851
|
Faus H, Haendler B. Post-translational modifications of steroid receptors. Biomed Pharmacother 2006; 60:520-8. [PMID: 16949786 DOI: 10.1016/j.biopha.2006.07.082] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 07/28/2006] [Indexed: 12/28/2022] Open
Abstract
The multiple physiological functions of steroid hormones have been known for many years. The cloning of the steroid receptors in the mid-1980s led to the concept of ligand-activated transcription factors and to the identification of specific DNA response elements in the regulatory regions of target genes. The next main development was the identification of cofactors with activating or repressing functions, of which several act by modifying histones and locally affecting the chromatin structure. Work from several groups shows that the steroid receptors themselves can also be modified at various positions. Besides the long-known phosphorylation at tyrosines and serine/threonine residues, other covalent additions such as acetylation, ubiquitylation and sumoylation have been evidenced for steroid receptors in recent years. These modifications affect receptor stability and activity, and provide potential mechanisms for cell- or gene-specific regulation. A better understanding of the impact of these post-translational modifications (PTMs) on steroid receptor function should help in the identification of novel ligands with improved clinical profiles.
Collapse
Affiliation(s)
- H Faus
- Corporate Research Oncology, Schering AG, D-13342 Berlin, Germany
| | | |
Collapse
|
852
|
Hu FX, Neoh KG, Kang ET. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials 2006; 27:5725-33. [PMID: 16890989 DOI: 10.1016/j.biomaterials.2006.07.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The present study deals with the synthesis and characterization of tamoxifen-loaded magnetite/poly(l-lactic acid) composite nanoparticles (TMCN), and their in vitro anti-cancer activity against MCF-7 breast cancer cells. The composite nanoparticles with an average size of approximately 200 nm, were synthesized via a solvent evaporation/extraction technique in an oil/water emulsion. The superparamagnetic property (saturation magnetization value of approximately 7 emu/g) of the TMCN is provided by Fe(3)O(4) nanoparticles of approximately 6 nm encapsulated in the poly(l-lactic acid) matrix. The encapsulation efficiency of the Fe(3)O(4) and tamoxifen as a function of the concentration in the organic phase was investigated. The uptake of TMCN and tamoxifen by MCF-7 was estimated from the intracellular iron concentration. After 4h incubation of MCF-7 with TMCN, significant changes in the cell morphology were discernible from phase contrast microscopy. Cytotoxicity assay shows that while the Fe(3)O(4)-loaded poly(l-lactic acid) composite nanoparticles exhibit no significant cytotoxicity against MCF-7, approximately 80% of the these cells were killed after incubation for 4 days with TMCN.
Collapse
Affiliation(s)
- F X Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore
| | | | | |
Collapse
|
853
|
Maillard S, Gauduchon J, Marsaud V, Gouilleux F, Connault E, Opolon P, Fattal E, Sola B, Renoir JM. Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. J Steroid Biochem Mol Biol 2006; 100:67-78. [PMID: 16753295 DOI: 10.1016/j.jsbmb.2006.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
In most of multiple myeloma (MM) cells, the "pure" antiestrogen (AE) RU 58668 (RU) induced either a G1-arrest (LP-1, OPM-2, NCI-H929, U266 cells) or apoptosis (RPMI 8226 cells). In RPMI 8226 cells, RU activates a caspase-dependent cell death pathway leading to the release of cytochrome c, the decrease of the essential MM survival factor Mcl-1, the cleavage of Bid and the activation of caspases-3 and -8. Incorporation of RU in pegylated cholesterol-containing liposomes allowed a controlled RU release, improving its anti-proliferative and apoptotic effects in cells. In RPMI 8226 xenografts, i.v. injected RU-liposomes but not free RU, exhibited antitumor activity. In vivo, RU-liposomes triggered the mitochondrial death pathway, concomitantly with a down-regulation of Mcl-1 and Bid cleavage. The decrease of CD34 immunoreactivity indicated a reduction of angiogenesis. The decrease of VEGF secretion in vitro supported a direct effect of RU on angiogenesis. These pro-apoptotic and antiangiogenic effects were explained by a prolonged exposure to the drug and to the endocytosis capacity of liposomes which might increase RU uptake and bypass a membrane export of free RU. Thus, these combined enhanced activities of RU-liposomes support that such a delivery of an AE may constitute a strategy of benefit for MM treatment.
Collapse
|
854
|
Abstract
17beta-Estradiol (E2) acts as a chemical messenger in target tissues inducing both slow nuclear and rapid extra-nuclear responses. E2 binds to its cognate nuclear receptors (ER) resulting in the activation of target gene transcription in the nucleus. In addition to these genomic effects, E2 modulates cell functions through rapid non-genomic actions. Stimulation of G-proteins, Ca(2+) influx, inositol phosphate generation as well as phospholipase C, ERK/MAPK, and PI3K/AKT activation all occur within seconds to minutes after E2 binding to a small population of ERalpha located at the plasma membrane. The great impact of these rapid signals on cell physiology renders central the knowledge of the structural bases and mechanisms that mediate extra-nuclear signaling by E2. Several laboratories, including our own, have recently elucidated the structural requirements for localization and function of plasma membrane ERalpha. This review summarizes the molecular mechanisms of E2-induced rapid non-genomic actions relevant for cell functions, highlighting the role of lipid modification (i.e., palmitoylation) in the ERalpha localization to and residence at the plasma membrane.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Italy.
| | | | | |
Collapse
|
855
|
Zhang D, Trudeau VL. Integration of membrane and nuclear estrogen receptor signaling. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:306-15. [PMID: 16516516 DOI: 10.1016/j.cbpa.2006.01.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 01/12/2006] [Accepted: 01/18/2006] [Indexed: 01/16/2023]
Abstract
The classical mechanism of estradiol (E2) action is mediated by the nuclear estrogen receptors ERalpha and ERbeta, which function as ligand-dependent transcription factors that regulate transcription of target genes containing the consensus estrogen response element (ERE) in their promoter regions. However, accumulating evidence indicates that E2 can also exert its actions through a unique membrane estrogen receptor (mER). Upon activation of the mER, various signaling pathways (i.e. Ca(2+), cAMP, protein kinase cascades) are rapidly activated and ultimately influence downstream transcription factors. Some target genes of the mER pathway may be activated independently of the nuclear estrogen receptor (nER). Additionally, it has been shown that classical nER action can be modulated by mER-initiated signaling through phosphorylation of nER and its coactivators, and by induction of third messengers (i.e. cyclin D1 and c-fos). Based on current evidence, we propose a model for E2 action integrating distinct membrane receptor and nuclear receptor signaling. This membrane receptor-nuclear receptor interaction is likely to exist for other hormones. Steroid hormones and other hormones acting through hormone receptors in the steroid receptor superfamily (i.e. thyroid hormones) also activate many of the same intracellular signaling cascades, which provides the basis for extensive crosstalk networks between hormones. The model proposed serves as a framework to investigate the diverse actions of hormones and endocrine disrupting chemicals (EDCs).
