851
|
Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A 2013; 110:187-92. [PMID: 23248315 PMCID: PMC3538265 DOI: 10.1073/pnas.1208863110] [Citation(s) in RCA: 554] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity.
Collapse
Affiliation(s)
- Enzo R. Porrello
- Departments of Molecular Biology and
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ahmed I. Mahmoud
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | | | | | - David Grinsfelder
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Diana Canseco
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Pradeep P. Mammen
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Beverly A. Rothermel
- Departments of Molecular Biology and
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | | | - Hesham A. Sadek
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|
852
|
Reddy VM. Low birth weight and very low birth weight neonates with congenital heart disease: timing of surgery, reasons for delaying or not delaying surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2013; 16:13-20. [PMID: 23561813 DOI: 10.1053/j.pcsu.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Conventional management of low birth weight and very low birth weight neonates was composed of deferring corrective surgery by aggressive medical management or palliative surgery which does not require cardiopulmonary bypass. However, while waiting for weight gain, these neonates are at risk for various comorbidities. In the current era, this "wait and let the baby grow" approach has not been shown to result in better clinical outcomes. Early primary repair hence has become the standard strategy for congenital heart disease requiring surgery in these neonates. However, there still exist some circumstances, which are considered to be unfavorable for corrective surgery due to medical, physiologic, surgeon's technical and institutional-systemic factors. We reviewed the recent literature and examined the reasons for delaying or not delaying surgery.
Collapse
Affiliation(s)
- V Mohan Reddy
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305-5407, USA.
| |
Collapse
|
853
|
Abstract
This article discusses current understanding of myocardial biology, emphasizing the regeneration potential of the adult human heart and the mechanisms involved. In the last decade, a novel conceptual view has emerged. The heart is no longer considered a postmitotic organ, but is viewed as a self-renewing organ characterized by a resident stem cell compartment responsible for tissue homeostasis and cardiac repair following injury. Additionally, HSCs possess the ability to transdifferentiate and acquire the cardiomyocyte, vascular endothelial, and smooth muscle cell lineages. Both cardiac and hematopoietic stem cells may be used therapeutically in an attempt to reverse the devastating consequences of chronic heart failure of ischemic and nonischemic origin.
Collapse
Affiliation(s)
- Piero Anversa
- Department of Anesthesia and Division of Cardiovascular Medicine, 75 Francis Street, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
854
|
Ramakrishnan A, Torok-Storb B, Pillai MM. Primary marrow-derived stromal cells: isolation and manipulation. Methods Mol Biol 2013; 1035:75-101. [PMID: 23959984 DOI: 10.1007/978-1-62703-508-8_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Marrow stromal cells (MSCs) are relatively rare cells difficult to visualize in marrow biopsies or detect in aspirated marrow. Under specific conditions MSC can be expanded in vitro and the population can give rise to several mesenchymal lineages. "MSC" also refers to mesenchymal stem cells which implies that all cells in the population are multipotent. It is generally agreed that while there may be a few multipotent stem cells in an MSC population the majority are not stem cells. In either case MSCs do not produce hematopoietic cells. Although MSCs have been isolated and characterized from several tissues, bone marrow is their most common source for research and clinical use. Primary MSC populations can be derived from bone marrow mononuclear cells with relative ease, but it is important to recognize the cellular heterogeneity within a culture and how this may vary from donor to donor. In this chapter, we describe methodology to derive primary MSCs from bone marrow screens, an otherwise discarded by-product of bone marrow harvests used for clinical transplantation. We also describe some useful techniques to characterize and manipulate MSCs-both primary and immortalized cell lines.
Collapse
Affiliation(s)
- Aravind Ramakrishnan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
855
|
Troponin leak in heart failure: Moving forward to arrest cardiomyocyte attrition and promote myocardial regeneration. Int J Cardiol 2013; 162:137-9. [DOI: 10.1016/j.ijcard.2012.01.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022]
|
856
|
Zelarayán LC, Zafiriou MP, Zimmermann WH. Emerging Concepts in Myocardial Pharmacoregeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
857
|
Abstract
Cellular cardiomyoplasty is a cell therapy using stem cells or progenitor cells for myocardial regeneration to improve cardiac function and mitigate heart failure. Since we first published cellular cardiomyoplasty in 1989, this procedure became the innovative method to treat damaged myocardium other than heart transplantation. A significant improvement in cardiac function, metabolism, and perfusion is generally observed in experimental and clinical studies, but the improvement is mild and incomplete. Although safety, feasibility, and efficacy have been well documented for the procedure, the beneficial mechanisms remain unclear and optimization of the procedure requires further study. This chapter briefly reviews the stem cells used for cellular cardiomyoplasty and their clinical outcomes with possible improvements in future studies.
Collapse
Affiliation(s)
- Elizabeth K Lamb
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | |
Collapse
|
858
|
Zebrafish cardiac injury and regeneration models: a noninvasive and invasive in vivo model of cardiac regeneration. Methods Mol Biol 2013; 1037:463-73. [PMID: 24029953 DOI: 10.1007/978-1-62703-505-7_27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite current treatment regimens, heart failure still remains one of the leading causes of morbidity and mortality in the world due to failure to adequately replace lost ventricular myocardium from ischemia-induced infarct. Although adult mammalian ventricular cardiomyocytes have a limited capacity to divide, this proliferation is insufficient to overcome the significant loss of myocardium from ventricular injury. However, lower vertebrates, such as the zebrafish and newt, have the remarkable capacity to fully regenerate their hearts after severe injury. Thus, there is great interest in studying these animal model systems to discover new regenerative approaches that might be applied to injured mammalian hearts. To this end, the zebrafish has been utilized more recently to gain additional mechanistic insight into cardiac regeneration because of its genetic tractability. Here, we describe two cardiac injury methods, a mechanical and a genetic injury model, for studying cardiac regeneration in the zebrafish.
