901
|
Park CR, Campbell AM, Woodson JC, Smith TP, Fleshner M, Diamond DM. Permissive influence of stress in the expression of a U-shaped relationship between serum corticosterone levels and spatial memory errors in rats. Dose Response 2006; 4:55-74. [PMID: 18648634 PMCID: PMC2477653 DOI: 10.2203/dose-response.004.01.005.park] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The relationship between glucocorticoids (GCs) and memory is complex, in that memory impairments can occur in response to manipulations that either increase or decrease GC levels. We investigated this issue by assessing the relationship between serum corticosterone (the primary rodent GC) and memory in rats trained in the radial arm water maze, a hippocampus-dependent spatial memory task. Each day, rats learned a new location of the hidden escape platform and then 30 min later their memory of the location of the platform was tested. Under control conditions, well-trained rats had excellent spatial memory and moderately elevated corticosterone levels (approximately 26 microg/dl versus a baseline of approximately 2 microg/dl). Their memory was impaired when corticosterone levels were either reduced by metyrapone (a corticosterone synthesis inhibitor) or increased by acute stress (predator exposure), forming an overall U-shaped relationship between corticosterone levels and memory. We then addressed whether there was a causal relationship between elevated corticosterone levels and impaired memory. If elevated corticosterone levels were a sufficient condition to impair memory, then exogenously administered corticosterone, alone, should have impaired performance. However, we found that spatial memory was not impaired in corticosterone-injected rats that were not exposed to the cat. This work demonstrates that an intermediate level of corticosterone correlated with optimal memory, and either a decrease or an increase in corticosterone levels, in conjunction with strong emotionality, impaired spatial memory. These findings indicate that fear-provoking conditions, which are known to engage the amygdala, interact with stress levels of corticosterone to influence hippocampal functioning.
Collapse
Affiliation(s)
- Collin R Park
- Department of Psychology, University of South Florida and Medical Research Service, VA Medical Center, Tampa, FL 33620, USA
| | | | | | | | | | | |
Collapse
|
902
|
Dong Z, Mao R, Han H, Cao J, Xu L. Morphine withdrawal modifies antinociceptive effects of acute morphine in rats. Biochem Biophys Res Commun 2006; 346:578-82. [PMID: 16762316 DOI: 10.1016/j.bbrc.2006.05.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/13/2006] [Indexed: 10/24/2022]
Abstract
Repeated opioid use is known to cause tolerance of antinociceptive effects. Whether opioid abstinence modifies antinociceptive effects is unknown. Here we reported that morphine withdrawal for 18 h and 4 days after repeated morphine treatment largely reduced tail-flick latencies compared with control, while the rats showed severe withdrawal syndromes. However, the latencies and withdrawal syndromes were restored to control level at 20 days withdrawal. Similarly, antinociceptive effects of acute morphine were decreased at 18 h and further decreased at 4 days but restored to control level at 20 days withdrawal. Behavioral stress that was given to the rats at 18 h withdrawal further reduced tail-flick latencies and antinociceptive effects. Conversely, the glucocorticoid receptor antagonist RU38486 increased tail-flick latencies and antinociceptive effects at 4 days withdrawal. These results suggest that morphine withdrawal could evoke behavioral stress to modify antinociceptive effects, implicating a significant influence of opioid abstinence on chronic pain treatment.
Collapse
Affiliation(s)
- Zhifang Dong
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, PR China
| | | | | | | | | |
Collapse
|
903
|
Aleisa AM, Alzoubi KH, Alkadhi KA. Chronic but not acute nicotine treatment reverses stress-induced impairment of LTP in anesthetized rats. Brain Res 2006; 1097:78-84. [PMID: 16725127 DOI: 10.1016/j.brainres.2006.04.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Stress impairs long-term potentiation (LTP) and is a major cause for starting or increasing tobacco smoking. We have previously shown that chronic concurrent nicotine treatment prevents stress-induced LTP impairment. Nicotine reduces stress-induced impairment of LTP, probably, through activation of nicotinic acetylcholine receptors in the hippocampus. Herein, we investigated the effects of acute and chronic nicotine treatments on the chronic-stress-induced impairment of LTP in area CA1 of the hippocampus of urethane-anesthetized rats. Extracellular in vivo recording from the hippocampal area CA1 showed that pre-treatment with nicotine (1 mg/kg; sc twice/day for 2 weeks prior to stress) protected LTP from the inhibitory effect of subsequent chronic psychosocial stress (4 additional weeks concurrently with nicotine). In another series of experiments, 2 weeks of psychosocial stress was followed by 4 weeks of nicotine treatment concurrently with continuing stress. Nicotine treatment reversed established stress-induced impairment of LTP. However, acute nicotine treatment of rats (a single dose of 1 mg/kg; sc.) did not reverse chronic-stress-induced impairment of LTP. The results show that the impairment of LTP during chronic stress can be blocked by chronic, but not acute, nicotine treatment.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5515, USA
| | | | | |
Collapse
|
904
|
Yang J, Han H, Cui M, Wang L, Cao J, Li L, Xu L. Acute behavioural stress facilitates long-term depression in temporoammonic-CA1 pathway. Neuroreport 2006; 17:753-7. [PMID: 16641682 DOI: 10.1097/01.wnr.0000209044.66482.c5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Behavioural stress facilitates long-term depression in Schaffer collaterals-CA1 pathway, but it is unknown whether it influences long-term depression in temporoammonic fibres-CA1. Here, we report that low-frequency stimulation induced long-term depression and foot shock stress before slice preparation facilitated long-term depression in both pathways of young rat slices. When the field excitatory postsynaptic potentials were recorded by stimulating the two pathways alternately and low-frequency stimulation was given to the two pathways simultaneously, a reliable long-term depression was induced in Schaffer collaterals-CA1 but a reliable long-term potentiation took place in temporoammonic fibres-CA1. Interestingly, foot shock stress now enabled low-frequency stimulation to induce reliable long-term depressions in both pathways. These findings suggested that acute behavioural stress facilitated long-term depressions in both pathways and disrupted the interactions between pathways.
