851
|
Grune T, Jung T, Merker K, Davies KJA. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease. Int J Biochem Cell Biol 2005; 36:2519-30. [PMID: 15325589 DOI: 10.1016/j.biocel.2004.04.020] [Citation(s) in RCA: 488] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein aggregation seems to be a common feature of several neurodegenerative diseases and to some extent of physiological aging. It is not always clear why protein aggregation takes place, but a disturbance in the homeostasis between protein synthesis and protein degradation seems to be important. The result is the accumulation of modified proteins, which tend to form high molecular weight aggregates. Such aggregates are also called inclusion bodies, plaques, lipofuscin, ceroid, or 'aggresomes' depending on their location and composition. Such aggregates are not inert metabolic end products, but actively influence the metabolism of cells, in particular proteasomal activity and protein turnover. In this review we focus on the influence of oxidative stress on protein turnover, protein aggregate formation and the various interactions of protein aggregates with the proteasome. Furthermore, the formation and effects of protein aggregates during aging and neurodegeneration will be highlighted.
Collapse
Affiliation(s)
- Tilman Grune
- Research Institute of Environmental Medicine, Heinrich Heine University Düsseldorf, Auf'm Hennekamp 50, 40225 Dusseldorf, Germany.
| | | | | | | |
Collapse
|
852
|
Stefek M, Kyselova Z, Rackova L, Krizanova L. Oxidative modification of rat eye lens proteins by peroxyl radicals in vitro: protection by the chain-breaking antioxidants stobadine and Trolox. Biochim Biophys Acta Mol Basis Dis 2005; 1741:183-90. [PMID: 15955460 DOI: 10.1016/j.bbadis.2005.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 01/03/2005] [Accepted: 01/20/2005] [Indexed: 02/02/2023]
Abstract
In an attempt to model the processes of free radical-mediated cataractogenesis, we investigated the oxidative modification of rat eye lens proteins by peroxyl radicals generated by thermal decomposition of 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH) under aerobic conditions. When incubated with AAPH, the soluble eye lens proteins precipitated in a time-dependent manner. The insolubilisation was accompanied by the accumulation of protein free carbonyls and the diminution of sulfhydryls, yet the processes were shifted in time. The SDS-PAGE analysis of the AAPH-treated proteins revealed the presence of high molecular weight cross-links and, to a lesser extent, fragments. The aggregation and cross-linking of proteins along with the generation of free carbonyls was significantly inhibited by the chain-breaking antioxidants stobadine and Trolox. On the other hand, the AAPH-initiated sulfhydryl consumption was much less sensitive to the antioxidants studied. The results point to a complex mechanism of peroxyl-radical-mediated modification of eye lens proteins with implications for cataract development and they indicate a potentially protective role of antioxidants.
Collapse
Affiliation(s)
- M Stefek
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
853
|
Vicente E, Boer M, Netto C, Fochesatto C, Dalmaz C, Rodrigues Siqueira I, Gonçalves CA. Hippocampal antioxidant system in neonates from methylmercury-intoxicated rats. Neurotoxicol Teratol 2005; 26:817-23. [PMID: 15451045 DOI: 10.1016/j.ntt.2004.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a well-known environmental pollutant toxic to the nervous tissue, particularly during development. We recently described transitory hippocampal changes in neonate rats prenatally exposed to MeHg. In this study, we evaluate oxidative stress in the hippocampus on the 1st and 30th postnatal days. Motor behavior (open-field, foot-fault and strength tests) of these animals also was studied after the 30th postnatal day. Female Wistar rats were injected with MeHg (5 mg/Hg/day) on the 12th, 13th and 14th gestational days. Biochemical parameters measured for oxidative stress were levels of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT). Total antioxidant reactivity (TAR) and protein oxidation (contents of tryptophan and tyrosine) were also recorded. Our results showed low activities of antioxidant enzymes in the MeHg group at birth. SOD activity remained reduced on the 30th postnatal day. Moreover, a decrease of TAR and protein oxidation was observed only at 30 days of age. No changes were observed in the motor behavior of these animals. Although mercury content in hippocampus is present at undetectable levels at 30 days of age, we observed more persistent changes in oxidative balance. Our data confirm that mercury induces oxidative stress in hippocampus and that this alteration, particularly SOD activity, remained altered even when mercury was no longer present.
Collapse
Affiliation(s)
- Evelin Vicente
- Programa de Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
854
|
Ren JC, Banan A, Keshavarzian A, Zhu Q, Lapaglia N, McNulty J, Emanuele NV, Emanuele MA. Exposure to ethanol induces oxidative damage in the pituitary gland. Alcohol 2005; 35:91-101. [PMID: 15963422 DOI: 10.1016/j.alcohol.2005.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Revised: 11/30/2004] [Accepted: 02/06/2005] [Indexed: 12/24/2022]
Abstract
Chronic exposure of pubertal male rats to ethanol results in a decline in serum testosterone and decreased or inappropriately normal serum luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels suggesting a functional defect in the pituitary. The molecular mechanisms behind this disorder are undefined. A role for ethanol-induced oxidative damage in the pathophysiology is supported by studies in liver, muscle, and heart of experimental animals, but there is limited evidence in the pituitary. We examined markers of oxidative damage to lipids and proteins in pituitaries from rats consuming ethanol for 5, 10, 20, 30, and 60 days in addition to markers of damage to nucleic acids in pituitaries after 60 days of ethanol exposure. There were increases in 8-oxo-deoxyguanosine immunoreactivity, a marker of oxidative damage to nucleic acids, and an overall increase in malondialdehyde and 4-hydroxynonenal, markers of lipid peroxidation. Protein carbonylation and protein nitrotyrosination, markers of protein oxidation, were significantly increased after 30 days and 60 days of ethanol consumption, respectively. After 60 days of ethanol exposure, TUNEL assay revealed that cell death in the ethanol-treated pituitaries was not significantly different from that in the pair-fed controls at the time of examination. We also measured serum testosterone, FSH, and LH after ethanol consumption for 5, 10, 20, 30, and 60 days. Through 5 to 60 days of ethanol exposure, testosterone levels were consistently lower whereas LH and FSH were inappropriately unchanged, suggesting pituitary malfunction. These results provide evidence for ethanol-induced oxidative damage at the pituitary level, which may contribute to pituitary dysfunction.
Collapse
Affiliation(s)
- Jian-Ching Ren
- The Neuroscience Program, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|
855
|
Kodiha M, Chu A, Matusiewicz N, Stochaj U. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ 2005; 11:862-74. [PMID: 15088071 DOI: 10.1038/sj.cdd.4401432] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In growing HeLa cells, severe stress elicited by the oxidant hydrogen peroxide inhibits classical nuclear import. Oxidant treatment collapses the nucleocytoplasmic Ran concentration gradient, thereby elevating cytoplasmic GTPase levels. The Ran gradient dissipates in response to a stress-induced depletion of RanGTP and a decreased efficiency of Ran nuclear import. In addition, oxidative stress induces a relocation of the nucleoporin Nup153 as well as the nuclear carrier importin-beta, and docking of the importin-alpha/beta/cargo complex at the nuclear envelope is reduced. Moreover, Ran, importin-beta and Nup153 undergo proteolysis upon oxidative stress. Caspases and the proteasome degrade Ran and importin-beta; however, ubiquitination of these transport factors is not observed. Inhibition of caspases in stressed cells alleviates the mislocalization of importin-beta, but does not restore the Ran concentration gradient or classical import. In summary, inhibition of classical nuclear import by hydrogen peroxide is caused by a combination of multiple mechanisms that target different components of the transport apparatus.
Collapse
Affiliation(s)
- M Kodiha
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, PQ, H3G 1Y6, Canada
| | | | | | | |
Collapse
|
856
|
Andrades M, Ritter C, Moreira JCF, Dal-Pizzol F. Oxidative parameters differences during non-lethal and lethal sepsis development. J Surg Res 2005; 125:68-72. [PMID: 15836852 DOI: 10.1016/j.jss.2004.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 11/11/2004] [Accepted: 11/14/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND The participation of oxidative stress in the development of sepsis is still unclear. The aim of this study was to determine which aspect of antioxidant/pro-oxidant has the major importance in differentiation between non-lethal and lethal sepsis. MATERIALS AND METHODS Non-lethal and lethal sepsis were induced by cecal ligation and puncture (CLP) in adult Wistar rats, using 18 and 14 gauge needle, respectively. Rats were sacrificed within 12, 24, 48, and 96 h and organs (heart, lung, diaphragm, liver, and kidney) were isolated. The main antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were measured, as well as protein carbonyls and TBARS, as an index of oxidative damage. RESULTS Twelve hours after lethal sepsis induction we observed an increase in the oxidative damage in all of the organs studied. In contrast, during non-lethal sepsis, the oxidative damage occurs late in the course of the disease (after 48 h) and the increase in protein carbonyls is of less magnitude when compared to the lethal sepsis. During non-lethal sepsis, in contrast to the lethal sepsis, there is no sustained increase in the SOD/CAT relation. CONCLUSIONS The present study is the first report showing a different profile of oxidative damage when comparing non-lethal and lethal sepsis. The oxidative damage in proteins seems to be a differential parameter between non-lethal and lethal sepsis. In addition, the SOD/CAT imbalance seems to be an important factor in the oxidative stress during the lethal sepsis, but seems not to happen, in a sustained way, during the non-lethal sepsis.