Collapse
|
859
|
Lam NT, Currie PD, Lieschke GJ, Rosenthal NA, Kaye DM. Nerve growth factor stimulates cardiac regeneration via cardiomyocyte proliferation in experimental heart failure. PLoS One 2012; 7:e53210. [PMID: 23300892 PMCID: PMC3534029 DOI: 10.1371/journal.pone.0053210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022] Open
Abstract
Although the adult heart likely retains some regenerative capacity, heart failure (HF) typically remains a progressive disorder. We hypothesise that alterations in the local environment contribute to the failure of regeneration in HF. Previously we showed that nerve growth factor (NGF) is deficient in the failing heart and here we hypothesise that diminished NGF limits the cardiac regenerative response in HF. The capacity of NGF to augment cardiac regeneration was tested in a zebrafish model of HF. Cardiac injury with a HF phenotype was induced in zebrafish larvae at 72 hours post fertilization (hpf) by exposure to aristolochic acid (AA, 2.5 µM, 72–75 hpf). By 168 hpf, AA induced HF and death in 37.5% and 20.8% of larvae respectively (p<0.001). NGF mRNA expression was reduced by 42% (p<0.05). The addition of NGF (50 ng/ml) after exposure to AA reduced the incidence of HF by 50% (p<0.01) and death by 65% (p<0.01). Mechanistically, AA mediated HF was characterised by reduced cardiomyocyte proliferation as reflected by a 6.4 fold decrease in BrdU+ cardiomyocytes (p<0.01) together with features of apoptosis and loss of cardiomyocytes. Following AA exposure, NGF increased the abundance of BrdU+ cardiomyocytes in the heart by 4.8 fold (p<0.05), and this was accompanied by a concomitant significant increase in cardiomyocyte numbers. The proliferative effect of NGF on cardiomyocytes was not associated with an anti-apoptotic effect. Taken together the study suggests that NGF stimulates a regenerative response in the failing zebrafish heart, mediated by stimulation of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Nicholas T. Lam
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - Peter D. Currie
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - Nadia A. Rosenthal
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - David M. Kaye
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
860
|
Mias C, Genet G, Pathak A, Sénard JM, Galés C. [Adult resident cardiomyocytes wake up: new axis for cardiac tissue regeneration]. Med Sci (Paris) 2012; 28:1103-9. [PMID: 23290411 DOI: 10.1051/medsci/20122812021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
All cardiomyopathies and more specifically myocardial infarction always evolve to cardiomyocytes death and the ensuing heart failure setting. So far, cardiac regenerative medicine has focused on the use of stem cells and completely ignored the resident cardiomyocytes, assumed in a postmitotic state. However, recent findings in zebrafish and mammalians challenge this view and suggest that these cells have some capacity to proliferate and can contribute to heart regeneration. In this review, we propose an overall synthesis about knowledge of the proliferative and regenerative capacities of resident cardiomyocytes, dealing with some mechanistic aspects. In the future, the accurate identification of molecular mechanisms allowing wake-up of resident cardiomyocyte proliferation will certainly open new therapeutic avenues in cardiac regeneration.
Collapse
Affiliation(s)
- Céline Mias
- Institut des maladies métaboliques et cardiovasculaires (I2MC), Inserm UMR 1048, université Toulouse III Paul Sabatier, Bâtiment L3, 1, avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France.
| | | | | | | | | |
Collapse
|
861
|
Ren L, Liu W, Wang Y, Wang JC, Tu Q, Xu J, Liu R, Shen SF, Wang J. Investigation of hypoxia-induced myocardial injury dynamics in a tissue interface mimicking microfluidic device. Anal Chem 2012. [PMID: 23205467 DOI: 10.1021/ac3025812] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myocardial infarction is a major cause of morbidity and mortality worldwide. However, the methodological development of a spatiotemporally controllable investigation of the damage events in myocardial infarction remains challengeable. In the present study, we describe a micropillar array-aided tissue interface mimicking microfluidic device for the dynamic study of hypoxia-induced myocardial injury in a microenvironment-controllable manner. The mass distribution in the device was visually characterized, calculated, and systematically evaluated using the micropillar-assisted biomimetic interface, physiologically relevant flows, and multitype transportation. The fluidic microenvironment in the specifically functional chamber for cell positioning and analysis was successfully constructed with high fluidic relevance to the myocardial tissue. We also performed a microenvironment-controlled microfluidic cultivation of myocardial cells with high viability and regular structure integration. Using the well-established culture device with a tissue-mimicking microenvironment, a further on-chip investigation of hypoxia-induced myocardial injury was carried out and the varying apoptotic responses of myocardial cells were temporally monitored and measured. The results show that the hypoxia directionally resulted in observable cell shrinkage, disintegration of the cytoskeleton, loss of mitochondrial membrane potential, and obvious activation of caspase-3, which indicates its significant apoptosis effect on myocardial cells. We believe this microfluidic device can be suitable for temporal investigations of cell activities and responses in myocardial infarction. It is also potentially valuable to the microcontrol development of tissue-simulated studies of multiple clinical organ/tissue disease dynamics.
Collapse
Affiliation(s)
- Li Ren
- Colleges of Veterinary Medicine and Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
862
|
Lauden L, Boukouaci W, Borlado LR, López IP, Sepúlveda P, Tamouza R, Charron D, Al-Daccak R. Allogenicity of human cardiac stem/progenitor cells orchestrated by programmed death ligand 1. Circ Res 2012; 112:451-64. [PMID: 23243206 DOI: 10.1161/circresaha.112.276501] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Transplantation of allogeneic cardiac stem/progenitor cells (CPC) in experimental myocardial infarction promoted cardiac regeneration and improved heart function. Although this has enhanced prospects of using allogeneic CPC for cardiac repair, the mechanisms regulating the behavior of these allogeneic cells, which are central to clinical applications, remain poorly understood. OBJECTIVE T cells orchestrate the allogeneic adaptive immune response. Therefore, to provide insight into the mechanisms regulating the immunologic behavior of human CPC (hCPC), we investigated the allogeneic T-cell response elicited by cryopreserved c-kit-selected hCPC. METHODS AND RESULTS By using an experimental model of allogeneic stimulation, we demonstrate that, whether under inflammatory conditions or not, hCPC do not trigger conventional allogeneic Th1 or Th2 type responses but instead induce proliferation and selective expansion of suppressive CD25(high)CD127(low)human leukocyte antigen-DR(+)FoxP3(high) effector regulatory T cells. The regulatory T-cell proliferation and amplification were dependent on the interaction with the B7 family member programmed death ligand 1 (PD-L1), which is substantially expressed on hCPC and increased under inflammatory conditions. Thus, hCPC in allogeneic settings acquire the capacity to downregulate an ongoing immune response, which was dependent on PD-L1. CONCLUSIONS Collectively, these data reveal that hCPC in allogeneic settings have a tolerogenic immune behavior, promoting a contact PD-L1-dependent regulatory response and a PD-L1-dependent allogeneic-driven immunomodulation. Our study attributes an important role for PD-L1 in the immune behavior of allogeneic hCPC and raises the possibility of using PD-L1 expression as a marker to identify and select low-risk high-benefit allogeneic cardiac repair cells.