Collapse
Affiliation(s)
- Jianli Yang
- Mental Health Institute of the 2nd Xiangya Hospital, Central South University, Changsha, PR China
| | | | | | | | | | | | | |
Collapse
|
905
|
Buchanan TW, Tranel D, Adolphs R. Impaired memory retrieval correlates with individual differences in cortisol response but not autonomic response. Learn Mem 2006; 13:382-7. [PMID: 16741288 PMCID: PMC1475821 DOI: 10.1101/lm.206306] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 02/28/2006] [Indexed: 11/24/2022]
Abstract
Stress can enhance or impair memory performance. Both cortisol release and sympathetic nervous system responses have been implicated in these differential effects. Here we investigated how memory retrieval might be affected by stress-induced cortisol release, independently of sympathetic nervous system stress responses. Thirty-two healthy participants (16 women) learned emotionally arousing and neutral words. One hour later, half of the participants underwent a stressor (cold pressor test) and the other half, a control warm water exposure, both followed by a delayed free recall task. The stressed participants were split into those who did (responders, N = 8) and those who did not (nonresponders, N = 6) show a cortisol response. Both responders and nonresponders showed comparable sympathetic nervous system activity (skin conductance level) during the cold pressor. The cortisol responders recalled significantly fewer words compared to nonresponders, and compared to control participants; this effect was most pronounced for moderately arousing words (compared to highly arousing and neutral words). These results suggest that individual differences in cortisol reactivity affect memory retrieval performance, and help to explain the differential effects of stress on memory.
Collapse
Affiliation(s)
- Tony W Buchanan
- Department of Neurology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
906
|
Kuhlmann S, Wolf OT. A non-arousing test situation abolishes the impairing effects of cortisol on delayed memory retrieval in healthy women. Neurosci Lett 2006; 399:268-72. [PMID: 16504397 DOI: 10.1016/j.neulet.2006.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/01/2006] [Accepted: 02/04/2006] [Indexed: 10/25/2022]
Abstract
Animal and human studies have repeatedly shown that stress hormones influence memory. Glucocorticoids (GCs) enhance memory consolidation but impair memory retrieval. Studies in rodents indicate that adrenergic activation is necessary for GC induced effects on memory. We have shown, in two previous placebo-controlled double-blind experiments, that memory retrieval is significantly impaired after oral cortisol (30 mg) treatment in healthy young women. Here, we changed the experimental setting before and during the retrieval testing, so that the participants (n=31) experienced a more relaxed test situation. The learning material, the timing and the tester used were identical to the two previous studies. In the relaxed condition no effect of cortisol on memory retrieval occurred (p=0.84). The results indicate that the experimental setting can influence the effect of cortisol on memory. Our findings suggest that glucocorticoid effects on memory retrieval require testing-associated arousal in humans.
Collapse
Affiliation(s)
- Sabrina Kuhlmann
- Department of Psychology, University of Bielefeld, Postfach 100131, D- 33501 Bielefeld, Germany
| | | |
Collapse
|
907
|
Artola A, von Frijtag JC, Fermont PCJ, Gispen WH, Schrama LH, Kamal A, Spruijt BM. Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur J Neurosci 2006; 23:261-72. [PMID: 16420435 DOI: 10.1111/j.1460-9568.2005.04552.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioural experience (e.g. chronic stress, environmental enrichment) can have long-lasting effects on cognitive functions. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as hippocampus, we tested whether behaviour has also long-lasting effects on synaptic plasticity by examining the induction of long-term potentiation (LTP) and long-term depression (LTD) in slices of hippocampal CA1 obtained from rats either 7-9 months after social defeat (behavioural stress) or 3-5 weeks after 5-week exposure to environmental enrichment. Compared with age-matched controls, defeated rats showed markedly reduced LTP. LTP was even completely impaired but LTD was enhanced in defeated and, subsequently, individually housed (during the 7-9-month period after defeat) rats. However, increasing stimulus intensity during 100-Hz stimulation resulted in significant LTP. This suggests that the threshold for LTP induction is still raised and that for LTD lowered several months after a short stressful experience. Both LTD and LTP were enhanced in environmentally enriched rats, 3-5 weeks after enrichment, as compared with age-matched controls. Because enrichment reduced paired-pulse facilitation, an increase in presynaptic release, facilitating both LTD and LTP induction, might contribute to enhanced synaptic changes. Consistently, enrichment reduced the number of 100-Hz stimuli required for inducing LTP. But enrichment may also actually enhance the range of synaptic modification. Repeated LTP and LTD induction produced larger synaptic changes in enriched than in control rats. These data reveal that exposure to very different behavioural experiences can produce long-lasting effects on the susceptibility to synaptic plasticity, involving pre- and postsynaptic processes.