Collapse
Affiliation(s)
- Michael Andrades
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
857
|
Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 2005; 132:233-8. [PMID: 15802177 DOI: 10.1016/j.neuroscience.2004.12.038] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2004] [Indexed: 11/24/2022]
Abstract
Ischemia-induced neuronal damage has been linked to elevated production of reactive oxygen species (ROS) both in animal models and in humans. NADPH oxidase enzymes (NOX-es) are a major enzymatic source of ROS, but their role in brain ischemia has not yet been investigated. The present study was carried out to examine the expression of NOX4, one of the new NADPH oxidase isoforms in a mouse model of focal permanent brain ischemia. We demonstrate that NOX4 is expressed in neurons using in situ hybridization and immunohistochemistry. Ischemia, induced by middle cerebral artery occlusion resulted in a dramatic increase in cortical NOX4 expression. Elevated NOX4 mRNA levels were detectable as early as 24 h after the onset of ischemia and persisted throughout the 30 days of follow-up period, reaching a maximum between days 7 and 15. The early onset suggests neuronal reaction, while the peak period corresponds to the time of neoangiogenesis occurring mainly in the peri-infarct region. The occurrence of NOX4 in the new capillaries was confirmed by immunohistochemical staining. In summary, our paper reports the presence of the ROS producing NADPH oxidase NOX4 in neurons and demonstrates an upregulation of its expression under ischemic conditions. Moreover, a role for NOX4 in ischemia/hypoxia-induced angiogenesis is suggested by its prominent expression in newly formed capillaries.
Collapse
Affiliation(s)
- P Vallet
- Department of Psychiatry, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
858
|
Torreggiani A, Tamba M, Manco I, Faraone-Mennella MR, Ferreri C, Chatgilialoglu C. Investigation of radical-based damage of RNase A in aqueous solution and lipid vesicles. Biopolymers 2005; 81:39-50. [PMID: 16177964 DOI: 10.1002/bip.20375] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The gamma-irradiation of bovine pancreatic ribonuclease A (RNase A) in aqueous solution were investigated at different doses by vibrational spectroscopy as well as enzymatic assay, electrophoresis, and HPLC analysis. Both functional and structural changes of the protein were caused by attack of H(*) atoms and (*)OH radicals. In particular, Raman spectroscopy was shown to be a useful tool in identifying conformational changes of the protein structure and amino acidic residues that are preferential sites of the radical attack (i.e., tyrosine and methionine). After partial structural changes by the initial radical attack, the internal sulfur-containing amino acid residues were rendered susceptible to transformation. By using the biomimetic model of dioleoyl phosphatidyl choline vesicle suspensions containing RNase A, the damage to methione residues could be connected to a parallel alteration of membrane unsaturated lipids. In fact, thiyl radical species formed from protein degradation can diffuse into the lipid bilayer and cause isomerization of the naturally occurring cis double bonds. As a consequence, trans unsaturated fatty acids are formed in vesicles and can be considered to be markers of this protein damage.
Collapse
|
859
|
Davies MJ. The oxidative environment and protein damage. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:93-109. [PMID: 15680218 DOI: 10.1016/j.bbapap.2004.08.007] [Citation(s) in RCA: 998] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/18/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
Proteins are a major target for oxidants as a result of their abundance in biological systems, and their high rate constants for reaction. Kinetic data for a number of radicals and non-radical oxidants (e.g. singlet oxygen and hypochlorous acid) are consistent with proteins consuming the majority of these species generated within cells. Oxidation can occur at both the protein backbone and on the amino acid side-chains, with the ratio of attack dependent on a number of factors. With some oxidants, damage is limited and specific to certain residues, whereas other species, such as the hydroxyl radical, give rise to widespread, relatively non-specific damage. Some of the major oxidation pathways, and products formed, are reviewed. The latter include reactive species, such as peroxides, which can induce further oxidation and chain reactions (within proteins, and via damage transfer to other molecules) and stable products. Particular emphasis is given to the oxidation of methionine residues, as this species is readily oxidised by a wide range of oxidants. Some side-chain oxidation products, including methionine sulfoxide, can be employed as sensitive, specific, markers of oxidative damage. The product profile can, in some cases, provide valuable information on the species involved; selected examples of this approach are discussed. Most protein damage is non-repairable, and has deleterious consequences on protein structure and function; methionine sulfoxide formation can however be reversed in some circumstances. The major fate of oxidised proteins is catabolism by proteosomal and lysosomal pathways, but some materials appear to be poorly degraded and accumulate within cells. The accumulation of such damaged material may contribute to a range of human pathologies.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, 145 Missenden Road, Sydney, NSW 2050, Australia.
| |
Collapse
|
860
|
Sutherland WHF, de Jong SA, Walker RJ. Hypochlorous Acid and 3,4-Dihydroxyphenylalanine Increase the Formation of Serum Protein Lipofuscin-Like Fluorophores In Vitro. Ren Fail 2005. [DOI: 10.1081/jdi-49544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
861
|
Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, Colombo R, Rossi R, Milzani A. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. MASS SPECTROMETRY REVIEWS 2005; 24:55-99. [PMID: 15389864 DOI: 10.1002/mas.20006] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenesis and/or progression of several human diseases. Proteins are important molecular signposts of oxidative/nitrosative damage. However, it is generally unresolved whether the presence of oxidatively/nitrosatively modified proteins has a causal role or simply reflects secondary epiphenomena. Only direct identification and characterization of the modified protein(s) in a given pathophysiological condition can decipher the potential roles played by ROS/RNS-induced protein modifications. During the last few years, mass spectrometry (MS)-based technologies have contributed in a significant way to foster a better understanding of disease processes. The study of oxidative/nitrosative modifications, investigated by redox proteomics, is contributing to establish a relationship between pathological hallmarks of disease and protein structural and functional abnormalities. MS-based technologies promise a contribution in a new era of molecular medicine, especially in the discovery of diagnostic biomarkers of oxidative/nitrosative stress, enabling early detection of diseases. Indeed, identification and characterization of oxidatively/nitrosatively modified proteins in human diseases has just begun.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biology, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
862
|
Jeyabal PVS, Syed MB, Venkataraman M, Sambandham JK, Sakthisekaran D. Apigenin inhibits oxidative stress-induced macromolecular damage inN-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog 2005; 44:11-20. [PMID: 15924350 DOI: 10.1002/mc.20115] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apigenin (4',5,7-trihydroxyflavone), a flavone subclass of flavonoid widely distributed in many herbs, fruits, and vegetables is a substantial component of the human diet and has been shown to possess a variety of biological activities including tumor growth inhibition and chemoprevention. Recent studies in several biological systems have shown that apigenin induces tumor growth inhibition, cell cycle arrest, and apoptosis. Free radical-induced degradation of polyunsaturated fatty acid results in electrophilic products and causes severe oxidative stress. Oxidative stress induced by free radicals, nonoxidizing species, electrophiles, and associated DNA damages have been frequently coupled with carcinogenesis. In the present study, the protective role of apigenin was examined against the oxidative stress caused by N-nitrosodiethylamine (NDEA) and phenobarbital (PB) in Wistar albino rats. Oxidative stress was measured in terms of lipid peroxidation (LPO) and protein carbonyl formation. Oxidative stress-induced DNA damage was measured by single cell gel electrophoresis (comet assay). Apigenin exhibited its antioxidant defense against NDEA-induced oxidative stress. We have observed minimal levels of LPO and DNA damage in apigenin-treated hepatoma bearing animals. Based on the results, we suggest that apigenin may be developed as a promising chemotherapeutic agent against the development of chemical carcinogenesis.
