851
|
Fucito A, Lucchetti C, Giordano A, Romano G. Genetic and epigenetic alterations in breast cancer: what are the perspectives for clinical practice? Int J Biochem Cell Biol 2007; 40:565-75. [PMID: 18061512 PMCID: PMC2729585 DOI: 10.1016/j.biocel.2007.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 12/28/2022]
Abstract
The worldwide incidence of breast cancer affects 1.2 million women each year. In contrast to the high occurrence of this malady, a decline in mortality is reported among industrialized countries. In this respect, both awareness campaigns and substantial progress achieved in therapy and diagnosis allowed for the enhancement of the survival rate in patients with breast cancer. Undoubtedly, oncology research programs played a relevant role in the improvement of therapeutics and diagnostics for breast cancer. Major strides were reported, especially over the last decade and a half, in better understanding molecular and cellular biology events involved in breast cancer pathogenesis and progression of the disease. However, therapeutic approaches for the treatment of patients with breast cancer need further improvement. Therapeutic interventions can chronically compromise both the state of health and quality of life of breast cancer survivors. In addition, current therapeutic approaches have not significantly improved the survival rate in patients with metastatic disease. On these grounds, it is necessary to develop more efficient therapeutics and diagnostic tools, which can improve the health and quality of life of breast cancer survivors and increase the survival rate in patients with metastatic disease. In this respect, the field of cancer research has placed a particular emphasis on the elucidation of genetic and epigenetic alterations that may lead to the pathogenesis of breast cancer and contribute to its progression.
Collapse
Affiliation(s)
- Alfredo Fucito
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
852
|
Lopez CA, Feng FY, Herman JM, Nyati MK, Lawrence TS, Ljungman M. Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation. Int J Radiat Oncol Biol Phys 2007; 69:214-20. [PMID: 17707275 DOI: 10.1016/j.ijrobp.2007.04.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 04/15/2007] [Accepted: 04/18/2007] [Indexed: 01/25/2023]
Abstract
PURPOSE Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. METHODS AND MATERIALS Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. RESULTS Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G(1) arrest, increase in sub-G(1) fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (+/- SE) of 1.5 (+/- 0.2) and 1.3 (+/- 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. CONCLUSIONS Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.
Collapse
Affiliation(s)
- Carlos A Lopez
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109-0010, USA.
| | | | | | | | | | | |
Collapse
|
853
|
Boquest AC, Noer A, Collas P. Epigenetic programming of mesenchymal stem cells from human adipose tissue. ACTA ACUST UNITED AC 2007; 2:319-29. [PMID: 17848719 DOI: 10.1007/bf02698059] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/01/2023]
Abstract
Stromal stem cells identified in various adult mesenchymal tissues (commonly called mesenchymal stem cells [MSCs]) have in past years received more attention as a result of their potential interest as replacement cells in regenerative medicine. An abundant and easily accessible source of adult human MSCs are stem cells harvested from liposuction material. Similarly to bone marrow-derived MSCs, human adipose tissue-derived stem cells (ASCs) can give rise to a variety of cell types in vitro and in vivo; however, they have a propensity to differentiate into primarily mesodermal lineages. Even so, their capacity to differentiate into nonadipogenic mesodermal pathways seems to be restricted. Emerging DNA methylation profiles at adipogenic and nonadipogenic gene promoters in freshly isolated, cultured, or differentiated ASCs aim to provide an epigenetic explanation for this restrictive differentiation potential. A review of these studies indicates that human ASCs are epigenetically marked by mosaic hypomethylation of adipogenic promoters, whereas nonadipogenic lineage-specific promoters are hypermethylated. Surprisingly, in vitro differentiation toward various pathways maintains the overall methylation profiles of undifferentiated cells, raising the hypothesis that ASCs are at least epigenetically preprogrammed for adipogenesis. Novel attempts at reprogramming the epigenome of MSCs have been initiated to enhance the differentiation capacity of these cells.
Collapse
Affiliation(s)
- Andrew C Boquest
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, Blindern, 0317 Oslo, Norway
| | | | | |
Collapse
|
854
|
Abstract
Chromatin structure plays a vital role in the transmission of heritable gene expression patterns. The recent application of mass spectrometry to histone biology provides several striking insights into chromatin regulation. The continuing identification of new histone post-translational modifications is revolutionizing the ways in which we think about how access to genomic DNA is controlled. While post-translational modifications of the flexible histone tails continue to be an active area of investigation, the recent discovery of multiple modifications in the structured globular domains of histones provides new insights into how the nucleosome works. Recent experiments underscore the importance of a subgroup of these modifications: those that regulate histone-DNA interactions on the lateral surface of the nucleosome. This information highlights an emerging new paradigm in chromatin control, that of the epigenetic regulation of nucleosome mobility.
Collapse
Affiliation(s)
- Michael S Cosgrove
- Syracuse University, Department of Biology, Syracuse, New York, NY 13244, USA.
| |
Collapse
|
855
|
Kholod N, Boniver J, Delvenne P. A new dimethyl sulfoxide-based method for gene promoter methylation detection. J Mol Diagn 2007; 9:574-81. [PMID: 17916602 DOI: 10.2353/jmoldx.2007.070025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The identification of gene promoter methylation is a useful tool for the molecular diagnosis of human diseases. We have developed a new PCR-based technique for detecting the methylation status of CpG islands of gene promoters. This new method, named methyl-sensitive dimethyl sulfoxide-PCR (Ms-DMSO-PCR), is based on the finding that methylated and unmethylated DNAs show a different sensitivity to the amount of DMSO used in the PCR reaction. For the amplification of methylated DNA, more DMSO is required in comparison to unmethylated DNA. This finding resulted in the development of a simple PCR screening of CpG islands with addition of DMSO in the range from 0 to 8% (v/v), and the same pair of primers is sufficient for distinguishing hyper- or hypomethylated gene promoters from normally methylated sequences. This new technique is a one-step procedure and does not require any modifications of DNA or expensive equipment. Therefore, Ms-DMSO-PCR has the potential to be widely used for clinical applications as well in basic research.
Collapse
Affiliation(s)
- Natalia Kholod
- Department of Pathology, University of Liege, CHU Sart Tilman, 4000 Liege, Belgium.
| | | | | |
Collapse
|
856
|
Macaluso M, Montanari M, Noto PB, Gregorio V, Bronner C, Giordano A. Epigenetic modulation of estrogen receptor-alpha by pRb family proteins: a novel mechanism in breast cancer. Cancer Res 2007; 67:7731-7. [PMID: 17699777 DOI: 10.1158/0008-5472.can-07-1476] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-alpha (ER-alpha) plays a crucial role in normal breast development and has also been linked to mammary carcinogenesis and clinical outcome in breast cancer patients. However, ER-alpha gene expression can change during the course of disease and, consequently, therapy resistance can occur. The molecular mechanism governing ER-alpha transcriptional activity and/or silencing is still unclear. Here, we showed that the presence of a specific pRb2/p130 multimolecular complex on the ER-alpha promoter strongly correlates with the methylation status of this gene. Furthermore, we suggested that pRb2/p130 could cooperate with ICBP90 (inverted CCAAT box binding protein of 90 kDa) and DNA methyltransferases in maintaining a specific methylation pattern of ER-alpha gene. The sequence of epigenetic events for establishing and maintaining the silenced state of ER-alpha gene can be locus- or pathway- specific, and the local remodeling of ER-alpha chromatin structure by pRb2/p130 multimolecular complexes may influence its susceptibility to specific DNA methylation. Our novel hypothesis could provide a basis for understanding how the complex pattern of ER-alpha methylation and transcriptional silencing is generated and for understanding the relationship between this pattern and its function during the neoplastic process.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | |
Collapse
|
857
|
Moskalyov EA, Eprintsev AT, Hoheisel JD. DNA methylation profiling in cancer: From single nucleotides towards the methylome. Mol Biol 2007. [DOI: 10.1134/s0026893307050068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
858
|
Tao R, de Zoeten EF, Ozkaynak E, Wang L, Li B, Greene MI, Wells AD, Hancock WW. Histone deacetylase inhibitors and transplantation. Curr Opin Immunol 2007; 19:589-95. [PMID: 17719760 PMCID: PMC2693068 DOI: 10.1016/j.coi.2007.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/09/2007] [Accepted: 07/11/2007] [Indexed: 01/08/2023]
Abstract
Simply detecting the presence or absence of Foxp3, a transcription factor characteristic of naturally occurring CD4+ CD25+ regulatory T cells (Tregs), now appears of minimal value in predicting the outcome of immunologic responses, since dividing human CD4+ effector T cells can induce Foxp3 without attaining repressive functions, and additional molecular interactions, as well epigenetic events, affect Foxp3-dependent Treg functions in humans and mice. Experimentally, in vivo and in vitro studies show histone deacetylase inhibitors (HDACi) can enhance the numbers and suppressive function of regulatory T cells (Tregs) by promoting Foxp3+ cell production, enhancing chromatin remodeling within Tregs, and inducing acetylation of Foxp3 protein itself. Human studies consistent with a role for HDACi in controlling Fox3-dependent Treg functions are also available. We review these molecular interactions and how they may be exploited therapeutically to enhance Treg-dependent functions, including post-transplantation.