Collapse
Affiliation(s)
- Alain Artola
- Department of Animals, Science & Society, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
908
|
Joëls M. Corticosteroid effects in the brain: U-shape it. Trends Pharmacol Sci 2006; 27:244-50. [PMID: 16584791 DOI: 10.1016/j.tips.2006.03.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/25/2005] [Accepted: 03/21/2006] [Indexed: 11/16/2022]
Abstract
The existence of U-shaped dose dependencies has been known for a long time. With regard to corticosteroid action in brain cells, a dual receptor system that works in opposing directions can explain the occurrence of a U-shaped dose dependency. However, recent evidence indicates that many cell- and tissue-specific factors (e.g. the local availability of corticosterone, the expression of receptor variants and the cellular content of other proteins and molecules) also determine the effectiveness of the hormone. This could result in dose dependencies with a different shape, despite the local presence of two receptor types.
Collapse
Affiliation(s)
- Marian Joëls
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 SM Amsterdam, The Netherlands.
| |
Collapse
|
909
|
Fletcher Q, Boonstra R. Do captive male meadow voles experience acute stress in response to weasel odour? CAN J ZOOL 2006. [DOI: 10.1139/z06-033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hormonal stress response is adapted to deal with acute (short-term) stressors; however, chronic (long-term) stressors have negative effects on survival and fitness. Field and laboratory evidence suggest that voles respond behaviourally to predator odours. However, it is unknown whether voles mount an acute hormonal stress response to predator odour. We determined whether reproductively active, captive male meadow voles ( Microtus pennsylvanicus (Ord, 1815)) mounted a more pronounced hormonal stress response to weasel odour (ermine, Mustela erminea L., 1758), one of their principal mammalian predators, than to nonpredator and control odours. We compared the corticosterone response of captive voles to weasel, jumping mouse ( Zapus hudsonius (Zimmermann, 1780)), and control odours following acute (20 min) exposure. The hormonal stress response to the treatment odours did not differ, indicating that captive male voles in the reproductive season do not mount an acute stress response to predator odour. We hypothesize that voles do not respond to weasel odour because, independent of other stimuli, olfactory signals are not reliable enough to outweigh the costs, such as suppression of reproduction and reproductive behaviour, associated with a response.
Collapse
Affiliation(s)
- Q.E. Fletcher
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - R. Boonstra
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
910
|
Guijarro C, Rutz S, Rothmaier K, Turiault M, Zhi Q, Naumann T, Frotscher M, Tronche F, Jackisch R, Kretz O. Maturation and maintenance of cholinergic medial septum neurons require glucocorticoid receptor signaling. J Neurochem 2006; 97:747-58. [PMID: 16573657 DOI: 10.1111/j.1471-4159.2006.03728.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucocorticoids have been shown to influence trophic processes in the nervous system. In particular, they seem to be important for the development of cholinergic neurons in various brain regions. Here, we applied a genetic approach to investigate the role of the glucocorticoid receptor (GR) on the maturation and maintenance of cholinergic medial septal neurons between P15 and one year of age by using a mouse model carrying a CNS-specific conditional inactivation of the GR gene (GRNesCre). The number of choline acetyltransferase and p75NTR immuno-positive neurons in the medial septum (MS) was analyzed by stereology in controls versus mutants. In addition, cholinergic fiber density, acetylcholine release and cholinergic key enzyme activity of these neurons were determined in the hippocampus. We found that in GRNesCre animals the number of medial septal cholinergic neurons was significantly reduced during development. In addition, cholinergic cell number further decreased with aging in these mutants. The functional GR gene is therefore required for the proper maturation and maintenance of medial septal cholinergic neurons. However, the loss of cholinergic neurons in the medial septum is not accompanied by a loss of functional cholinergic parameters of these neurons in their target region, the hippocampus. This pinpoints to plasticity of the septo-hippocampal system, that seems to compensate for the septal cell loss by sprouting of the remaining neurons.