Collapse
Affiliation(s)
- Laura Lauden
- Institut National de la Santé et de la Recherche Médicale UMRS940, Institut Universitaire d’Hématologie, Université Paris-Diderot and Laboratoire d’Immunologie et d’Histocompatibilité, Hôpital Saint Louis, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
863
|
Lara-Astiaso D, Izarra A, Estrada JC, Albo C, Moscoso I, Samper E, Moncayo J, Solano A, Bernad A, Díez-Juan A. Complement anaphylatoxins C3a and C5a induce a failing regenerative program in cardiac resident cells. Evidence of a role for cardiac resident stem cells other than cardiomyocyte renewal. SPRINGERPLUS 2012; 1:63. [PMID: 23487597 PMCID: PMC3592996 DOI: 10.1186/2193-1801-1-63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/30/2012] [Indexed: 12/16/2022]
Abstract
Cardiac healing, which follows myocardial infarction, is a complex process guided by intricate interactions among different components. Some resident cell populations with a potential role in cardiac healing have already been described in cardiac tissues. These non-cardiomyocyte cell subsets, globally described as cardiac pluripotent/progenitor cells (CPCs), are able to differentiate into all three major cardiac cell lineages (endothelial, smooth muscle and cardiomyocyte cells) in experimental settings. Nevertheless, physiological cardiac healing results in a fibrous scar, which remains to be fully modelled experimentally. Since a role for complement anaphylatoxins (C3a and C5a) has been described in several regeneration/repair processes, we examined the effects that C3a and C5a exert on a defined population of CPCs. We found that C3a and C5a are able to enhance CPC migration and proliferation. In vitro studies showed that this effect is linked to activation of telomerase mRNA and partial preservation of telomere length, in an NFκB-dependent manner. In addition, anaphylatoxin signalling modulates the CPC phenotype, increasing myofibroblast differentiation and reducing endothelial and cardiac gene expression. These findings may denote that C3a and C5a are able to maintain/increase the cardiac stem cell pool within the heart, whilst simultaneously facilitating and modulating resident cell differentiation. We found that this modulation was directed towards scar forming cells, which increased fibroblast/myofibroblast generation and suggests that both these anaphylatoxins could play a relevant role in the damage-coupled activation of resident cells, and regulation of the cardiac healing process after injury.
Collapse
Affiliation(s)
- David Lara-Astiaso
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029 Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
864
|
Puri PL, Mercola M. BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev 2012; 26:2673-83. [PMID: 23222103 DOI: 10.1101/gad.207415.112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Developmental biologists have defined many of the diffusible and transcription factors that control muscle differentiation, yet we still have only rudimentary knowledge of the mechanisms that dictate whether a myogenic progenitor cell forms muscle versus alternate lineages, including those that can be pathological in a state of disease or degeneration. Clues about the molecular basis for lineage determination in muscle progenitors are only now emerging from studies of chromatin modifications that avail myogenic genes for transcription, together with analysis of the composition and activities of the chromatin-modifying complexes themselves. Here we review recent progress on muscle determination and explore a unifying theme that environmental cues from the stem or progenitor niche control the selection of specific subunit variants of the switch/sucrose nonfermentable (SWI/SNF) chromatin-modifying complex, creating a combinatorial code that dictates whether cells adopt myogenic versus nonmyogenic cell fates. A key component of the code appears to be the mutually exclusive usage of the a, b, and c variants of the 60-kD structural subunit BAF60 (BRG1/BRM-associated factor 60), of which BAF60c is essential to activate both skeletal and cardiac muscle programs. Since chromatin remodeling governs myogenic fate, the combinatorial assembly of the SWI/SNF complex might be targeted to develop drugs aimed at the therapeutic reduction of compensatory fibrosis and fatty deposition in chronic muscular disorders.
Collapse
Affiliation(s)
- Pier Lorenzo Puri
- Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
865
|
Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2012; 493:433-6. [PMID: 23222518 PMCID: PMC3548046 DOI: 10.1038/nature11682] [Citation(s) in RCA: 1007] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 10/18/2012] [Indexed: 11/24/2022]
|
866
|
Abstract
Myocardial regeneration therapy has emerged as an alternative therapy for heart failure and is expected to replace current conventional therapies. As a cell source, the presence of resident cardiac stem cells (RCSC) in the heart has been reported by many researchers. These RCSC show multi-potency and are considered to differentiate into myocytes. On the other hand, bone marrow stem cells have received the greatest attention as a source of cell transplantation therapy in the current era, with a larger number of clinical applications reported because of their ease and safety. Myoblasts have also emerged as a possible cell source for clinical applications. We previously found that myoblast-cell-sheet implantation improved cardiac function and ventricle thickness in a rat MI model. Furthermore, we conducted a pre-clinical large animal study using porcine MI and dog DCM models, and confirmed the effectiveness of skeletal myoblast sheets. Thereafter, we conducted clinical applications of skeletal myoblast implantation. It may eventually be possible to perform regeneration therapy as a routine therapeutic method.
Collapse
|
867
|
Liu Y, Wang S, Shi S. The role of recipient T cells in mesenchymal stem cell-based tissue regeneration. Int J Biochem Cell Biol 2012; 44:2044-50. [PMID: 22903019 PMCID: PMC3454862 DOI: 10.1016/j.biocel.2012.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 12/17/2022]
Abstract
Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addition, the immunoregulatory property of MSCs provides a foundation for their use in treating a variety of autoimmune diseases. However, the interaction between MSCs and immune cells in cell-based tissue regeneration is largely unknown. In this review, we will discuss the current understanding of MSC-based tissue regeneration, emphasizing the role of the immune microenvironment in bone regeneration.
Collapse
Affiliation(s)
- Yi Liu
- Faculty of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing 100050, China
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
868
|
Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2012; 2:1448-60. [PMID: 23103164 DOI: 10.1016/j.celrep.2012.09.015] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/18/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.
Collapse
Affiliation(s)
- Itsunari Minami
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
869
|
Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. PLoS One 2012; 7:e46971. [PMID: 23071682 PMCID: PMC3468579 DOI: 10.1371/journal.pone.0046971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
The differentiation of pluripotent stem cells involves transition through a series of specific cell states. To understand these cell fate decisions, the field needs improved genetic tools for the labeling, lineage tracing and selection of specific cell types from heterogeneous differentiating populations, particularly in the human embryonic stem cell (hESC) system. We used zinc finger nuclease technology to stably insert a unique, selectable, floxed dual-fluorescence reporter transgene into the AAVS1 locus of RUES2 hESCs. This "stoplight" transgene, mTmG-2a-Puro, strongly expresses membrane-localized tdTomato red fluorescent protein until Cre-dependent recombination causes a switch to expression of membrane-localized enhanced green fluorescent protein (eGFP) and puromycin resistance. First, to validate this system in undifferentiated cells, we transduced transgenic hESCs with a lentiviral vector driving constitutive expression of Cre and observed the expected phenotypic switch. Next, to demonstrate its utility in lineage-specific selection, we transduced differentiated cultures with a lentiviral vector in which the striated muscle-specific CK7 promoter drives Cre expression. This yielded near-homogenous populations of eGFP(+) hESC-derived cardiomyocytes. The mTmg-2a-Puro hESC line described here represents a useful new tool for both in vitro fate mapping studies and the selection of useful differentiated cell types.