Collapse
Affiliation(s)
- Ran Tao
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute and Biesecker Pediatric Liver Center, Children’s Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, PA 19104-4318
| | - Edwin F. de Zoeten
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104-4318
| | - Engin Ozkaynak
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute and Biesecker Pediatric Liver Center, Children’s Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, PA 19104-4318
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute and Biesecker Pediatric Liver Center, Children’s Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, PA 19104-4318
| | - Bin Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082
| | - Andrew D. Wells
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute and Biesecker Pediatric Liver Center, Children’s Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, PA 19104-4318
| | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute and Biesecker Pediatric Liver Center, Children’s Hospital of Philadelphia, and University of Pennsylvania, Philadelphia, PA 19104-4318
| |
Collapse
|
859
|
Hamblett CL, Methot JL, Mampreian DM, Sloman DL, Stanton MG, Kral AM, Fleming JC, Cruz JC, Chenard M, Ozerova N, Hitz AM, Wang H, Deshmukh SV, Nazef N, Harsch A, Hughes B, Dahlberg WK, Szewczak AA, Middleton RE, Mosley RT, Secrist JP, Miller TA. The discovery of 6-amino nicotinamides as potent and selective histone deacetylase inhibitors. Bioorg Med Chem Lett 2007; 17:5300-9. [PMID: 17761416 DOI: 10.1016/j.bmcl.2007.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/08/2007] [Accepted: 08/13/2007] [Indexed: 11/17/2022]
Abstract
This communication highlights the development of a nicotinamide series of histone deacetylase inhibitors within the benzamide structural class. Extensive exploration around the nicotinamide core led to the discovery of a class I selective HDAC inhibitor that possesses excellent intrinsic and cell-based potency, acceptable ancillary pharmacology, favorable pharmacokinetics, sustained pharmacodynamics in vitro, and achieves in vivo efficacy in an HCT116 xenograft model.
Collapse
Affiliation(s)
- Christopher L Hamblett
- Department of Drug Design and Optimization-Medicinal Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
860
|
Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia. Food Chem Toxicol 2007; 46:1346-59. [PMID: 17976883 DOI: 10.1016/j.fct.2007.09.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 12/26/2022]
Abstract
The epithelial surfaces of the mammalian alimentary tract are characterised by very high rates of cell proliferation and DNA synthesis, and in humans they are highly susceptible to cancer. The role of somatic mutations as drivers of carcinogenesis in the alimentary tract is well established, but the importance of gene silencing by epigenetic mechanisms is increasingly recognised. Methylation of CpG islands is an important component of the epigenetic code that regulates gene expression during development and normal cellular differentiation, and a number of genes are well known to become abnormally methylated during the development of tumours of the oesophagus, stomach and colorectum. Aberrant patterns of DNA methylation develop as a result of pathological processes such as chronic inflammation, and in response to various dietary factors, including imbalances in the supply of methyl donors, particularly folates, and exposure to DNA methyltransferase inhibitors, which include polyphenols and possibly isothiocyanates from plant foods. However the importance of these environmental interactions in human health and disease remains to be established. Recent moves to modify the exposure of human populations to folate, by mandatory supplementation of cereal foods, emphasise the importance of understanding the susceptibility of the human epigenome to dietary and other environmental effects.
Collapse
|
861
|
Choi SH, Byun HM, Kwan JM, Issa JPJ, Yang AS. Hydroxycarbamide in combination with azacitidine or decitabine is antagonistic on DNA methylation inhibition. Br J Haematol 2007; 138:616-23. [PMID: 17686055 DOI: 10.1111/j.1365-2141.2007.06707.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azacitidine and decitabine are cytidine analogues that inhibit DNA methylation, and are used to treat myeloid haematological malignancies. Hydroxycarbamide (HC) (also known as hydroxyurea), a ribonucleotide reductase (RR) inhibitor, blocks the conversion of ribonucleotides to deoxyribonucleotides, and is also used to treat leukaemia and sickle-cell disease. Azacitidine is a ribonucleoside and decitabine is a deoxyribonucleoside; therefore, we hypothesized that inhibition of RR by HC would be antagonistic to azacitidine and synergistic to decitabine. HL-60 and T24 cancer cell lines were treated with azacitidine or decitabine in combination with HC and DNA methylation of LRE1, MAGEA1 and CDKN2A was quantitatively measured by bisulphite-polymerase chain reaction pyrosequencing. Surprisingly, we found that HC blocked the ability of both azacitidine and decitabine to inhibit DNA methylation and this antagonistic effect was attributable to the arrest of the cell cycle induced by HC. However, this antagonism could be avoided with sequential treatment of HC followed by azacitidine or decitabine. This data suggest that concurrent combination of HC blocks the ability of azacitidine and decitabine to inhibit DNA methylation and therefore these drugs should be used sequentially.
Collapse
Affiliation(s)
- Si Ho Choi
- Division of Hematology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
862
|
Dehmel F, Ciossek T, Maier T, Weinbrenner S, Schmidt B, Zoche M, Beckers T. Trithiocarbonates—Exploration of a new head group for HDAC inhibitors. Bioorg Med Chem Lett 2007; 17:4746-52. [PMID: 17606370 DOI: 10.1016/j.bmcl.2007.06.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/16/2022]
Abstract
Inhibition of histone deacetylases class I/II enzymes is a new, promising approach for cancer therapy. In the present study, we disclose a new structural class of HDAC inhibitors with the trithiocarbonate motif. A clear structure-activity-relationship was obtained for the cap-linker motif and the putative Zn(2+) complexing head group. Selected analogs display potent inhibition of HDAC enzymatic activity and a cellular potency comparable to that of suberoylanilide hydroxamic acid (SAHA), recently approved for treatment of patients with advanced cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Florian Dehmel
- Altana Pharma AG, a Member of the Nycomed Group, Byk-Gulden-Strasse 2, D-78467, Germany.
| | | | | | | | | | | | | |
Collapse
|
863
|
Sigalotti L, Fratta E, Coral S, Cortini E, Covre A, Nicolay HJM, Anzalone L, Pezzani L, Di Giacomo AM, Fonsatti E, Colizzi F, Altomonte M, Calabrò L, Maio M. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 2007; 212:330-44. [PMID: 17458893 DOI: 10.1002/jcp.21066] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.
