNF-alpha, IL-10, lipopolysaccharide binding protein in serum and secretory IgA in feces were not significantly different. Strikingly, all the individual short-chain and branched-chain fatty acids were higher in fecal samples of stunted children (significant for acetate, valerate and total SCFA). These metabolites correlated with a number of different microbial taxa, but due to extensive cross-feeding between microbes, did not show a specific pattern. However, the energy-loss due to higher excretion in stunted children of these metabolites, which can be used as substrate for the host, is striking. Several microbial taxa also correlated to the intake of macronutrients (including dietary fibre) and energy. Eisenbergiella positively correlated with all macronutrients, while an uncharacterized genus within the Succinivibrionaceae family negatively correlated with all macronutrients. These, and the other correlations observed, may provide indication on how to modulate the gut microbiota of stunted children such that their growth lag can be corrected. Trail registered at https://clinicaltrials.gov/ct2/show/NCT04698759.
Collapse
Affiliation(s)
- Ingrid S. Surono
- Faculty of Engineering, Food Technology Department, Bina Nusantara University, Jakarta, Indonesia
| | - Fasli Jalal
- Faculty of Medicine, Department of Nutrition, YARSI University, Jakarta, Indonesia
| | - Syukrini Bahri
- Faculty of Medicine, Clinical Pathology Department, YARSI University, Jakarta, Indonesia
| | - Andreas Romulo
- Faculty of Engineering, Food Technology Department, Bina Nusantara University, Jakarta, Indonesia
| | | | - Erida Manalu
- Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Yusnita
- Faculty of Medicine, Department of Nutrition, YARSI University, Jakarta, Indonesia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Venlo, The Netherlands
| |
Collapse
|
843
|
Martinez Boggio G, Meynadier A, Daunis-i-Estadella P, Marie-Etancelin C. Compositional analysis of ruminal bacteria from ewes selected for somatic cell score and milk persistency. PLoS One 2021; 16:e0254874. [PMID: 34310617 PMCID: PMC8312953 DOI: 10.1371/journal.pone.0254874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ruminants are dependent on their rumen microbiota to obtain energy from plants. The composition of the microbiome was well-known to be associated with health status, and production traits, but published results are difficult to reproduce due to large sources of variation. The objectives of this study were to evaluate the associations of ruminal microbiota and its association with genetic lines selected by somatic cell score (SCS) or milk persistency (PERS), as well as milk production, somatic cell score, fat and protein contents, and fatty acids and proteins of milk, using the principles of compositional data. A large sample of 700 Lacaune dairy ewes from INRAE La Fage feeding the same diet and belonging to two divergent genetic lines selected for SCS or PERS was used. The ruminal bacterial metagenome was sequenced using the 16S rRNA gene, resulting in 2,059 operational taxonomic units affiliated with 112 genera. The abundance data were centred log-transformed after the replacement of zeros with the geometric Bayesian method. Discriminant analysis of the SCS showed differences between SCS+ and SCS- ewes, while for PERS no difference was obtained. Milk traits as fat content, protein content, saturated fatty acids and caseins of milk were negatively associated with Prevotella (R = [-0.08;-0.16]), Suttonella (R = [-0.09;-0.16]) and Ruminococcus (R = [-0.08;-0.16]), and positively associated with Lachnospiraceae (R = [0.09;0.16]) and Christensenellaceae (R = [0.09;0.16]). Our findings provide an understanding of the application of compositional data to microbiome analysis, and the potential association of Prevotella, Suttonella, Ruminococcaceae and Lachnospiraceae with milk production traits such as milk fatty acids and proteins in dairy sheep.