Collapse
|
870
|
Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012; 139:4133-42. [PMID: 23034636 DOI: 10.1242/dev.079756] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult zebrafish possess a significant ability to regenerate injured heart tissue through proliferation of pre-existing cardiomyocytes, which contrasts with the inability of mammals to do so after the immediate postnatal period. Zebrafish therefore provide a model system in which to study how an injured heart can be repaired. However, it remains unknown what important processes cardiomyocytes are involved in other than partial de-differentiation and proliferation. Here we show that migration of cardiomyocytes to the injury site is essential for heart regeneration. Ventricular amputation induced expression of cxcl12a and cxcr4b, genes encoding a chemokine ligand and its receptor. We found that cxcl12a was expressed in the epicardial tissue and that Cxcr4 was expressed in cardiomyocytes. We show that pharmacological blocking of Cxcr4 function as well as genetic loss of cxcr4b function causes failure to regenerate the heart after ventricular resection. Cardiomyocyte proliferation was not affected but a large portion of proliferating cardiomyocytes remained localized outside the injury site. A photoconvertible fluorescent reporter-based cardiomyocyte-tracing assay demonstrates that cardiomyocytes migrated into the injury site in control hearts but that migration was inhibited in the Cxcr4-blocked hearts. By contrast, the epicardial cells and vascular endothelial cells were not affected by blocking Cxcr4 function. Our data show that the migration of cardiomyocytes into the injury site is regulated independently of proliferation, and that coordination of both processes is necessary for heart regeneration.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
871
|
Abstract
PURPOSE OF REVIEW The past decade has seen remarkable advances in the field of stem cell biology. Many new technologies and applications are passing the translational phase and likely will soon be relevant for the clinical pediatric cardiologist. RECENT FINDINGS This review will focus on two advances in basic science that are now translating into clinical trials. The first advance is the recognition, characterization, and recent therapeutic application of resident cardiac progenitor cells (CPCs). Early results of adult trials and scattered case reports in pediatric patients support expanding CPC-based trials for end-stage heart failure in pediatric patients. The relative abundance of CPCs in the neonate and young child offers greater potential benefits in heart failure treatment than has been realized to date. The second advance is the technology of induced pluripotent stem cells (iPSCs), which reprograms differentiated somatic cells to an undifferentiated embryonic-like state. When iPSCs are differentiated into cardiomyocytes, they model a patient's specific disease, test pharmaceuticals, and potentially provide an autologous source for cell-based therapy. SUMMARY The therapeutic recruitment and/or replacement of CPCs has potential for enhancing cardiac repair and regeneration in children with heart failure. Use of iPSCs to model heart disease holds great potential to gain new insights into diagnosis, pathophysiology, and disease-specific management for genetic-based cardiovascular diseases that are prevalent in pediatric patients.
Collapse
|
872
|
Naumova AV, Yarnykh VL, Balu N, Reinecke H, Murry CE, Yuan C. Quantification of MRI signal of transgenic grafts overexpressing ferritin in murine myocardial infarcts. NMR IN BIOMEDICINE 2012; 25:1187-95. [PMID: 22362654 PMCID: PMC3389131 DOI: 10.1002/nbm.2788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/28/2011] [Accepted: 01/15/2012] [Indexed: 05/16/2023]
Abstract
The noninvasive detection of transplanted cells in damaged organs and the longitudinal follow-up of cell fate and graft size are important for the evaluation of cell therapy. We have shown previously that the overexpression of the natural iron storage protein, ferritin, permits the detection of engrafted cells in mouse heart by MRI, but further imaging optimization is required. Here, we report a systematic evaluation of ferritin-based stem cell imaging in infarcted mouse hearts in vivo using three cardiac-gated pulse sequences in a 3-T scanner: black-blood proton-density-weighted turbo spin echo (PD TSE BB), bright-blood T(2) -weighted gradient echo (GRE) and black-blood T(2) -weighted GRE with improved motion-sensitized-driven equilibrium (iMSDE) preparation. Transgenic C2C12 myoblast grafts overexpressing ferritin did not change MRI contrast in the PD TSE BB images, but showed a 20% reduction in signal intensity ratio in black-blood T(2) -weighted iMSDE (p < 0.05) and a 30% reduction in bright-blood T(2) -weighted GRE (p < 0.0001). Graft size measurements by T(2) iMSDE and T(2) GRE were highly correlated with histological assessments (r = 0.79 and r = 0.89, respectively). Unlabeled wild-type C2C12 cells transplanted to mouse heart did not change the MRI signal intensity, although endogenous hemosiderin was seen in some infarcts. These data support the use of ferritin to track the survival, growth and migration of stem cells transplanted into the injured heart.
Collapse
Affiliation(s)
- Anna V Naumova
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
873
|
Persson AB, Persson PB. Cardiac electrophysiology: what is behind our two-billion heart beats? Acta Physiol (Oxf) 2012; 206:90-3. [PMID: 22943479 DOI: 10.1111/j.1748-1716.2012.02466.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Bondke Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin; Berlin; Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin; Berlin; Germany
| |
Collapse
|
874
|
Ruvinov E, Sapir Y, Cohen S. Cardiac Tissue Engineering: Principles, Materials, and Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.2200/s00437ed1v01y201207tis009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
875
|
Lian S, Xiao Y, Bian Q, Xia Y, Guo C, Wang S, Lang M. Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL. Int J Nanomedicine 2012; 7:4893-905. [PMID: 23028218 PMCID: PMC3446841 DOI: 10.2147/ijn.s32645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A series of biodegradable thermosensitive copolymers was synthesized by free radical polymerization with N-isopropylacrylamide (NIPAAm), acrylic acid (AAc) and macromer 2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) (HEMAPCL). The structure and composition of the obtained terpolymers were confirmed by proton nuclear magnetic resonance spectroscopy, while their molecular weight was measured using gel permeation chromatography. The copolymers were dissolved in phosphate-buffered saline (PBS) solution (pH = 7.4) with different concentrations to prepare hydrogels. The lower critical solution temperature (LCST), cloud point, and rheological property of the hydrogels were determined by differential scanning calorimetry, ultraviolet-visible spectrometry, and rotational rheometry, respectively. It was found that LCST of the hydrogel increased significantly with the increasing NIPAAm content, and hydrogel with higher AAc/HEMAPCL ratio exhibited better storage modulus, water content, and injectability. The hydrogels were formed by maintaining the copolymer solution at 37°C. The degradation experiment on the formed hydrogels was conducted in PBS solution for 2 weeks and demonstrated a less than 20% weight loss. Scanning electron microscopy was also used to study the morphology of the hydrogel. The copolymer with NIPAAm/AAc/HEMAPCL ratio of 88:9.6:2.4 was bioconjugated with type I collagen for the purpose of biocompatibility enhancement. In-vitro cytotoxicity of the hydrogels both with and without collagen was also addressed.