Collapse
|
863
|
Bosio G, Criado S, Massad W, Rodríguez Nieto FJ, Gonzalez MC, García NA, Mártire DO. Kinetics of the interaction of sulfate and hydrogen phosphate radicals with small peptides of glycine, alanine, tyrosine and tryptophan. Photochem Photobiol Sci 2005; 4:840-6. [PMID: 16189561 DOI: 10.1039/b507856c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanism of the oxidation of Glycine (Gly), Alanine (Ala), Tyrosine (Tyr), Tryptophan (Trp) and some di-(Gly-Gly, Ala-Ala, Gly-Ala, Gly-Trp, Trp-Gly, Gly-Tyr, Tyr-Gly), tri-(Gly-Gly-Gly, Ala-Gly-Gly) and tetrapeptides (Gly-Gly-Gly-Gly) mediated by sulfate (SO(4) (-)) and hydrogen phosphate (HPO(4) (-)) radicals was studied, employing the flash-photolysis technique. The substrates were found to react with sulfate radicals (SO(4) (-), produced by photolysis of the S(2)O(8)(2-)) faster than with hydrogen phosphate radicals (HPO(4) (-), generated by photolysis of P(2)O(8)(4-) at pH = 7.1). The reactions of the zwitterions of the aliphatic amino acids and peptides with SO(4) (-) radicals take place by electron transfer from the carboxylate moiety to the inorganic radical, whereas those of the HPO(4) (-) proceed by H-abstraction from the alpha carbon atom. The phenoxyl radical of Tyr-Gly and Gly-Tyr are formed as intermediate species of the oxidation of these peptides by the inorganic radicals. The radical cations of Gly-Trp and Trp-Gly (at pH = 4.2) and their corresponding deprotonated forms (at pH = 7) were detected as intermediates species of the oxidation of these peptides with SO(4) (-) and HPO(4) (-). Reaction mechanisms which account for the observed intermediates are proposed.
Collapse
Affiliation(s)
- Gabriela Bosio
- Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas (INIFTA) Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
864
|
Rodgers KJ, Hume PM, Dunlop RA, Dean RT. Biosynthesis and turnover of DOPA-containing proteins by human cells. Free Radic Biol Med 2004; 37:1756-64. [PMID: 15528035 DOI: 10.1016/j.freeradbiomed.2004.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/06/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
Abstract
Protein-bound 3,4-dihydroxyphenylalanine (PB-DOPA) is a major product of hydroxyl radical attack on tyrosine residues of proteins. Levels of PB-DOPA in cells and tissues have been shown to be greatly elevated in age-related diseases. We demonstrate for the first time that l-DOPA (levodopa) can be biosynthetically incorporated into cell proteins by human cells (THP-1 monocytes and monocyte-derived macrophages). The DOPA-containing proteins generated were selectively visualized on PVDF membranes using a redox-cycling staining method. Many cell proteins contained DOPA and seemed to be synthesized as their full-length forms. The cellular removal of DOPA-containing proteins by THP-1 cells was by proteolysis involving both the proteasomal and the lysosomal systems. The rate of cellular proteolysis of DOPA-containing proteins increased at lower levels of DOPA incorporation but decreased at higher levels of DOPA incorporation. The decreased rate of degradation was accompanied by an increase in the activity of cathepsins B and L but the activity of cathepsin S increased only at lower levels of DOPA incorporation. These data raise the possibility that PB-DOPA could be generated in vivo from l-DOPA, which is the most widely used treatment for Parkinson disease.
Collapse
Affiliation(s)
- Kenneth J Rodgers
- Cell Biology Unit, The Heart Research Institute, Camperdown, Sydney, NSW 2050, Australia.
| | | | | | | |
Collapse
|
865
|
Hidiroglou N, Gilani GS, Long L, Zhao X, Madere R, Cockell K, Belonge B, Ratnayake WMN, Peace R. The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil. J Nutr Biochem 2004; 15:730-40. [PMID: 15607646 DOI: 10.1016/j.jnutbio.2004.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/15/2004] [Indexed: 11/23/2022]
Abstract
A 90-day feeding study with gerbils was conducted to evaluate the influence of dietary vitamin E levels (25 mg/kg diet, 75 mg/kg, 300 mg/kg, and 900 mg/kg), two levels of dietary methionione (casein or casein+L-methionine (1% w/w)) and two sources of lipid (soybean oil [20%] or soybean oil [4%]+coconut oil [16%, 1:4 w/w]) upon serum lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol). In addition, this study examined the effects of diet-induced hyperhomocysteinemia and supplemental dietary vitamin E on the oxidation of low density lipoproteins. Tissue vitamin E (heart, liver, and plasma) demonstrated a dose response (P< or =0.001) following the supplementation with increasing dietary vitamin E (25, 75, 300, and 900 mg/kg). In addition, tissue vitamin E levels were found to be higher (P< or =0.001) in those animals receiving a combination of coconut oil+soybean oil as compared to the group receiving soybean oil solely. Blood cholesterol profiles indicated an increase (P< or =0.001) in total cholesterol and LDL cholesterol by the influence of saturated fat and supplemental methionine. Low-density lipoprotein cholesterol profile demonstrated a reduction (P< or =0.001) at the higher dietary vitamin E levels (300 and 900 mg/kg) as compared to the 25 mg/kg and 75 mg/kg dietary vitamin E. Plasma protein carbonyls were not influenced by dietary vitamin E nor by supplemental methionine intake. In vitro oxidation of LDL showed that vitamin E delayed the lag time of the oxidation phase (P< or =0.001) and reduced total diene production (P< or =0.001). On the contrary, supplemental methionine decreased (P< or =0.001) the delay time of the lag phase, whereas total diene production was increased (P< or =0.001). Plasma lipid hydroperoxides were significantly reduced (P< or =0.05) with supplemental dietary vitamin E, whereas supplemental L-methionine (1%) resulted in a significant (P< or =0.05) increase in lipid plasma hydroperoxide formation. Plasma homocysteine was elevated (P< or =0.001) with supplemental dietary L-methionine (1%) as well as the inclusion of dietary saturated fat. The present data showed that 1) a combination of dietary lipids (saturated and unsaturated fatty acids) as well as vitamin E and methionine supplementation altered blood cholesterol lipoprotein profiles; 2) in vitro oxidation parameters including LDL (lag time and diene production) and plasma hydroperoxide formations were affected by vitamin E and methionine supplementation; and 3) plasma homocysteine concentrations were influenced by supplemental methionine and the inclusion of dietary saturated fat.
Collapse
Affiliation(s)
- Nick Hidiroglou
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Tunneys Pasture, Ottawa, ON, Canada KIAOL2.
| | | | | | | | | | | | | | | | | |
Collapse
|
866
|
Mary J, Vougier S, Picot CR, Perichon M, Petropoulos I, Friguet B. Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontol 2004; 39:1117-23. [PMID: 15359468 DOI: 10.1016/j.exger.2004.06.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteins are the targets of reactive oxygen species, and cell aging is characterized by a build-up of oxidized proteins. Oxidized proteins tend to accumulate with age, due to either an increase in the rate of protein oxidation, a decrease in the rate of oxidized protein repair and degradation, or a combination of both mechanisms. Oxidized protein degradation is mainly carried out by the proteasomal system, which is the main intracellular proteolytic pathway involved in protein turnover and the elimination of damaged proteins. However, part of the oxidative damage to cysteine and methionine residues, two amino acids which are highly susceptible to oxidation, can be repaired by various enzymatic systems that catalyze the reduction of cysteine disulfide bridge, cysteine-sulfenic and -sulfinic acids as well as methionine sulfoxide. The aim of this review is to describe these enzymatic oxidized protein repair systems and their potential involvement in the decline of protein maintenance associated with aging, focusing in particular on the methionine sulfoxide reductases system.
Collapse
Affiliation(s)
- Jean Mary
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université denis Diderot, Paris 7, France
| | | | | | | | | | | |
Collapse
|
867
|
Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J 2004; 381:241-8. [PMID: 15025556 PMCID: PMC1133782 DOI: 10.1042/bj20040259] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 11/17/2022]
Abstract
Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate losses, indicated that, in the absence of a free amino group, reaction with superoxide resulted primarily in restitution of the parent compound. With dipeptides, hydroperoxides were formed only on N-terminal tyrosines. However, adjacent lysines promoted hydroperoxide formation, as did addition of free lysine or ethanolamine. Results are compatible with a mechanism [d'Alessandro, Bianchi, Fang, Jin, Schuchmann and von Sonntag (2000) J. Chem. Soc. Perkin Trans. II, 1862-1867] in which the phenoxyl radicals react initially with superoxide by addition, and the intermediate formed either releases oxygen to regenerate the parent compound or is converted into a hydroperoxide. Amino groups favour hydroperoxide formation through Michael addition to the tyrosyl ring. These studies indicate that tyrosyl hydroperoxides should be formed in proteins where there is a basic molecular environment. The contribution of these radical reactions to oxidative stress warrants further investigation.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Department of Pathology, Christchurch School of Medicine and Health Sciences, P.O. Box 4345, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
868
|
Shimizu K, Kiuchi Y, Ando K, Hayakawa M, Kikugawa K. Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins. Biochem Biophys Res Commun 2004; 324:140-6. [PMID: 15464994 DOI: 10.1016/j.bbrc.2004.08.231] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 11/25/2022]
Abstract
Intracellular accumulation of denatured proteins impairs cellular function. The proteasome is recognized as an enzyme responsible for the effective clearance of those cytotoxic denatured proteins. As another enzyme that participates in the destruction of damaged proteins, we have identified oxidized protein hydrolase (OPH) and found that OPH confers cellular resistance to various kinds of oxidative stress. In this study, we demonstrate the roles of the proteasome and OPH in the clearance of denatured proteins. The inhibition of proteasome activity results in the elevation of protein carbonyls in cells under oxidative stress. On the other hand, cells overexpressing OPH retain higher resistance to oxidative stress, even though the proteasome activity is inhibited. Furthermore, upon inhibition of the proteasome activity, OPH is recruited to a novel organelle termed the aggresome where misfolded or denatured proteins are processed. Thus, OPH and the proteasome coordinately contribute to the clearance of cytotoxic denatured proteins.