Collapse
Affiliation(s)
- Christian Guijarro
- Department of Anatomy and Cell Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
911
|
Zhong W, Dong Z, Tian M, Cao J, Xu T, Xu L, Luo J. Opiate withdrawal induces dynamic expressions of AMPA receptors and its regulatory molecule CaMKIIalpha in hippocampal synapses. Life Sci 2006; 79:861-9. [PMID: 16616767 DOI: 10.1016/j.lfs.2006.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 01/22/2023]
Abstract
Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in nucleus accumbens or amygdala, but the influence of drug withdrawal on hippocampus is little known. Here, we have examined the expression of GluR1 and GluR2/3 in hippocampal membrane and synaptic fractions following repeated morphine exposure and subsequent withdrawal. Repeated morphine exposure for 12 d increased GluR1 and GluR2/3 in synaptosome but not in membrane fraction. Interestingly, CaMKIIalpha, known to be able to regulate the function of AMPA receptors, was decreased in synaptosome but not in membrane fraction; pCaMKIIalpha, the phosphorylated form of CaMKIIalpha, was increased in both fractions. However, during opiate withdrawal, GluR1 was generally reduced while GluR2/3 was prominently increased in both fractions; pCaMKIIalpha was strongly decreased immediately after withdrawal, but detectably increased in late phase of morphine withdrawal in both fractions. Importantly, the opiate withdrawal-induced increase in GluR2/3 was dependent on the activation of glucocorticoid receptors and NMDA receptors, as it was prevented by the glucocorticoid receptor antagonist RU38486, or intrahippocampal injection of the NMDA receptor antagonist AP-5 or the antagonist to NR2B-containing NMDA receptors, Ro25-6981. These findings indicate that opiate withdrawal induces dynamic expression of GluR1 and GluR2/3 subunits of AMPA receptors in hippocampal synapses, possibly revealing an adaptive process of the hippocampal functions following opiate withdrawal.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | | | | | | | | | | | | |
Collapse
|
912
|
Kuhlmann S, Piel M, Wolf OT. Impaired memory retrieval after psychosocial stress in healthy young men. J Neurosci 2006; 25:2977-82. [PMID: 15772357 PMCID: PMC6725125 DOI: 10.1523/jneurosci.5139-04.2005] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoids (GCs) are known to modulate memory in animals and humans. One popular model suggests that stress or GC treatment enhances memory consolidation while impairing delayed memory retrieval. Studies in humans have documented that treatment with GCs impairs delayed memory retrieval. Similar alterations after exposure to stress have not been observed thus far. In the present study, 19 young healthy male subjects were exposed to either a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control condition in a crossover manner. After both treatments, retrieval of a word list (learned 24 h earlier) containing 10 neutral, 10 negative, and 10 positive words was tested. The stressor induced a significant increase in salivary free cortisol and a decrease in mood. Memory retrieval (free recall) was significantly impaired after the stress condition. Follow-up analysis revealed that negative and positive words (i.e., emotionally arousing words) were affected, whereas no effect was observed for neutral words. No changes were detected for cued recall, working memory, or attention. The present study thus demonstrates that psychosocial stress impairs memory retrieval in humans and suggests that emotionally arousing material is especially sensitive to this effect.
Collapse
Affiliation(s)
- Sabrina Kuhlmann
- Institute of Experimental Psychology, University of Duesseldorf, D-40225 Duesseldorf, Germany
| | | | | |
Collapse
|
913
|
Song L, Che W, Min-Wei W, Murakami Y, Matsumoto K. Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacol Biochem Behav 2006; 83:186-93. [PMID: 16519925 DOI: 10.1016/j.pbb.2006.01.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/22/2022]
Abstract
Increasing evidences indicate the concurrence and interrelationship of depression and cognitive impairments. The present study was undertaken to investigate the effects of two depressive animal models, learned helplessness (LH) and chronic mild stress (CMS), on the cognitive functions of mice in the Morris water maze task. Our results demonstrated that both LH and CMS significantly decreased the cognitive performance of stressed mice in the water maze task. The escaping latency to the platform was prolonged and the probe test percentage in the platform quadrant was reduced. These two models also increased the plasma corticosterone concentration and decreased the brain derived neurotrophic factor (BDNF) and cAMP-response element-biding protein (CREB) messenger ribonucleic acid (mRNA) levels in hippocampus, which might cause the spatial cognition deficits. Repeated treatment with antidepressant drugs, imipramine (Imi) and fluoxetine (Flu), significantly reduced the plasma corticosterone concentration and enhanced the BDNF and CREB levels. Furthermore, antidepressant treated animals showed an ameliorated cognitive performance compared with the vehicle treated stressed animals. These data suggest that both LH and CMS impair the spatial cognitive function and repeated treatment with antidepressant drugs decreases the prevalence of cognitive impairments induced by these two animal models. Those might in part be attributed to the reduced plasma corticosterone and enhanced hippocampal BDNF and CREB expressions. This study provided a better understanding of molecular mechanisms underlying interactions of depression and cognitive impairments, although animal models used in this study can mimic only some aspects of depression or cognition of human.