Collapse
Affiliation(s)
- Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
864
|
Dejeux E, Audard V, Cavard C, Gut IG, Terris B, Tost J. Rapid identification of promoter hypermethylation in hepatocellular carcinoma by pyrosequencing of etiologically homogeneous sample pools. J Mol Diagn 2007; 9:510-20. [PMID: 17690210 PMCID: PMC1975099 DOI: 10.2353/jmoldx.2007.060209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant DNA methylation patterns have been identified in a variety of human diseases, particularly cancer. Pyrosequencing has evolved in recent years as a sensitive and accurate method for the analysis and quantification of the degree of DNA methylation in specific target regions. However, the number of candidate genes that can be analyzed in clinical specimens is often restricted by the limited amount of sample available. Here, we present a novel screening approach that enables the rapid identification of differentially methylated regions such as promoters by pyrosequencing of etiologically homogeneous sample pools after bisulfite treatment. We exemplify its use by the analysis of five genes (CDKN2A, GSTP1, MLH1, IGF2, and CTNNB1) involved in the pathogenesis of human hepatocellular carcinoma using pools stratified for different parameters of clinical importance. Results were confirmed by the individual analysis of the samples. The screening identified all genes displaying differential methylation successfully, and no false positives occurred. Quantitative comparison of the pools and the samples in the pool analyzed individually showed a deviation of approximately 1.5%, making the method ideally suited for the identification of diagnostic markers based on DNA methylation while saving precious DNA material.
Collapse
Affiliation(s)
- Emelyne Dejeux
- Laboratory for Epigenetics, Centre National de Génotypage, Bâtiment G2, 2 rue Gaston Crémieux, CP 5721, 91057 Evry Cedex, France
| | | | | | | | | | | |
Collapse
|
865
|
Bjornsson HT, Brown LJ, Fallin MD, Rongione MA, Bibikova M, Wickham E, Fan JB, Feinberg AP. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst 2007; 99:1270-3. [PMID: 17686827 PMCID: PMC5533193 DOI: 10.1093/jnci/djm069] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of imprinting (LOI) of the IGF2 gene (which encodes insulin-like growth factor II) is the most common genetic or epigenetic alteration in Wilms tumor; LOI involves aberrant activation of the normally repressed maternally inherited allele. We found previously that LOI of IGF2 occurs in approximately half of all Wilms tumors (i.e., those arising from lineage-committed nephrogenic progenitor cells). We investigated whether LOI of IGF2 is associated with relaxation of imprinting at loci other than IGF2 or with widespread alterations in DNA methylation. We stratified 59 Wilms tumor samples by IGF2 LOI status by use of hot-stop reverse transcription-polymerase chain reaction and/or methylation analysis of the differentially methylated region of the H19 gene and identified 31 samples with and 28 without LOI. We used quantitative allele-specific expression analysis to determine whether six other imprinted genes (i.e., H19, KCNQ1, LIT1, TSSC5, GRB10, and MEG3) had subtle LOI. No statistically significant difference in allele-specific expression between Wilms tumor with or without LOI was found for LIT1, TSSC5, GRB10, and MEG3. For the KCNQ1 gene there was a slight difference between the groups with (37.0%, 95% confidence interval [CI] = 31.8% to 42.2%) and without (27.7%, 95% CI = 21.8% to 33.5%) LOI (P = .02 for F test of group differences in a mixed-effects model). For H19, we also found a slight difference between the groups with (7.5%, 95% CI = 2.4% to 12.7%) and without (2.2%, 95% CI = -3.2% to 7.6%) LOI of IGF2 (P = .15 for F test). In 27 tumor samples, we also used a microarray technique to analyze methylation of 378 genes, 38 of which were suspected or confirmed imprinted genes. We found that statistically significant alterations in only the differentially methylated region of the H19 gene were associated with LOI of IGF2. Thus, epigenetic alterations in Wilms tumors are not widespread, supporting the gene and lineage specificity of LOI of IGF2.
Collapse
Affiliation(s)
- Hans T Bjornsson
- Center for Epigenetics, Institute of Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
866
|
|
867
|
Ciossek T, Julius H, Wieland H, Maier T, Beckers T. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening. Anal Biochem 2007; 372:72-81. [PMID: 17868634 DOI: 10.1016/j.ab.2007.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/16/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.
Collapse
Affiliation(s)
- Thomas Ciossek
- Therapeutic Area Oncology, ALTANA Pharma-a member of the Nycomed Group, Byk-Gulden Str. 2, 78467 Konstanz, Germany
| | | | | | | | | |
Collapse
|
868
|
Wei GH, Zhao GW, Song W, Hao DL, Lv X, Liu DP, Liang CC. Mechanisms of human gamma-globin transcriptional induction by apicidin involves p38 signaling to chromatin. Biochem Biophys Res Commun 2007; 363:889-94. [PMID: 17910885 DOI: 10.1016/j.bbrc.2007.06.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/08/2007] [Indexed: 01/27/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are one of promising drugs to induce fetal hemoglobin (HbF) for treatment of sickle cell disease (SCD) and beta-thalassemia. The HDAC inhibitor apicidin was recently reported as a powerful inducer of HbF via a mechanism involving p38 signaling. In this study, we further investigated the signaling effects on the transcriptional activation of gamma-globin gene. First, we compared histone 3 (H3) acetylation patterns of approximately 70kb beta-globin loci in K562 erythroid versus HeLa cells upon apicidin treatment by chromatin immunoprecipitation assays. The results showed that the level of H3 acetylation was globally increased from the LCR to the promoter of gamma-globin gene in K562 cells, but not in non-erythroid, HeLa cells. Inhibition of p38 signaling blocks the effects of apicidin-induced gamma-globin expression and H3 acetylation. In parallel, we assessed the recruitment of transcriptional complex to beta-globin locus following apicidin treatment. The binding of GATA-1, Sp1 and RNA polymerase II (pol II) were observed to increase over several regulatory regions of beta-globin locus. Inhibitor study revealed that p38 pathway was not involved in their recruitments by apicidin. Collectively, our results provide a molecular basis to elucidate the underlying mechanisms involving p38 signaling pathway in the inducement of gamma-globin transcriptional expression by apicidin.
Collapse
Affiliation(s)
- Gong-Hong Wei
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100005, PR China
| | | | | | | | | | | | | |
Collapse
|
869
|
El-Khoury V, Breuzard G, Fourré N, Dufer J. The histone deacetylase inhibitor trichostatin A downregulates human MDR1 (ABCB1) gene expression by a transcription-dependent mechanism in a drug-resistant small cell lung carcinoma cell line model. Br J Cancer 2007; 97:562-73. [PMID: 17667922 PMCID: PMC2360351 DOI: 10.1038/sj.bjc.6603914] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tumour drug-resistant ABCB1 gene expression is regulated at the chromatin level through epigenetic mechanisms. We examined the effects of the histone deacetylase inhibitor trichostatin A (TSA) on ABCB1 gene expression in small cell lung carcinoma (SCLC) drug-sensitive (H69WT) or etoposide-resistant (H69VP) cells. We found that TSA induced an increase in ABCB1 expression in drug-sensitive cells, but strongly decreased it in drug-resistant cells. These up- and downregulations occurred at the transcriptional level. Protein synthesis inhibition reduced these modulations, but did not completely suppress them. Differential temporal patterns of histone acetylation were observed at the ABCB1 promoter: increase in H4 acetylation in both cell lines, but different H3 acetylation with a progressive increase in H69WT cells but a transient one in H69VP cells. ABCB1 regulations were not related with the methylation status of the promoter -50GC, -110GC, and Inr sites, and did not result in further changes to these methylation profiles. Trichostatin A treatment did not modify MBD1 binding to the ABCB1 promoter and similarly increased PCAF binding in both H69 cell lines. Our results suggest that in H69 drug-resistant SCLC cell line TSA induces downregulation of ABCB1 expression through a transcriptional mechanism, independently of promoter methylation, and MBD1 or PCAF recruitment.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Butyrates/pharmacology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/pathology
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- DNA Methylation
- Down-Regulation
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Histone Acetyltransferases/metabolism
- Histone Deacetylase Inhibitors
- Histones/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Models, Biological
- Promoter Regions, Genetic/drug effects
- Response Elements/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic
- p300-CBP Transcription Factors
Collapse
Affiliation(s)
- V El-Khoury
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
| | - G Breuzard
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
| | - N Fourré
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
| | - J Dufer
- Unité MéDIAN-CNRS UMR 6142, IFR 53, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, F-51096 Reims, France
- E-mail:
| |
Collapse
|
870
|
Magnaghi-Jaulin L, Eot-Houllier G, Fulcrand G, Jaulin C. Histone deacetylase inhibitors induce premature sister chromatid separation and override the mitotic spindle assembly checkpoint. Cancer Res 2007; 67:6360-7. [PMID: 17616695 DOI: 10.1158/0008-5472.can-06-3012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase inhibitors (HDACI) are powerful antiproliferative drugs, and are currently undergoing clinical trials as antitumor agents. It would be valuable for both cancer therapy and our knowledge of basic cellular processes to understand the mechanisms by which HDACIs block cell proliferation. Most current models postulate that HDACIs allow the reexpression of tumor suppressor genes silenced in cancer cells. However, other mechanisms, distinct from transcription regulation, may participate in HDACI antiproliferative properties. We report that HDACI treatment induces premature sister chromatid separation in cells in which the mitotic spindle assembly checkpoint (SAC) has already been activated. This effect was transcription-independent. In addition, HDACI-treated mitotic cells displayed SAC inactivation characteristics, including anaphase-promoting complex/cyclosome target degradation, cyclin-dependent kinase 1 inactivation, histone H3 dephosphorylation, and loss of the SAC component MAD2 from the kinetochore. Thus, HDAC inhibition renders the SAC ineffective. Our findings help elucidate the molecular mechanisms of proliferative cell death induced by HDACI treatment and may allow new HDACI-based preclinical and clinical trial protocols to be redesigned so as to target mitosis.
