851
|
Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 2010; 20:124-37. [PMID: 20101262 DOI: 10.1038/cr.2010.13] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.
Collapse
Affiliation(s)
- Yong-Xu Wang
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
852
|
Camera DM, Anderson MJ, Hawley JA, Carey AL. Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. Eur J Appl Physiol 2010; 109:307-16. [PMID: 20084391 DOI: 10.1007/s00421-010-1356-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2010] [Indexed: 01/08/2023]
Abstract
Endurance training results in adaptations that enhance regulation of energy storage and expenditure at rest and during exercise. While processes involved in skeletal muscle oxidative remodelling are well described, it is unknown whether oxidative capacity of human subcutaneous white adipose tissue (WAT) is modified by endurance training. Since human WAT retains rudimentary characteristics required for upregulation of oxidative function, we hypothesised that 10 days of intense endurance training would promote changes in WAT that favour an increase in oxidative capacity. Eleven untrained males (age 22 +/- 1 years, body mass 81 +/- 5 kg, peak oxygen uptake (VO(2peak)) 3.7 +/- 0.2 l/min) undertook a 10-day endurance training protocol. Subcutaneous adipose tissue biopsies were taken from the abdomen prior to and 1 day after completion of training and analysed for fatty acid oxidative capacity, citrate synthase activity, and mitochondrial content via electron microscopy and gene expression analyses. There was a reduction in whole-body rates of carbohydrate oxidation, and concomitant increases in fat oxidation rate measured during 20-min of submaximal cycling (70% of pre-training VO(2peak)) and an increase in basal GLUT4 protein in skeletal muscle. Despite these training-induced adaptations, there were no changes in WAT of ex-vivo fat oxidation rate, maximal citrate synthase activity, mitochondrial volume or in selected genes involved in adipose tissue oxidative capacity. We conclude that 10 days training in previously untrained subjects results in adaptations in skeletal muscle but does not increase the oxidative capacity of WAT.
Collapse
Affiliation(s)
- Donny M Camera
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | | | | |
Collapse
|
853
|
Abstract
Brown adipose tissue (BAT) is rich in mitochondria and can uncouple oxidative phosphorylation to produce heat as a by-product of fatty acid metabolism. This thermogenic effect helps to maintain body temperature and also plays a critical role in energy homeostasis and the regulation of body weight. Both cyclic adenosine monophosphate and cyclic guanosine monophosphate (cGMP) contribute to the intracellular regulation of mitochondrial biogenesis and the differentiation of BAT. New evidence has defined the essential role of the cGMP-dependent protein kinase I in a pathway that modulates the RhoA-ROCK pathway and insulin receptor signaling to elicit BAT differentiation and stimulate thermogenesis.
Collapse
Affiliation(s)
- Paul S Amieux
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
854
|
Mattson MP. Perspective: Does brown fat protect against diseases of aging? Ageing Res Rev 2010; 9:69-76. [PMID: 19969105 DOI: 10.1016/j.arr.2009.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 01/01/2023]
Abstract
The most commonly studied laboratory rodents possess a specialized form of fat called brown adipose tissue (BAT) that generates heat to help maintain body temperature in cold environments. In humans, BAT is abundant during embryonic and early postnatal development, but is absent or present in relatively small amounts in adults where it is located in paracervical and supraclavicular regions. BAT cells can 'burn' fatty acid energy substrates to generate heat because they possess large numbers of mitochondria in which oxidative phosphorylation is uncoupled from ATP production as a result of a transmembrane proton leak mediated by uncoupling protein 1 (UCP1). Studies of rodents in which BAT levels are either increased or decreased have revealed a role for BAT in protection against diet-induced obesity. Data suggest that individuals with low levels of BAT are prone to obesity, insulin resistance and cardiovascular disease, whereas those with higher levels of BAT maintain lower body weights and exhibit superior health as they age. BAT levels decrease during aging, and dietary energy restriction increases BAT activity and protects multiple organ systems including the nervous system against age-related dysfunction and degeneration. Future studies in which the effects of specific manipulations of BAT levels and thermogenic activity on disease processes in animal models (diabetes, cardiovascular disease, cancers, neurodegenerative diseases) are determined will establish if and how BAT affects the development and progression of age-related diseases. Data from animal studies suggest that BAT and mitochondrial uncoupling can be targeted for interventions to prevent and treat obesity and age-related diseases. Examples include: diet and lifestyle changes; specific regimens of mild intermittent stress; drugs that stimulate BAT formation and activity; induction of brown adipose cell progenitors in muscle and other tissues; and transplantation of brown adipose cells.
Collapse
|
855
|
Kozak LP, Koza RA. The genetics of brown adipose tissue. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 94:75-123. [PMID: 21036323 DOI: 10.1016/b978-0-12-375003-7.00004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brown adipose tissue is highly differentiated and has evolved as a mechanism for heat production based upon uncoupling of mitochondrial oxidative phosphorylation. Additionally, large amounts of lipid can be stored in the cells to provide fuel necessary for heat production upon adrenergic stimulation from the central nervous system, and a highly developed vascular system evolved to rapidly deliver heat to vital organs. For unknown reasons, the development of brown adipocytes has two independent pathways: one originates from muscle progenitor cells in the fetus and leads to a fully functional cell at birth (interscapular-type brown fat), while the other transiently emerges in traditional white fat depots at weaning, regresses, and then can be induced in adult mice upon adrenergic stimulation. No genetic variants have been found for interscapular fat, but naturally occurring alleles at eight genetic loci in mice lead to over 100-fold variation for brown adipocytes in white fat upon adrenergic stimulation. The ability to activate this potential for energy expenditure is of great interest in obesity research.
Collapse
Affiliation(s)
- Leslie P Kozak
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
856
|
Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal 2010; 4:1093-109. [DOI: 10.1017/s1751731110000601] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
857
|
Murholm M, Dixen K, Qvortrup K, Hansen LHL, Amri EZ, Madsen L, Barbatelli G, Quistorff B, Hansen JB. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment. PLoS One 2009; 4:e8458. [PMID: 20107496 PMCID: PMC2809086 DOI: 10.1371/journal.pone.0008458] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/03/2009] [Indexed: 11/19/2022] Open
Abstract
Background Brown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1) and a remarkably higher mitochondrial abundance in brown adipocytes. Methodology/Principal Findings Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam) and B2 (Tfb2m), whereas only a subset of the same genes were induced during white adipose conversion. In addition, PR domain containing 16 (PRDM16) was found to be expressed at substantially higher levels in brown compared to white pre-adipocytes and adipocytes. We demonstrate that forced expression of Tfam but not Tfb2m in brown adipocyte precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. Conclusions/Significance Using both in vitro and in vivo model systems of white and brown fat cell differentiation, we report a detailed characterisation of gene expression linked to mitochondrial biogenesis and function. We find significant differences in differentiating white and brown adipocytes, which might explain the notable increase in mitochondrial content observed during brown adipose conversion. In addition, our data support a key role of PRDM16 in triggering brown adipocyte differentiation, including mitochondrial biogenesis and expression of UCP1.