Collapse
Affiliation(s)
| | - Annabelle Meynadier
- GenPhySE, INRAE, INPT, ENVT, Université de Toulouse, Castanet-Tolosan, France
| | - Pepus Daunis-i-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Girona, Spain
| | | |
Collapse
|
844
|
Correlation Analysis between Gut Microbiota and Metabolites in Children with Systemic Lupus Erythematosus. J Immunol Res 2021; 2021:5579608. [PMID: 34341764 PMCID: PMC8325587 DOI: 10.1155/2021/5579608] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/30/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune-mediated diffuse connective tissue disease characterized by immune inflammation with an unclear aetiology and pathogenesis. This work profiled the intestinal flora and faecal metabolome of patients with SLE using 16S RNA sequencing and gas chromatography-mass spectrometry (GC-MS). We identified unchanged alpha diversity and partially altered beta diversity of the intestinal flora. Another important finding was the increase in Proteobacteria and Enterobacteriales and the decrease in Ruminococcaceae among SLE patients. For metabolites, amino acids and short-chain fatty acids were enriched when long-chain fatty acids were downregulated in SLE faecal samples. KEGG analysis showed the significance of the protein digestion and absorption pathway, and association analysis revealed the key role of 3-phenylpropanoic acid and Sphingomonas. Sphingomonas were reported to be less abundant in healthy periodontal sites of SLE patients than in those of HCs, indicating transmission of oral species to the gut. This study contributes to the understanding of the pathogenesis of SLE disease from the perspective of intestinal microorganisms, explains the pathogenesis of SLE, and serves as a basis for exploring potential treatments for the disease.
Collapse
|
845
|
Bernad-Roche M, Bellés A, Grasa L, Casanova-Higes A, Mainar-Jaime RC. Effects of Dietary Supplementation with Protected Sodium Butyrate on Gut Microbiota in Growing-Finishing Pigs. Animals (Basel) 2021; 11:ani11072137. [PMID: 34359264 PMCID: PMC8300649 DOI: 10.3390/ani11072137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The addition of protected sodium butyrate to the diet of fattening pigs during the whole fattening period (≈90 days) at a dose of 3 kg per ton of feed, did not modify the overall richness of microbiota composition of the pigs at slaughter, but may have caused some significant changes in specific taxa that could be associated with better gut health parameters. In any case, these results should be taken with caution, as the role of a given taxon on the pig’s gut health is influenced by numerous variables such as age, diet, environment, treatments, other taxa present, infections, or even the physiological status of the animal. Abstract The study assessed changes in the gut microbiota of pigs after dietary supplementation with protected sodium butyrate (PSB) during the growing-fattening period (≈90 days). One gram of colon content from 18 pigs (9 from the treatment group -TG- and 9 from the control group -CG-) was collected. Bacterial DNA was extracted and 16S rRNA high-throughput amplicon sequencing used to assess microbiota changes between groups. The groups shared 75.4% of the 4697 operational taxonomic units identified. No differences in alpha diversity were found, but significant differences for some specific taxa were detected between groups. The low-represented phylum Deinococcus-Thermus, which is associated with the production of carotenoids with antioxidant, anti-apoptotic, and anti-inflammatory properties, was increased in the TG (p = 0.032). Prevotellaceae, Lachnospiraceae, Peptostreptococcaceae, Peptococcaceae, and Terrisporobacter were increased in the TG. Members of these families have the ability to ferment complex dietary polysaccharides and produce larger amounts of short chain fatty acids. Regarding species, only Clostridium butyricum was increased in the TG (p = 0.048). Clostridium butyricum is well-known as probiotic in humans, but it has also been associated with overall positive gut effects (increased villus height, improved body weight, reduction of diarrhea, etc.) in weanling pigs. Although the use of PSB did not modify the overall richness of microbiota composition of these slaughter pigs, it may have increased specific taxa associated with better gut health parameters.
Collapse
Affiliation(s)
- María Bernad-Roche
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| | - Andrea Bellés
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (A.B.); (L.G.)
| | - Laura Grasa
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (A.B.); (L.G.)
| | - Alejandro Casanova-Higes
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| | - Raúl Carlos Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
- Correspondence: ; Tel.: +34-976-762-088
| |
Collapse
|
846
|
Lu X, Wang F. Lactobacillus acidophilus and vitamin C attenuate ethanol-induced intestinal and liver injury in mice. Exp Ther Med 2021; 22:1005. [PMID: 34345287 PMCID: PMC8311231 DOI: 10.3892/etm.2021.10438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/14/2021] [Indexed: 11/05/2022] Open
Abstract
Ethanol exposure frequently induces intestinal and liver injury, dysbiosis of the gut microbiota and vitamin C (VC) deficiency. Gut microbiota-targeted therapy is emerging as an important adjuvant method for protecting the body against ethanol-induced injury, particularly probiotics containing Lactobacillus acidophilus (LA). However, the feasibility and efficiency of using synbiotics containing LA and VC against ethanol-induced injury remained largely undetermined. To examine the advantages of LA+VC, their effect was evaluated in an ethanol-fed mouse model. The results suggested that LA+VC restored gut microbiota homeostasis and reinstated the immune balance of colonic T-regulatory cells (CD4+CD45+forkhead box p3+). In addition, intestinal barrier disorders were improved via upregulating tight junction proteins (claudin-2, zona occludens-1 and occludin) and mucus secretion, which prevented the translocation of lipopolysaccharide into circulatory systems and subsequently reduced the expression of Toll-like receptor 4 in liver tissues. In this context, LA+VC treatment reduced the inflammatory response in the liver, which was likely responsible for the improved liver function in ethanol-challenged mice. Collectively, these results indicated that LA+VC treatment significantly protected the intestine and liver from ethanol damage by enhancing intestinal barrier function and reducing systemic inflammation. The present study paved the way for further exploration of synbiotics based on Lactobacillus species and VC.