Collapse
Affiliation(s)
- Laura Magnaghi-Jaulin
- INSERM EMI 229, CRLC Val d'Aurelle-Paul Lamarque, and Université MONTPELLIER1, Montpellier, France
| | | | | | | |
Collapse
|
871
|
Yoo CB, Jeong S, Egger G, Liang G, Phiasivongsa P, Tang C, Redkar S, Jones PA. Delivery of 5-aza-2'-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 2007; 67:6400-8. [PMID: 17616700 DOI: 10.1158/0008-5472.can-07-0251] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The major goal of epigenetic therapy is to reverse aberrant promoter hypermethylation and restore normal function of tumor suppressor genes by the use of chromatin-modifying drugs. Decitabine, or 5-aza-2'-deoxycytidine (5-aza-CdR), is a well-characterized drug that is now Food and Drug Administration approved for the treatment of myelodysplastic syndrome. Although 5-aza-CdR is an extremely potent inhibitor of DNA methylation, it is subject to degradation by hydrolytic cleavage and deamination by cytidine deaminase. We show that short oligonucleotides containing a 5-aza-CdR can also inhibit DNA methylation in cancer cells at concentrations comparable with 5-aza-CdR. Detailed studies with S110, a dinucleotide, showed that it works via a mechanism similar to that of 5-aza-CdR after incorporation of its aza-moiety into DNA. Stability of the triazine ring in aqueous solution was not improved in the S110 dinucleotide; however, deamination by cytidine deaminase was dramatically decreased. This is the first demonstration of the use of short oligonucleotides to provide effective delivery and cellular uptake of a nucleotide drug and protection from enzymatic degradation. This approach may pave the way for more stable and potent inhibitors of DNA methylation as well as provide means for improving existing therapeutics.
Collapse
Affiliation(s)
- Christine B Yoo
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
872
|
Shi J, Zhao Y, Ishii T, Hu W, Sozer S, Zhang W, Bruno E, Lindgren V, Xu M, Hoffman R. Effects of Chromatin-Modifying Agents on CD34+ Cells from Patients with Idiopathic Myelofibrosis. Cancer Res 2007; 67:6417-24. [PMID: 17616702 DOI: 10.1158/0008-5472.can-07-0572] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Idiopathic myelofibrosis (IM) is likely the consequence of both the acquisition of genetic mutations and epigenetic changes that silence critical genes that control cell proliferation, differentiation, and apoptosis. We have explored the effects of the sequential treatment with the DNA methyltransferase inhibitor, decitabine [5-aza-2'-deoxycytidine (5azaD)], followed by the histone deacetylase inhibitor, trichostatin A (TSA), on the behavior of IM CD34(+) cells. Unlike normal CD34(+) cells where 5azaD/TSA treatment leads to the expansion of CD34(+) cells and marrow-repopulating cells, treatment of IM CD34(+) cells results in a reduction of the number of total cells, CD34(+) cells, and assayable hematopoietic progenitor cells (HPC). In IM, HPCs are either heterozygous or homozygous for the JAK2V617F mutation or possess wild-type JAK2 in varying proportions. Exposure of IM CD34(+) cells to 5azaD/TSA resulted in a reduction of the proportion of JAK2V617F-positive HPCs in 83% of the patients studied and the reduction in the proportion of homozygous HPCs in 50% of the patients. 5azaD/TSA treatment led to a dramatic reduction in the number of HPCs that contained chromosomal abnormalities in two JAK2V617F-negative IM patients. IM is characterized by constitutive mobilization of HPCs, which has been partly attributed to decreased expression of the chemokine receptor CXCR4. Treatment of IM CD34(+) cells with 5azaD/TSA resulted in the up-regulation of CXCR4 expression by CD34(+) cells and restoration of their migration in response to SDF-1. These data provide a rationale for sequential therapy with chromatin-modifying agents for patients with IM.
Collapse
Affiliation(s)
- Jun Shi
- Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
873
|
Keyes MK, Jang H, Mason JB, Liu Z, Crott JW, Smith DE, Friso S, Choi SW. Older age and dietary folate are determinants of genomic and p16-specific DNA methylation in mouse colon. J Nutr 2007; 137:1713-7. [PMID: 17585020 DOI: 10.1093/jn/137.7.1713] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Older age and inadequate folate intake are strongly implicated as important risk factors for colon cancer and each is associated with altered DNA methylation. This study was designed to determine the effects of aging and dietary folate on select features of DNA methylation in the colon that are relevant to carcinogenesis. Old (18 mo; n = 34) and young (4 mo; n = 32) male C57BL/6 mice were randomly divided into 3 groups and fed diets containing 0, 4.5, or 18 mumol folate/kg (deplete, replete, and supplemented groups, respectively) for 20 wk. Genomic DNA methylation and p16 promoter methylation in the colonic mucosa were analyzed by liquid chromatography/electrospray ionization/MS and methylation-specific PCR, respectively. p16 gene expression was determined by real-time RT-PCR. Old mice had significantly lower genomic DNA methylation compared with young mice at each level of dietary folate (4.5 +/- 0.2, 4.8 +/- 0.1, and 4.9 +/- 0.1 vs. 6.0 +/- 0.1, 5.3 +/- 0.2, and 5.9 +/- 0.2%, in folate-deplete, -replete, and -supplemented groups, respectively, P < 0.05) and markedly higher p16 promoter methylation (61.0 +/- 2.7, 69.7 +/- 6.9, and 87.1 +/- 13.4 vs. 10.8 +/- 3.6, 8.4 +/- 1.8, and 4.9 +/- 1.7%, respectively, P < 0.05). In old mice, genomic and p16 promoter DNA methylation each increased in a manner that was directly related to dietary folate (P(trend) = 0.009). Age-related enhancement of p16 expression occurred in folate-replete (P = 0.001) and folate-supplemented groups (P = 0.041), but not in the folate-deplete group. In conclusion, aging decreases genomic DNA methylation and increases promoter methylation and expression of p16 in mouse colons. This effect is dependent on the level of dietary folate.
Collapse
Affiliation(s)
- Mary K Keyes
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02478, USA
| | | | | | | | | | | | | | | |
Collapse
|
874
|
St-Pierre Y. Drug discovery using the regulation of gene expression. Expert Opin Drug Discov 2007; 2:987-1000. [PMID: 23484818 DOI: 10.1517/17460441.2.7.987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The expression of a disease-relevant protein is controlled by a transcriptional program specifically regulated at all stages of normal development and during the adult life. Thus, regulation of gene expression as an approach to drug discovery is conceptually appealing because it provides a rational basis for molecular strategies aimed at modulating gene expression in given cell types and/or at a given time. Indeed, numerous pharmacologic agents have been identified that can either restore or suppress disease-relevant protein expression. In this review, the author critically examines new strategies and methodologies that are being used and developed to identify and validate new therapeutic targets by taking advantage of our knowledge on mechanisms regulating their expression at the transcriptional and post-transcriptional levels. The author also examines the impact of genome-wide approaches and methods aimed at controlling epigenetic mechanisms of gene regulation and concludes by extrapolating on future trends.