Collapse
Affiliation(s)
- Li Song
- Department of Pharmacology, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
914
|
Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ. Learning under stress: how does it work? Trends Cogn Sci 2006; 10:152-8. [PMID: 16513410 DOI: 10.1016/j.tics.2006.02.002] [Citation(s) in RCA: 606] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/06/2006] [Accepted: 02/14/2006] [Indexed: 01/30/2023]
Abstract
The effects of stress on learning and memory are not always clear: both facilitating and impairing influences are described in the literature. Here we propose a unifying theory, which states that stress will only facilitate learning and memory processes: (i) when stress is experienced in the context and around the time of the event that needs to be remembered, and (ii) when the hormones and transmitters released in response to stress exert their actions on the same circuits as those activated by the situation, that is, when convergence in time and space takes place. The mechanism of action of stress hormones, particularly corticosteroids, can explain how stress within the context of a learning experience induces focused attention and improves memory of relevant information.
Collapse
Affiliation(s)
- Marian Joëls
- SILS-CNS, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
915
|
Vouimba RM, Muñoz C, Diamond DM. Differential effects of predator stress and the antidepressant tianeptine on physiological plasticity in the hippocampus and basolateral amygdala. Stress 2006; 9:29-40. [PMID: 16753931 DOI: 10.1080/10253890600610973] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stress can profoundly affect memory and alter the functioning of the hippocampus and amygdala. Studies have also shown that the antidepressant tianeptine can block the effects of stress on hippocampal and amygdala morphology and synaptic plasticity. We examined the effects of acute predator stress and tianeptine on long-term potentiation (LTP; induced by 100 pulses in 1 s) and primed burst potentiation (PB; a low threshold form of LTP induced by only five physiologically patterned pulses) in CA1 and in the basolateral nucleus (BLA) of the amygdala in anesthetized rats. Predator stress blocked the induction of PB potentiation in CA1 and enhanced LTP in BLA. Tianeptine blocked the stress-induced suppression of PB potentiation in CA1 without affecting the stress-induced enhancement of LTP in BLA. In addition, tianeptine administered under non-stress conditions enhanced PB potentiation in the hippocampus and LTP in the amygdala. These findings support the hypothesis that acute stress impairs hippocampal functioning and enhances amygdaloid functioning. The work also provides insight into the actions of tianeptine with the finding that it enhanced electrophysiological measures of plasticity in the hippocampus and amygdala under stress, as well as non-stress, conditions.
Collapse
Affiliation(s)
- Rose-Marie Vouimba
- Department of Psychology, University of South Florida, 4202 E. Fowler Avenue, PCD 4118G, Tampa, FL 33620, USA
| | | | | |
Collapse
|
916
|
Conrad CD. What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? BEHAVIORAL AND COGNITIVE NEUROSCIENCE REVIEWS 2006; 5:41-60. [PMID: 16816092 PMCID: PMC1512384 DOI: 10.1177/1534582306289043] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic stress produces consistent and reversible changes within the dendritic arbors of CA3 hippocampal neurons, characterized by decreased dendritic length and reduced branch number. This chronic stress-induced dendritic retraction has traditionally corresponded to hippocampus-dependent spatial memory deficits. However, anomalous findings have raised doubts as to whether a CA3 dendritic retraction is sufficient to compromise hippocampal function. The purpose of this review is to outline the mechanism underlying chronic stress-induced CA3 dendritic retraction and to explain why CA3 dendritic retraction has been thought to mediate spatial memory. The anomalous findings provide support for a modified hypothesis, in which chronic stress is proposed to induce CA3 dendritic retraction, which then disrupts hypothalamic-pituitary-adrenal axis activity, leading to dysregulated glucocorticoid release. The combination of hippocampal CA3 dendritic retraction and elevated glucocorticoid release contributes to impaired spatial memory. These findings are presented in the context of clinical conditions associated with elevated glucocorticoids.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Deparment of Psychology, Arizona State University, Box 1104, Tempe, 85287-1104, USA.
| |
Collapse
|
917
|
Abstract
It is now well-documented that exposures to uncontrollable (inescapable and unpredictable) stress in adulthood can have profound effects on brain and behavior. Converging lines of evidence from human and animal studies indicate that stress interferes with subsequent performances on a variety of hippocampal-dependent memory tasks. Animal studies further revealed that stress impedes ensuing induction of long-term potentiation (LTP) in the hippocampus. Because the hippocampus is important for key aspects of memory formation and because LTP has qualities congruent to an information storage mechanism, it is hypothesized that stress-induced modifications in hippocampal plasticity contribute to memory impairments associated with stress. Recent studies provide evidence that the amygdala, a structure important in stress- and emotion-related behaviors, plays a necessary role in the emergence of stress-associated changes in hippocampal LTP and memory. Early life stress also alters hippocampal plasticity and memory in a manner largely consistent with effects of adult stress exposure. This review focuses on endocrine-system-level mechanisms of stress effects in the hippocampus, and how stress, by altering the property of hippocampal plasticity, can subsequently influence hippocampal memory.