Collapse
Affiliation(s)
- Sheng Lian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
876
|
Kajstura J, Rota M, Cappetta D, Ogórek B, Arranto C, Bai Y, Ferreira-Martins J, Signore S, Sanada F, Matsuda A, Kostyla J, Caballero MV, Fiorini C, D'Alessandro DA, Michler RE, del Monte F, Hosoda T, Perrella MA, Leri A, Buchholz BA, Loscalzo J, Anversa P. Cardiomyogenesis in the aging and failing human heart. Circulation 2012; 126:1869-81. [PMID: 22955965 DOI: 10.1161/circulationaha.112.118380] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Two opposite views of cardiac growth are currently held; one views the heart as a static organ characterized by a large number of cardiomyocytes that are present at birth and live as long as the organism, and the other views the heart a highly plastic organ in which the myocyte compartment is restored several times during the course of life. METHODS AND RESULTS The average age of cardiomyocytes, vascular endothelial cells (ECs), and fibroblasts and their turnover rates were measured by retrospective (14)C birth dating of cells in 19 normal hearts 2 to 78 years of age and in 17 explanted failing hearts 22 to 70 years of age. We report that the human heart is characterized by a significant turnover of ventricular myocytes, ECs, and fibroblasts, physiologically and pathologically. Myocyte, EC, and fibroblast renewal is very high shortly after birth, decreases during postnatal maturation, remains relatively constant in the adult organ, and increases dramatically with age. From 20 to 78 years of age, the adult human heart entirely replaces its myocyte, EC, and fibroblast compartment ≈8, ≈6, and ≈8 times, respectively. Myocyte, EC, and fibroblast regeneration is further enhanced with chronic heart failure. CONCLUSIONS The human heart is a highly dynamic organ that retains a remarkable degree of plasticity throughout life and in the presence of chronic heart failure. However, the ability to regenerate cardiomyocytes, vascular ECs, and fibroblasts cannot prevent the manifestations of myocardial aging or oppose the negative effects of ischemic and idiopathic dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jan Kajstura
- Department of Anesthesia, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
877
|
Tee R, Morrison WA, Dusting GJ, Liu GS, Choi YS, Hsiao STF, Dilley RJ. Transplantation of engineered cardiac muscle flaps in syngeneic rats. Tissue Eng Part A 2012; 18:1992-9. [PMID: 22793168 DOI: 10.1089/ten.tea.2012.0151] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cardiac tissue engineering offers the prospect of a novel treatment for acquired or congenital heart defects. Previously, our studies have shown a significant mass of vascularized cardiac tissue can be generated using a vascularized tissue engineering chamber approach in nude rats. In this present study, syngeneic rats were investigated as an animal model for cardiac tissue engineering using the arteriovenous loop (AVL) chamber in the presence of a functional immune system. Neonatal cardiomyocytes implanted into the AVL chamber survived and assembled into a contractile flap confirming the basic features we previously showed in growing a cardiac construct. There was no significant loss of the assembled cardiac muscle from immune response. The engineered cardiac muscle flaps (ECMFs) formed were transplanted to the neck vessels of the same animal using a microsurgical technique, and all transplanted tissues remained contractile. The cardiac muscle volume of the control and transplant groups was estimated with histomorphometry using desmin and α-sarcomeric actin immunostaining, and there were no significant differences between the two groups. Finally, utilizing a novel model of transplantation, the ECMFs were transplanted to the heart of a recipient syngeneic rat as a vascularized tissue. The cardiac muscle within the transplanted ECMF was shown to survive and remain contractile for the 4-week post-transplantation period, and importantly, the cardiomyocytes retained the elongated, striated appearance of a mature phenotype. This study demonstrated the proof of concept for transplanting tissue-engineered cardiac muscle as a vascularized cardiac construct.
Collapse
Affiliation(s)
- Richard Tee
- O'Brien Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
878
|
Pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) of Zebrafish heart using high frame rate ultrasound biomicroscopy. Ann Biomed Eng 2012; 41:41-52. [PMID: 22930467 DOI: 10.1007/s10439-012-0636-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
This paper reports a pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) method for visualizing small animal hearts that provides fine spatial resolution at a high frame rate without sacrificing the echo signal to noise ratio (eSNR). A 40 MHz lithium niobate (LiNbO(3)) single element transducer is employed to evaluate the performance of PI-CTHI by scanning tungsten wire targets, spherical anechoic voids, and zebrafish hearts. The wire phantom results show that PI-CTHI improves the eSNR by 4 dB from that of conventional pulse inversion tissue harmonic imaging (PI-THI), while still maintaining a spatial resolution of 88 and 110 μm in the axial and lateral directions, respectively. The range side lobe level of PI-CTHI is 11 dB lower than that of band-pass filtered CTHI (or F-CTHI). In the anechoic sphere phantom study, the contrast-to-noise ratio of PI-CTHI is found to be 2.7, indicating a 34% enhancement over conventional PI-THI. Due to such improved eSNR and contrast resolution, blood clots in zebrafish hearts can be readily visualized throughout heart regeneration after 20% of the ventricle is removed. Disappearance of the clots in the early stages of the regeneration has been observed for 7 days without sacrificing the fish.
Collapse
|
879
|
Heart cells with regenerative potential from pediatric patients with end stage heart failure: a translatable method to enrich and propagate. Stem Cells Int 2012; 2012:452102. [PMID: 22936950 PMCID: PMC3425869 DOI: 10.1155/2012/452102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 11/17/2022] Open
Abstract
Background. Human cardiac-derived progenitor cells (hCPCs) have shown promise in treating heart failure (HF) in adults. The purpose of this study was to describe derivation of hCPCs from pediatric patients with end-stage HF. Methods. At surgery, discarded right atrial tissues (hAA) were obtained from HF patients (n = 25; hAA-CHF). Minced tissues were suspended in complete (serum-containing) DMEM. Cells were selected for their tissue migration and expression of stem cell factor receptor (hc-kit). Characterization of hc-kit(positive) cells included immunohistochemical screening with a panel of monoclonal antibodies. Results. Cells, including phase-bright cells identified as hc-kit(positive), spontaneously emigrated from hAA-CHF in suspended explant cultures (SEC) after Day 7. When cocultured with tissue, emigrated hc-kit(positive) cells proliferated, first as loosely attached clones and later as multicellular clusters. At Day 21~5% of cells were hc-kit(positive). Between Days 14 and 28 hc-kit(positive) cells exhibited mesodermal commitment (GATA-4(positive) and NKX2.5(positive)); then after Day 28 cardiac lineages (flk-1(positive), smooth muscle actin(positive), troponin-I(positive), and myosin light chain(positive)). Conclusions. C-kit(positive) hCPCs can be derived from atrial tissue of pediatric patients with end-stage HF. SEC is a novel culture method for derivation of migratory hc-kit(positive) cells that favors clinical translation by reducing the need for exogenously added factors to expand hCPCs in vitro.