Collapse
Affiliation(s)
- Maria Murholm
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karen Dixen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lillian H. L. Hansen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ez-Zoubir Amri
- IBDC, Université de Nice Sophia-Antipolis, CNRS, UMR 6543, Nice, France
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Giorgio Barbatelli
- Department of Molecular Pathology and Innovative Therapies, School of Medicine, University of Ancona, Ancona, Italy
| | - Bjørn Quistorff
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jacob B. Hansen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
858
|
Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2009; 285:7153-64. [PMID: 20028987 DOI: 10.1074/jbc.m109.053942] [Citation(s) in RCA: 1021] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The recent insight that brown adipocytes and muscle cells share a common origin and in this respect are distinct from white adipocytes has spurred questions concerning the origin and molecular characteristics of the UCP1-expressing cells observed in classic white adipose tissue depots under certain physiological or pharmacological conditions. Examining precursors from the purest white adipose tissue depot (epididymal), we report here that chronic treatment with the peroxisome proliferator-activated receptor gamma agonist rosiglitazone promotes not only the expression of PGC-1alpha and mitochondriogenesis in these cells but also a norepinephrine-augmentable UCP1 gene expression in a significant subset of the cells, providing these cells with a genuine thermogenic capacity. However, although functional thermogenic genes are expressed, the cells are devoid of transcripts for the novel transcription factors now associated with classic brown adipocytes (Zic1, Lhx8, Meox2, and characteristically PRDM16) or for myocyte-associated genes (myogenin and myomirs (muscle-specific microRNAs)) and retain white fat characteristics such as Hoxc9 expression. Co-culture experiments verify that the UCP1-expressing cells are not proliferating classic brown adipocytes (adipomyocytes), and these cells therefore constitute a subset of adipocytes ("brite" adipocytes) with a developmental origin and molecular characteristics distinguishing them as a separate class of cells.
Collapse
Affiliation(s)
- Natasa Petrovic
- Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
859
|
Bjork BC, Turbe-Doan A, Prysak M, Herron BJ, Beier DR. Prdm16 is required for normal palatogenesis in mice. Hum Mol Genet 2009; 19:774-89. [PMID: 20007998 DOI: 10.1093/hmg/ddp543] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transcriptional cofactors are essential to the regulation of transforming growth factor beta (TGFbeta) superfamily signaling and play critical and widespread roles during embryonic development, including craniofacial development. We describe the cleft secondary palate 1 (csp1) N-ethyl-N-nitrosourea-induced mouse model of non-syndromic cleft palate (NSCP) that is caused by an intronic Prdm16 splicing mutation. Prdm16 encodes a transcriptional cofactor that regulates TGFbeta signaling, and its expression pattern is consistent with a role in palate and craniofacial development. The cleft palate (CP) appears to be the result of micrognathia and failed palate shelf elevation due to physical obstruction by the tongue, resembling human Pierre Robin sequence (PRS)-like cleft secondary palate. PRDM16 should be considered a candidate for mutation in human clefting disorders, especially NSCP and PRS-like CP.
Collapse
Affiliation(s)
- Bryan C Bjork
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, New Research Building, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
860
|
Schulz TJ, Tseng YH. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 2009; 20:523-31. [PMID: 19896888 DOI: 10.1016/j.cytogfr.2009.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate many processes in embryonic development as well as in the maintenance of normal tissue function later in adult life. However, the role of this family of proteins in formation of adipose tissue has been underappreciated in the field of developmental biology. With the growing epidemic of obesity, improved knowledge of adipocyte development and function is urgently needed. Recently, there have been significant advances in understanding the role of different members of the BMP superfamily in control of adipocyte differentiation and systemic energy homeostasis. This review summarizes recent progress in understanding how BMPs specify adipose cell fate in stem/progenitor cells and their potential role in energy metabolism. We propose that BMPs provide instructive signals for adipose cell fate determination and regulate adipocyte function. These findings have opened up exciting opportunities for developing new therapeutic approaches for the treatment of obesity and its many associated metabolic disorders.
Collapse
Affiliation(s)
- Tim J Schulz
- Joslin Diabetes Center, One Joslin Place, and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
861
|
Abstract
Mammals have two types of adipocytes, white and brown, but their anatomy and physiology is different. White adipocytes store lipids, and brown adipocytes burn them to produce heat. Previous descriptions implied their localization in distinct sites, but we demonstrated that they are mixed in many depots, raising the concept of adipose organ. We explain the reason for their cohabitation with the hypothesis of reversible physiological transdifferentiation; they are able to convert one into each other. If needed, the brown component of the organ could increase at the expense of the white component and vice versa. This plasticity is important because the brown phenotype of the organ associates with resistance to obesity and related disorders. Another example of physiological transdifferetiation of adipocytes is offered by the mammary gland; the pregnancy hormonal stimuli seems to trigger a reversible transdifferentiation of adipocytes into milk-secreting epithelial glands. The obese adipose organ is infiltrated by macrophages inducing chronic inflamation that is widely considered as a causative factor for insulin resistance. We showed that the vast majority of macrophages infiltrating the obese organ are arranged around dead adipocytes, forming characteristic crown-like structures. We recently found that visceral fat is more infiltrated than the subcutaneous fat despite a smaller size of visceral adipocytes. This suggests a different susceptibility of visceral and subcutaneous adipocytes to death, raising the concept of smaller critical death size that could be important to explain the key role of visceral fat for the metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Saverio Cinti
- Faculty of Medicine, Univ. of Ancona (Politecnica delle Marche Via Tronto 10a, 60020 Ancona, Italy.
| |
Collapse
|
862
|
Abstract
Energy balance to prevent the development of obesity is dependent on energy expenditure. Although physical activity is the dominant mechanism for dissipating excess energy, a system of thermogenesis that evolved to protect the body from hypothermia is based upon the uncoupling of oxidative phosphorylation in brown adipocytes by the mitochondrial uncoupling protein (UCP1). It has been shown that upregulation of UCP1 by genetic manipulations or pharmacological agents can reduce obesity and improve insulin sensitivity. Recent evidence has shown the existence of two sources for brown adipocytes, one appearing as discrete brown fat depots during fetal development and the other appears during post-natal development as diffuse populations in traditional white fat depots. The latter can be induced by adrenergic stimulation depending on the genetic background of the animals and the nutritional environment. Understanding the biological and environmental factors controlling the expression of these two brown adipocyte populations promises to provide new strategies by which enhanced thermogenesis can be used to reduce obesity.International Journal of Obesity (2008) 32, S32-S38; doi:10.1038/ijo.2008.236.