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
856
|
Dougherty SM, Mazhawidza W, Bohn AR, Robinson KA, Mattingly KA, Blankenship KA, Huff MO, McGregor WG, Klinge CM. Gender difference in the activity but not expression of estrogen receptors alpha and beta in human lung adenocarcinoma cells. Endocr Relat Cancer 2006; 13:113-34. [PMID: 16601283 PMCID: PMC1472635 DOI: 10.1677/erc.1.01118] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The higher frequency of lung adenocarcinoma in women smokers than in men smokers suggests a role for gender-dependent factors in the etiology of lung cancer. We evaluated estrogen receptor (ER) alpha and beta expression and activity in human lung adenocarcinoma cell lines and normal lung fibroblasts. Full-length ERalpha and ERbeta proteins were expressed in all cell lines with higher ERbeta than ERalpha. Although estradiol (E(2)) binding was similar, E(2) stimulated proliferation only in cells from females, and this response was inhibited by anti-estrogens 4-hydroxytamoxifen (4-OHT) and ICI 182,780. In contrast, E(2) did not stimulate replication of lung adenocarcinoma cells from males and 4-OHT or ICI did not block cell proliferation. Similarly, transcription of an estrogen response element-driven reporter gene was stimulated by E(2) in lung adenocarcinoma cells from females, but not males. Progesterone receptor (PR) expression was increased by E(2) in two out of five adenocarcinoma cell lines from females, but none from males. E(2) decreased E-cadherin protein expression in some of the cell lines from females, as it did in MCF-7 breast cancer cells, but not in the cell lines from males. Thus, ERalpha and ERbeta expression does not correlate with the effect of ER ligands on cellular activities in lung adenocarcinoma cells. On the other hand, coactivator DRIP205 expression was higher in lung adenocarcinoma cells from females versus males and higher in adenocarcinoma cells than in normal human bronchial epithelial cells. DRIP205 and other ER coregulators may contribute to differences in estrogen responsiveness between lung adenocarcinoma cells in females and males.
Collapse
Affiliation(s)
- Susan M Dougherty
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Williard Mazhawidza
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Aimee R Bohn
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Krista A Robinson
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kathleen A Mattingly
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kristy A Blankenship
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Mary O Huff
- Department of Biology, Bellarmine University, Louisville, KY 40205, USA
| | - William G McGregor
- Department of Pharmacology and Toxicology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
- (Requests for offprints should be addressed to C M Klinge; )
| |
Collapse
|
857
|
Ottewell PD, Coleman RE, Holen I. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat 2006; 96:101-13. [PMID: 16319986 DOI: 10.1007/s10549-005-9067-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous mouse models of mammary cancer have been developed that mimic selective aspects of human disease. The use of these models has enabled preclinical chemotherapeutic, chemoprevention, and genetic therapy studies in vivo, the testing of gene delivery systems, and the identification of tumour and metastasis suppressor and inducer genes. This review has discussed the most abundantly used murine models of mammary cancer including: spontaneous tumours, chemically induced tumours, orthotopic and syngeneic tumour transplantation, injected tumours, and genetically engineered mice with a predisposition to neoplasia. Each model has been discussed with regards to its merits and limitations for investigating the genetic and phenotypic alterations involved in the human disease as well as its potential usefulness for the development of new treatment strategies. To date no single mouse model is available with the ability to replicate the entire disease process, however, existing models continue to provide invaluable insights into breast cancer induction and progression that would be impossible to obtain using in vitro models alone.
Collapse
Affiliation(s)
- P D Ottewell
- Academic Unit of Clinical Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
858
|
Long X, Nephew KP. Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 2006; 281:9607-15. [PMID: 16459337 DOI: 10.1074/jbc.m510809200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The antiestrogen fulvestrant (ICI 182,780) causes immobilization of estrogen receptor-alpha (ERalpha) in the nuclear matrix accompanied by rapid degradation by the ubiquitin-proteasome pathway. In this study we tested the hypothesis that fulvestrant induces specific nuclear matrix protein-ERalpha interactions that mediate receptor immobilization and turnover. A glutathione S-transferase (GST)-ERalpha-activating function-2 (AF2) fusion protein was used to isolate and purify receptor-interacting proteins in cell lysates prepared from human MCF-7 breast cancer cells. After SDS-PAGE and gel excision, mass spectrometry was used to identify two major ERalpha-interacting proteins, cytokeratins 8 and 18 (CK8.CK18). We determined, using ERalpha-activating function-2 mutants, that helix 12 (H12) of ERalpha, but not its F domain, is essential for fulvestrant-induced ERalpha-CK8 and CK18 interactions. To investigate the in vivo role of H12 in fulvestrant-induced ERalpha immobilization/degradation, transient transfection assays were performed using wild type ERalpha,ERalpha with a mutated H12, and ERalpha with a deleted F domain. Of those, only the ERalpha H12 mutant was resistant to fulvestrant-induced immobilization to the nuclear matrix and protein degradation. Fulvestrant treatment caused ERalpha degradation in CK8.CK18-positive human breast cancer cells, and CK8 and CK18 depletion by small interference RNAs partially blocked fulvestrant-induced receptor degradation. Furthermore, fulvestrant-induced ERalpha degradation was not observed in CK8 or CK18-negative cancer cells, suggesting that these two intermediate filament proteins are necessary for fulvestrant-induced receptor turnover. Using an ERalpha-green fluorescent protein construct in fluorescence microscopy revealed that fulvestrant-induced cytoplasmic localization of newly synthesized receptor is mediated by its interaction with CK8 and CK18. In summary, this study provides the first direct evidence linking ERalpha immobilization and degradation to the nuclear matrix. We suggest that fulvestrant induces ERalpha to interact with CK8 and CK18, drawing the receptor into close proximity to nuclear matrix-associated proteasomes that facilitate ERalpha turnover.
Collapse
Affiliation(s)
- Xinghua Long
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
859
|
Luo M, Koh M, Feng J, Wu Q, Melamed P. Cross talk in hormonally regulated gene transcription through induction of estrogen receptor ubiquitylation. Mol Cell Biol 2005; 25:7386-98. [PMID: 16055746 PMCID: PMC1190261 DOI: 10.1128/mcb.25.16.7386-7398.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen tightly regulates the levels of circulating gonadotropins, but a direct effect of estrogen receptor alpha (ERalpha) on the mammalian LHbeta gene has remained poorly defined. We demonstrate here that ERalpha can associate with the LHbeta promoter through interactions with Sf-1 and Pitx1 without requiring an estrogen response element (ERE). We show that gonadotropin-releasing hormone (GnRH) promotes ERalpha ubiquitylation and also degradation while stimulating expression of ubc4. GnRH also increases the association and lengthens the cycling time of ERalpha on the LHbeta promoter. The ERalpha association and transactivation of the LHbeta gene, as well as ERalpha degradation, are increased following ubc4 overexpression, while the effects of GnRH are abated following ubc4 knockdown. Our results indicate that ERalpha ubiquitylation and subsequent transactivation of the LHbeta gene can be induced by increasing the levels of the E2 enzyme as a result of signaling by an extracellular hormone, thus providing a new form of cross talk in hormonally stimulated regulation of gene expression.