Collapse
Affiliation(s)
- Kei Shimizu
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
869
|
Sánchez-Moreno C, Cano MP, de Ancos B, Plaza L, Olmedilla B, Granado F, Martín A. Consumption of high-pressurized vegetable soup increases plasma vitamin C and decreases oxidative stress and inflammatory biomarkers in healthy humans. J Nutr 2004; 134:3021-5. [PMID: 15514269 DOI: 10.1093/jn/134.11.3021] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Current evidence supports a significant association between fruit and vegetable intake and health. In this study, we assessed the effect of consuming a vegetable-soup "gazpacho" on vitamin C and biomarkers of oxidative stress and inflammation in a healthy human population. We also examined the association between vitamin C and F(2)-isoprostanes (8-epiPGF(2alpha)), uric acid (UA), prostaglandin E(2) (PGE(2)), monocyte chemotactic protein-1 (MCP-1), and the cytokines, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6. Gazpacho is a Mediterranean dish defined as a ready-to-use vegetable soup, containing approximately 80% crude vegetables rich in vitamin C. Subjects (6 men, 6 women) enrolled in this study consumed 500 mL/d of gazpacho corresponding to an intake of 72 mg of vitamin C. On d 1, subjects consumed the gazpacho in one dose; from d 2 until the end of the study, d 14, 250 mL was consumed in the morning and 250 mL in the afternoon. Blood was collected before drinking the soup (baseline) and on d 7 and 14. Baseline plasma vitamin C concentrations did not differ between men and women (P = 0.060). Compared with baseline, the vitamin C concentration was significantly higher on d 7 and 14 of the intervention in both men and women (P < 0.05). Baseline plasma levels of UA and F(2)-isoprostanes were higher (P < or = 0.002) in men than in women. The F(2)-isoprostanes decreased on d 14 in men and women (P < or = 0.041), and UA decreased in men (P = 0.028). The concentrations of vitamin C and 8-epiPGF(2alpha) were inversely correlated (r = -0.585, P = 0.0002). Plasma PGE(2) and MCP-1 concentrations decreased in men and women (P < or = 0.05) on d 14, but those of TNF-alpha, IL-1beta, and IL-6 did not change. Consumption of the vegetable soup decreases oxidative stress and biomarkers of inflammation, which indicates that the protective effect of vegetables may extend beyond their antioxidant capacity.
Collapse
Affiliation(s)
- Concepción Sánchez-Moreno
- Nutrition and Neurocognition Laboratory, Jean Mayer U.S.D.A. Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
870
|
Aldred S, Grant MM, Griffiths HR. The use of proteomics for the assessment of clinical samples in research. Clin Biochem 2004; 37:943-52. [PMID: 15498520 DOI: 10.1016/j.clinbiochem.2004.09.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Accepted: 09/02/2004] [Indexed: 11/24/2022]
Abstract
Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-453]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples.
Collapse
Affiliation(s)
- Sarah Aldred
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
871
|
Haghbeen K, Saboury AA, Karbassi F. Substrate share in the suicide inactivation of mushroom tyrosinase. Biochim Biophys Acta Gen Subj 2004; 1675:139-46. [PMID: 15535977 DOI: 10.1016/j.bbagen.2004.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 08/12/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
To address the real cause of the suicide inactivation of mushroom tyrosinase (MT), under in vitro conditions, cresolase and catecholase reactions of this enzyme were investigated in the presence of three different pairs of substrates, which had been selected for their structural specifications. It was showed that the cresolase activity is more vulnerable to the inactivation. Acetylation of the free tyrosyl residues of MT did not cure susceptibility of the cresolase activity, but clearly decreased the inactivation rate of MT in the presence of 4-[(4-methylbenzo)azo]-1,2-benzenediol (MeBACat) as a catecholase substrate. Considering the results of the previous works and this research, some different possible reasons for the suicide inactivation of MT have been discussed. Accordingly, it was proposed that the interruption in the conformational changes in the tertiary and quaternary structures of MT, triggered by the substrate then mediated by the solvent molecules, might be the real reason for the suicide inactivation of the enzyme. However, minor causes like the toxic effect of the ortho-quinones on the protein body of the enzyme or the oxidation of some free tyrosyl residues on the surface of the enzyme by itself, which could boost the inactivation rate, should not be ignored.
Collapse
Affiliation(s)
- Kamahldin Haghbeen
- The National Research Institute for Genetic Engineering and Biotechnology, PO Box 14155-6343, Tehran, Iran.
| | | | | |
Collapse
|
872
|
Anraku M, Kitamura K, Shinohara A, Adachi M, Suenga A, Maruyama T, Miyanaka K, Miyoshi T, Shiraishi N, Nonoguchi H, Otagiri M, Tomita K, Suenaga A. Intravenous iron administration induces oxidation of serum albumin in hemodialysis patients. Kidney Int 2004; 66:841-8. [PMID: 15253741 DOI: 10.1111/j.1523-1755.2004.00813.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intravenous iron administration (IVIR) is effective for correcting anemia in hemodialysis (HD) patients. However, it may also enhance the generation of hydroxyl radicals. Recently, plasma proteins have been demonstrated to be extremely susceptible to oxidative stress. Therefore, we investigated the effect of IVIR on the oxidative status of albumin, a major plasma protein, in HD patients. METHODS Eleven hemodialysis (HD) patients were treated with 40 mg of saccharated ferric oxide intravenously after every dialysis session for four weeks, and 11 age-/gender-matched HD patients were treated with vehicle. We performed high performance liquid chromatography (HPLC) analysis of serum albumin and determined the levels of reduced and oxidized albumin. Carbonyl formation of plasma proteins were also measured using an anti-2,4 dinitrophenylhydrazine antibody in patients with or without IVIR. RESULTS IVIR resulted in an increase in both disulfide form (f(HNA-1)) and oxidized form (f(HNA-2)) of albumin in HD patients (36.0 +/- 6.03 vs. 41.7 +/- 6.27; 5.46 +/- 1.50 vs. 8.7 +/- 2.22, respectively, P < 0.05). The findings here also show that IVIR substantially increased plasma protein carbonyl content by oxidizing albumin. In addition, we found a strong correlation between plasma carbonyl content and the levels of oxidized albumin (f(HNA-1) and f(HNA-2)) in HD patients (R= 0.674 and R= 0.724, respectively, P < 0.01). CONCLUSION The results of this study indicate that the HPLC analysis of serum albumin represents a potentially useful method for the quantitative and qualitative evaluation of oxidative stress in HD patients, and strongly suggest the possibility that oxidative stress, generated by IVIR, enhances the oxidation of albumin in those patients.