Collapse
Affiliation(s)
- Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1520, USA.
| | | | | |
Collapse
|
918
|
Zhang TY, Bagot R, Parent C, Nesbitt C, Bredy TW, Caldji C, Fish E, Anisman H, Szyf M, Meaney MJ. Maternal programming of defensive responses through sustained effects on gene expression. Biol Psychol 2006; 73:72-89. [PMID: 16513241 DOI: 10.1016/j.biopsycho.2006.01.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2005] [Indexed: 11/21/2022]
Abstract
There are profound maternal effects on individual differences in defensive responses and reproductive strategies in species ranging literally from plants to insects to birds. Maternal effects commonly reflect the quality of the environment and are most likely mediated by the quality of the maternal provision (egg, propagule, etc.), which in turn determines growth rates and adult phenotype. In this paper we review data from the rat that suggest comparable forms of maternal effects on defensive responses stress, which are mediated by the effects of variations in maternal behavior on gene expression. Under conditions of environmental adversity maternal effects enhance the capacity for defensive responses in the offspring. In mammals, these effects appear to 'program' emotional, cognitive and endocrine systems towards increased sensitivity to adversity. In environments with an increased level of adversity, such effects can be considered adaptive, enhancing the probability of offspring survival to sexual maturity; the cost is that of an increased risk for multiple forms of pathology in later life.
Collapse
Affiliation(s)
- Tie-Yuan Zhang
- McGill Program for the Study of Behavior, Genes and Environment, McGill University, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
919
|
Kessal K, Deschaux O, Chessel A, Xu L, Moreau JL, Garcia R. Fluoxetine reverses stress-induced fimbria–prefrontal long-term potentiation facilitation. Neuroreport 2006; 17:319-22. [PMID: 16462605 DOI: 10.1097/01.wnr.0000201507.68997.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stress has been reported to disrupt the induction of synaptic plasticity in different fimbria target structures. The aim of the present study was to investigate whether chronic mild stress may also affect synaptic plasticity in the medial prefrontal cortex, a fimbria target structure. Fimbria tetanus (100 Hz) did not produce any changes in medial prefrontal cortex synaptic efficacy in non-stressed rats. Rats exposed to chronic mild stress, however, developed significant long-term potentiation. Treatment with fluoxetine (10 mg/kg, intraperitoneal) suppressed long-term potentiation induction in the chronic mild stress group. These data demonstrate that stress not only inhibits long-term potentiation development, as often demonstrated, but can also facilitate long-term potentiation development in certain brain circuits.
Collapse
Affiliation(s)
- Karima Kessal
- Laboratoire de Neurobiologie et Psychopathologie, Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | |
Collapse
|
920
|
Korz V, Frey JU. Bidirectional modulation of hippocampal long-term potentiation under stress and no-stress conditions in basolateral amygdala-lesioned and intact rats. J Neurosci 2006; 25:7393-400. [PMID: 16093390 PMCID: PMC6725292 DOI: 10.1523/jneurosci.0910-05.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal long-term potentiation (LTP) is widely considered as a cellular model for learning and memory formation. We have shown previously that protein synthesis-independent, early dentate gyrus (DG) LTP, lasting approximately 4-5 h, can be transformed into a late-LTP with a duration of > or = 24 h by a brief acute swim stress experience (high-stress condition). This reinforcement requires the activation of mineralocorticoid receptors and protein synthesis. The basolateral amygdala (BLA) is known to modulate glucocorticoid effects on the consolidation of spatial/contextual memory via a beta-adrenergic mechanism. Interestingly, hippocampal DG-LTP can also be indirectly modulated by beta-adrenergic and cholinergic/muscarinergic processes. Here, we show that the reinforcement of early-DG-LTP under high-stress conditions depends on the processing of novel spatial/contextual information. Furthermore, this reinforcement was blocked in BLA-lesioned animals compared with sham-operated and intact controls; however, it was not dependent on beta-adrenergic or cholinergic/muscarinergic receptor activation. In contrast, under low-stress conditions, the induction of late-LTP in BLA-lesioned animals is facilitated, and this facilitation, again, was dependent on beta-adrenergic activation. The data suggest that DG-LTP maintenance can be influenced by the BLA through different mechanisms: a short-lasting corticosterone-dependent and beta-adrenergic-independent mechanism and a long-lasting mechanism that facilitated hippocampal beta-adrenergic mechanisms.
Collapse
Affiliation(s)
- Volker Korz
- Department of Neurophysiology, Leibniz-Institute for Neurobiology, D-39118 Magdeburg, Germany.