Collapse
Affiliation(s)
- Min Luo
- Functional Genomics Laboratories, Department of Biological Sciences, National University of Singapore
| | | | | | | | | |
Collapse
|
860
|
Calligé M, Kieffer I, Richard-Foy H. CSN5/Jab1 is involved in ligand-dependent degradation of estrogen receptor {alpha} by the proteasome. Mol Cell Biol 2005; 25:4349-58. [PMID: 15899841 PMCID: PMC1140630 DOI: 10.1128/mcb.25.11.4349-4358.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we show that estrogen receptor alpha (ERalpha) coimmunoprecipitates with CSN5/Jab1, a subunit of the COP9 signalosome (CSN), and that overexpression of CSN5/Jab1 causes an increase in ligand-induced ERalpha degradation. Inhibition of either the kinase activity associated with the CSN complex by curcumin or of nuclear export by leptomycin B (LMB) impaired estradiol-induced ERalpha degradation by the proteasome. Degradation of ERalpha induced by the pure antagonist ICI 182,780 (ICI) was blocked by curcumin but not by LMB, indicating that in the presence of ICI, ERalpha is degraded by a nuclear fraction of the proteasome. In addition, we observed that curcumin inhibited estradiol-induced phosphorylation of ERalpha. The use of three inhibitors of ERalpha degradation that target different steps of the estrogen response pathway (inhibition of the CSN-associated kinase, nuclear export, and proteasome) suggests that a phosphorylation event inhibited by curcumin is necessary for ERalpha binding to its cognate DNA target. Our results demonstrate that transcription per se is not required for ERalpha degradation and that assembly of the transcription-initiation complex is sufficient to target ERalpha for degradation by the proteasome.
Collapse
Affiliation(s)
- Mathilde Calligé
- LBME, UMR 5099, CNRS, IEFG (IFR 109)/IBCG, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
861
|
Cho J, Kim D, Lee S, Lee Y. Cobalt Chloride-Induced Estrogen Receptor α Down-Regulation Involves Hypoxia-Inducible Factor-1α in MCF-7 Human Breast Cancer Cells. Mol Endocrinol 2005; 19:1191-9. [PMID: 15695373 DOI: 10.1210/me.2004-0162] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
The estrogen receptor (ER) is down-regulated under hypoxia via a proteasome-dependent pathway. We studied the mechanism of ERα degradation under hypoxic mimetic conditions. Cobalt chloride-induced ERα down-regulation was dependent on the expression of newly synthesized protein(s), one possibility of which was hypoxia-inducible factor-1α (HIF-1α). To examine the role of HIF-1α expression in ERα down-regulation under hypoxic-mimetic conditions, we used a constitutively active form of HIF-1α, HIF-1α/herpes simplex viral protein 16 (VP16), constructed by replacing the transactivation domain of HIF-1α with that of VP16. Western blot analysis revealed that HIF-1α/VP16 down-regulated ERα in a dose-dependent manner via a proteasome-dependent pathway. The kinase pathway inhibitors PD98059, U0126, wortmannin, and SB203580 did not affect the down-regulation. A mammalian two-hybrid screen and immunoprecipitation assays indicated that ERα interacted with HIF-1α physically. These results suggest that ERα down-regulation under hypoxia involves protein-protein interactions between the ERα and HIF-1α.
Collapse
Affiliation(s)
- Jungyoon Cho
- College of Life Science, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul 143-747, Korea
| | | | | | | |
Collapse
|
862
|
Fog CK, Christensen IJ, Lykkesfeldt AE. Characterization of a human breast cancer cell line, MCF-7/RU58R-1, resistant to the pure antiestrogen RU 58,668. Breast Cancer Res Treat 2005; 91:133-44. [PMID: 15868441 DOI: 10.1007/s10549-004-5871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer disease in women in the western world. Tamoxifen has been the standard first line endocrine therapy for patients with estrogen receptor (ER) positive tumors. Unfortunately, almost all patients with advanced disease develop tamoxifen resistance. This has lead to a search for new potent antiestrogens. One of the new compounds under development is the pure antiestrogen RU 58,668. To study the mechanisms behind acquired resistance to RU 58,668, the RU 58,668-resistant cell line MCF-7/RU58(R)-1 (RU58(R)-1) was developed. The RU58(R)-1 cell line was responsive to tamoxifen, but cross-resistant to ICI 182,780 and the estrogen-sensitivity was reduced compared to the parental MCF-7 cell line. The protein levels of ERalpha, IGF-I Receptor (IGF-IR) and Bcl-2 were severely reduced, when RU58(R)-1 cells were cultured with RU 58,668 and the expression of progesterone receptor (PR) was lost. The ERalpha level increased upon withdrawal of RU 58,668 and the ERalpha protein was destabilized by RU 58,668 in both cell lines. Regulation of most of the investigated estrogen-sensitive mRNAs was found to be normal in the resistant cells. The protein levels of IGF-IR, Bcl-2 and the IGF Binding Protein 2 (IGFBP2) reverted towards MCF-7 levels upon RU 58,668 withdrawal, but the resistant phenotype was maintained. Thus, it appears as acquired resistance to RU 58,668 is not a result of loss of the ERalpha expression or function and we suggest that in the presence of RU 58,668, the RU58(R)-1 cell line probably uses other mitogenic pathways than the ERalpha pathway for growth and survival.
Collapse
Affiliation(s)
- C K Fog
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
863
|
Garofalo C, Sisci D, Surmacz E. Leptin interferes with the effects of the antiestrogen ICI 182,780 in MCF-7 breast cancer cells. Clin Cancer Res 2005; 10:6466-75. [PMID: 15475434 DOI: 10.1158/1078-0432.ccr-04-0203] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Obesity is a risk factor for breast cancer development in postmenopausal women and correlates with shorter disease-free and overall survival in breast cancer patients, regardless of menopausal status. Adipose tissue is a major source of leptin, a cytokine regulating energy balance and controlling different processes in peripheral tissues, including breast cancer cell growth. Here, we investigated whether leptin can counteract antitumorigenic activities of the antiestrogen ICI 182,780 in breast cancer cells. EXPERIMENTAL DESIGN Mitogenic response to leptin and the effects of leptin on ICI 182,780-dependent growth inhibition were studied in MCF-7 estrogen receptor alpha-positive breast cancer cells. The expression of leptin receptor and the activation of signaling pathways were studied by Western immunoblotting. The interference of leptin with ICI 182,780-induced estrogen receptor alpha degradation was probed by Western immunoblotting, fluorescence microscopy, and pulse-chase experiments. Leptin effects on estrogen receptor alpha-dependent transcription in the presence and absence of ICI 182,780 were studied by luciferase reporter assays and chromatin immunoprecipitation. RESULTS MCF-7 cells were found to express the leptin receptor and respond to leptin with cell growth and activation the signal transducers and activators of transcription 3, extracellular signal-regulated kinase-1/2, and Akt/GSK3/pRb pathways. The exposure of cells to 10 nmol/L ICI 182,780 blocked cell proliferation, induced rapid estrogen receptor alpha degradation, inhibited nuclear estrogen receptor alpha expression, and reduced estrogen receptor alpha-dependent transcription from estrogen response element-containing promoters. All of these effects of ICI 182,780 were significantly attenuated by simultaneous treatment of cells with 100 ng/mL leptin. CONCLUSIONS Leptin interferes with the effects of ICI 182,780 on estrogen receptor alpha in breast cancer cells. Thus, high leptin levels in obese breast cancer patients might contribute to the development of antiestrogen resistance.