Collapse
Affiliation(s)
- Makoto Anraku
- Department of Biopharmaceutics and Department of Nephrology, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
873
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
874
|
Jitsukawa K, Takahashi H, Hyuga R, Arii H, Masuda H. Sequence‐Specific Oxidative Degradation of Tripeptides by a Cobalt(
III
) Complex Containing a Terpyridine Ligand. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200400261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koichiro Jitsukawa
- Nagoya Institute of Technology, Gokiso‐cho, Showa‐ku Nagoya 466‐8555, Japan, Fax: +81‐52‐7355240
| | - Hiroshi Takahashi
- Nagoya Institute of Technology, Gokiso‐cho, Showa‐ku Nagoya 466‐8555, Japan, Fax: +81‐52‐7355240
| | - Ryoji Hyuga
- Nagoya Institute of Technology, Gokiso‐cho, Showa‐ku Nagoya 466‐8555, Japan, Fax: +81‐52‐7355240
| | - Hidekazu Arii
- Nagoya Institute of Technology, Gokiso‐cho, Showa‐ku Nagoya 466‐8555, Japan, Fax: +81‐52‐7355240
| | - Hideki Masuda
- Nagoya Institute of Technology, Gokiso‐cho, Showa‐ku Nagoya 466‐8555, Japan, Fax: +81‐52‐7355240
| |
Collapse
|
875
|
Heurtaux T, Benani A, Bianchi A, Moindrot A, Gradinaru D, Magdalou J, Netter P, Minn A. Redox state alteration modulates astrocyte glucuronidation. Free Radic Biol Med 2004; 37:1051-63. [PMID: 15336321 DOI: 10.1016/j.freeradbiomed.2004.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/24/2004] [Accepted: 06/17/2004] [Indexed: 01/09/2023]
Abstract
We have investigated the effects of mild oxidative conditions on drug-metabolizing enzyme activity in rat cultured astrocytes. These experimental conditions promoting an oxidative environment were obtained by short exposure to a low concentration of menadione (5 microM) for a short duration (15 min). This resulted in the rapid and transient production of reactive oxygen species (+130%), associated with a decrease in GSH cellular content (-24%), and an increase in total protein oxidation (+26%), but promoted neither PGE(2) nor NO production. This treatment induced a rapid and persistent decrease in astrocyte glucuronidation activities, which was totally prevented by N-acetyl-l-cysteine. These oxidative conditions also affected the specific UGT1A6 activity measured in transfected V79-1A6 cells. Finally, the subsequent recovery of astrocyte glucuronidation activity may result from upregulation of UGT1A6 expression (+62%) as shown by RT-PCR and gene reporter assay. These results show that the catalytic properties and expression of cerebral UGT1A6 are highly sensitive to the redox environment. The protective effect of N-acetyl-l-cysteine suggests both a direct action of reactive oxygen species on the protein and a more delayed action on the transcriptional regulation of UGT1A6. These results suggest that cerebral metabolism can be altered by physiological or pathological redox modifications.
Collapse
Affiliation(s)
- T Heurtaux
- Unité Mixte de Recherche CNRS, Université Henri Poincaré Nancy 1, No. 7561, Laboratoire de Pharmacologie, Faculté de Médecine, BP 184, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
876
|
Khaliulin I, Schwalb H, Wang P, Houminer E, Grinberg L, Katzeff H, Borman JB, Powell SR. Preconditioning improves postischemic mitochondrial function and diminishes oxidation of mitochondrial proteins. Free Radic Biol Med 2004; 37:1-9. [PMID: 15183190 DOI: 10.1016/j.freeradbiomed.2004.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 03/17/2004] [Accepted: 04/16/2004] [Indexed: 11/20/2022]
Abstract
This study examines the hypothesis that ischemic or pharmacologic preconditioning improves postischemic mitochondrial function by attenuating oxidation of mitochondrial proteins. Isolated rat hearts were perfused for 38 min preischemia, followed by 25 min global ischemia and then 60 min reperfusion. Hearts were preconditioned by two episodes of 3 min global ischemia, followed by 2 min of reflow (IP), or by perfusion with 50 micromol/l nicorandil (Nic) for 10 min, followed by 10 min washout. IP and Nic significantly (p <.05) improved postischemic function, which was abolished by bracketing the protocols with 200 micromol/l 5-hydroxydecoanate (5HD) or 300 micromol/l alpha-mercaptopropionylglycine (MPG). After isolation of cardiac mitochondria, the respiratory control index (RCI) was calculated from State 3 and State 4 respiration. Both IP and Nic significantly (p <.05) improved postischemic RCI, which was depressed 71% from preischemic values in control hearts. The protective effects of IP and Nic were partially abolished by bracketing with 5HD or MPG. Furthermore, mitochondria from ischemic hearts had significantly (p <.05) less ability to resist swelling on Ca2+ loading, which was improved by both IP and Nic. By use of an immunoblot technique, carbonyl content of multiple bands of mitochondrial proteins was observed to be elevated after 25 min ischemia, and still elevated by the end of 60 min reperfusion. Both IP and Nic attenuated the increased protein oxidation observed at the end of ischemia. The protective effect of IP was almost completely abolished by MPG and partially by 5HD, which also partially abolished the protective effect of Nic. These studies support the conclusion that one mechanism for enhanced postischemic function in the preconditioned heart is improved mitochondrial function as a result of decreased oxidation of mitochondrial proteins.
Collapse
Affiliation(s)
- Igor Khaliulin
- The Joseph Lunenfeld Cardiac Surgery Research Center, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
877
|
|
878
|
Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:657-62. [PMID: 15331095 DOI: 10.1016/j.plaphy.2004.06.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2003] [Accepted: 06/09/2004] [Indexed: 05/07/2023]
Abstract
Dehydrins are ubiquitous proteins produced by plants in response to water stress. Their functions, however, are not fully understood. The overexpression of Citrus unshiu Marcov. dehydrin (CuCOR19) enhanced cold tolerance in transgenic plants by reducing lipid peroxidation promoted by cold stress, suggesting that the CuCOR19 protein directly scavenges radicals. In this paper, we report the radical scavenging activity and oxidative modification of CuCOR19. The hydroxyl radical generated by the Fe2+/H2O2 system and peroxyl radical generated from 2, 2'-azobis (2-amidinopropane) (AAPH) were scavenged by CuCOR19, but hydrogen peroxide and superoxide were not. The scavenging activity for the hydroxyl radical and peroxyl radical of CuCOR19 was more potent than that of mannitol, and approximately equal to that of serum albumin, which is known as an antioxidative protein in mammals. CuCOR19 was degraded by the hydroxyl radical and peroxyl radical in a time- and dose-dependent manner. Mannitol and thiourea inhibited the degradation. Analysis of the amino acid composition of CuCOR19 indicated that glycine, histidine, and lysine, which are major residues in many dehydrins, were targeted by the hydroxyl radical. These results suggest that CuCOR19 is a radical scavenging protein, and may reduce oxidative damage induced by water stress in plants.
Collapse
Affiliation(s)
- Masakazu Hara
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | | | | |
Collapse
|
879
|
England K, Cotter T. Identification of carbonylated proteins by MALDI-TOF mass spectroscopy reveals susceptibility of ER. Biochem Biophys Res Commun 2004; 320:123-30. [PMID: 15207711 DOI: 10.1016/j.bbrc.2004.05.144] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species are produced by metabolism over time, but can also be produced in more acute conditions of cell stress such as treatment with cytotoxic drugs. Treatment of HL-60 cells with peroxide results in cell death and protein carbonylation, a non-enzymatic protein modification that typically results from oxidative stress within cells. It has recently become clear that protein carbonylation during ageing is confined to specific proteins. It is therefore of interest to be able to identify which proteins are susceptible to protein carbonylation. Here we demonstrate immunoprecipitation of carbonylated proteins coupled with 2D-gel electrophoresis to identify carbonylated proteins by MALDI-TOF m/s fingerprinting. The results show that some ER proteins are readily carbonylated in response to peroxide treatment of HL-60 cells. This is likely to have implications for the induction of cell death in such cells.
Collapse
Affiliation(s)
- K England
- Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|
880
|
Yilmaz IA, Akçay T, Cakatay U, Telci A, Ataus S, Yalçin V. Relation between bladder cancer and protein oxidation. Int Urol Nephrol 2004; 35:345-50. [PMID: 15160536 DOI: 10.1023/b:urol.0000022920.93994.ba] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA, protein oxidation and lipid peroxidation possess a major impact in carcinogenesis. Also, inflammatory and oxidative events have remarkable importance in bladder cancer. Thus, in this study total protein, protein carbonyl, nitrotyrosine, thiol residues, non-protein thiols, lipid peroxidation, and also, because of their relations to the above parameters, iron and iron binding levels have been investigated in patients with bladder cancer and in control group. Statistical evaluation of the results demonstrated significantly lower plasma protein levels in the patients with bladder cancer, as compared to the healthy control group. Serum iron levels in patients with invasive bladder cancer were found to be significantly lower when compared with non-invasive group. Protein carbonyl groups were remarkably higher in bladder cancer patients than in healthy controls. Patients with bladder cancer were demonstrated to have significantly lower levels of total thiol groups and protein-bound thiol groups as compared to healthy controls. Protein-bound thiol groups in patients with invasive bladder cancer revealed a more significant decline, than in non-invasive group.