| | | |
Collapse
|
921
|
Jeong YH, Park CH, Yoo J, Shin KY, Ahn SM, Kim HS, Lee SH, Emson PC, Suh YH. Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV717I-CT100 transgenic mice, an Alzheimer's disease model. FASEB J 2006; 20:729-31. [PMID: 16467370 DOI: 10.1096/fj.05-4265fje] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although chronic stress is known to be linked with memory and other neurological disorders, little is known about the relationship between chronic stress and the onset or development of Alzheimer's disease (AD). In this study, we investigated the effects of long-term stress on the onset and severity of cognitive deficits and pathological changes in APPV717I-CT100 mice overexpressing human APP-CT100 containing the London mutation (V717I) after exposure to immobilization stress. We found that chronic immobilization stress accelerated cognitive impairments, as accessed by the Passive avoidance and the Social Transfer of Food Preference (STFP) tests. Moreover, the numbers and densities of vascular and extracellular deposits containing amyloid beta peptide (Abeta) and carboxyl-terminal fragments of amyloid precursor protein (APP-CTFs), which are pathologic markers of AD, were significantly elevated in stressed animals, especially in the hippocampus. Moreover, stressed animals, also showed highly elevated levels of neurodegeneration and tau phosphorylation and increased intraneuronal Abeta and APP-CTFs immunoreactivities in the hippocampus and in the entorhinal and piriform cortex. This study provides the first evidence that chronic stress accelerates the onset and severity of cognitive deficits and that these are highly correlated with pathological changes, which thus indicates that chronic stress may be an important contributor to the onset and development of AD.
Collapse
Affiliation(s)
- Yun Ha Jeong
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Centre for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
922
|
Bilang-Bleuel A, Ulbricht S, Chandramohan Y, De Carli S, Droste SK, Reul JMHM. Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: involvement in a glucocorticoid receptor-dependent behavioural response. Eur J Neurosci 2006; 22:1691-700. [PMID: 16197509 DOI: 10.1111/j.1460-9568.2005.04358.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chromatin remodelling associated with transcriptional activation of silent genes involves phosphorylation at Serine-10 and acetylation at Lysine-14 in the N-terminal tails of the nucleosomal protein histone H3. We have identified neurons predominantly in the dentate gyrus showing a speckled nuclear immunoreactivity pattern for phosphorylated histone H3 [i.e. P(Ser10)-H3] and phospho-acetylated histone H3 [i.e. P(Ser10)-Ac(Lys14)-H3]. Forced swimming increased the number of P(Ser10)-H3-positive [P(Ser10)-H3+] neurons in the rat and mouse dentate gyrus. Exposure of mice to a predator had a similar effect, but exposing rats to ether vapour or a cold environment evoked no change in the number of P(Ser10)-H3+ dentate neurons, indicating that the effect of stress on histone H3 phosphorylation is stressor-specific. The forced swimming-induced increase in dentate P(Ser10)-H3+ neurons peaked at 8-24 h, was restricted to NeuN+ (i.e. mature) neurons, and occurred mainly in the middle and superficial aspects of the granular cell layer. Moreover, this increase showed stimulus strength dependency (i.e. swimming at 19 degrees C produced a larger increase than swimming at 25 degrees C) and could be blocked by the glucocorticoid receptor (GR) antagonists RU 38486 and ORG 34517. Under these experimental conditions, when the forced swimming-induced behavioural immobility response was determined in a re-test 24 h after the initial forced swim test, striking correlations were observed between the phosphorylation of histone H3 in dentate gyrus granule neurons and the acquired immobility response. Our data indicate that stressful events with a strong psychological component such as forced swimming evoke distinct GR-dependent histone modifications in mature dentate gyrus granule neurons that may participate in the behavioural adaptation of the organism to this event.
Collapse
Affiliation(s)
- Alicia Bilang-Bleuel
- Max Planck Institute of Psychiatry, Section of Neuropsychopharmacology, Munich, Germany
| | | | | | | | | | | |
Collapse
|
923
|
Huang CC, Yang CH, Hsu KS. Do stress and long-term potentiation share the same molecular mechanisms? Mol Neurobiol 2006; 32:223-35. [PMID: 16385139 DOI: 10.1385/mn:32:3:223] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 05/16/2005] [Indexed: 11/11/2022]
Abstract
Stress is a biological, significant factor shown to influence hippocampal synaptic plasticity and cognitive functions. Although numerous studies have reported that stress produces a suppression in long-term potentiation (LTP; a putative synaptic mechanism underlying learning and memory), little is known about the mechanism by which this occurs. Because the effects of stress on LTP and its converse process, long-term depression (LTD), parallel the changes in synaptic plasticity that occur following the establishment of LTP with tetanic stimulation (i.e., occluding LTP and enhancing LTD induction), it has been proposed that stress affects subsequent hippocampal plasticity by sharing the same molecular machinery required to support LTP. This article summarizes recent findings from ours and other laboratories to assess this view and discusses relevant hypotheses in the study of stress-related modifications of synaptic plasticity.