Collapse
Affiliation(s)
- Yves St-Pierre
- University of Québec, INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, Québec, H7V 1B7, Canada +1 450 686 5354 ; +1 450 686 5501 ;
| |
Collapse
|
875
|
Valinluck V, Sowers LC. Inflammation-Mediated Cytosine Damage: A Mechanistic Link between Inflammation and the Epigenetic Alterations in Human Cancers: Figure 1. Cancer Res 2007; 67:5583-6. [PMID: 17575120 DOI: 10.1158/0008-5472.can-07-0846] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant methylation patterns have long been known to exist in the promoter regions of key regulatory genes in the DNA of tumor cells. However, the mechanisms by which these methylation patterns become altered during the transformation of normal cells to tumor cells have remained elusive. We have recently shown in in vitro studies that inflammation-mediated halogenated cytosine damage products can mimic 5-methylcytosine in directing enzymatic DNA methylation and in enhancing the binding of methyl-binding proteins whereas certain oxidative damage products inhibit both. We have therefore proposed that cytosine damage products could potentially interfere with normal epigenetic control by altering DNA-protein interactions critical for gene regulation and the heritable transmission of methylation patterns. These inflammation-mediated cytosine damage products may provide, in some cases, a mechanistic link between inflammation and cancer.
Collapse
Affiliation(s)
- Victoria Valinluck
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California 92354, USA
| | | |
Collapse
|
876
|
Suuronen T, Nuutinen T, Ryhänen T, Kaarniranta K, Salminen A. Epigenetic regulation of clusterin/apolipoprotein J expression in retinal pigment epithelial cells. Biochem Biophys Res Commun 2007; 357:397-401. [PMID: 17420006 DOI: 10.1016/j.bbrc.2007.03.135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness worldwide. AMD is characterized by the deposition of drusen aggregates under the retinal pigment epithelium (RPE). Clusterin/apo J, a multifunctional secreted chaperone, is one of the major proteins accumulating in drusen deposits. The regulation of clusterin expression is not well characterized but the promoter of clusterin contains a CpG-rich methylation domain. Since aging affects both DNA methylation and histone acetylation status, the epigenetic regulation might have an important role in clusterin/apo J expression. Our purpose was to elucidate whether the induction of DNA hypomethylation with 5-aza-2'-deoxycytidine (AZA) and histone hyperacetylation with trichostatin A (TSA) could affect the clusterin transcription, protein levels, and secretion in retinal pigment epithelial cells. We observed that both TSA and AZA treatments induced a prominent increase in the expression levels of clusterin mRNA and protein in ARPE-19 cells, as well as in the secretion of clusterin protein. Furthermore, valproic acid, an antiepileptic drug and a recently identified inhibitor of histone deacetylases (HDAC), induced a significant increase in clusterin protein expression and secretion in retinal pigment epithelial cells. HDAC inhibitors are characterized as inhibitors of angiogenesis, and clusterin as a complement inhibitor. Our results indicate that epigenetic factors regulate the clusterin expression of RPE cells and thus might affect the pathogenesis of AMD via the inhibition of angiogenesis and inflammation.
Collapse
Affiliation(s)
- Tiina Suuronen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
877
|
Zaidi SK, Young DW, Javed A, Pratap J, Montecino M, van Wijnen A, Lian JB, Stein JL, Stein GS. Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 2007; 7:454-63. [PMID: 17522714 DOI: 10.1038/nrc2149] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acids and regulatory proteins are compartmentalized in microenvironments within the nucleus. This subnuclear organization may support convergence and the integration of physiological signals for the combinatorial control of gene expression, DNA replication and repair. Nuclear organization is modified in many cancers. There are cancer-related changes in the composition, organization and assembly of regulatory complexes at intranuclear sites. Mechanistic insights into the temporal and spatial organization of machinery for gene expression within the nucleus, which is compromised in tumours, provide a novel platform for diagnosis and therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- University of Massachusetts Medical School and UMASS Memorial Cancer Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
878
|
Huang Q, Baum L, Huang JF, You JP, Wang F, Wang J, Zheng J, Yan XC, Xia H, Zhao YH, Kuang H, Fu WL. Isolation and enrichment of human genomic CpG islands by methylation-sensitive mirror orientation selection. Anal Biochem 2007; 365:153-64. [PMID: 17481566 DOI: 10.1016/j.ab.2007.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/09/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
CpG islands (CGIs) in human genomic DNA are GC-rich fragments whose aberrant methylation is associated with human disease development. In the current study, methylation-sensitive mirror orientation selection (MS-MOS) was developed to efficiently isolate and enrich unmethylated CGIs from human genomic DNA. The unmethylated CGIs prepared by the MS-MOS procedure subsequently were used to construct a CGI library. Then the sequence characteristics of cloned inserts of the library were analyzed by bioinformatics tools, and the methylation status of CGI clones was analyzed by HpaII PCR. The results showed that the MS-MOS method could be used to isolate up to 0.001% of differentially existed unmethylated DNA fragments in two complex genomic DNA. In the CGI library, 34.1% of clones had insert sequences satisfying the minimal criteria for CGIs. Excluding duplicates, 22.0% of the 80,000 clones were unique CGI clones, representing 60% of all the predicted CGIs (about 29,000) in human genomic DNA, and most or all of the CGI clones were unmethylated in human normal cell DNA based on the HpaII PCR analysis results of randomly selected CGI clones. In conclusion, MS-MOS was an efficient way to isolate and enrich human genomic CGIs. The method has powerful potential application in the comprehensive identification of aberrantly methylated CGIs associated with human tumorigenesis to improve understanding of the epigenetic mechanisms involved.
Collapse
Affiliation(s)
- Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
879
|
Mhyre TR, Loy R, Tariot PN, Profenno LA, Maguire-Zeiss KA, Zhang D, Coleman PD, Federoff HJ. Proteomic analysis of peripheral leukocytes in Alzheimer's disease patients treated with divalproex sodium. Neurobiol Aging 2007; 29:1631-43. [PMID: 17521776 PMCID: PMC2621111 DOI: 10.1016/j.neurobiolaging.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/28/2007] [Accepted: 04/13/2007] [Indexed: 02/06/2023]
Abstract
The molecular profiling of peripheral tissues, including circulating leukocytes, may hold promise in the discovery of biomarkers for diagnosing and treating neurodegenerative diseases, including Alzheimer's disease (AD). As a proof-of-concept, we performed a proteomics study on peripheral leukocytes from patients with AD both before and during treatment with divalproex sodium. Using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, we identified 10 differentially expressed proteins: two up-regulated proteins, 14-3-3 protein epsilon and peroxiredoxin 2; and eight down-regulated proteins, actin-interacting protein, mitogen activated protein kinase 1, beta actin, annexin A1, glyceraldehyde 3-phosphate dehydrogenase, transforming protein RhoA, acidic leucine-rich nuclear phosphoprotein 32 family member B, and a currently unidentified protein. A subset was validated on both the transcript and protein levels in normal human peripheral blood mononuclear cell cultures treated with valproic acid. These proteins comprise a number of functional classes that may be important to the biology of AD and to the therapeutic action of valproate. These data also suggest the potential of using peripheral leukocytes to monitor pharmaceutical action for neurodegenerative diseases.