Collapse
Affiliation(s)
- Xing Lu
- The Third Central Clinical College, Tianjin Medical University, Tianjin 300170, P.R. China
| | - Fengmei Wang
- The Third Central Clinical College, Tianjin Medical University, Tianjin 300170, P.R. China.,Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| |
Collapse
|
847
|
Hsieh CS, Rengarajan S, Kau A, Tarazona-Meza C, Nicholson A, Checkley W, Romero K, Hansel NN. Altered IgA Response to Gut Bacteria Is Associated with Childhood Asthma in Peru. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:398-407. [PMID: 34193598 PMCID: PMC8516662 DOI: 10.4049/jimmunol.2001296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Alterations in gut microbiota in early life have been associated with the development of asthma; however, the role of gut bacteria or the IgA response to gut bacteria in school-aged children with asthma is unclear. To address this question, we profiled the microbial populations in fecal and nasal swab samples by 16S rRNA sequencing from 40 asthma and 40 control children aged 9-17 y from Peru. Clinical history and laboratory evaluation of asthma and allergy were obtained. Fecal samples were analyzed by flow cytometry and sorted into IgA+ and IgA- subsets for 16S rRNA sequencing. We found that the fecal or nasal microbial 16S rRNA diversity and frequency of IgA+ fecal bacteria did not differ between children with or without asthma. However, the α diversity of fecal IgA+ bacteria was decreased in asthma compared with control. Machine learning analysis of fecal bacterial IgA-enrichment data revealed loss of IgA binding to the Blautia, Ruminococcus, and Lachnospiraceae taxa in children with asthma compared with controls. In addition, this loss of IgA binding was associated with worse asthma control (Asthma Control Test) and increased odds of severe as opposed to mild to moderate asthma. Thus, despite little to no change in the microbiota, children with asthma exhibit an altered host IgA response to gut bacteria compared with control participants. Notably, the signature of altered IgA responses is loss of IgA binding, in particular to members of Clostridia spp., which is associated with greater severity of asthma.
Collapse
Affiliation(s)
- Chyi-Song Hsieh
- Division of Rheumatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO;
| | - Sunaina Rengarajan
- Division of Rheumatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Andrew Kau
- Division of Allergy and Immunology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Carla Tarazona-Meza
- Asociacion Benefica Prisma, PRISMA, Lima, Peru
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew Nicholson
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University School of Medicine, Baltimore, MD
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karina Romero
- Asociacion Benefica Prisma, PRISMA, Lima, Peru
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University School of Medicine, Baltimore, MD
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
848
|
Brosseau C, Selle A, Duval A, Misme-Aucouturier B, Chesneau M, Brouard S, Cherbuy C, Cariou V, Bouchaud G, Mincham KT, Strickland DH, Barbarot S, Bodinier M. Prebiotic Supplementation During Pregnancy Modifies the Gut Microbiota and Increases Metabolites in Amniotic Fluid, Driving a Tolerogenic Environment In Utero. Front Immunol 2021; 12:712614. [PMID: 34335628 PMCID: PMC8317504 DOI: 10.3389/fimmu.2021.712614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota is influenced by environmental factors such as food. Maternal diet during pregnancy modifies the gut microbiota composition and function, leading to the production of specific compounds that are transferred to the fetus and enhance the ontogeny and maturation of the immune system. Prebiotics are fermented by gut bacteria, leading to the release of short-chain fatty acids that can specifically interact with the immune system, inducing a switch toward tolerogenic populations and therefore conferring health benefits. In this study, pregnant BALB/cJRj mice were fed either a control diet or a diet enriched in prebiotics (Galacto-oligosaccharides/Inulin). We hypothesized that galacto-oligosaccharides/inulin supplementation during gestation could modify the maternal microbiota, favoring healthy immune imprinting in the fetus. Galacto-oligosaccharides/inulin supplementation during gestation increases the abundance of Bacteroidetes and decreases that of Firmicutes in the gut microbiota, leading to increased production of fecal acetate, which was found for the first time in amniotic fluid. Prebiotic supplementation increased the abundance of regulatory B and T cells in gestational tissues and in the fetus. Interestingly, these regulatory cells remained later in life. In conclusion, prebiotic supplementation during pregnancy leads to the transmission of specific microbial and immune factors from mother to child, allowing the establishment of tolerogenic immune imprinting in the fetus that may be beneficial for infant health outcomes.