Collapse
Affiliation(s)
- Cecilia Garofalo
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
864
|
Zhou Y, Chase BI, Whitmore M, Williams BRG, Zhou A. Double-stranded RNA-dependent protein kinase (PKR) is downregulated by phorbol ester. FEBS J 2005; 272:1568-76. [PMID: 15794745 DOI: 10.1111/j.1742-4658.2005.04572.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is one of the key mediators of interferon (IFN) action against certain viruses. PKR also plays an important role in signal transduction and immunomodulation. Understanding the regulation of PKR activity is important for the use of PKR as a tool to discover and develop novel therapeutics for viral infections, cancer and immune dysfunction. We found that phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC), decreased the level of autophosphorylated PKR in a dose- and time-dependent manner in IFN-treated mouse fibroblast cells. Polyinosinic-polycytidylic acid (poly I:C) treatment enhanced the activity of PKR induced by IFN, but did not overcome the PMA-induced reduction of PKR autophosphorylation. Western blot analysis with a monoclonal antibody to mouse PKR revealed that the decrease of PKR autophosphorylation in cells by PMA was a result of PKR protein degradation. Selective PKC inhibitors blocked the degradation of PKR stimulated by PMA, indicating that PKC activity was required for the effect. Furthermore, we also found that proteasome inhibitors prevented PMA-induced down regulation of PKR, indicating that an active proteasome is required. Our results identify a novel mechanism for the post-translational regulation of PKR.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Chemistry, Cleveland State University, OH 44115, USA
| | | | | | | | | |
Collapse
|
865
|
Gaddy VT, Barrett JT, Delk JN, Kallab AM, Porter AG, Schoenlein PV. Mifepristone induces growth arrest, caspase activation, and apoptosis of estrogen receptor-expressing, antiestrogen-resistant breast cancer cells. Clin Cancer Res 2005; 10:5215-25. [PMID: 15297425 DOI: 10.1158/1078-0432.ccr-03-0637] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A major clinical problem in the treatment of breast cancer is the inherent and acquired resistance to antiestrogen therapy. In this study, we sought to determine whether antiprogestin treatment, used as a monotherapy or in combination with antiestrogen therapy, induced growth arrest and active cell death in antiestrogen-resistant breast cancer cells. EXPERIMENTAL DESIGN MCF-7 sublines were established from independent clonal isolations performed in the absence of drug selection and tested for their response to the antiestrogens 4-hydroxytamoxifen (4-OHT) and ICI 182,780 (fulvestrant), and the antiprogestin mifepristone (MIF). The cytostatic (growth arrest) effects of the hormones were assessed with proliferation assays, cell counting, flow cytometry, and a determination of the phosphorylation status of the retinoblastoma protein. The cytotoxic (apoptotic) effects were analyzed by assessing increases in caspase activity and cleavage of poly(ADP-ribose) polymerase. RESULTS All of the clonally derived MCF-7 sublines expressed estrogen receptor and progesterone receptor but showed a wide range of antiestrogen sensitivity, including resistance to physiological levels of 4-OHT. Importantly, all of the clones were sensitive to the antiprogestin MIF, whether used as a monotherapy or in combination with 4-OHT. MIF induced retinoblastoma activation, G(1) arrest, and apoptosis preceded by caspase activation. CONCLUSIONS We demonstrate that: (a) estrogen receptor(+)progesterone receptor(+), 4-OHT-resistant clonal variants can be isolated from an MCF-7 cell line in the absence of antiestrogen selection; and (b) MIF and MIF plus 4-OHT combination therapy induces growth arrest and active cell death of the antiestrogen-resistant breast cancer cells. These preclinical findings show potential for a combined hormonal regimen of an antiestrogen and an antiprogestin to combat the emergence of antiestrogen-resistant breast cancer cells and, ultimately, improve the therapeutic index of antiestrogen therapy.
Collapse
Affiliation(s)
- Virgil T Gaddy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | |
Collapse
|
866
|
Gutzman JH, Nikolai SE, Rugowski DE, Watters JJ, Schuler LA. Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos. Mol Endocrinol 2005; 19:1765-78. [PMID: 15746191 PMCID: PMC1630766 DOI: 10.1210/me.2004-0339] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the important roles of both prolactin (PRL) and 17beta-estradiol (E2) in normal mammary development as well as in breast cancer, and coexpression of the estrogen receptor (ER) and PRL receptor in many mammary tumors, the interactions between PRL and E2 in breast cancer have not been well studied. The activating protein 1 (AP-1) transcription factor, a known regulator of processes essential for normal growth and development as well as carcinogenesis, is a potential site for cross-talk between these hormones in breast cancer cells. Here we demonstrate that PRL and E2 cooperatively enhance the activity of AP-1 in MCF-7-derived cells. In addition to the acute PRL-induced ERK1/2 activation, PRL and E2 also individually elicited delayed, sustained rises in levels of phosphorylated p38 and especially ERK1/2. Together, these hormones increased the dynamic phosphorylation of ERK1/2 and c-Fos, and induced c-fos promoter activity. Synergistic activation of the transcription factor, Elk-1, reflected the PRL-E2 interaction at ERK1/2 and is a likely mechanism for activation of the c-fos promoter via the serum response element. The enhanced AP-1 activity resulting from the interaction of these hormones may increase expression of many target genes that are critical for oncogenesis and may contribute to neoplastic progression.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Schuler
- Address all correspondence and requests for reprints to: L.A. Schuler, Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, Wisconsin 53706. E-mail:
| |
Collapse
|
867
|
Pasapera AM, Jiménez-Aguilera MDP, Chauchereau A, Milgrom E, Olivares A, Uribe A, Gutiérrez-Sagal R, Ulloa-Aguirre A. Effects of FSH and 17beta-estradiol on the transactivation of estrogen-regulated promoters and cell proliferation in L cells. J Steroid Biochem Mol Biol 2005; 94:289-302. [PMID: 15857748 DOI: 10.1016/j.jsbmb.2004.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/29/2004] [Indexed: 11/26/2022]
Abstract
In the present study, we analyzed human follicle-stimulating hormone (FSH)-induced cell proliferation and transactivation of estrogen-sensitive reporter genes-in L cells stably expressing the human FSH receptor [L-(hFSHR(+)) cells]. In order to dissect the signaling pathways involved in this process, L-(hFSHR(+)) cells were transiently transfected with either the 3X-ERE-TAT-Luc or the ERE-VitA2-TK-CAT reporter genes and treated with FSH or PKA activators (cholera toxin, forskolin and 8-Br-cAMP) in the presence or absence of various kinase inhibitors. We found that FSH and all PKA activators, specifically induced transactivation of both reporter genes. Transactivation of estrogen-sensitive genes by FSH or PKA activators were blocked (approximately 90%) by H89 (PKA inhibitor) and LY294002 but not by Wortmannin (PI3-K inhibitors), 4-OH-tamoxifen, ICI182,780 or SB203580 (p38 MAPK inhibitor); PD98059 (ERK1/2 inhibitor) partially (approximately 30%) blocked the FSH-mediated effect. The combination of FSH and estradiol resulted in a synergistic effect on transactivation as well as on cell proliferation, and this enhancement was attenuated by antiestrogens. We additionally analyzed the participation of the coactivators SRC-1 and cAMP response element binding protein (CREB)-binding protein (CBP) in FSH-evoked estrogen receptor (ER)-dependent transactivation; we found that CBP but not SRC-1 potentiated FSH-induced transcriptional activation of both ER-sensitive reporters, being this effect stronger on the ERE-VitA2-TK-CAT than on the 3X-ERE-TAT-Luc reporter. Thus, in L-(hFSHR(+)) cells FSH induces transcriptional activation of estrogen-sensitive genes through an A-kinase-triggered signaling pathway, using also to a lesser extent the ERK1/2 and p38 pathways. PI3-K is not apparently involved in this FSH-mediated process since LY294002, but not Wortmannin, specifically binds ERs and completely blocks estrogen action. Presumably, CBP cooperates with the ER on genes that contain estrogen responsive elements through mechanisms involving the participation of other proteins and/or basal transcription factors (e.g. CREB), which in turn mediate the transcriptional response of estrogen-sensitive reporter genes to FSH stimulation.