Collapse
Affiliation(s)
- Ilker A Yilmaz
- Department of Biochemistry, Cerrahpaşa Medical Faculty, University of Istanbul, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
881
|
Di J, Bi S, Zhang M. Third-generation superoxide anion sensor based on superoxide dismutase directly immobilized by sol–gel thin film on gold electrode. Biosens Bioelectron 2004; 19:1479-86. [PMID: 15093220 DOI: 10.1016/j.bios.2003.12.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 11/29/2003] [Accepted: 12/03/2003] [Indexed: 11/21/2022]
Abstract
A third-generation biosensor for superoxide anion (O(2)*-) was developed based on superoxide dismutase (SOD) immobilized by thin silica-PVA sol-gel film on gold electrode surface. A rapid and direct electron transfer of SOD in the thin sol-gel film at the gold electrode was realized without any mediators or promoters. The characterization of the SOD electrodes showed a quasi-reversible electrochemical redox behavior with a formal potential of 80 + 5 mV (versus SCE) in 50 mmol l(-1) phosphate buffer solution (PBS), pH 7.0. The heterogeneous electron transfer rate constant was evaluated to be about 2.1s(-1). The anodic and cathodic transfer coefficients are 0.6 and 0.4, respectively. Based on biomolecular recognition for specific reactivity of SOD toward O(2)*- the SOD electrode was applied to a sensitive and selective measurement of O(2)*- with the low operation potential (-0.15 V versus SCE) in phosphate buffer solution, pH 7.0. The amperometric response was proportional to O(2)*- concentration in the range of 0.2-1.6 micromol l(-1) and the detection limit was 0.1 micromol l(-1) at a signal-to-noise ration of 3. The preparation of SOD electrode is easy and simple. The uniform porous structure of the silica-PVA sol-gel matrix results in a fast response rate of immobilized SOD and is very efficient for stabilizing the enzyme activity.
Collapse
Affiliation(s)
- Junwei Di
- State Key Laboratory of Coordination Chemistry of China, Department of Chemistry, Nanjing University, Nanjing 210093, PR China
| | | | | |
Collapse
|
882
|
Park S, Kim WS, Choi UJ, Han SU, Kim YS, Kim YB, Chung MH, Nam KT, Kim DY, Cho SW, Hahm KB. Amelioration of oxidative stress with ensuing inflammation contributes to chemoprevention of H. pylori-associated gastric carcinogenesis. Antioxid Redox Signal 2004; 6:549-60. [PMID: 15130281 DOI: 10.1089/152308604773934305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The gastric inflammatory response provoked by Helicobacter pylori (H. pylori) consists of infiltrations by neutrophils, lymphocytes, and macrophages, resulting in varying degrees of epithelial cell damage. H. pylori-associated inflammation not only activates various oxidant-producing enzymes such as NADPH oxidase and inducible nitric oxide synthase, but also lowers the antioxidant ascorbic acid in the stomach. Reactive oxygen metabolites and nitrogen metabolites generated by these enzymes react with each other to generate new or more potent reactive species. The specific types of cellular damage resulting from reactive oxygen metabolites include lipid peroxidation, protein oxidation, and oxidative DNA damage. All of these oxidative products can result in biochemical changes leading to cancer. A positive association has been demonstrated between H. pylori infection and gastric adenocarcinoma with increased oxidative stress. Therefore, appropriate treatment to reduce oxidative stress would be expected to prevent subsequent gastric carcinogenesis through lessening of H. pylori-associated inflammation. This review will provide evidence that antiinflammatory regimens can decrease the development of tumors and the amelioration of gastric inflammation might lead to chemoprevention strategies by the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Soojin Park
- Genomic Research Center for Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
883
|
Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Møller IM. Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. PHYTOCHEMISTRY 2004; 65:1839-51. [PMID: 15276442 DOI: 10.1016/j.phytochem.2004.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/05/2004] [Indexed: 05/18/2023]
Abstract
Highly purified mitochondria were isolated from green 7-day-old rice leaves. The mitochondria were sonicated and the matrix fraction isolated as the 100,000g supernatant. Part of the matrix fraction was left untreated while the other part was subjected to a mild oxidative treatment (0.5 mM H2O2+0.2 mM CuSO4 for 10 min at room temperature). The oxidised proteins in both samples were tagged with dinitrophenylhydrazine (DNP), which forms a covalent bond with carbonyl groups. The DNP-tagged proteins were immunoprecipitated using anti-DNP antibodies and digested with trypsin. The mixture of peptides was analysed by nano-HPLC coupled online to an ESI-Quad-TOF mass spectrometer. The peptides were separated by stepwise ion exchange chromatography followed by reverse phase chromatography (2D-LC), and analysed by MS/MS. Proteins were identified by un-interpreted fragment ion database searches. Using this approach we identified 20 oxidised proteins in the control sample and a further 32 in the oxidised sample. Western blots of 2D-gels of the same samples prior to immunoprecipitation verified that the oxidation treatment increases protein oxidation also for specific proteins. Likewise Western blots showed that neither the isolation of mitochondria nor their subfractionation introduced carbonyl groups. We therefore conclude that a number of proteins are oxidised in the matrix of rice leaf mitochondria in vivo and further identify a group of proteins that are particularly susceptible to mild oxidation in vitro.
Collapse
Affiliation(s)
- Brian K Kristensen
- Risø National Laboratory, Plant Research Department, P.O. Box 49, DK-4000 Roskilde, Denmark.
| | | | | | | | | |
Collapse
|
884
|
Gieseg SP, Pearson J, Firth CA. Protein hydroperoxides are a major product of low density lipoprotein oxidation during copper, peroxyl radical and macrophage-mediated oxidation. Free Radic Res 2004; 37:983-91. [PMID: 14670006 DOI: 10.1080/10715760310001603612] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble alpha-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.
Collapse
Affiliation(s)
- Steven P Gieseg
- Free Radical Biochemistry Laboratory, Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | |
Collapse
|
885
|
Ge Y, Lawhorn BG, ElNaggar M, Sze SK, Begley TP, McLafferty FW. Detection of four oxidation sites in viral prolyl-4-hydroxylase by top-down mass spectrometry. Protein Sci 2004; 12:2320-6. [PMID: 14500890 PMCID: PMC2366917 DOI: 10.1110/ps.03244403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative inactivation is a common problem for enzymatic reactions that proceed via iron oxo intermediates. In an investigation of the inactivation of a viral prolyl-4-hydroxylase (26 kD), electrospray mass spectrometry (MS) directly shows the degree of oxidation under varying experimental conditions, but indicates the addition at most of three oxygen atoms per molecule. Thus, molecular ion masses (M + nO) of one sample indicate the oxygen atom adducts n = 0, 1, 2, 3, and 4 of 35, 41, 19, 5 +/- 3, and <2%, respectively; "top-down" MS/MS of these ions show oxidation at the sites R(28)-V(31), E(95)-F(107), and K(216) of 22%, 28%, and 34%, respectively, but with a possible (approximately 4%) fourth site at V(125)-D(150). However, for the doubly oxidized molecular ions (increasing the precursor oxygen content from 0.94 to 2), MS/MS showed an easily observable approximately 13% oxygen at the V(125)-D(150) site. For the "bottom-up" approach, detection of the approximately 4% oxidation at the V(125)-D(150) site by MS analysis of a proteolysis mixture would have been very difficult. The unmodified peptide containing this site would represent a few percent of the proteolysis mixture; the oxidized peptide not only would be just approximately 4% of this, but the uniqueness of its mass value (approximately 1-2 kD) would be far less than the 11,933 Dalton value used here. Using different molecular ion precursors for top-down MS/MS also provides kinetic data from a single sample, that is, from molecular ions with 0.94 and 2 oxygens. Little oxidation occurs at V(125)-D(150) until K(216) is oxidized, suggesting that these are competitively catalyzed by the iron center; among several prolyl-4-hydroxylases the K(216), H(137), and D(139) are conserved residues.
Collapse
Affiliation(s)
- Ying Ge
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
886
|
Davies MJ, Hawkins CL. EPR spin trapping of protein radicals. Free Radic Biol Med 2004; 36:1072-86. [PMID: 15082061 DOI: 10.1016/j.freeradbiomed.2003.12.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 12/08/2003] [Accepted: 12/19/2003] [Indexed: 11/23/2022]
Abstract
Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress and via enzymatic reactions. Over the last 15 years this technique has also found increasing use in detecting and identifying radicals formed on biological macromolecules as a result of either radical reactions or enzymatic processes. Though the EPR signals that result from the trapping of large, slowly tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected examples of radical formation on proteins.
Collapse
|
887
|
Headlam HA, Davies MJ. Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radic Biol Med 2004; 36:1175-84. [PMID: 15082071 DOI: 10.1016/j.freeradbiomed.2004.02.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/11/2004] [Accepted: 02/13/2004] [Indexed: 11/21/2022]
Abstract
Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed on the C-3 carbons of Ala, Val, Leu, and Asp residues undergo beta-scission to give backbone alpha-carbon radicals, with the release of the side- chain as a carbonyl compound. We now show that this is a general mechanism that occurs with a wide range of oxidants. The quantitative significance of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio modulated by EDTA. This is ascribed to metal ion-protein interactions affecting the sites of initial oxidation. Hypochlorous acid gave low concentrations of released carbonyls, but high yields of protein-bound material. The peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride, and a peroxynitrite generator, 3-morpholinosydnonimine hydrochloride, gave lower overall carbonyl yields, with released carbonyls predominating over protein-bound species similar to that observed with metal ion/H2O2 systems.