Collapse
Affiliation(s)
- L P Kozak
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
863
|
Abstract
Recently the function of the sirtuin family, named after their homology to the Saccharomyces cerevisiae gene silent information regulator 2 (Sir2), has received a lot of attention, as their beneficial impact on longevity was linked to their effects on metabolic control. All sirtuins require nicotinamide adenine dinucleotide (NAD(+)) for their deacetylase or ADP-ribosyl transferase activity, linking their function tightly to cellular energy levels. SIRT1, the founding member of the sirtuin family, modulates many aspects of glucose and lipid homeostasis in almost all key metabolic tissues. Other members including SIRT2, SIRT3, and SIRT4 are also implicated in various metabolic processes. Here, we review the recent data related to the role of sirtuins in the control of metabolic homeostasis and possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiujiu Yu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur and Institut Clinique de la Souris, Illkirch, France
| | | |
Collapse
|
864
|
Vernochet C, Peres SB, Farmer SR. Mechanisms of obesity and related pathologies: transcriptional control of adipose tissue development. FEBS J 2009; 276:5729-37. [PMID: 19754874 DOI: 10.1111/j.1742-4658.2009.07302.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Obesity and its associated disorders, including diabetes and cardiovascular disease, have now reached epidemic proportions in the Western world, resulting in dramatic increases in healthcare costs. Understanding the processes and metabolic perturbations that contribute to the expansion of adipose depots accompanying obesity is central to the development of appropriate therapeutic strategies. This minireview focuses on a discussion of the recent identification of molecular mechanisms controlling the development and function of adipose tissues, as well as how these mechanisms contribute to the regulation of energy balance in mammals.
Collapse
Affiliation(s)
- Cecile Vernochet
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
865
|
Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, Karas J, Optican R, Bahouth SW, Garrett E, Wolf RY, Carter RA, Robbins T, Wolford D, Samaha J. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab 2009; 94:3611-5. [PMID: 19567523 DOI: 10.1210/jc.2009-0571] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Uncoupling protein-1 (UCP-1) is the inner mitochondrial membrane protein that is a specific marker for and mediator of nonshivering thermogenesis in brown adipocytes. OBJECTIVE This study was performed to better understand the putative thermogenic function of human epicardial fat. DESIGN We measured the expression of UCP-1 and brown adipocyte differentiation transcription factors PR-domain-missing 16 (PRDM16) and peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC-1 alpha) in epicardial, substernal, and sc thoracic, abdominal, and leg fat. SETTING The study was conducted at a tertiary care hospital cardiac center. PATIENTS Forty-four patients had coronary artery bypass surgery, and six had heart valve replacement. INTERVENTIONS Fat samples were taken at open heart surgery. RESULTS UCP-1 expression was 5-fold higher in epicardial fat than substernal fat and barely detectable in sc fat. Epicardial fat UCP-1 expression decreased with age, increased with body mass index, was similar in women and men and patients on and not on statin therapy, and showed no relationship to epicardial fat volume or waist circumference. UCP-1 expression was similar in patients without and with severe coronary atherosclerosis and metabolic syndrome or type 2 diabetes. PRDM16 and PGC-1 alpha expression was 2-fold greater in epicardial than sc fat. Epicardial fat UCP-1, PRDM16, and PGC1-alpha mRNAs were similar in diabetics treated with thiazolidinediones compared to diabetics not treated with thiazolidinediones. CONCLUSION Because UCP-1 is expressed at high levels in epicardial fat as compared to other fat depots, the possibility should be considered that epicardial fat functions like brown fat to defend the myocardium and coronary vessels against hypothermia. This process could be blunted in the elderly.
Collapse
Affiliation(s)
- Harold S Sacks
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
866
|
Vernochet C, Peres SB, Davis KE, McDonald ME, Qiang L, Wang H, Scherer PE, Farmer SR. C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists. Mol Cell Biol 2009; 29:4714-28. [PMID: 19564408 PMCID: PMC2725706 DOI: 10.1128/mcb.01899-08] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/23/2009] [Accepted: 06/18/2009] [Indexed: 01/02/2023] Open
Abstract
White adipose tissue (WAT) stores energy in the form of triglycerides, whereas brown tissue (BAT) expends energy, primarily by oxidizing lipids. WAT also secretes many cytokines and acute-phase proteins that contribute to insulin resistance in obese subjects. In this study, we have investigated the mechanisms by which activation of peroxisome proliferator-activated receptor gamma (PPARgamma) with synthetic agonists induces a brown phenotype in white adipocytes in vivo and in vitro. We demonstrate that this phenotypic conversion is characterized by repression of a set of white fat genes ("visceral white"), including the resistin, angiotensinogen, and chemerin genes, in addition to induction of brown-specific genes, such as Ucp-1. Importantly, the level of expression of the "visceral white" genes is high in mesenteric and gonadal WAT depots but low in the subcutaneous WAT depot and in BAT. Mutation of critical amino acids within helix 7 of the ligand-binding domain of PPARgamma prevents inhibition of visceral white gene expression by the synthetic agonists and therefore shows a direct role for PPARgamma in the repression process. Inhibition of the white adipocyte genes also depends on the expression of C/EBPalpha and the corepressors, carboxy-terminal binding proteins 1 and 2 (CtBP1/2). The data further show that repression of resistin and angiotensinogen expression involves recruitment of CtBP1/2, directed by C/EBPalpha, to the minimal promoter of the corresponding genes in response to the PPARgamma ligand. Developing strategies to enhance the brown phenotype in white adipocytes while reducing secretion of stress-related cytokines from visceral WAT is a means to combat obesity-associated disorders.