Collapse
Affiliation(s)
- Ana María Pasapera
- Research Unit in Reproductive Medicine, Hospital de Gineco-Obstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Apdo. Postal 99-065, Unidad Independencia, México D.F. C.P. 10101, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
868
|
Laïos I, Journé F, Nonclercq D, Vidal DS, Toillon RA, Laurent G, Leclercq G. Role of the proteasome in the regulation of estrogen receptor alpha turnover and function in MCF-7 breast carcinoma cells. J Steroid Biochem Mol Biol 2005; 94:347-59. [PMID: 15857754 DOI: 10.1016/j.jsbmb.2005.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alpha (ER) turnover in MCF-7 cells was assessed by pulse chase analysis and measurement of ER steady-state level. In untreated cells, degradation of (35)S-labeled ER was characterized by a slow phase followed by a more rapid decline. Without ligand, ER elimination was totally compensated by synthesis which maintained receptor homeostasis. Estradiol (E(2)) and the pure antiestrogen RU 58,668 abolished the slow phase of ER breakdown and enhanced the degradation of neosynthesized ER, producing a low ER steady-state level. By contrast, the partial antiestrogen OH-Tam was ineffective in this respect and caused ER accumulation. Regardless of the conditions, ER breakdown was abolished by proteasome inhibition (MG-132). ER ligands decreased cell capacity to bind [(3)H]E(2), even in the presence of MG-132, indicating that the regulation of ER level and E(2) binding capacity occurs through distinct mechanisms. MG-132 partially blocked the basal transcription of an ERE-dependent reporter gene and modified the ability of E(2) to induce the expression of the latter: the hormone was unable to restore the transactivation activity measured without MG-132. RU 58,668 and OH-Tam failed to enhance the inhibitory action of MG-132, suggesting that a loss of basal ER-mediated transactivation mainly affects the stimulatory effect of estrogens. Overall, our findings reveal that ER steady state level, ligand binding capacity and transactivation potency fit in a complex regulatory scheme involving distinct mechanisms, which may be dissociated from each other under various treatments.
Collapse
Affiliation(s)
- Ioanna Laïos
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Service de Médecine, Institut Jules Bordet, Université Libre de Bruxelles, 1 rue Héger-Bordet, B-1000 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
869
|
Cui Y, Zhang M, Pestell R, Curran EM, Welshons WV, Fuqua SAW. Phosphorylation of estrogen receptor alpha blocks its acetylation and regulates estrogen sensitivity. Cancer Res 2005; 64:9199-208. [PMID: 15604293 DOI: 10.1158/0008-5472.can-04-2126] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor (ER) alpha is mutated (lysine 303 to arginine, K303R) in approximately one third of premalignant breast hyperplasias, which renders breast cancer cells expressing the mutant receptor hypersensitive for proliferation in response to low doses of estrogen. It is known that ERalpha is posttranslationally modified by protein acetylation and phosphorylation by a number of secondary messenger signaling cascades. The K303R ERalpha mutation resides at a major protein acetylation site adjacent to a potential protein kinase A (PKA) phosphorylation site at residue 305 within the hinge domain of the receptor. Mutation of this phosphorylation site to aspartic acid to mimic constitutive phosphorylation blocks acetylation of the K303 ERalpha site and generates an enhanced transcriptional response similar to that seen with the naturally occurring K303R mutant receptor. Activation of PKA signaling by the cell-permeable cyclic AMP (cAMP) analog 8-bromo-cAMP further enhances estrogen sensitivity of the mutant receptor, whereas a specific PKA inhibitor antagonizes this increase. We propose that the hypersensitive ERalpha mutant breast cancer phenotype involves an integration of coupled acetylation and phosphorylation events by upstream signaling molecules.
Collapse
Affiliation(s)
- Yukun Cui
- Department of Medicine, Baylor College of Medicine and the Methodist Hospital, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
870
|
Gougelet A, Bouclier C, Marsaud V, Maillard S, Mueller SO, Korach KS, Renoir JM. Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells. J Steroid Biochem Mol Biol 2005; 94:71-81. [PMID: 15862952 DOI: 10.1016/j.jsbmb.2005.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In MCF-7 (estrogen receptor (ER)+) and in MDA-MB-231 (ER-) cells stably transfected with either estrogen receptor alpha (ERalpha) or beta (ERbeta) subtype (MDA-MB-231 stably transfected with the mouse ERalpha cDNA (MERA) and MDA-MB-231 stably transfected with the human ERbeta cDNA (HERB), respectively) N-term heat shock protein of 90kDa (hsp90) ligands (geldanamycin and radicicol) and C-term hsp90 ligands (novobiocin) decrease the basal and estradiol (E(2))-induced transcription activity of ER on an estrogen responsive element (ERE)-LUC reporter construct concomitantly with or 1h after E(2) treatment. All hsp90 ligands induced an E(2)- and MG132-inhibited decrease of both ER cell content. However, the kinetics of these degradations are slower than those induced by the selective estrogen receptor down-regulator RU 58668 (RU). This suggests that inhibition of the hsp90 ATPase activity targets both ERs to the 26S proteasome and that hsp90 interacts with both ER subtypes. Rapamycin (Rapa) and cyclosporin A (CsA), ligands of immunophilins FK506 binding protein (FKBP52) and cyclophilin of 40kDa (CYP40) interacting in separate ER-hsp90 complexes, both induced a proteasomal-mediated degradation of ERs but not of their cognate immunophilin. Moreover, they also decrease the E(2)-induced luciferase transcription but weaker than RU and hsp90 ligands. Fluorescence activated cell sorter (FACS) analysis revealed a blockade of cell progression by RU and 4-hydroxy-tamoxifen at the G(1) phase of the cell cycle and an induction of apoptosis in MCF-7 cells. Rapa and mainly CsA (but not FK506) and hsp90 ligands promote by their own apoptosis in MCF-7, in MERA, and in HERB cells and in MDA-MB-231 ER-null cells. These data suggest that (1) hsp90, as for all steroid receptors, acts as a molecular chaperone for ERbeta; (2) ER-ligands (except tamoxifen), hsp90- and immunophilin-ligands (except FK506) target the two ER subtypes to a proteasome-mediated proteolysis via different signalling pathways; (3) hsp90- and immunophilin-ligands Rapa and CsA, alone or in association with anti-estrogens such as RU, may constitute a potential therapeutic strategy for breast cancer treatment.