Collapse
Affiliation(s)
- Timothy R. Mhyre
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Rebekah Loy
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Pierre N. Tariot
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Banner Alzheimer's Institute, 901 East Willetta Street, Phoenix, AZ 85006, USA
| | - Louis A. Profenno
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Kathleen A. Maguire-Zeiss
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Dabao Zhang
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Paul D. Coleman
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Howard J. Federoff
- Center for Aging and Developmental Biology, Aab Institute for Biomedical Research, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Corresponding author: Before March 31, 2007: Tel: +1 585 273 4851; Fax: +1 585 276 1947; E-mail address: . Beginning April 1, 2007: Office of the Executive Vice President and Executive Dean, Georgetown University Medical Center, 4000 Reservoir Road, NW, 120 Building D, Washington, DC 20007; Tel: +1 202 687 4600; Fax: +1 202 687 1100; E-mail address:
| |
Collapse
|
880
|
Reamon-Buettner SM, Borlak J. A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reprod Toxicol 2007; 24:20-30. [PMID: 17596910 DOI: 10.1016/j.reprotox.2007.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 04/30/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
'Epigenetics' is a heritable phenomenon without change in primary DNA sequence. In recent years, this field has attracted much attention as more epigenetic controls of gene activities are being discovered. Such epigenetic controls ensue from an interplay of DNA methylation, histone modifications, and RNA-mediated pathways from non-coding RNAs, notably silencing RNA (siRNA) and microRNA (miRNA). Although epigenetic regulation is inherent to normal development and differentiation, this can be misdirected leading to a number of diseases including cancer. All the same, many of the processes can be reversed offering a hope for epigenetic therapies such as inhibitors of enzymes controlling epigenetic modifications, specifically DNA methyltransferases, histone deacetylases, and RNAi therapeutics. 'In utero' or early life exposures to dietary and environmental exposures can have a profound effect on our epigenetic code, the so-called 'epigenome', resulting in birth defects and diseases developed later in life. Indeed, examples are accumulating in which environmental exposures can be attributed to epigenetic causes, an encouraging edge towards greater understanding of the contribution of epigenetic influences of environmental exposures. Routine analysis of epigenetic modifications as part of the mechanisms of action of environmental contaminants is in order. There is, however, an explosion of research in the field of epigenetics and to keep abreast of these developments could be a challenge. In this paper, we provide an overview of epigenetic mechanisms focusing on recent reviews and studies to serve as an entry point into the realm of 'environmental epigenetics'.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
881
|
Abstract
Most cancer deaths are due to the development of metastases, hence the most important improvements in morbidity and mortality will result from prevention (or elimination) of such disseminated disease. Some would argue that treatments directed against metastasis are too late because cells have already escaped from the primary tumour. Such an assertion runs contrary to the significant but (for many common adult cancers) fairly modest improvements in survival following the use of adjuvant radiation and chemotherapy designed to eliminate disseminated cells after surgical removal of the primary tumour. Nonetheless, the debate raises important issues concerning the accurate early identification of clonogenic, metastatic cells, the discovery of novel, tractable targets for therapy, and the monitoring of minimal residual disease. We focus on recent findings regarding intrinsic and extrinsic molecular mechanisms controlling metastasis that determine how, when, and where cancers metastasise, and their implications for patient management in the 21st century.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, UK.
| | | |
Collapse
|
882
|
Gery S, Komatsu N, Kawamata N, Miller CW, Desmond J, Virk RK, Marchevsky A, Mckenna R, Taguchi H, Koeffler HP. Epigenetic silencing of the candidate tumor suppressor gene Per1 in non-small cell lung cancer. Clin Cancer Res 2007; 13:1399-404. [PMID: 17332281 DOI: 10.1158/1078-0432.ccr-06-1730] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic events are a critical factor contributing to cancer development. The purpose of this study was to identify tumor suppressor genes silenced by DNA methylation and histone deacetylation in non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN We used microarray analysis to screen for tumor suppressor genes. RESULTS We identified Per1, a core circadian gene, as a candidate tumor suppressor in lung cancer. Although Per1 levels were high in normal lung, its expression was low in a large panel of NSCLC patient samples and cell lines. Forced expression of Per1 in NSCLC cell lines led to significant growth reduction and loss of clonogenic survival. Recent studies showed that epigenetic regulation, particularly histone H3 acetylation, is essential for circadian function. Using bisulfite sequencing and chromatin immunoprecipitation, we found that DNA hypermethylation and histone H3 acetylation are potential mechanisms for silencing Per1 expression NSCLC. CONCLUSIONS These results support the hypothesis that disruption of circadian rhythms plays an important role in lung tumorigenesis. Moreover, our findings suggest a novel link between circadian epigenetic regulation and cancer development.
Collapse
Affiliation(s)
- Sigal Gery
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
883
|
Hellebrekers DMEI, Melotte V, Viré E, Langenkamp E, Molema G, Fuks F, Herman JG, Van Criekinge W, Griffioen AW, van Engeland M. Identification of Epigenetically Silenced Genes in Tumor Endothelial Cells. Cancer Res 2007; 67:4138-48. [PMID: 17483324 DOI: 10.1158/0008-5472.can-06-3032] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor angiogenesis requires intricate regulation of gene expression in endothelial cells. We recently showed that DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors directly repress endothelial cell growth and tumor angiogenesis, suggesting that epigenetic modifications mediated by DNMTs and HDAC are involved in regulation of endothelial cell gene expression during tumor angiogenesis. To understand the mechanisms behind the epigenetic regulation of tumor angiogenesis, we used microarray analysis to perform a comprehensive screen to identify genes down-regulated in tumor-conditioned versus quiescent endothelial cells, and reexpressed by 5-aza-2'-deoxycytidine (DAC) and trichostatin A (TSA). Among the 81 genes identified, 77% harbored a promoter CpG island. Validation of mRNA levels of a subset of genes confirmed significant down-regulation in tumor-conditioned endothelial cells and reactivation by treatment with a combination of DAC and TSA, as well as by both compounds separately. Silencing of these genes in tumor-conditioned endothelial cells correlated with promoter histone H3 deacetylation and loss of H3 lysine 4 methylation, but did not involve DNA methylation of promoter CpG islands. For six genes, down-regulation in microdissected human tumor endothelium was confirmed. Functional validation by RNA interference revealed that clusterin, fibrillin 1, and quiescin Q6 are negative regulators of endothelial cell growth and angiogenesis. In summary, our data identify novel angiogenesis-suppressing genes that become silenced in tumor-conditioned endothelial cells in association with promoter histone modifications and reactivated by DNMT and HDAC inhibitors through reversal of these epigenetic modifications, providing a mechanism for epigenetic regulation of tumor angiogenesis.
Collapse
Affiliation(s)
- Debby M E I Hellebrekers
- Department of Pathology, Research Institute for Growth and Development, Maastricht University and University Hospital, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
884
|
An W. Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem 2007. [PMID: 17484136 DOI: 10.1007/1-4020-5466-1_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-synthetic modification of histone proteins in chromatin architecture plays a central role in the epigenetic regulation of transcription. Histone acetylation and methylation are the two major modifications that function as a specific transcription regulator in response to various cellular signals. Albeit the mechanism of action of these modifications in transcription is not well understood, recent discovery of histone acetyltransferase (HAT) and methyltransferase (HMT) activities within transcriptional regulators has an important implication for histone modification to be a key player for the precise regulation of transcription processes. Here, we discuss recent advances made on histone acetylation and methylation as a fundamental process to modulate gene transcription, with a particular emphasis on their combinatorial effects in transcriptional control.
Collapse
Affiliation(s)
- Woojin An
- Department of Biochemistry & Molecular Biology, USC/Norris Comprehensive Cancer Center, 1501 San Pablo Street, ZNI 241, MC 2821, Los Angeles, California 90089-2821, USA.
| |
Collapse
|
885
|
Abstract
Epigenetics is defined as mitotically and meiotically heritable changes in gene expression that do not involve a change in the DNA sequence. Two major areas of epigenetics-DNA methylation and histone modifications-are known to have profound effects on controlling gene expression. DNA methylation is involved in normal cellular control of expression, and aberrant hypermethylation can lead to silencing of tumor-suppressor genes in carcinogenesis. Histone modifications control the accessibility of the chromatin and transcriptional activities inside a cell. MicroRNAs (miRNAs) are small RNA molecules, approximately 22 nucleotides long that can negatively control their target gene expression posttranscriptionally. There are currently more than 460 human miRNAs known, and the total number is predicted to be much larger. Recently, the expression of miRNAs has been definitively linked to cancer development, and miRNA profiles can be used to classify human cancers. miRNAs are encoded in our genome and are generally transcribed by RNA polymerase II. Despite the growing evidence for their importance in normal physiology, little is known about the regulation of miRNA expression. In this review, we will examine the relationship between miRNAs and epigenetics. We examine the effects of miRNAs on epigenetic machinery, and the control of miRNA expression by epigenetic mechanisms. Epigenetics is defined as heritable changes in gene expression that do not involve a change in DNA sequence.