Collapse
Affiliation(s)
- Cecile Vernochet
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
867
|
Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 2009; 215:477-97. [PMID: 19702867 DOI: 10.1111/j.1469-7580.2009.01138.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Collapse
Affiliation(s)
- A Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
| | | | | |
Collapse
|
868
|
Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009; 460:1154-8. [PMID: 19641492 PMCID: PMC2754867 DOI: 10.1038/nature08262] [Citation(s) in RCA: 552] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/13/2009] [Indexed: 12/18/2022]
Abstract
Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defense against cold and obesity1. PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation2. Recent data suggests that brown fat cells arise in vivo from a myf5-positive, myoblastic lineage through the action of PRDM163; however, the molecular mechanisms responsible for this developmental switch is unclear. Here we show that PRDM16 forms a transcriptional complex with the active form of C/EBP-β (LAP), serving as a critical molecular unit that controls the cell fate switch from myoblastic precursors to brown fat cells. Forced expression of PRDM16 and C/EBP-β is sufficient to induce a fully functional brown fat program in naïve fibroblastic cells, including skin fibroblasts from mouse and man. Transplantation of fibroblasts expressing these two factors into mice gives rise to an ectopic fat pad with the morphological and biochemical characteristics of brown fat. As with endogenous brown fat, this synthetic brown fat tissue serves as a sink for glucose uptake, as determined by 18FDG-PET scanning. These data indicate that the PRDM16-C/EBP-β complex initiates brown fat development from myoblastic precursors, and may provide opportunities for the development of novel therapeutics for obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Shingo Kajimura
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
869
|
Affiliation(s)
- Patrick Seale
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
- Corresponding author: Patrick Seale, , or Mitchell A. Lazar,
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pennsylvania, and the Institute for Diabetes, Obesity & Metabolism, Philadelphia, Pennsylvania
- Corresponding author: Patrick Seale, , or Mitchell A. Lazar,
| |
Collapse
|
870
|
Cho YW, Hong S, Jin Q, Wang L, Lee JE, Gavrilova O, Ge K. Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis. Cell Metab 2009; 10:27-39. [PMID: 19583951 PMCID: PMC2732027 DOI: 10.1016/j.cmet.2009.05.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 12/01/2008] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
PPARgamma and C/EBPalpha cooperate to control preadipocyte differentiation (adipogenesis). However, the factors that regulate PPARgamma and C/EBPalpha expression during adipogenesis remain largely unclear. Here, we show PTIP, a protein that associates with histone H3K4 methyltransferases, regulates PPARgamma and C/EBPalpha expression in mouse embryonic fibroblasts (MEFs) and during preadipocyte differentiation. PTIP deletion in MEFs leads to marked decreases of PPARgamma expression and PPARgamma-stimulated C/EBPalpha expression. Further, PTIP is essential for induction of PPARgamma and C/EBPalpha expression during preadipocyte differentiation. Deletion of PTIP impairs the enrichment of H3K4 trimethylation and RNA polymerase II on PPARgamma and C/EBPalpha promoters. Accordingly, PTIP(-/-) MEFs and preadipocytes all show striking defects in adipogenesis. Rescue of the adipogenesis defect in PTIP(-/-) MEFs requires coexpression of PPARgamma and C/EBPalpha. Finally, deletion of PTIP in brown adipose tissue significantly reduces tissue weight. Thus, by regulating PPARgamma and C/EBPalpha expression, PTIP plays a critical role in adipogenesis.
Collapse
Affiliation(s)
- Young-Wook Cho
- Nuclear Receptor Biology Section, CEB, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
871
|
Mercader J, Ribot J, Murano I, Feddersen S, Cinti S, Madsen L, Kristiansen K, Bonet ML, Palou A. Haploinsufficiency of the retinoblastoma protein gene reduces diet-induced obesity, insulin resistance, and hepatosteatosis in mice. Am J Physiol Endocrinol Metab 2009; 297:E184-93. [PMID: 19417128 DOI: 10.1152/ajpendo.00163.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brown adipose tissue activity dissipates energy as heat, and there is evidence that lack of the retinoblastoma protein (pRb) may favor the development of the brown adipocyte phenotype in adipose cells. In this work we assessed the impact of germ line haploinsufficiency of the pRb gene (Rb) on the response to high-fat diet feeding in mice. Rb(+/-) mice had body weight and adiposity indistinguishable from that of wild-type (Rb(+/+)) littermates when maintained on a standard diet, yet they gained less body weight and body fat after long-term high-fat diet feeding coupled with reduced feed efficiency and increased rectal temperature. Rb haploinsufficiency ameliorated insulin resistance and hepatosteatosis after high-fat diet in male mice, in which these disturbances were more marked than in females. Compared with wild-type littermates, Rb(+/-) mice fed a high-fat diet displayed higher expression of peroxisome proliferator-activated receptor (PPAR)gamma as well as of genes involved in mitochondrial function, cAMP sensitivity, brown adipocyte determination, and tissue vascularization in white adipose tissue depots. Furthermore, Rb(+/-) mice exhibited signs of enhanced activation of brown adipose tissue and higher expression levels of PPARalpha in liver and of PPARdelta in skeletal muscle, suggestive of an increased capability for fatty acid oxidation in these tissues. These findings support a role for pRb in modulating whole body energy metabolism and the plasticity of the adipose tissues in vivo and constitute first evidence that partial deficiency in the Rb gene protects against the development of obesity and associated metabolic disturbances.
Collapse
Affiliation(s)
- Josep Mercader
- Laboratory of Molecular Biology, Nutrition, and Biotechnology, Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
872
|
Abstract
The function of brown adipose tissue (BAT) is to oxidize fat and to dissipate the energy produced as heat, providing a source of heat to the organism. Preadipocytes are stimulated by expression of the PRDM16 gene to differentiate into BAT cells. The PRDM16 protein is greatly enriched in BAT and causes increased expression of mitochondrial genes and greater density of mitochondria. It increases expression of the uncoupling factor UCP1 and thereby causes a large stimulation of uncoupled respiration with resultant heat production, enhanced by cAMP. Recent evidence strongly supports the idea that the PRDM16 gene determines BAT identity.
Collapse
Affiliation(s)
- George Wolf
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA.
| |
Collapse
|
873
|
Handschin C. The biology of PGC-1α and its therapeutic potential. Trends Pharmacol Sci 2009; 30:322-9. [PMID: 19446346 DOI: 10.1016/j.tips.2009.03.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 02/06/2023]
Abstract
In eukaryotes, cellular and systemic metabolism is primarily controlled by mitochondrial activity. The peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) is an important regulator of mitochondrial biogenesis and function. Furthermore, PGC-1alpha controls many of the phenotypic adaptations of oxidative tissues to external and internal perturbations. By contrast, dysregulated metabolic plasticity is involved in the etiology of numerous diseases. Accordingly, modulation of PGC-1alpha levels and activity has recently been proposed as a therapeutic option for several pathologies. However, pharmacological interventions aimed at PGC-1alpha have to overcome inherent limitations of targeting a coactivator protein. Here, I focus on the recent breakthroughs in the identification of physiological and pathophysiological contexts involving PGC-1alpha. In addition, perspectives regarding the therapeutic importance of PGC-1alpha-controlled cellular and systemic metabolism are outlined.