Collapse
|
871
|
Maillard S, Ameller T, Gauduchon J, Gougelet A, Gouilleux F, Legrand P, Marsaud V, Fattal E, Sola B, Renoir JM. Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma. J Steroid Biochem Mol Biol 2005; 94:111-121. [PMID: 15862956 DOI: 10.1016/j.jsbmb.2004.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anticancer drug efficiency is governed by its bioavailability. In order to increase this parameter, we synthesized several injectable and biodegradable systems based on incorporation of anti-estrogens (AEs) in nanoparticles (NPs) and liposomes were synthesized. Both nanospheres (NS) and nanocapsules (NCs, polymers with an oily core in which AEs were solubilized) incorporated high amounts of 4-hydroxy-tamoxifen (4-HT) or RU 58668 (RU). Physico-chemical and biological parameters of these delivery systems, and coupling of polyethylene-glycol chains on the NP surface revealed to enhance the anti-tumoral activity of trapped AEs in a breast cancer MCF-7 cell xenograft model and to induce apoptosis. These features correlated with an augmentation of p21(Waf-1/Cip1) and of p27(Kip1) and a concomitant decrease of cyclin D1 and E in tumor extracts. Liposomes containing various ratios of lipids enhanced the apoptotic activity of RU in several multiple myeloma (MM) cell lines tested by flow cytometry. MM cell lines expressed both estrogen receptor alpha and beta subtypes except Karpas 620. Karpas 620 cells which did not respond to AEs became responsive following ER cDNA transfection. A new MM xenograft model was generated after s.c. injection of RPMI 8226 cells in nude mice. RU-loaded liposomes, administered i.v. in this model, at a dose of 12mgRU/kg/week, induced the arrest of tumor growth contrary to free RU or to empty liposomes. Thus, the drug delivery of anti-estrogens enhances their ability to arrest the growth of tumors which express estrogen receptors and are of particular interest for estrogen-dependent breast cancer treatment. In addition it represents a new potent therapeutic approach for multiple myeloma.
Collapse
Affiliation(s)
- Sébastien Maillard
- UMR CNRS 8612, Pharmacologie Cellulaire et Moléculaire des anticancéreux, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
872
|
Vural I, Memisoglu-Bilensoy E, Renoir J, Bochot A, Duchêne D, Hincal A. Transcription efficiency of tamoxifen citrate-loaded β-cyclodextrin nanoparticles. J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
873
|
VADLAMUDI RATNAK, BALASENTHIL SEETHARAMAN, BROADDUS RUSSELLR, GUSTAFSSON JANÅKE, KUMAR RAKESH. Deregulation of estrogen receptor coactivator proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor in human endometrial tumors. J Clin Endocrinol Metab 2004; 89:6130-8. [PMID: 15579769 PMCID: PMC1262662 DOI: 10.1210/jc.2004-0909] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proline-, glutamic acid-, and leucine-rich protein-1)PELP1/MNAR [modulator of nongenomic activity of estrogen receptor (ER)], a novel coregulatory protein, modulates genomic as well as nongenomic activity of ERs. We characterized the expression and localization of PELP1 in both benign and cancerous endometrium. Our results suggest that PELP1 is expressed in all stages of endometrium; however, this protein exhibits distinct localization depending on the phase. PELP1 is expressed in both the stroma and epithelial cells. Using the Ishikawa endometrial cancer model cell line and ER subtype-specific ligands, we found that PELP1 functionally interacts with both ERalpha and ERbeta and enhances their transcriptional responses. However, in endometrial cancer cells, endogenous PELP1 is also required for optimal ligand-mediated transcription and proliferation responses. PELP1 promoted a tamoxifen-mediated agonistic action in endometrial, but not in breast cancer cells. PELP1 expression and localization are widely deregulated in endometrial cancers. In addition, PELP1 and ERbeta were localized predominantly in the cytoplasm of high-grade endometrial tumors. Our results suggest that PELP1 plays an essential role in the proliferation of cancerous endometrial cells.
Collapse
Key Words
- dcc, dextran-coated, charcoal-treated fetal calf serum
- dpn, diarylpropionitrile
- e2, 17β-estradiol
- er, estrogen receptor
- ere, estrogen response element
- luc, luciferase
- mnar, modulator of nongenomic activity of estrogen receptor
- pelp1, proline-, glutamic acid-, and leucine-rich protein-1
- ppt, propyl-pyrazole-triol
- sirna, short interference rna
- src, steroid receptor coactivator
Collapse
Affiliation(s)
- RATNA K. VADLAMUDI
- Address all correspondence and requests for reprints to: Ratna K. Vadlamudi, Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70005. E-mail:
; or Rakesh Kumar, Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Box 108, 1515 Holcombe Boulevard, Houston, Texas 77030. E-mail:
| | | | | | | | - RAKESH KUMAR
- Address all correspondence and requests for reprints to: Ratna K. Vadlamudi, Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70005. E-mail:
; or Rakesh Kumar, Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Box 108, 1515 Holcombe Boulevard, Houston, Texas 77030. E-mail:
| |
Collapse
|
874
|
Villa R, Bonetti E, Penza ML, Iacobello C, Bugari G, Bailo M, Parolini O, Apostoli P, Caimi L, Ciana P, Maggi A, Di Lorenzo D. Target-specific action of organochlorine compounds in reproductive and nonreproductive tissues of estrogen-reporter male mice. Toxicol Appl Pharmacol 2004; 201:137-48. [PMID: 15541753 DOI: 10.1016/j.taap.2004.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 05/19/2004] [Indexed: 10/26/2022]
Abstract
Organochlorines are lipophylic molecules that accumulate in the fat where they remain for years. During weight loss, they are mobilized and their concentration increases in blood. The present work tests, in transgenic estrogen-reporter mice (ERE-tK-LUC), whether this increase is sufficient to modulate the estrogen receptors (ERs) in the whole body. Three weak estrogens were studied: p,p'DDT [1,1,1-trichloro2,2-bis(p-chlorophenyl) ethane], p,p'DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], and betaBHC [beta-benzene-hexachloride]. Dose-dependent analysis of reporter expression (luciferase) were performed in tissues of acutely treated mice. A body map of ER activation was obtained. All these chemicals modulated the reporter, although with a different efficiency and depending upon the tissue analyzed. Induction was confirmed in the liver by determining the expression of the endogenous progesterone receptor (PR) gene, at the dose and time point at which the luciferase gene was maximally induced. After experimental accumulation in the fat tissue, followed by a 48-h period of fasting, we tested whether these compounds could be mobilized to reach sufficient levels to activate the ERs in selected reproductive and nonreproductive tissues (testicle, prostate, liver, and lung). This experimental setting produced results that were different than those obtained following acute treatments. In loaded mice, fasting induced betaBHC mobilization resulted in strong ER activation in the liver and the lung, which was blocked by ICI-182780. p,p'DDT mobilization had no effect in these tissues, but it acted efficiently in the prostate and testis. betaBHC inhibited the ERE-mediated reporter in the testicle and induced the reporter in the prostate. In this tissue, betaBHC action was not inhibited by the anti-estrogen ICI-182780. During fasting, betaBHC, p,p'DDT, and metabolite p,p'DDE increased in blood concentration, from 2.25 +/- 0.25, 0.51 +/- 0.09, and 0.38 +/- 0.06 microg/ml to 8.24 +/- 0.95, 4.52 +/- 0.68, and 5.06 +/- 0.57 microg/ml, respectively. The effect produced by these organochlorines in the liver correlates with the modulation of the ERalpha protein. We conclude that these organochlorines modulate differently the expression of estrogen-regulated genes in male mice. Their effect is tissue- and compound-specific and is dependent on the energetic balance.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Blotting, Western