Collapse
|
888
|
Stadler N, Váchová L, Krasowska A, Höfer M, Sigler K. Role of strategic cysteine residues in oxidative damage to the yeast plasma membrane H(+)-ATPase caused by Fe- and Cu-containing Fenton reagents. Folia Microbiol (Praha) 2004; 48:589-96. [PMID: 14976714 DOI: 10.1007/bf02993464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Damage caused to Saccharomyces cerevisiae SY4 plasma membrane H(+)-ATPase by Fe- and Cu-Fenton reagents was determined in secretory vesicles containing enzyme in which Cys residues were replaced singly or in pairs by Ala. Cys-221 situated in a beta-sheet domain between M2 and M3 segments, phosphorylation domain-located Cys-409 and Cys-532 situated at the ATP-binding site play a role in the inactivation. In the presence of all three residues the enzyme exhibited a certain basic inactivation, which did not change when Cys-532 was replaced with Ala. In mutants having intact Cys-532 but lacking one or both other cysteines, replacement of Cys-221 with Ala led to lower inactivation, suggesting that Cys-221 may serve as a target for metal-catalyzed oxidation and intact Cys-532 promotes this target role of Cys-221. In contrast, the absence of Cys-409 caused higher inactivation by Fe-Fenton. Cys-532 thus seems to serve as a target for Fe-Fenton, intact Cys-409 causing a conformational change that makes Cys-532 less accessible to oxidation. The mutant lacking both Cys-221 and Cys-409 is more sensitive to Fe-Fenton than to Cu-Fenton and the absence of both Cys residues thus seems to expose presumable extra Fe-binding sites. These data and those on protection by ATP, ADP, 1,4-dithiothreitol and deferrioxamine B point to complex interactions between individual parts of the enzyme molecule that determine its sensitivity towards Fenton reagents. ATPase fragmentation caused by the two reagents differed in that the Fe-Fenton reagent produced in Western blot "smears" whereas the Cu-Fenton reagent produced defined fragments.
Collapse
Affiliation(s)
- N Stadler
- Heart Research Institute, Camperdown, 2050 Sydney, Australia
| | | | | | | | | |
Collapse
|
889
|
Ernst A, Stolzing A, Sandig G, Grune T. Protein oxidation and the degradation of oxidized proteins in the rat oligodendrocyte cell line OLN 93-antioxidative effect of the intracellular spin trapping agent PBN. ACTA ACUST UNITED AC 2004; 122:126-32. [PMID: 15010205 DOI: 10.1016/j.molbrainres.2003.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2003] [Indexed: 10/26/2022]
Abstract
Oligodendrocytes are the myelin-producing cells in the central nervous system. It was proposed that these cells are much more prone to oxidative damage than to other cells of the central nervous system. This fact seems to be due to their high iron store and low antioxidative defense mechanisms. Consequently, free radical induced damage should lead to an enhanced damage of oligodendrocytes. Thus, we chose the oligodendrocyte cell line OLN 93 to measure the stability of the protein pool after oxidation and the possibilities of protecting proteins by alpha-phenyl-N-tert-butylnitrone (PBN). We were able to demonstrate for the first time that OLN 93 cells are able to respond with an increase in overall proteolysis when exposed to various oxidants. This increase was the consequence of an enhanced protein oxidation. The activity of the 20S proteasome, which is thought to be involved in the removal of oxidized proteins, was not effected by moderate concentrations of the oxidants. The spin-trap PBN was used as an antioxidant and was able to prevent protein oxidation in OLN 93 cells effectively. Consequently, we proved that PBN is also able to prevent the increase in overall protein oxidation. We were able to demonstrate that OLN 93 oligodendrocytes react to oxidative stress with an increase in the protein turnover directed towards the removal of oxidized proteins. The intracellular spin-trap PBN is able to prevent protein oxidation in OLN 93 cells.
Collapse
Affiliation(s)
- Andrea Ernst
- Medical Faculty (Charité), Neuroscience Research Center, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
890
|
Canton M, Neverova I, Menabò R, Van Eyk J, Di Lisa F. Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 2004; 286:H870-7. [PMID: 14766672 DOI: 10.1152/ajpheart.00714.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the contribution of reactive oxygen species to myocardial ischemia is well recognized, the possible intracellular targets, especially at the level of myofibrillar proteins (MP), are not yet fully characterized. To assess the maximal extent of oxidative degradation of proteins, isolated rat hearts were perfused with 1 mM H2O2. Subsequently, the MP maximally oxidative damage was compared with the effects produced by 1) 30 min of no-flow ischemia (I) followed in other hearts by 3 min of reperfusion (I/R); and 2) I/R in the presence of a potent antioxidant N-(2-mercaptopropionyl)glycine (MPG). Samples from the H2O2group electrophoresed under nonreducing conditions and probed with actin, desmin, or tropomyosin monoclonal antibodies showed high-molecular mass complexes indicative of disulfide cross-bridges along with splitting and thickening of tropomyosin and actin bands, respectively. Only these latter changes could be detected in I/R samples and were prevented by MPG. Carbonyl groups generated by oxidative stress on MP were detected by Western blot analysis (oxyblot) under optimized conditions. The analyses showed one major band corresponding to oxidized actin, the density of which increased 1.2-, 2.8-, and 6.8-fold in I, I/R, and H2O2groups, respectively. The I/R-induced increase was significantly reduced by MPG. In conclusion, oxidative damage of MP occurs on reperfusion, although at a lower extent than in H2O2perfused hearts, whereas oxidative modifications could not be detected in ischemic hearts. Furthermore, the inhibition of MP oxidation by MPG might underlie the protective efficacy of antioxidants.
Collapse
Affiliation(s)
- Marcella Canton
- Dipartimento di Chimica Biologica, Viale G. Colombo, 3, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
891
|
Morgan PE, Dean RT, Davies MJ. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen. Free Radic Biol Med 2004; 36:484-96. [PMID: 14975451 DOI: 10.1016/j.freeradbiomed.2003.11.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 10/16/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
Reaction of certain amino acids, peptides, and proteins with singlet oxygen yields substrate-derived peroxides. Recent studies have shown that these species are formed within intact cells and can inactivate key cellular enzymes. This study examines potential mechanisms by which cells might remove or detoxify such peroxides. It is shown that catalase, horseradish peroxidase, and Cu/Zn superoxide dismutase do not react rapidly with these peroxides. Oxymyoglobin and oxyhemoglobin, but not the met (Fe3+) forms of these proteins, react with peptide but not protein, peroxides with oxidation of the heme iron. Glutathione peroxidase, in the presence of reduced glutathione (GSH) rapidly removes peptide, but not protein, peroxides, consistent with substrate size being a key factor. Protein thiols, GSH, other low-molecular-weight thiols, and the seleno-compound ebselen react, in a nonstoichiometric manner, with both peptide and protein peroxides. Cell lysate studies show that thiol consumption and peroxide removal occur in parallel; the stoichiometry of these reactions suggests that thiol groups are the major direct, or indirect, reductants for these species. Ascorbic acid and some derivatives can remove both the parent peroxides and radicals derived from them, whereas methionine and the synthetic phenolic antioxidants Probucol and BHT show little activity. These studies show that cells do not have efficient enzymatic defenses against protein peroxides, with only thiols and ascorbic acid able to remove these materials; the slow removal of these species is consistent with protein peroxides playing a role in cellular dysfunction resulting from oxidative stress.