Collapse
Affiliation(s)
- Jody C Chuang
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles 90089, USA
| | | |
Collapse
|
886
|
Abstract
Epigenetic alterations, represented by aberrant DNA methylation, are deeply involved in human cancers. In gastric cancers, tumor-suppressor genes are inactivated more frequently by promoter methylation than by mutations. We recently showed that H. pylori infection, a potent gastric carcinogenic factor, induces methylation of specific genes in the gastric mucosae. When the methylation levels were analyzed in the gastric mucosae of healthy volunteers, cases with a single gastric cancer, and cases with multiple gastric cancers, who have increasing levels of risks for gastric cancers, there was a significant increasing trend in the methylation levels among the individuals without current H. pylori infection. This finding unequivocally showed the presence of an epigenetic field for cancerization. The degree of the field defect was measured more conveniently using methylation levels of marker genes than using those of tumor-suppressor genes. The presence of an epigenetic field for cancerization has been indicated for liver, colon, Barrett's esophageal, lung, breast, and renal cancers. Since decreased transcription is involved in the specificity of methylated genes, it is likely that specific genes are methylated according to carcinogenic factors. These findings emphasize the usefulness of DNA methylation as a marker for past exposure to carcinogens and future risk of cancer development.
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Carcinogenesis Division, National Cancer Center Research, Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
887
|
Menegola E, Di Renzo F, Broccia ML, Giavini E. Inhibition of histone deacetylase as a new mechanism of teratogenesis. ACTA ACUST UNITED AC 2007; 78:345-53. [PMID: 17315247 DOI: 10.1002/bdrc.20082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) are nuclear and cytoplasmic enzymes that deacetylate a number of substrates, of which histones are the best known and described in the literature. HDACs are present in eukaryotic and bacteria cells, and are fundamental for a number of cellular functions, including correct gene expression. Surprisingly, only up to 20% of the whole genome is controlled by HDACs, but key processes for survival, proliferation, and differentiation have been strictly linked to HDAC enzyme functioning. The use of HDAC inhibitors (HDACi) has been proposed for the treatment of neoplastic diseases. Their effectiveness has been suggested for a number of liquid and solid tumors, particularly acute promyelocytic leukemia (APL). The role of HDACs in embryo development is currently under investigation. Published data indicate knockout phenotype analysis to be of particular interest, in which a number of HDACs play a key role during development. Little data have been published on the effects of HDACi on embryonic development, although for valproic acid (VPA), literature from the 1980s described its teratogenic effects in experimental animals and humans. To date, all tested HDACi have shown teratogenic effects similar to those described for VPA when tested in zebrafish, Xenopus laevis, and mice. HDACs were also able to alter embryo development in invertebrates and plants. A model, similar to that proposed in APL, involving retinoic acid receptors (RAR) and tissue specific Hox gene expression, is suggested to explain the HDAC effects on embryo development.
Collapse
Affiliation(s)
- Elena Menegola
- Department of Biology, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
888
|
Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RM, Tan PBO, Liu ET, Yu Q. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21:1050-63. [PMID: 17437993 PMCID: PMC1855231 DOI: 10.1101/gad.1524107] [Citation(s) in RCA: 713] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb-repressive complex 2 (PRC2)-mediated histone methylation plays an important role in aberrant cancer gene silencing and is a potential target for cancer therapy. Here we show that S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep) induces efficient apoptotic cell death in cancer cells but not in normal cells. We found that DZNep effectively depleted cellular levels of PRC2 components EZH2, SUZ12, and EED and inhibited associated histone H3 Lys 27 methylation (but not H3 Lys 9 methylation). By integrating RNA interference (RNAi), genome-wide expression analysis, and chromatin immunoprecipitation (ChIP) studies, we have identified a prominent set of genes selectively repressed by PRC2 in breast cancer that can be reactivated by DZNep. We further demonstrate that the preferential reactivation of a set of these genes by DZNep, including a novel apoptosis affector, FBXO32, contributes to DZNep-induced apoptosis in breast cancer cells. Our results demonstrate the unique feature of DZNep as a novel chromatin remodeling compound and suggest that pharmacologic reversal of PRC2-mediated gene repression by DZNep may constitute a novel approach for cancer therapy.
Collapse
Affiliation(s)
- Jing Tan
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - Xiaojing Yang
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100094, China
| | - Li Zhuang
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - Xia Jiang
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - Wei Chen
- Duke-NUS Graduate Medical School, 169547, Singapore
| | - Puay Leng Lee
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - R.K. Murthy Karuturi
- Information and Mathematic Sciences, Genome Institute of Singapore, 138672, Singapore
| | - Patrick Boon Ooi Tan
- Cell and Medical Biology, Genome Institute of Singapore, 138672, Singapore
- Duke-NUS Graduate Medical School, 169547, Singapore
| | - Edison T. Liu
- Cancer Biology, Genome Institute of Singapore, 138672, Singapore
| | - Qiang Yu
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
- Corresponding author.E-MAIL ; FAX 65-6478-9003
| |
Collapse
|
889
|
Abstract
Irreversible changes in the DNA sequence, including chromosomal deletions or amplification, activating or inactivating mutations in genes, have been implicated in the development and progression of melanoma. However, increasing attention is being turned towards the participation of 'epigenetic' events in melanoma progression that do not affect DNA sequence, but which nevertheless may lead to stable inherited changes in gene expression. Epigenetic events including histone modifications and DNA methylation play a key role in normal development and are crucial to establishing the correct program of gene expression. In contrast, mistargeting of such epigenetic modifications can lead to aberrant patterns of gene expression and loss of anti-cancer checkpoints. Thus, to date at least 50 genes have been reported to be dysregulated in melanoma by aberrant DNA methylation and accumulating evidence also suggests that mistargetting of histone modifications and altered chromatin remodeling activities will play a key role in melanoma. This review gives an overview of the many different types of epigenetic modifications and their involvement in cancer and especially in melanoma development and progression.
Collapse
Affiliation(s)
- Tanja Rothhammer
- Institute of Pathology, University of Regensburg Medical School, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | |
Collapse
|
890
|
Loo LH, Wu LF, Altschuler SJ. Image-based multivariate profiling of drug responses from single cells. Nat Methods 2007; 4:445-53. [PMID: 17401369 DOI: 10.1038/nmeth1032] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 02/21/2007] [Indexed: 01/16/2023]
Abstract
Quantitative analytical approaches for discovering new compound mechanisms are required for summarizing high-throughput, image-based drug screening data. Here we present a multivariate method for classifying untreated and treated human cancer cells based on approximately 300 single-cell phenotypic measurements. This classification provides a score, measuring the magnitude of the drug effect, and a vector, indicating the simultaneous phenotypic changes induced by the drug. These two quantities were used to characterize compound activities and identify dose-dependent multiphasic responses. A systematic survey of profiles extracted from a 100-compound compendium of image data revealed that only 10-15% of the original features were required to detect a compound effect. We report the most informative image features for each compound and fluorescence marker set using a method that will be useful for determining minimal collections of readouts for drug screens. Our approach provides human-interpretable profiles and automatic determination of on- and off-target effects.