- Cell Line, Tumor
- DDT/metabolism
- DDT/toxicity
- Dichlorodiphenyl Dichloroethylene/metabolism
- Dichlorodiphenyl Dichloroethylene/toxicity
- Estrogens/genetics
- Estrogens, Non-Steroidal/toxicity
- Female
- Gas Chromatography-Mass Spectrometry
- Genes, Reporter/genetics
- Genitalia, Male/drug effects
- Hexachlorocyclohexane/metabolism
- Hexachlorocyclohexane/toxicity
- Humans
- Hydrocarbons, Chlorinated/pharmacokinetics
- Hydrocarbons, Chlorinated/toxicity
- Luminescent Measurements
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Estrogen/genetics
- Receptors, Progesterone/biosynthesis
- Receptors, Progesterone/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
Collapse
Affiliation(s)
- R Villa
- 3rd Laboratory/Biotechnology, Civic Hospital of Brescia, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
875
|
Nonclercq D, Journé F, Body JJ, Leclercq G, Laurent G. Ligand-independent and agonist-mediated degradation of estrogen receptor-alpha in breast carcinoma cells: evidence for distinct degradative pathways. Mol Cell Endocrinol 2004; 227:53-65. [PMID: 15501584 DOI: 10.1016/j.mce.2004.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/08/2004] [Accepted: 07/09/2004] [Indexed: 02/07/2023]
Abstract
Molecular chaperones and co-chaperones, such as heat-shock proteins (Hsp's), play a pivotal role in the adequate folding and the stability of steroid hormone receptors. As shown by immunofluorescence staining and immunoblot analysis, the Hsp90 inhibitor radicicol induced a rapid (within hours) depletion of estrogen receptor-alpha (ER) in MCF-7 and IBEP-2 breast carcinoma cells. Inhibition of proteasomes (MG-132, LLnL) or of protein synthesis (cycloheximide), which both suppressed E(2)-induced downregulation of ER, failed to modify ER degradation caused by radicicol. On the other hand, partial antiestrogens, such as hydroxytamoxifen (a triphenylethylene) and LY 117,018 (a benzothiophene) stabilized ER, making it immune to radicicol-induced degradation. Furthermore, radicicol did not interfere with ER upregulation induced by hydroxytamoxifen. Thus, the current study points to possible variation in the mechanism/pathway of ER breakdown. Besides, the protective effect of partial antiestrogens suggests that ER stability is only compromized by Hsp90 disruption when the receptor is in its native, unliganded form.
Collapse
Affiliation(s)
- Denis Nonclercq
- Laboratory of Histology and Experimental Cytology, Faculty of Medicine and Pharmacy, Pentagone 1B, Université de Mons-Hainaut, 6 Avenue du Champ de Mars, B7000 Mons, Belgium
| | | | | | | | | |
Collapse
|
876
|
Shupnik MA. Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 2004; 23:7979-89. [PMID: 15489915 DOI: 10.1038/sj.onc.1208076] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both steroids and growth factors stimulate proliferation of steroid-dependent tumor cells, and interaction between these signaling pathways may occur at several levels. Steroid receptors are typically classified as ligand-activated transcription factors, and steps by which they bind ligand, dimerize, recruit coregulatory molecules, and activate target gene transcription are well understood. Several steroid responses are functionally linked to c-Src or tyrosine kinase receptors, and the physiological impact and the precise molecular pathways involved in these responses are under intensive investigation. Ligand-independent stimulation of steroid receptor-mediated transcription by growth factors is now believed to occur through activated protein kinases that phosphorylate the receptors and receptor coregulators. Recently, steroid hormones themselves have been shown to rapidly activate intracellular signaling cascades, via binding to cognate cytoplasmic or membrane-associated receptors. In some contexts, steroid receptors interact directly with c-Src and other cytoplasmic signaling molecules, such as Shc, PI3K, and p130 Cas. Crosstalk between growth factors and steroids in both the cytoplasm and nucleus could have profound impact on complex biological processes such as cell growth, and play a significant role in the treatment of steroid-dependent cancers. The potential roles of progesterone and estrogen receptors in this crosstalk are discussed in this review.
Collapse
Affiliation(s)
- Margaret A Shupnik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
877
|
Ameller T, Legrand P, Marsaud V, Renoir JM. Drug delivery systems for oestrogenic hormones and antagonists: the need for selective targeting in estradiol-dependent cancers. J Steroid Biochem Mol Biol 2004; 92:1-18. [PMID: 15544926 DOI: 10.1016/j.jsbmb.2004.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 05/28/2004] [Indexed: 02/07/2023]
Abstract
The pleiotropic activity of oestrogens and their mechanism of action via their binding to the two oestrogen receptors alpha (ER alpha) and beta (ER beta) subtypes in the different tissues where oestrogens exert their action have been briefly described. The fate of these compounds trapped into different galenic forms is discussed with regard to their therapeutic applications. Firstly, the advantages and disadvantages of the different forms (pills, i.v. forms and transdermal patches) used in contraception are compared. Secondly, the therapeutic use of formulated oestrogens for the post-menopausal hormone replacement therapy (HRT) is analysed through the various results obtained in different trials. The link between HRT and the risks of breast cancer and cardiovascular disease is underlined. Finally, comparing the activity of selective oestrogen receptor modulators such as tamoxifen and pure anti-oestrogens such as RU58668 and ICI182780, we analysed the reasons leading to the need for a tumor targeting of the latters, but not of the former for the treatment of oestrogen-dependent breast cancer. Different injectable and biodegradable formulations, that lead to a remarkable anti-tumor efficiency in xenografts, have been recently developed and we believe that they may represent promising new administration ways of added therapeutic values for anti-oestrogens. Such devices could be extended to the delivery of other anti-cancer drugs with more aggressive activities than anti-oestrogens.