Collapse
Affiliation(s)
- Philip E Morgan
- Free Radical Group, The Heart Research Institute, Camperdown, Sydney, NSW, Australia
| | | | | |
Collapse
|
892
|
Sakharov DV, Bunschoten A, van Weelden H, Wirtz KWA. Photodynamic treatment and H2O2-induced oxidative stress result in different patterns of cellular protein oxidation. ACTA ACUST UNITED AC 2004; 270:4859-65. [PMID: 14653812 DOI: 10.1046/j.1432-1033.2003.03885.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photodynamic treatment (PDT) is an emerging therapeutic procedure for the management of cancer, based on the use of photosensitizers, compounds that generate highly reactive oxygen species (ROS) on irradiation with visible light. The ROS generated may oxidize a variety of biomolecules within the cell, loaded with a photosensitizer. The high reactivity of these ROS restricts their radius of action to 5-20 nm from the site of their generation. We studied oxidation of intracellular proteins during PDT using the ROS-sensitive probe acetyl-tyramine-fluorescein (acetylTyr-Fluo). This probe labels cellular proteins, which become oxidized at tyrosine residues under the conditions of oxidative stress in a reaction similar to dityrosine formation. The fluorescein-labeled proteins can be visualized after gel electrophoresis and subsequent Western blotting using the antibody against fluorescein. We found that PDT of rat or human fibroblasts, loaded with the photosensitizer Hypocrellin A, resulted in labeling of a set of intracellular proteins that was different from that observed on treatment of the cells with H2O2. This difference in labeling patterns was confirmed by 2D electrophoresis, showing that a limited, yet distinctly different, set of proteins is oxidized under either condition of oxidative stress. By matching the Western blot with the silver-stained protein map, we infer that alpha-tubulin and beta-tubulin are targets of PDT-induced protein oxidation. H2O2 treatment resulted in labeling of endoplasmic reticulum proteins. Under conditions in which the extent of protein oxidation was comparable, PDT caused massive apoptosis, whereas H2O2 treatment had no effect on cell survival. This suggests that the oxidative stress generated by PDT with Hypocrellin A activates apoptotic pathways, which are insensitive to H2O2 treatment. We hypothesize that the pattern of protein oxidation observed with Hypocrellin A reflects the intracellular localization of the photosensitizer. The application of acetylTyr-Fluo may be useful for characterizing protein targets of oxidation by PDT with various photosensitizers.
Collapse
Affiliation(s)
- Dmitri V Sakharov
- Department of Biochemistry of Lipids, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, The Netherlands.
| | | | | | | |
Collapse
|
893
|
Parrado J, Absi EH, Machado A, Ayala A. "In vitro" effect of cumene hydroperoxide on hepatic elongation factor-2 and its protection by melatonin. Biochim Biophys Acta Gen Subj 2004; 1624:139-44. [PMID: 14642824 DOI: 10.1016/j.bbagen.2003.10.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have examined by immunoblotting the effect of three oxidant compounds on the level of hepatic elongation factor-2 (eEF-2). Rat liver homogenates were exposed to cumene hydroperoxide (CH), 2-2'-azobis (2-aminopropane) dihydrochloride (AAPH) and H(2)O(2). Only CH treatment produced the disappearance of eEF-2, probably due to a phenomena of peptide bond cleavage. The direct implication of free radical species in this process is evident because of the fact that the inclusion of a free radical scavenger such as melatonin prevented the eEF-2 depletion. The results also suggest that the disappearance of eEF-2 induced by CH can be linked to a lipid peroxidant process, which could account for the decline of protein synthesis in aging and other circumstances where lipid peroxidation is high.
Collapse
Affiliation(s)
- J Parrado
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/. Tramontana s/n, 41012 Seville, Spain
| | | | | | | |
Collapse
|
894
|
Watanabe S, Tajima Y, Yamaguchi T, Fukui T. Potassium Bromate-Induced Hyperuricemia Stimulates Acute Kidney Damage and Oxidative Stress. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Satoshi Watanabe
- Department of Health Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Yukie Tajima
- Department of Health Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Tomoko Yamaguchi
- Department of Health Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Tetsuya Fukui
- Department of Health Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
895
|
Ernst A, Stolzing A, Sandig G, Grune T. Antioxidants effectively prevent oxidation-induced protein damage in OLN 93 cells. Arch Biochem Biophys 2004; 421:54-60. [PMID: 14678784 DOI: 10.1016/j.abb.2003.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidative stress is supposed to play an important role in demyelinating diseases. Oligodendrocytes are the myelin-forming cells in the brain and are highly susceptible to oxidative stress due to their low antioxidative defense systems and high metabolic rate. In the present work, we tested the response of the oligodendrocyte cell line OLN 93 to oxidative stress. OLN 93 cell cultures are characterized by a loss of cell viability after oxidation. This loss of cell viability is accompanied by an increase in protein oxidation and consequently an elevated overall proteolysis. To minimize the oxidative damage, we tested the effects of the antioxidants alpha-lipoic acid and coenzyme Q(10). Both compounds were able to elevate cell viability and to decrease intracellular protein turnover and oxidant induced protein oxidation. Therefore, we concluded that the excessive oxidative damage of oligodendrocytes and their protein pool can be prevented by the usage of antioxidants.
Collapse
Affiliation(s)
- Andrea Ernst
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
896
|
Abudu N, Miller JJ, Levinson SS. Lipoprotein Oxidation Products and Arteriosclerosis: Theory and Methods with Applicability to the Clinical Chemistry Laboratory. Adv Clin Chem 2004; 38:1-35. [PMID: 15521187 DOI: 10.1016/s0065-2423(04)38001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ntei Abudu
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
897
|
Affiliation(s)
- Joel R Cherry
- Novozymes Biotech, Inc., Davis, California 95616, USA
| | | |
Collapse
|
898
|
Moller IM, Kristensen BK. Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 2004; 3:730-5. [PMID: 15295627 DOI: 10.1039/b315561g] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plant mitochondria produce reactive oxygen species (ROS) as an unavoidable side product of aerobic metabolism, but they have mechanisms for regulating this production such as the alternative oxidase. Once produced, ROS can be removed by several different enzyme systems. Finally, should the first two strategies fail, the ROS produced can act as a signal to the rest of the cell and/or cause damage to DNA, lipids and proteins. Proteins are modified in a variety of ways by ROS, some direct, others indirect e.g. by conjugation with breakdown products of fatty acid peroxidation. Reversible oxidation of cysteine and methionine side chains is an important mechanism for regulating enzyme activity. Mitochondria from both mammalian and plant tissues contain a number of oxidised proteins, but the relative abundance of these post-translationally modified forms is as yet unknown, as are the consequences of the modification for the properties and turnover time of the proteins. Specific proteins appear to be particularly vulnerable to oxidative carbonylation in the matrix of plant mitochondria; these include several enzymes of the Krebs cycle, glycine decarboxylase, superoxide dismutase and heat shock proteins. Plant mitochondria contain a number of different proteases, but their role in removing oxidatively damaged proteins is, as yet, unclear.
Collapse
Affiliation(s)
- Ian M Moller
- Plant Research Department, Riso National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark.
| | | |
Collapse
|
899
|
Yoon KJP, Redda KK, Mazzio E, Soliman KF. Inhibitory effects of novel tetrahydropyridine derivatives on nitric oxide and reactive oxygen species production in glioma cells. Drug Dev Res 2004. [DOI: 10.1002/ddr.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
900
|
Cao L, Leers-Sucheta S, Azhar S. Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol 2004; 88:61-7. [PMID: 15026084 DOI: 10.1016/j.jsbmb.2003.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 10/22/2003] [Indexed: 01/03/2023]
Abstract
In aged rats, trophic hormone-stimulated testosterone secretion by isolated Leydig cells is greatly reduced. The current studies were initiated to establish a functional link between excess oxidative stress and the age-related decline in steroidogenesis. Highly purified Leydig cell preparations obtained from 5-month (young mature) and 24-month (old) Sprague-Dawley rats were employed to measure and compare levels of lipid peroxidation, non-enzymatic (alpha-tocopherol, ascorbic acid, and reduced/oxidized glutathione) and enzymatic (Cu, Zn-superoxide dismutase, Cu, Zn-SOD; Mn-superoxide dismutase, Mn-SOD; glutathione peroxidase-1, GPX-1, and catalase, CAT) anti-oxidants. The extent of lipid peroxidation (oxidative damage) in isolated membrane fractions was quantified by measuring the content of thiobarbituric acid-reactive substances (TBARS) under basal conditions, or in the presence of non-enzymatic or enzymatic pro-oxidants. Membrane preparations isolated from Leydig cells from old rats exhibited two- to three-fold enhancement of basal TBARS formation. However, aging had no significant effect on TBARS formation in response to either non-enzymatic or enzymatic pro-oxidants. Among the non-enzymatic anti-oxidants, the levels of reduced glutathione were drastically reduced during aging, while levels of alpha-tocopherol and ascorbic acid remained unchanged. Both steady-state mRNA levels and catalytic activities of Cu, Zn-SOD, Mn-SOD, and GPX-1 were also significantly lower in Leydig cells from 24-month-old rats as compared with 5-month-old control rats. In contrast, neither mRNA levels nor enzyme activity of catalase was sensitive to aging. From these data we conclude that aging is accompanied by reduced expression of key enzymatic and non-enzymatic anti-oxidants in Leydig cells leading to excessive oxidative stress and enhanced oxidative damage (lipid peroxidation). It is postulated that such excessive oxidative insult may contribute to the observed age-related decline in testosterone secretion by testicular Leydig cells.
Collapse
Affiliation(s)
- Luchuan Cao
- Geriatric Research, Education and Clinical Center (GRECC-182 B), Department of Veterans Affairs Palo Alto Health Care System, and Department of Medicine, Stanford University School of Medicine, CA, USA
| | | | | |
Collapse
|