Collapse
Affiliation(s)
- Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.
| |
Collapse
|
874
|
Sampath H, Flowers MT, Liu X, Paton CM, Sullivan R, Chu K, Zhao M, Ntambi JM. Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity. J Biol Chem 2009; 284:19961-73. [PMID: 19429677 DOI: 10.1074/jbc.m109.014225] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids and is an important regulator of whole body energy homeostasis. Severe cutaneous changes in mice globally deficient in SCD1 also indicate a role for SCD1 in maintaining skin lipids. We have generated mice with a skin-specific deletion of SCD1 (SKO) and report here that SKO mice display marked sebaceous gland hypoplasia and depletion of sebaceous lipids. In addition, SKO mice have significantly increased energy expenditure and are protected from high fat diet-induced obesity, thereby recapitulating the hypermetabolic phenotype of global SCD1 deficiency. Genes of fat oxidation, lipolysis, and thermogenesis, including uncoupling proteins and peroxisome proliferator-activated receptor-gamma co-activator-1alpha, are up-regulated in peripheral tissues of SKO mice. However, unlike mice globally deficient in SCD1, SKO mice have an intact hepatic lipogenic response to acute high carbohydrate feeding. Despite increased basal thermogenesis, SKO mice display severe cold intolerance because of rapid depletion of fuel substrates, including hepatic glycogen, to maintain core body temperature. These data collectively indicate that SKO mice have increased cold perception because of loss of insulating factors in the skin. This results in up-regulation of thermogenic processes for temperature maintenance at the expense of fuel economy, illustrating cross-talk between the skin and peripheral tissues in maintaining energy homeostasis.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
875
|
Transcriptional control of brown adipocyte development and physiological function--of mice and men. Genes Dev 2009; 23:788-97. [PMID: 19339685 DOI: 10.1101/gad.1779209] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last several years have seen an explosion of information relating to the transcriptional control of brown fat cell development. At the same time, new data have emerged that clearly demonstrate that adult humans do indeed have substantial amounts of functioning brown adipose tissue (BAT). Together, these advances are stimulating a reassessment of the role of brown adipose tissue in human physiology and pathophysiology. These data have also opened up exciting new opportunities for the development of entirely novel classes of therapeutics for metabolic diseases like obesity and type 2 diabetes.
Collapse
|
876
|
Pan D, Fujimoto M, Lopes A, Wang YX. Twist-1 is a PPARdelta-inducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism. Cell 2009; 137:73-86. [PMID: 19345188 DOI: 10.1016/j.cell.2009.01.051] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/16/2008] [Accepted: 01/23/2009] [Indexed: 01/19/2023]
Abstract
Brown fat is specialized for energy expenditure, a process that is principally controlled by the transcriptional coactivator PGC-1alpha. Here, we describe a molecular network important for PGC-1alpha function and brown fat metabolism. We find that twist-1 is selectively expressed in adipose tissue, interacts with PGC-1alpha, and is recruited to the promoters of PGC-1alpha's target genes to suppress mitochondrial metabolism and uncoupling. In vivo, transgenic mice expressing twist-1 in the adipose tissue are prone to high-fat-diet-induced obesity, whereas twist-1 heterozygous knockout mice are obesity resistant. These phenotypes are attributed to their altered mitochondrial metabolism in the brown fat. Interestingly, the nuclear receptor PPARdelta not only mediates the actions of PGC-1alpha but also regulates twist-1 expression, suggesting a negative-feedback regulatory mechanism. These findings reveal an unexpected physiological role for twist-1 in the maintenance of energy homeostasis and have important implications for understanding metabolic control and metabolic diseases.
Collapse
Affiliation(s)
- Dongning Pan
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
877
|
|
878
|
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJJ. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360:1500-8. [PMID: 19357405 DOI: 10.1056/nejmoa0808718] [Citation(s) in RCA: 2579] [Impact Index Per Article: 171.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies in animals indicate that brown adipose tissue is important in the regulation of body weight, and it is possible that individual variation in adaptive thermogenesis can be attributed to variations in the amount or activity of brown adipose tissue. Until recently, the presence of brown adipose tissue was thought to be relevant only in small mammals and infants, with negligible physiologic relevance in adult humans. We performed a systematic examination of the presence, distribution, and activity of brown adipose tissue in lean and obese men during exposure to cold temperature. Brown-adipose-tissue activity was studied in relation to body composition and energy metabolism. METHODS We studied 24 healthy men--10 who were lean (body-mass index [BMI] [the weight in kilograms divided by the square of the height in meters], < 25) and 14 who were overweight or obese (BMI, > or = 25)--under thermoneutral conditions (22 degrees C) and during mild cold exposure (16 degrees C). Putative brown-adipose-tissue activity was determined with the use of integrated (18)F-fluorodeoxyglucose positron-emission tomography and computed tomography. Body composition and energy expenditure were measured with the use of dual-energy x-ray absorptiometry and indirect calorimetry. RESULTS Brown-adipose-tissue activity was observed in 23 of the 24 subjects (96%) during cold exposure but not under thermoneutral conditions. The activity was significantly lower in the overweight or obese subjects than in the lean subjects (P=0.007). BMI and percentage of body fat both had significant negative correlations with brown adipose tissue, whereas resting metabolic rate had a significant positive correlation. CONCLUSIONS The percentage of young men with brown adipose tissue is high, but its activity is reduced in men who are overweight or obese. Brown adipose tissue may be metabolically important in men, and the fact that it is reduced yet present in most overweight or obese subjects may make it a target for the treatment of obesity.
Collapse
|
879
|
Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab 2009; 20:107-14. [PMID: 19269847 DOI: 10.1016/j.tem.2008.11.005] [Citation(s) in RCA: 622] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 01/05/2023]
Abstract
The obesity epidemic has focused attention on adipose tissue and the development of fat cells (i.e. adipocytes), which is known as adipogenesis. Peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding proteins have emerged as master regulators of adipogenesis, and recent genome-wide studies have indicated widespread overlap in their transcriptional targets. In addition, new evidence has implicated many other factors as positive and negative regulators of adipocyte development. This review highlights recent advances in the field of adipogenesis, including newly identified determinants of brown adipocytes, the function of which is to burn rather than store energy. Improved understanding of brown and white adipocyte origins and the integrative biology of adipogenesis might lead to more effective strategies for the treatment of obesity and metabolic disease.
Collapse
Affiliation(s)
- Martina I Lefterova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
880
|
Frühbeck G, Sesma P, Burrell MA. PRDM16: the interconvertible adipo-myocyte switch. Trends Cell Biol 2009; 19:141-6. [PMID: 19285866 DOI: 10.1016/j.tcb.2009.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/16/2022]
Abstract
Both brown and white adipocytes were previously considered to be derived from the same precursor cell, despite being histologically and functionally different. However, a recent study shows that overexpression of the transcriptional regulator positive regulatory domain containing 16 (PRDM16) determines the development of brown adipocytes from a progenitor that expresses myoblast markers. Surprisingly, loss of PRDM16 from these precursors does not lead to white adipocyte differentiation. Thus, PRDM16 controls a bidirectional cell fate switch between skeletal myoblasts and brown adipocytes.