Collapse
|
880
|
|
881
|
Mahmoud AI, Porrello ER. Turning Back the Cardiac Regenerative Clock: Lessons From the Neonate. Trends Cardiovasc Med 2012; 22:128-33. [DOI: 10.1016/j.tcm.2012.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 01/07/2023]
|
882
|
Martin-Puig S, Fuster V, Torres M. Heart repair: from natural mechanisms of cardiomyocyte production to the design of new cardiac therapies. Ann N Y Acad Sci 2012; 1254:71-81. [PMID: 22548572 DOI: 10.1111/j.1749-6632.2012.06488.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most organs in mammals, including the heart, show a certain level of plasticity and repair ability during gestation. This plasticity is, however, compromised for many organs in adulthood, resulting in the inability to repair organ injury, including heart damage produced by acute or chronic ischemic conditions. In contrast, lower vertebrates, such as fish or amphibians, retain a striking regenerative ability during their entire life, being able to repair heart injuries. There is a great interest in understanding both the mechanisms that allow heart plasticity during mammalian fetal life and those that permit adult cardiac regeneration in zebrafish. Here, we revise strategies for cardiomyocyte production during development and in response to injury and discuss differential regeneration ability of teleosts and mammals. Understanding these mechanisms may allow establishing alternative therapeutic approaches to cope with heart failure in humans.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Cardiovascular Development and Repair Department, Centro Nacional de Investigaciones, Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
883
|
Abstract
A major goal in cancer and aging research is to discriminate the biochemical modifications that happen locally that could account for the healthiness or malignancy of tissues. Senescence is one general antiproliferative cellular process that acts as a strong barrier for cancer progression, playing a crucial role in aging. Here, we focus on the current methods to assess cellular senescence, discriminating the advantages and disadvantages of several senescence biomarkers.
Collapse
Affiliation(s)
- Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | | |
Collapse
|
884
|
Cho HJ, Lee HJ, Youn SW, Koh SJ, Won JY, Chung YJ, Cho HJ, Yoon CH, Lee SW, Lee EJ, Kwon YW, Lee HY, Lee SH, Ho WK, Park YB, Kim HS. Secondary sphere formation enhances the functionality of cardiac progenitor cells. Mol Ther 2012; 20:1750-66. [PMID: 22713697 DOI: 10.1038/mt.2012.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loss of cardiomyocytes impairs cardiac function after myocardial infarction (MI). Recent studies suggest that cardiac stem/progenitor cells could repair the damaged heart. However, cardiac progenitor cells are difficult to maintain in terms of purity and multipotency when propagated in two-dimensional culture systems. Here, we investigated a new strategy that enhances potency and enriches progenitor cells. We applied the repeated sphere formation strategy (cardiac explant → primary cardiosphere (CS) formation → sphere-derived cells (SDCs) in adherent culture condition → secondary CS formation by three-dimensional culture). Cells in secondary CS showed higher differentiation potentials than SDCs. When transplanted into the infarcted myocardium, secondary CSs engrafted robustly, improved left ventricular (LV) dysfunction, and reduced infarct sizes more than SDCs did. In addition to the cardiovascular differentiation of transplanted secondary CSs, robust vascular endothelial growth factor (VEGF) synthesis and secretion enhanced neovascularization in the infarcted myocardium. Microarray pathway analysis and blocking experiments using E-selectin knock-out hearts, specific chemicals, and small interfering RNAs (siRNAs) for each pathway revealed that E-selectin was indispensable to sphere initiation and ERK/Sp1/VEGF autoparacrine loop was responsible for sphere maturation. These results provide a simple strategy for enhancing cellular potency for cardiac repair. Furthermore, this strategy may be implemented to other types of stem/progenitor cell-based therapy.
Collapse
Affiliation(s)
- Hyun-Jai Cho
- Cardiovascular Center & Department of Internal Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
885
|
Itou J, Kawakami H, Burgoyne T, Kawakami Y. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biol Open 2012; 1:739-46. [PMID: 23213467 PMCID: PMC3507221 DOI: 10.1242/bio.20121057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/14/2012] [Indexed: 01/07/2023] Open
Abstract
The zebrafish is a widely used model animal to study the regeneration of organs, such as the fin and heart. Their average lifetime is about 3 years, and recent studies have shown that zebrafish exhibit aging-related degeneration, suggesting the possibility that aging might affect regenerative potential. In order to investigate this possibility, we compared regeneration of the fin and heart after experimental amputation in young (6-12 month old) and old (26-36 month old) fish. Comparison of recovery rate of the caudal fin, measured every two or three days from one day post amputation until 13 days post amputation, show that fins in young and old fish regenerate at a similar rate. In the heart, myocardium regeneration and cardiomyocyte proliferation occurred similarly in the two groups. Moreover, neo-vascularization, as well as activation of fibroblast growth factor signaling, which is required for neo-vascularization, occurred similarly. The epicardial tissue is a thin layer tissue that covers the heart, and starts to express several genes immediately in response to injury. The expression of epicardial genes, such as wt1b and aldh1a2, in response to heart injury was comparable in two groups. Our results demonstrate that zebrafish preserve a life-long regenerative ability of the caudal fin and heart.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development ; Stem Cell Institute
| | | | | | | |
Collapse
|
886
|
Ellison GM, Nadal-Ginard B, Torella D. Optimizing cardiac repair and regeneration through activation of the endogenous cardiac stem cell compartment. J Cardiovasc Transl Res 2012; 5:667-77. [PMID: 22688972 DOI: 10.1007/s12265-012-9384-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 12/21/2022]
Abstract
Given the aging of the Western World and declining death rates due to acute coronary syndromes, the increasing trends in the magnitude and morbidity of heart failure (HF) are predicted to continue for the foreseeable future. It is imperative to develop effective therapies for the amelioration and prevention of HF. The search for the best cell type to be used in clinical protocols of cardiac regeneration is still on. That the adult mammalian heart harbors endogenous, multipotent cardiac stem/progenitor cells (eCSCs) and that cardiomyocytes are replaced throughout adulthood represent a paradigm shift in cardiovascular biology. The presence of eCSCs supports the view that the heart can repair itself if the eCSCs can be properly stimulated. Pending a better understanding of eCSC biology, it should be possible to replace autologous cell transplantation-based myocardial regeneration protocols with an "off-the-shelf," readily available, and effective regenerative/reparative therapy based on activation of the eCSCs in situ.