Collapse
Affiliation(s)
- Carole Brosseau
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Amandine Selle
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Angeline Duval
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Barbara Misme-Aucouturier
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Melanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Labex IGO, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Labex IGO, Nantes, France
| | - Claire Cherbuy
- INRAE Micalis, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Gregory Bouchaud
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Sebastien Barbarot
- Department of Dermatology, CHU Nantes, Nantes, France.,UMR PhAN, INRAE, Nantes, France
| | - Marie Bodinier
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE) Pays de la Loire, UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| |
Collapse
|
849
|
Saha P, Skidmore PT, Holland LA, Mondal A, Bose D, Seth RK, Sullivan K, Janulewicz PA, Horner R, Klimas N, Nagarkatti M, Nagarkatti P, Lim ES, Chatterjee S. Andrographolide Attenuates Gut-Brain-Axis Associated Pathology in Gulf War Illness by Modulating Bacteriome-Virome Associated Inflammation and Microglia-Neuron Proinflammatory Crosstalk. Brain Sci 2021; 11:brainsci11070905. [PMID: 34356139 PMCID: PMC8304847 DOI: 10.3390/brainsci11070905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut–Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut–Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1β and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut–Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.
Collapse
Affiliation(s)
- Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Peter T. Skidmore
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - Ayan Mondal
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Ratanesh K. Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Patricia A. Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Ronnie Horner
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
- Columbia VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-777-8120 or +1-919-599-2278
| |
Collapse
|
850
|
Liu Q, Xi Y, Wang Q, Liu J, Li P, Meng X, Liu K, Chen W, Liu X, Liu Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer's disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun 2021; 95:330-343. [PMID: 33839232 DOI: 10.1016/j.bbi.2021.04.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive deficits and psychiatric symptoms. The gut microbiota-brain axis plays a pivotal role during AD development, which could target nutritional intervention. The prebiotic mannan oligosaccharide (MOS) has been reported to reshape the gut microbiome and enhanced the formation of the neuroprotective metabolites short-chain fatty acids (SCFAs). Here, we found that an 8-week treatment of MOS (0.12%, w/v in the drinking water) significantly improved cognitive function and spatial memory, accompanied by attenuated the anxiety- and obsessive-like behaviors in the 5xFAD transgenic AD mice model. MOS substantially reduced the Aβ accumulation in the cortex, hippocampus, and amygdala of the brain. Importantly, MOS treatment significantly balanced the brain redox status and suppressed the neuroinflammatory responses. Moreover, MOS also alleviated the HPA-axis disorders by decreasing the levels of hormones corticosterone (CORT) and corticotropin-releasing hormone (CRH) and upregulated the norepinephrine (NE) expressions. Notably, the gut barrier integrity damage and the LPS leak were prevented by the MOS treatment. MOS re-constructed the gut microbiota composition, including increasing the relative abundance of Lactobacillus and reducing the relative abundance of Helicobacter. MOS enhanced the butyrate formation and related microbes levels. The correlation analysis indicated that the reshaped gut microbiome and enhanced butyrate formation are highly associated with behavioral alteration and brain oxidative status. SCFAs supplementation experiment also attenuated the behavioral disorders and Aβ accumulation in the AD mice brain, accompanied by balanced HPA-axis and redox status. In conclusion, the present study indicated that MOS significantly attenuates the cognitive and mental deficits in the 5xFAD mice, which could be partly explained by the reshaped microbiome and enhanced SCFAs formation in the gut. MOS, as a prebiotics, can be translated into a novel microbiota-targeted approach for managing metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianxu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinhui Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Peiran Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Meng
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|