Collapse
Affiliation(s)
- Gema Frühbeck
- Department of Endocrinology and Metabolic Research Laboratory, Clínica Universitaria, University of Navarra, Pamplona, Spain.
| | | | | |
Collapse
|
881
|
Wijers SLJ, Saris WHM, van Marken Lichtenbelt WD. Recent advances in adaptive thermogenesis: potential implications for the treatment of obesity. Obes Rev 2009; 10:218-26. [PMID: 19021870 DOI: 10.1111/j.1467-789x.2008.00538.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Large inter-individual differences in cold-induced (non-shivering) and diet-induced adaptive thermogenesis exist in animals and humans. These differences in energy expenditure can have a large impact on long-term energy balance and thus body weight (when other factors remain stable). Therefore, the level of adaptive thermogenesis might relate to the susceptibility to obesity; efforts to increase adaptive thermogenesis might be used to treat obesity. In small mammals, the main process involved is mitochondrial uncoupling in brown adipose tissue (BAT), which is regulated by the sympathetic nervous system. For a long time, it was assumed that mitochondrial uncoupling is not a major physiological contributor to adaptive thermogenesis in adult humans. However, several studies conducted in recent years suggest that mitochondrial uncoupling in BAT and skeletal muscle tissue in adult humans can be physiologically significant. Other mechanisms besides mitochondrial uncoupling that might be involved are futile calcium cycling, protein turnover and substrate cycling. In conjunction with recent advances on signal transduction studies, this knowledge makes manipulation of adaptive thermogenesis a more realistic option and thus a pharmacologically interesting target to treat obesity.
Collapse
Affiliation(s)
- S L J Wijers
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
882
|
Hallenborg P, Feddersen S, Madsen L, Kristiansen K. The tumor suppressors pRB and p53 as regulators of adipocyte differentiation and function. Expert Opin Ther Targets 2009; 13:235-46. [DOI: 10.1517/14712590802680141] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
883
|
Tomaru T, Steger DJ, Lefterova MI, Schupp M, Lazar MA. Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding proteins. J Biol Chem 2009; 284:6116-25. [PMID: 19126543 DOI: 10.1074/jbc.m808407200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistin antagonizes insulin action in mouse, making it a potential therapeutic target for treating metabolic diseases such as diabetes. To better understand how mouse resistin gene (Retn) expression is restricted to fat tissue, we identified an adipocyte-specific enhancer located approximately 8.8-kb upstream of the transcription start site. This region contains a binding site for the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARgamma), and binds endogenous PPARgamma together with its partner retinoid-X receptor alpha (RXRalpha). It also contains three binding sites for CCAAT/enhancer-binding protein (C/EBP), and is bound by endogenous C/EBPalpha and C/EBPbeta in adipocytes. Exogenous expression of PPARgamma/RXRalpha and C/EBPalpha in non-adipocyte cells synergistically drives robust expression from the enhancer. Although PPARgamma ligands repress Retn transcription in adipocytes, rosiglitazone paradoxically stimulates the enhancer activity, suggesting that the enhancer is not directly involved in negative regulation. Unlike expression of Retn in mouse, human resistin (RETN) is expressed primarily in macrophages. Interestingly, the region homologous to the mouse Retn enhancer in the human gene contains all three C/EBP elements, but is not conserved for the sequence bound by PPARgamma. Furthermore, it displays little or no binding by PPARgamma in vitro. Taken together, the data suggest that a composite enhancer binding both PPARgamma and C/EBP factors confers adipocyte-specific expression to Retn in mouse, and its absence from the human gene may explain the lack of adipocyte expression in humans.
Collapse
Affiliation(s)
- Takuya Tomaru
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6149, USA
| | | | | | | | | |
Collapse
|
884
|
Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One 2008; 3:e3859. [PMID: 19050759 PMCID: PMC2585159 DOI: 10.1371/journal.pone.0003859] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Establishment and maintenance of a functional central nervous system (CNS) requires a highly orchestrated process of neural progenitor cell proliferation, cell cycle exit, and differentiation. An evolutionary conserved program consisting of Notch signalling mediated by basic Helix-Loop-Helix (bHLH) transcription factor activity is necessary for both the maintenance of neural progenitor cell character and the progression of neurogenesis; however, additional players in mammalian CNS neural specification remain largely unknown. In Drosophila we recently characterized Hamlet, a transcription factor that mediates Notch signalling and neural cell fate. METHODOLOGY/PRINCIPAL FINDINGS Hamlet is a member of the Prdm (PRDI-BF1 and RIZ homology domain containing) proto-oncogene transcription factor family, and in this study we report that multiple genes in the Prdm family (Prdm6, 8, 12, 13 and 16) are expressed in the developing mouse CNS in a spatially and temporally restricted manner. In developing spinal cord Prdm8, 12 and 13 are expressed in precise neuronal progenitor zones suggesting that they may specify discrete neuronal subtypes. In developing telencephalon Prdm12 and 16 are expressed in the ventricular zone in a lateral to medial graded manner, and Prdm8 is expressed in a complementary domain in postmitotic neurons. In postnatal brain Prdm8 additionally shows restricted expression in cortical layers 2/3 and 4, the hippocampus, and the amygdala. To further elucidate roles of Prdm8 and 16 in the developing telencephalon we analyzed the relationship between these factors and the bHLH Hes (Hairy and enhancer of split homolog) effectors of Notch signalling. In Hes null telencephalon neural differentiation is enhanced, Prdm8 expression is upregulated, and Prdm16 expression is downregulated; conversely in utero electroporation of Hes1 into the developing telencephalon upregulates Prdm16 expression. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that Prdm genes are regulated by the Notch-Hes pathway and represent strong candidates to control neural class specification and the sequential progression of mammalian CNS neurogenesis.
Collapse
|
885
|
Polak P, Cybulski N, Feige JN, Auwerx J, Rüegg MA, Hall MN. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 2008; 8:399-410. [PMID: 19046571 DOI: 10.1016/j.cmet.2008.09.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/04/2008] [Accepted: 09/09/2008] [Indexed: 12/14/2022]
Abstract
raptor is a specific and essential component of mammalian TOR complex 1 (mTORC1), a key regulator of cell growth and metabolism. To investigate a role of adipose mTORC1 in regulation of adipose and whole-body metabolism, we generated mice with an adipose-specific knockout of raptor (raptor(ad-/-)). Compared to control littermates, raptor(ad-/-) mice had substantially less adipose tissue, were protected against diet-induced obesity and hypercholesterolemia, and exhibited improved insulin sensitivity. Leanness was in spite of reduced physical activity and unaffected caloric intake, lipolysis, and absorption of lipids from the food. White adipose tissue of raptor(ad-/-) mice displayed enhanced expression of genes encoding mitochondrial uncoupling proteins characteristic of brown fat. Leanness of the raptor(ad-/-) mice was attributed to elevated energy expenditure due to mitochondrial uncoupling. These results suggest that adipose mTORC1 is a regulator of adipose metabolism and, thereby, controls whole-body energy homeostasis.
Collapse
Affiliation(s)
- Pazit Polak
- Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | | | |
Collapse
|
886
|
PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454:961-7. [PMID: 18719582 DOI: 10.1038/nature07182] [Citation(s) in RCA: 1764] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/19/2008] [Indexed: 12/17/2022]
Abstract
Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.