Collapse
Affiliation(s)
- Thibault Ameller
- UMR CNRS 8612, Department of Pharmacologie Cellulaire et Moléculaire des Anticancéreux, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
878
|
Gaben AM, Saucier C, Bedin M, Redeuilh G, Mester J. Mitogenic activity of estrogens in human breast cancer cells does not rely on direct induction of mitogen-activated protein kinase/extracellularly regulated kinase or phosphatidylinositol 3-kinase. Mol Endocrinol 2004; 18:2700-13. [PMID: 15297603 DOI: 10.1210/me.2003-0133] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have addressed the question of rapid, nongenomic mechanisms that may be involved in the mitogenic action of estrogens in hormone-dependent breast cancer cells. In quiescent, estrogen-deprived MCF-7 cells, estradiol did not induce a rapid activation of either the MAPK/ERK or phosphatidylinositol-3 kinase (PI-3K)/Akt pathway, whereas the entry into the cell cycle was documented by the successive inductions of cyclin D1 expression, hyperphosphorylation of the retinoblastoma protein (Rb), activity of the promoter of the cyclin A gene, and DNA synthesis. However, pharmacological inhibitors of the src family kinases, 4-amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP1) or of the PI-3K (LY294002) did prevent the entry of the cells into the cell cycle and inhibited the late G1 phase progression, whereas the inhibitor of MAPK/ERK activation (U0126) had only a partial inhibitory effect in the early G1 phase. In agreement with these results, small interfering RNA targeting Akt strongly inhibited the estradiolinduced cell cycle progression monitored by the activation of the promoter of the cyclin A gene. The expression of small interfering RNA targeting MAPK 1 and 2 also had a clear inhibitory effect on the estradiol-induced activation of the cyclin A promoter and also antagonized the estradiol-induced transcription directed by the estrogen response element. Finally, transfection of the estrogen receptor into NIH3T3 fibroblasts did not confer to the cells sensitivity to a mitogenic action of estradiol. We conclude that the induction of the cell cycle by estradiol does not require a direct activation of MAPK/ERK or PI-3K signaling protein kinase cascades, but that these kinases appear to have a permissive role in the cell cycle progression.
Collapse
Affiliation(s)
- Anne-Marie Gaben
- Institut National de la Santé et de la Recherche Médicale, Unité 482, 184 rue du Faubourg Saint Antoine, 75012 Paris, France.
| | | | | | | | | |
Collapse
|
879
|
Tsai HW, Katzenellenbogen JA, Katzenellenbogen BS, Shupnik MA. Protein kinase A activation of estrogen receptor alpha transcription does not require proteasome activity and protects the receptor from ligand-mediated degradation. Endocrinology 2004; 145:2730-8. [PMID: 15033909 DOI: 10.1210/en.2003-1470] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
17beta-Estradiol (E2)-stimulated estrogen receptor (ERalpha) transcription is accompanied by protein degradation via the 26S-proteasome pathway. Inhibition of proteasome activity stabilizes ERalpha protein and abolishes E2-activated transcription, suggesting functional linkages between transcription and degradation. It is not known whether ligand-independent ERalpha activation is coupled to proteolysis. In pituitary cells, forskolin (FSK) stimulates ERalpha transcription through the protein kinase A (PKA) pathway. This study examined interactions between E2-dependent and PKA-stimulated pathways in GH(3) cells by measuring transcription of a transfected reporter gene and endogenous ERalpha levels. E2 stimulated estrogen response element-mediated transcription 2- to 3-fold and decreased ERalpha protein levels to 40%. In contrast, FSK stimulated ERalpha transcription without decreasing ERalpha protein. Treatment with FSK plus E2 resulted in synergistic ERalpha transactivation, and FSK specifically prevented E2-induced ERalpha degradation. PKA is required for protection and was prevented by H89 (a PKA inhibitor), but not PD98059 (a MAPK kinase inhibitor). Propyl-pyrazole-triol and R,R-diethyl-tetrahydrochrysene, selective ERalpha agonists, reduced ERalpha protein by 50% while stimulating ERalpha transcriptional activity 4- to 8-fold. The antagonist ICI 182,780 similarly decreased ERalpha levels, but prevented ER activation. FSK prevented all ligand-induced ERalpha degradation. Lactacystin, a proteasome inhibitor, abolished E2-stimulated, but not FSK-stimulated, ERalpha transcription. Thus, stimulation of ERalpha transcription by the PKA-dependent pathway is dissociated from receptor degradation and proteasome activity. These data suggest a mechanism of ERalpha transcriptional activation by PKA that is distinct from E2 activation and that may contribute to the synergistic transcriptional activation of ERalpha by ligand-dependent and PKA-dependent pathways.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Box 800578, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
880
|
Bhat-Nakshatri P, Campbell RA, Patel NM, Newton TR, King AJ, Marshall MS, Ali S, Nakshatri H. Tumour necrosis factor and PI3-kinase control oestrogen receptor alpha protein level and its transrepression function. Br J Cancer 2004; 90:853-9. [PMID: 14970864 PMCID: PMC2410160 DOI: 10.1038/sj.bjc.6601541] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Oestrogen receptor alpha (ERα) is an oestrogen-activated transcription factor, which regulates proliferation and differentiation of mammary epithelial cells by activating or repressing gene expression. ERα is a critical prognostic indicator and a therapeutic target for breast cancer. Patients with tumours that express higher level of ERα have better prognosis than patients with tumours that are ERα negative or express lower level of ERα. Better prognosis in ERα-positive patients is believed to be due to repression of proinvasive gene expression by ERα. Oestrogen receptor alpha represses gene expression by transrepressing the activity of the transcription factors such as nuclear factor-kappaB or by inducing the expression of transcriptional suppressors such as MTA3. In this report, we show that ERα transrepresses the expression of the proinvasive gene interleukin 6 (IL-6) in ERα-negative MDA-MB-231 breast cancer cells stably overexpressing ERα. Using these cells as well as ERα-positive MCF-7 and ZR-75-1 cells, we show that tumour necrosis factor alpha (TNFα) and the phosphatidylinositol-3-kinase (PI3-kinase) modulate transrepression function of ERα by reducing its stability. From these results, we propose that TNFα expression or PI3-kinase activation lead to reduced levels of ERα protein in cancer cells and corresponding loss of transrepression function and acquisition of an invasive phenotype.
Collapse
Affiliation(s)
- P Bhat-Nakshatri
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Walther Cancer Institute, Indianapolis, IN 46208, USA
| | - R A Campbell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - N M Patel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - T R Newton
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - A J King
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - M S Marshall
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - S Ali
- Department of Cancer Medicine, Imperial College School of Medicine, Hammersmith Hospital, London W12 0NN, UK
| | - H Nakshatri
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Walther Cancer Institute, Indianapolis, IN 46208, USA
- R4-202, Indiana Cancer Research Institute, 1044 West Walnut Street, Indianapolis, IN 46202, USA. E-mail:
| |
Collapse
|