Collapse
Affiliation(s)
- Georgina M Ellison
- Stem Cell & Regenerative Biology Unit (BioStem), RISES, Liverpool John Moores University, Byrom Street, Liverpool, UK.
| | | | | |
Collapse
|
887
|
Patra C, Ricciardi F, Engel FB. The functional properties of nephronectin: An adhesion molecule for cardiac tissue engineering. Biomaterials 2012; 33:4327-35. [DOI: 10.1016/j.biomaterials.2012.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 01/22/2023]
|
888
|
Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials 2012; 33:4069-77. [DOI: 10.1016/j.biomaterials.2012.02.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/09/2012] [Indexed: 12/30/2022]
|
889
|
|
890
|
Chong JJH. Cell therapy for left ventricular dysfunction: an overview for cardiac clinicians. Heart Lung Circ 2012; 21:532-42. [PMID: 22658631 DOI: 10.1016/j.hlc.2012.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 12/17/2022]
Abstract
Cell therapies specifically targeting heart failure could greatly decrease morbidity and burgeoning health care costs worldwide. Due to the great number of cell types being investigated, navigating the cardiovascular regeneration field can be difficult. This brief review gives an overview of the main cell types being explored for cardiac cell therapy. These include populations from extra-cardiac sources (skeletal myoblasts, bone marrow derived mononuclear cells, endothelial progenitor cells, bone marrow or adipose derived mesenchymal stem cells and embryonic or induced pluripotent stem cells as well as newly discovered cardiac stem cell populations (isl1(+), c-kit(+), sca1(+), sca1(+)/pdgfrα(+), cardiosphere derived, cardiac side-population and epicardium derived cells). Although clinical trials using both groups of cell sources have been performed, the vast majority of studies have used bone marrow mononuclear cells. The current wave of clinical trials includes large studies refining specifics of bone marrow mononuclear cell therapy and early phase trials of mesenchymal stem cell and cardiac stem cell populations. Embryonic stem cell derived therapies are being studied in large animal models with the aim of swift progression to clinical trials. Lessons learnt from the intense investigation in this infant field have resulted in rapid translational progress and it is likely that several clinical products/protocols for cardiac repair will be available in the not too distant future.
Collapse
Affiliation(s)
- James J H Chong
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
891
|
Abstract
Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
892
|
|
893
|
Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 2012; 303:H133-43. [PMID: 22582087 DOI: 10.1152/ajpheart.00007.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac tissue engineering aims at repairing the diseased heart and developing cardiac tissues for basic research and predictive toxicology applications. Since the first description of engineered heart tissue 15 years ago, major development steps were directed toward these three goals. Technical innovations led to improved three-dimensional cardiac tissue structure and near physiological contractile force development. Automation and standardization allow medium throughput screening. Larger constructs composed of many small engineered heart tissues or stacked cell sheet tissues were tested for cardiac repair and were associated with functional improvements in rats. Whether these approaches can be simply transferred to larger animals or the human patients remains to be tested. The availability of an unrestricted human cardiac myocyte cell source from human embryonic stem cells or human-induced pluripotent stem cells is a major breakthrough. This review summarizes current tissue engineering techniques with their strengths and limitations and possible future applications.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center Hamburg, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
894
|
Srinivasan SP, Neef K, Treskes P, Liakopoulos OJ, Stamm C, Cowan DB, Madershahian N, Kuhn E, Slottosch I, Wittwer T, Wahlers T, Choi YH. Enhanced gap junction expression in myoblast-containing engineered tissue. Biochem Biophys Res Commun 2012; 422:462-468. [PMID: 22579687 DOI: 10.1016/j.bbrc.2012.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Transplantation of skeletal myoblasts (SMs) has been investigated as a potential cardiac cell therapy approach. SM are available autologously, predetermined for muscular differentiation and resistant to ischemia. Major hurdles for their clinical application are limitations in purity and yield during cell isolation as well as the absence of gap junction expression after differentiation into myotubes. Furthermore, transplanted SMs do not functionally or electrically integrate with the host myocardium. Here, we describe an efficient method for isolating homogeneous SM populations from neonatal mice and demonstrate persistent gap junction expression in an engineered tissue. This method resulted in a yield of 1.4 × 10(8) high-purity SMs (>99% desmin positive) after 10 days in culture from 162.12 ± 11.85 mg muscle tissue. Serum starvation conditions efficiently induced differentiation into spontaneously contracting myotubes that coincided with loss of gap junction expression. For mechanical conditioning, cells were integrated into engineered tissue constructs. SMs within tissue constructs exhibited long term survival, ordered alignment, and a preserved ability to differentiate into contractile myotubes. When the tissue constructs were subjected to passive longitudinal tensile stress, the expression of gap junction and cell adherence proteins was maintained or increased throughout differentiation. Our studies demonstrate that mechanical loading of SMs may provide for improved electromechanical integration within the myocardium, which could lead to more therapeutic opportunities.
Collapse
Affiliation(s)
- Sureshkumar Perumal Srinivasan
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Klaus Neef
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Philipp Treskes
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Oliver J Liakopoulos
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Christof Stamm
- Department of Cardiac and Thoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Douglas B Cowan
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA
| | - Navid Madershahian
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Elmar Kuhn
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Ingo Slottosch
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany
| | - Thorsten Wittwer
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiac and Thoracic Surgery, Heart Center of the University, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
895
|
Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials 2012; 33:5541-51. [PMID: 22575829 DOI: 10.1016/j.biomaterials.2012.04.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid (BMSC/SH) patches were implanted into myocardial infarction (MI) rat hearts to investigate the efficacies of them on enhancing left ventricular (LV) remodeling and cardiac repair. 45 rats were divided into four groups: Sham, MI (MI hearts, induced by a cryo-injury technique), SH and BMSC/SH (MI hearts with implantations of SH and BMSC/SH patches, respectively). After eight weeks of post-implantation, the patches for the SH and BMSC/SH groups were intact and well adhered on the MI zones with no and minor immunological responses, respectively, examined by a CD68 marker, while severe inflammation on the zones was observed for the MI group. The SH group showed the efficacy of cardiac repair on MI zones. Moreover, BMSC/SH group significantly improved the wall thickness of LV, assessed by echocardiography, and had high viability of delivery BMSC, largely reduced apoptosis, significantly promoted neo-vascularization and stimulated the secretions of various paracrine factors such as VEGF, examined by real-time PCR, in MI zones compared with those of the SH and MI groups. In conclusion, the therapeutic efficacies of using BMSC/SH patches for repairing MI hearts were demonstrated by showing the advantages of both bioactive SH patches and BMSC-based therapy.