Collapse
|
887
|
|
888
|
New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454:1000-4. [PMID: 18719589 DOI: 10.1038/nature07221] [Citation(s) in RCA: 842] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/27/2008] [Indexed: 02/06/2023]
Abstract
Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.
Collapse
|
889
|
Cooper MP, Uldry M, Kajimura S, Arany Z, Spiegelman BM. Modulation of PGC-1 coactivator pathways in brown fat differentiation through LRP130. J Biol Chem 2008; 283:31960-7. [PMID: 18728005 DOI: 10.1074/jbc.m805431200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The PGC-1 coactivators are important regulators of oxidative metabolism. We previously demonstrated that LRP130 is a binding partner of PGC-1alpha, required for hepatic gluconeogenesis. LRP130 is the gene mutated in Leigh syndrome French Canadian variant, a rare neurodegenerative disease. The importance of LRP130 in other, non-hepatocyte biology remains obscure. To better understand PGC-1 coactivator function in brown fat development, we explored the metabolic role of LRP130 in brown adipocyte differentiation. We show that LRP130 is preferentially enriched in brown fat compared with white, and induced in a PGC-1-dependent manner during differentiation. Despite intact PGC-1 coactivator expression, brown fat cells deficient for LRP130 exhibit attenuated expression of several genes characteristic of brown fat, including uncoupling protein 1. Oxygen consumption studies support a specific defect in proton leak due to attenuated uncoupling protein 1 expression. Notably, brown fat cell development common to both PGC-1 coactivators is governed by LRP130. Conversely, the cAMP response controlled by PGC-1alpha is not regulated by LRP130. These data implicate LRP130 in brown fat cell development and differentiation.
Collapse
Affiliation(s)
- Marcus P Cooper
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
890
|
|
891
|
Abstract
Humans contain essentially two types of adipose tissue: brown adipose tissue (BAT) and white adipose tissue (WAT). The function of WAT is to store fat while that of BAT is to burn fat for heat production. A potential strategy to combat obesity and its related disorders is to induce the conversion of WAT into BAT. In this issue of Genes & Development, Kajimura and colleagues (pp. 1397-1409) have identified a mechanism by which PRDM16, the principal regulator of brown adipocyte formation and function, can simultaneously induce BAT gene expression, while suppressing WAT gene expression. The studies suggest that PRDM16 and its associated coregulators PPARgamma coactivator-1alpha (PGC-1alpha) and C-terminal-binding protein 1/2 (CtBP1/2), which control the switch from WAT to BAT, are potential targets for development of obesity-related therapeutics.
Collapse
Affiliation(s)
- Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
892
|
Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 2008; 22:1397-409. [PMID: 18483224 DOI: 10.1101/gad.1666108] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Brown fat is a specialized tissue that can dissipate energy and counteract obesity through a pattern of gene expression that greatly increases mitochondrial content and uncoupled respiration. PRDM16 is a zinc-finger protein that controls brown fat determination by stimulating brown fat-selective gene expression, while suppressing the expression of genes selective for white fat cells. To determine the mechanisms regulating this switching of gene programs, we purified native PRDM16 protein complexes from fat cells. We show here that the PRDM16 transcriptional holocompex contains C-terminal-binding protein-1 (CtBP-1) and CtBP-2, and this direct interaction selectively mediates the repression of white fat genes. This repression occurs through recruiting a PRDM16/CtBP complex onto the promoters of white fat-specific genes such as resistin, and is abolished in the genetic absence of CtBP-1 and CtBP-2. In turn, recruitment of PPAR-gamma-coactivator-1alpha (PGC-1alpha) and PGC-1beta to the PRDM16 complex displaces CtBP, allowing this complex to powerfully activate brown fat genes, such as PGC-1alpha itself. These data show that the regulated docking of the CtBP proteins on PRDM16 controls the brown and white fat-selective gene programs.
Collapse
Affiliation(s)
- Shingo Kajimura
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
893
|
Lau P, Fitzsimmons RL, Raichur S, Wang SCM, Lechtken A, Muscat GE. The Orphan Nuclear Receptor, RORα, Regulates Gene Expression That Controls Lipid Metabolism. J Biol Chem 2008; 283:18411-21. [DOI: 10.1074/jbc.m710526200] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
894
|
Keller P, Petrie JT, De Rose P, Gerin I, Wright WS, Chiang SH, Nielsen AR, Fischer CP, Pedersen BK, MacDougald OA. Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem 2008; 283:14355-65. [PMID: 18334488 DOI: 10.1074/jbc.m708323200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins. In this study, we investigated the function of another member of this family, FSP27 (Cidec), in apoptosis and adipocyte metabolism. Although overexpression of FSP27 is sufficient to increase apoptosis of 293T and 3T3-L1 cells, more physiological levels of expression stimulate spontaneous lipid accumulation in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L1 adipocytes. Stable knockdown of FSP27 during adipogenesis of 3T3-L1 cells substantially decreases lipid droplet size, increases mitochondrial and lipid droplet number, and modestly increases glucose uptake and lipolysis. Expression of FSP27 in subcutaneous adipose tissue of a human diabetes cohort decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement.
Collapse
Affiliation(s)
- Pernille Keller
- Department of Molecular and Integrative Physiology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
895
|
Nakae J, Cao Y, Oki M, Orba Y, Sawa H, Kiyonari H, Iskandar K, Suga K, Lombes M, Hayashi Y. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 2008; 57:563-76. [PMID: 18162510 DOI: 10.2337/db07-0698] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Adipose tissue serves as an integrator of various physiological pathways, energy balance, and glucose homeostasis. Forkhead box-containing protein O subfamily (FoxO) 1 mediates insulin action at the transcriptional level. However, physiological roles of FoxO1 in adipose tissue remain unclear. RESEARCH DESIGN AND METHODS In the present study, we generated adipose tissue-specific FoxO1 transgenic mice (adipocyte protein 2 [aP(2)]-FLAG-Delta 256) using an aP(2) promoter/enhancer and a mutant FoxO1 (FLAG Delta 256) in which the carboxyl terminal transactivation domain was deleted. Using these mice, we analyzed the effects of the overexpression of FLAG Delta 256 on glucose metabolism and energy homeostasis. RESULTS The aP(2)-FLAG-Delta 256 mice showed improved glucose tolerance and insulin sensitivity accompanied with smaller-sized adipocytes and increased adiponectin (adipoq) and Glut 4 (Slc2a4) and decreased tumor necrosis factor alpha (Tnf) and chemokine (C-C motif) receptor 2 (Ccr2) gene expression levels in white adipose tissue (WAT) under a high-fat diet. Furthermore, the aP(2)-FLAG-Delta 256 mice had increased oxygen consumption accompanied with increased expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1 alpha protein and uncoupling protein (UCP)-1 (Ucp1), UCP-2 (Ucp2), and beta 3-AR (Adrb3) in brown adipose tissue (BAT). Overexpression of FLAG Delta 256 in T37i cells, which are derived from the hibernoma of SV40 large T antigen transgenic mice, increased expression of PGC-1 alpha protein and Ucp1. Furthermore, knockdown of endogenous FoxO1 in T37i cells increased Pgc1 alpha (Ppargc1a), Pgc1 beta (Ppargc1b), Ucp1, and Adrb3 gene expression. CONCLUSIONS These data suggest that FoxO1 modulates energy homeostasis in WAT and BAT through regulation of adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake.