Collapse
Affiliation(s)
- Lit-Hsin Loo
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., ND 9.214, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
891
|
Ahmed FE. Colorectal cancer epigenetics: the role of environmental factors and the search for molecular biomarkers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:101-54. [PMID: 17558783 DOI: 10.1080/10590500701399184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This review presents an evenhanded evaluation of the role of epigenetics in the development of colorectal cancer, and investigates the extent of environmental influences on modulating this disease. Advances in our understanding of chromatin structure, histone modification, transcriptional activity and DNA methylation have lead to an integrated approach to the role of epigenetics in carcinogenesis. Epigenetic mechanisms appear to permit response of individuals to environment through change in gene expression and are involved in inactivating one of the two X chromosomes in women. Epigenetic changes play an important role in development and can also arise stochastically as individuals age. Because epigenetic alterations are potentially reversible, thereby allowing malignant cells to revert to the normal state, there is potential to develop effective strategies to prevent or even reverse this curable cancer. Moreover, because the methylation status of a specific sequence or the pattern of methylation across the genome can now be measured accurately, molecular biomarkers of screening, diagnosis, prognosis, prediction of treatment and those related to risk assessment can be developed using sophisticated molecular genetic technologies. Although in many cases a high sensitivity and specificity of the detection assays has been achieved, there still remains ample room for improvement in areas of sample preparation, assay design and marker selection.
Collapse
Affiliation(s)
- Farid E Ahmed
- Department of Radiation Oncology, Leo W. Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA.
| |
Collapse
|
892
|
Abstract
Epidemiological evidence increasingly suggests that environmental exposures early in development have a role in susceptibility to disease in later life. In addition, some of these environmental effects seem to be passed on through subsequent generations. Epigenetic modifications provide a plausible link between the environment and alterations in gene expression that might lead to disease phenotypes. An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility. Furthermore, recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype. Methods are now becoming available to investigate the relevance of these phenomena to human disease.
Collapse
Affiliation(s)
- Randy L Jirtle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
893
|
Abstract
Histone acetylation and histone deacetylation play key roles in the epigenetic regulation. Thus, inhibition of deacetylation controlled by histone deacetylases may result in chromatin remodeling, upregulation of key tumor repressor genes, differentiation or apoptosis. Therefore many naturally occurring and synthetic histone deacetylase inhibitors have been shown to display potent anticancer activities in preclinical studies. The exact mechanism by which histone deacetylases exert their effect, however, is still obscure; in any case it is more complicated than originally understood. Although several representatives of this novel class of therapeutic agents are currently at early stages of clinical development, rational design leading to highly selective histone deacetylase inhibitors against histone deacetylase isoforms will not only probably offer more potent anticancer drugs, but also critical insights into their mechanism of action.
Collapse
Affiliation(s)
- Claude Monneret
- Department of Medicinal Chemistry, Institut Curie, Paris, France.
| |
Collapse
|
894
|
Cheng YQ, Yang M, Matter AM. Characterization of a gene cluster responsible for the biosynthesis of anticancer agent FK228 in Chromobacterium violaceum No. 968. Appl Environ Microbiol 2007; 73:3460-9. [PMID: 17400765 PMCID: PMC1932697 DOI: 10.1128/aem.01751-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.
Collapse
Affiliation(s)
- Yi-Qiang Cheng
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
895
|
Abstract
Epigenetics has recently evolved from a collection of diverse phenomena to a defined and far-reaching field of study. In this Essay, we examine the epistemology of epigenetics, provide a brief overview of underlying molecular mechanisms, and suggest future challenges for the field.
Collapse
Affiliation(s)
- Aaron D Goldberg
- Laboratory of Chromatin Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
896
|
Abstract
Imprinting is defined as the parental allele-specific expression of a very limited set of genes (about 50-80). This regulation depends upon an epigenetic marking of parental alleles during gametogenesis. Monoallelic expression ensures that the levels of the proteins encoded by imprinted genes, important factors of embryonic growth, placental growth or adult metabolism, are assured. Without precise control of their expression, developmental abnormalities result, as is shown by a number of hereditary over-growth syndromes, including Beckwith-Wiedemann syndrome. The regulation of imprinted genes is largely dependent on methylation marks, which are laid down during embryological development of germ cells. Once in place, the methylation status of precise chromosomal regions, Imprinting Control Regions (ICRs), is read by either of two mechanisms, chromatin barrier formation or untranslated RNAs, thereby ensuring that only the maternal or paternal allele is expressed. Each imprinted gene is classified as maternal or paternal according to the expressed allele. The stability of the marked regions in somatic cells is maintained through each cellular replication by a methylation enzyme complex containing Dnmt1. Although the major reading mechanisms of imprinted status are known, chromatin boundary formation by CTCF and untranslated RNAs, the molecules elaborating the initial ICR methylation, are just being uncovered. Mis-regulation of imprinted gene expression (loss of imprinting [LOI]) is seen frequently and precociously in a large variety of human tumours, making LOI a potentially valuable tool for both diagnosis and treatment. In fact, LOI is presently considered the most abundant and most precocious alteration in cancer. The present review proposes a mechanism responsible for LOI, as well as its eventual value in tumour diagnosis and prognosis.
Collapse
Affiliation(s)
- P Jelinic
- Division of Experimental Pathology, University Institute of Pathology, Lausanne, Switzerland
| | | |
Collapse
|
897
|
Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007; 25:473-81. [PMID: 17289593 DOI: 10.1016/j.molcel.2007.01.017] [Citation(s) in RCA: 648] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 12/14/2006] [Accepted: 01/12/2007] [Indexed: 12/17/2022]
Abstract
Histone lysine methylation has important roles in the organization of chromatin domains and the regulation of gene expression. To analyze its function and modulate its activity, we screened for specific inhibitors against histone lysine methyltransferases (HMTases) using recombinant G9a as the target enzyme. From a chemical library comprising 125,000 preselected compounds, seven hits were identified. Of those, one inhibitor, BIX-01294 (diazepin-quinazolin-amine derivative), does not compete with the cofactor S-adenosyl-methionine, and selectively impairs the G9a HMTase and the generation of H3K9me2 in vitro. In cellular assays, transient incubation of several cell lines with BIX-01294 lowers bulk H3K9me2 levels that are restored upon removal of the inhibitor. Importantly, chromatin immunoprecipitation at several G9a target genes demonstrates reversible reduction of promoter-proximal H3K9me2 in inhibitor-treated mouse ES cells and fibroblasts. Our data identify a biologically active HMTase inhibitor that allows for the transient modulation of H3K9me2 marks in mammalian chromatin.
Collapse
Affiliation(s)
- Stefan Kubicek
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
898
|
Abstract
The path to the discovery of suberoylanilide hydroxamic acid (SAHA, vorinostat) began over three decades ago with our studies designed to understand why dimethylsulfoxide causes terminal differentiation of the virus-transformed cells, murine erythroleukemia cells. SAHA can cause growth arrest and death of a broad variety of transformed cells both in vitro and in vivo at concentrations that have little or no toxic effects on normal cells. It was discovered that SAHA inhibits the activity of histone deacetylases (HDACs), including all 11 known human class I and class II HDACs. HDACs have many protein targets whose structure and function are altered by acetylation including histones and non-histone proteins component of transcription factors controlling gene expression and proteins that regulate cell proliferation, migration and death. SAHA is in clinical trials and has significant anticancer activity against both hematologic and solid tumors at doses well tolerated by patients. A new drug application has been approved for SAHA (vorinostat) treatment of cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- P A Marks
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
899
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Epigenomics in respiratory epithelium carcinogenesis: prevention and therapeutic challenges. Cancer Treat Rev 2007; 33:284-8. [PMID: 17367937 DOI: 10.1016/j.ctrv.2007.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 11/19/2022]
Abstract
Respiratory epithelium carcinogenesis is currently considered as the phenotypic aspect of serial genetic and epigenetic aberrations resulting in deregulation of cellular homeostasis. Recent data indicate that DNA demethylating agents and histone deacetylase inhibitors might act synergistically for the prevention of cancer development throughout the carcinogen-exposed epithelium. Preliminary clinical trials have shown encouraging results using these new molecules in lung carcinomas therapeutics. However, the caveats that should be overtaken for efficacious antitumour activity have also emerged. Setting the context in which epigenetic modifications contribute to carcinogenesis evolution is of paramount importance in order to optimize the potency of the current and future epigenome targeting agents.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece
| | | | | |
Collapse
|
900
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|