Collapse
|
896
|
Kocabas F, Mahmoud AI, Sosic D, Porrello ER, Chen R, Garcia JA, DeBerardinis RJ, Sadek HA. The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res 2012; 5:654-65. [PMID: 22566269 DOI: 10.1007/s12265-012-9366-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/12/2012] [Indexed: 12/15/2022]
Abstract
Recent reports indicate that the adult mammalian heart is capable of limited, but measurable, cardiomyocyte turnover. While the lineage origin of the newly formed cardiomyocytes is not entirely understood, mounting evidence suggest that the epicardium and subepicardium may represent an important source of cardiac stem or progenitor cells. Stem cell niches are characterized by low oxygen tension, where stem cells preferentially utilize cytoplasmic glycolysis to meet their energy demands. However, it is unclear if the heart harbors similar hypoxic regions, or whether these regions house metabolically distinct cardiac progenitor populations. Here we identify the epicardium and subepicardium as the cardiac hypoxic niche based on [corrected] capillary density quantification, and localization of Hif-1α in the uninjured heart. We further demonstrate that this hypoxic microenvironment houses a metabolically distinct population of glycolytic progenitor cells. Finally, we show that Hif-1α regulates the glycolytic phenotype and progenitor properties of these cells. These findings highlight important anatomical and functional properties of the epicardial and subepicardial microenvironment, and the potential role of hypoxia signaling in regulation of cardiac progenitors.
Collapse
Affiliation(s)
- Fatih Kocabas
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
897
|
Abstract
The clinical use of stem cells, such as bone marrow-derived and, more recently, resident cardiac stem cells, offers great promise for treatment of myocardial infarction and heart failure. The epicardium-derived cells have also attracted attention for their angiogenic paracrine actions and ability to differentiate into cardiomyocytes and vascular cells when activated during cardiac injury. In a recent study, Chong and colleagues have described a distinct population of epicardium-derived mesenchymal stem cells that reside in a perivascular niche of the heart and have a broad multilineage potential. Exploring the therapeutic capacity of these cells will be an exciting future endeavor.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
898
|
Abstract
The mammalian heart loses its regenerative capacity during early postnatal stages; consequently, individuals surviving myocardial infarction are at risk of heart failure due to excessive fibrosis and maladaptive remodeling. There is an urgent need, therefore, to develop novel therapies for myocardial and coronary vascular regeneration. The epicardium-derived cells present a tractable resident progenitor source with the potential to stimulate neovasculogenesis and contribute de novo cardiomyocytes. The ability to revive ordinarily dormant epicardium-derived cells lies in the identification of key stimulatory factors, such as Tβ4, and elucidation of the molecular cues used in the embryo to orchestrate cardiovascular development. myocardial infarction injury signaling reactivates the adult epicardium; understanding the timing and magnitude of these signals will enlighten strategies for myocardial repair.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | | |
Collapse
|
899
|
Giraud MN, Guex AG, Tevaearai HT. Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiol Res Pract 2012; 2012:971614. [PMID: 22577591 PMCID: PMC3346974 DOI: 10.1155/2012/971614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/06/2012] [Indexed: 01/01/2023] Open
Abstract
Cell therapies have gained increasing interest and developed in several approaches related to the treatment of damaged myocardium. The results of multiple clinical trials have already been reported, almost exclusively involving the direct injection of stem cells. It has, however, been postulated that the efficiency of injected cells could possibly be hindered by the mechanical trauma due to the injection and their low survival in the hostile environment. It has indeed been demonstrated that cell mortality due to the injection approaches 90%. Major issues still need to be resolved and bed-to-bench followup is paramount to foster clinical implementations. The tissue engineering approach thus constitutes an attractive alternative since it provides the opportunity to deliver a large number of cells that are already organized in an extracellular matrix. Recent laboratory reports confirmed the interest of this approach and already encouraged a few groups to investigate it in clinical studies. We discuss current knowledge regarding engineered tissue for myocardial repair or replacement and in particular the recent implementation of nanotechnological approaches.
Collapse
Affiliation(s)
- Marie-Noëlle Giraud
- Cardiology, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Anne Géraldine Guex
- Clinic for Cardiovascular Surgery, Inselspital Berne, Berne University Hospital and University of Berne, Switzerland
- Empa, Swiss Federal Laboratories for Material Science and Technology, 9014 St. Gallen, Switzerland
| | - Hendrik T. Tevaearai
- Clinic for Cardiovascular Surgery, Inselspital Berne, Berne University Hospital and University of Berne, Switzerland
| |
Collapse
|
900
|
Chablais F, Jazwinska A. The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development 2012; 139:1921-30. [PMID: 22513374 DOI: 10.1242/dev.078543] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammals respond to a myocardial infarction by irreversible scar formation. By contrast, zebrafish are able to resolve the scar and to regenerate functional cardiac muscle. It is not known how opposing cellular responses of fibrosis and new myocardium formation are spatially and temporally coordinated during heart regeneration in zebrafish. Here, we report that the balance between the reparative and regenerative processes is achieved through Smad3-dependent TGFβ signaling. The type I receptor alk5b (tgfbr1b) is expressed in both fibrotic and cardiac cells of the injured heart. TGFβ ligands are locally induced following cryoinjury and activate the signaling pathway both in the infarct area and in cardiomyocytes in the vicinity of the trauma zone. Inhibition of the relevant type I receptors with the specific chemical inhibitor SB431542 qualitatively altered the infarct tissue and completely abolished heart regeneration. We show that transient scar formation is an essential step to maintain robustness of the damaged ventricular wall prior to cardiomyocyte replacement. Taking advantage of the reversible action of the inhibitor, we dissected the multifunctional role of TGFβ signaling into three crucial processes: collagen-rich scar deposition, Tenascin C-associated tissue remodeling at the infarct-myocardium interface, and cardiomyocyte proliferation. Thus, TGFβ signaling orchestrates the beneficial interplay between scar-based repair and cardiomyocyte-based regeneration to achieve complete heart regeneration.
Collapse
Affiliation(s)
- Fabian Chablais
- Unit of Anatomy, Department of Medicine, University of Fribourg, Rte A. Gockel 1, 1700 Fribourg, Switzerland
| | | |
Collapse
|