Collapse
Affiliation(s)
- Jun Nakae
- Department of Clinical Molecular Medicine, Division of Diabetes, Digestive and Kidney Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
896
|
Leick L, Wojtaszewski JFP, Johansen ST, Kiilerich K, Comes G, Hellsten Y, Hidalgo J, Pilegaard H. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2008; 294:E463-74. [PMID: 18073319 DOI: 10.1152/ajpendo.00666.2007] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed a single treadmill-running exercise bout. Soleus and white gastrocnemius (WG) were obtained immediately, 2 h, or 6 h after exercise. Another group of PGC-1alpha KO and WT mice performed 5-wk exercise training. Soleus, WG, and quadriceps were obtained approximately 37 h after the last training session. Resting muscles of the PGC-1alpha KO mice had lower ( approximately 20%) cytochrome c (cyt c), cytochrome oxidase (COX) I, and aminolevulinate synthase (ALAS) 1 mRNA and protein levels than WT, but similar levels of AMP-activated protein kinase (AMPK) alpha1, AMPKalpha2, and hexokinase (HK) II compared with WT mice. A single exercise bout increased phosphorylation of AMPK and acetyl-CoA carboxylase-beta and the level of HKII mRNA similarly in WG of KO and WT. In contrast, cyt c mRNA in soleus was upregulated in WT muscles only. Exercise training increased cyt c, COXI, ALAS1, and HKII mRNA and protein levels equally in WT and KO animals, but cyt c, COXI, and ALAS1 expression remained approximately 20% lower in KO animals. In conclusion, lack of PGC-1alpha reduced resting expression of cyt c, COXI, and ALAS1 and exercise-induced cyt c mRNA expression. However, PGC-1alpha is not mandatory for training-induced increases in ALAS1, COXI, and cyt c expression, showing that factors other than PGC-1alpha can exert these adaptations.
Collapse
MESH Headings
- 5-Aminolevulinate Synthetase/metabolism
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Blotting, Western
- Body Weight/physiology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclooxygenase 1/metabolism
- Cytochromes c/biosynthesis
- Cytochromes c/genetics
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation/physiology
- Glycogen/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Muscle Proteins/biosynthesis
- Muscle, Skeletal/physiology
- Myoglobin/metabolism
- Nucleotides/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Physical Conditioning, Animal/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription Factors
Collapse
Affiliation(s)
- Lotte Leick
- Centre of Inflammation and Metabolism, and Copenhagen Muscle Research Centre, Department of Molecular Biology, Institute of Exercise and Sport Sciences, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
897
|
Liver X receptor alpha is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype. Mol Cell Biol 2008; 28:2187-200. [PMID: 18195045 DOI: 10.1128/mcb.01479-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The adipocyte integrates crucial information about metabolic needs in order to balance energy intake, storage, and expenditure. Whereas white adipose tissue stores energy, brown adipose tissue is a major site of energy dissipation through adaptive thermogenesis mediated by uncoupling protein 1 (UCP1) in mammals. In both white and brown adipose tissue, nuclear receptors and their coregulators, such as peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgamma coactivator 1alpha (PGC-1alpha), play key roles in regulating their development and metabolic functions. Here we show the unexpected role of liver X receptor alpha (LXRalpha) as a direct transcriptional inhibitor of beta-adrenergic receptor-mediated, cyclic AMP-dependent Ucp1 gene expression through its binding to the critical enhancer region of the Ucp1 promoter. The mechanism of inhibition involves the differential recruitment of the corepressor RIP140 to an LXRalpha binding site that overlaps with the PPARgamma/PGC-1alpha response element, resulting in the dismissal of PPARgamma. The ability of LXRalpha to dampen energy expenditure in this way provides another mechanism for maintaining a balance between energy storage and utilization.
Collapse
|
898
|
Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 2008; 582:46-53. [PMID: 18036349 PMCID: PMC2275806 DOI: 10.1016/j.febslet.2007.11.034] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 01/12/2023]
Abstract
Energy homeostasis in mammals is achieved through tight regulation of tissue-specific metabolic pathways that become dysregulated in metabolic diseases including diabetes and obesity. At the molecular level, main nutrient and hormonal signaling pathways impinge on expression of genes encoding for metabolic enzymes. Among the major components of this transcriptional circuitry are the PGC-1 alpha transcriptional complexes. An important regulatory mechanism of this complex is through acetylation and SIRT1-mediated lysine de-acetylation under low nutrient conditions. Activation of SIRT1 can mimic several metabolic aspects of calorie restriction that target selective nutrient utilization and mitochondrial oxidative function to regulate energy balance. Thus, understanding the PGC-1 alpha and SIRT1 pathways might have important implications for comprehending metabolic and age-associated diseases.
Collapse
Affiliation(s)
- Joseph T. Rodgers
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Carles Lerin
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Gerhart-Hines
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pere Puigserver
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
899
|
|
900
|
Morganstein DL, Christian M, Turner JJO, Parker MG, White R. Conditionally immortalized white preadipocytes: a novel adipocyte model. J Lipid Res 2007; 49:679-85. [PMID: 18046046 DOI: 10.1194/jlr.d700029-jlr200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study describes a novel approach to generate conditionally immortalized preadipocyte cell lines from white adipose tissue (IMWAT) that can be induced to differentiate into white adipocytes even after expansion in culture. Such adipocytes express markers of white fat such as peroxisome proliferator-activated receptor gamma and aP2 but not brown fat markers, have an intact insulin signaling pathway, and express proinflammatory cytokines. They can be readily transduced with adenoviral vectors, allowing them to be used to investigate the consequences of the depletion of specific adipocyte factors using short hairpin RNA. This approach has been used to study the effect of reduced expression of the nuclear receptor corepressor receptor interacting protein 140 (RIP140), a regulator of adipocyte function. The depletion of RIP140 results in changes in metabolic gene expression that resemble those in adipose tissue of the RIP140 null mouse. Thus, IMWAT cells provide a novel model for adipocytes that are derived from preadipocytes rather than fibroblasts and provide an alternative system to primary preadipocytes for the investigation of adipocyte function.
Collapse
Affiliation(s)
- D L Morganstein
- Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|