Collapse
Affiliation(s)
- Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | | | | |
Collapse
|
924
|
Dong Z, Zhong W, Tian M, Han H, Cao J, Xu T, Luo J, Xu L. Stress evoked by opiate withdrawal facilitates hippocampal LTP in vivo. Hippocampus 2006; 16:1017-25. [PMID: 17094083 DOI: 10.1002/hipo.20234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stress impairs hippocampal long-term potentiation (LTP), but it is unknown whether the stress evoked by opiate withdrawal has the same effect. Here the authors report that opiate withdrawal for 4 days does not influence basal synaptic transmission, but results in a greatly increased LTP in hippocampal CA1 area in anesthetized rats. Elevated-platform stress enabled a large LTP in rats withdrawn for only 18 h, but the glucocorticoid receptor antagonist RU38486 (twice per day for 3 days) prevented the large LTP on 4 days withdrawal. Moreover, 4 days withdrawal enhanced the NMDAR-mediated EPSCs, in which the NR2A-containing NMDAR-mediated EPSC was increased but the NR2B-containing NMDAR-mediated EPSC was decreased. These results suggest that adaptive changes of the NMDAR and glucocorticoid receptor functions during 4 days of opiate withdrawal may enable stress to facilitate hippocampal LTP, potentially contributing to the opiate withdrawal experience-dependent modifications of hippocampal functions.
Collapse
Affiliation(s)
- Zhifang Dong
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
925
|
Carboni L, Piubelli C, Pozzato C, Astner H, Arban R, Righetti PG, Hamdan M, Domenici E. Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neuroscience 2006; 137:1237-46. [PMID: 16338082 DOI: 10.1016/j.neuroscience.2005.10.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 10/17/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
Since stress plays a role in the onset and physiopathology of psychiatric diseases, animal models of chronic stress may offer insights into pathways operating in mood disorders. The aim of this study was to identify the molecular changes induced in rat hippocampus by repeated exposure to psychosocial stress with a proteomic technique. In the social defeat model, the experimental animal was defeated by a dominant male eight times. Additional groups of rats were submitted to a single defeat or placed in an empty cage (controls). The open field test was carried out on parallel animal groups. The day after the last exposure, levels of hippocampal proteins were compared between groups after separation by 2-D gel electrophoresis and image analysis. Spots showing significantly altered levels were submitted to peptide fingerprinting mass spectrometry for protein identification. The intensity of 69 spots was significantly modified by repeated stress and 21 proteins were unambiguously identified, belonging to different cellular functions, including protein folding, signal transduction, synaptic plasticity, cytoskeleton regulation and energy metabolism. This work identified molecular changes in protein levels caused by exposure to repeated psychosocial stress. The pattern of changes induced by repeated stress was quantitatively and qualitatively different from that observed after a single exposure. Several changed proteins have already been associated with stress-related responses; some of them are here described for the first time in relation to stress.
Collapse
Affiliation(s)
- L Carboni
- Department of Behavioural Neuroscience, Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, Via A. Fleming 4, 37135 Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
926
|
Diamond DM, Campbell AM, Park CR, Woodson JC, Conrad CD, Bachstetter AD, Mervis RF. Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesis. Hippocampus 2006; 16:571-6. [PMID: 16741974 DOI: 10.1002/hipo.20188] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have studied the influence of predator stress (30 min of cat exposure) on long-term (24 h) spatial memory and the density of spines in basilar dendrites of CA1 neurons. Predator stress occurred either immediately before water maze training (Stress Pre-Training) or before the 24 h memory test (Stress Pre-Retrieval). The Control (nonstress) group exhibited excellent long-term spatial memory and a robust increase in the density of stubby, but not mushroom, shaped spines. The Stress Pre-Training group had impaired long-term memory and did not exhibit any changes in spine density. The Stress Pre-Retrieval group was also impaired in long-term memory performance, but this group exhibited an increase in the density of stubby, but not mushroom, shaped spines, which was indistinguishable from the control group. These findings indicate that: (1) A single day of water maze training under control conditions produced intact long-term memory and an increase in the density of stubby spines in CA1; (2) Stress before training interfered with the consolidation of information into long-term memory and suppressed the training-induced increase in spine density; and (3) Stress immediately before the 24 h memory test trial impaired the retrieval of the stored memory, but did not reverse the training-induced increase in CA1 spine density. Overall, this work provides evidence of structural plasticity in dendrites of CA1 neurons which may be involved in the consolidation process, and how spinogenesis and memory are modulated by stress.
Collapse
Affiliation(s)
- David M Diamond
- Medical Research Service, VA Hospital, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
927
|
Maheu FS, Collicutt P, Kornik R, Moszkowski R, Lupien SJ. The perfect time to be stressed: a differential modulation of human memory by stress applied in the morning or in the afternoon. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1281-8. [PMID: 16229931 DOI: 10.1016/j.pnpbp.2005.08.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/23/2022]
Abstract
We measured the effects of a stressful experience on memory for emotionally arousing and neutral material learned after exposure to a stressor which induces a significant increase in corticosteroid stress hormones. Because memory performance can be influenced by circadian changes in corticosteroid levels, subjects were tested either in the morning or in the afternoon. Nineteen healthy men (9 in the morning group and 10 in the afternoon group) were submitted to a psychological stress task before viewing a story composed of emotionally negative and neutral segments, while another 20 healthy males (10 in the morning group and 10 in the afternoon group) viewed the story without being exposed to the psychological stressor. Salivary cortisol levels were measured before and after the stressor. Memory performance was assessed by a one week post learning delayed recall. Results show that stress-induced increases in salivary cortisol levels impaired delayed free recall of emotionally arousing material in the morning group, but not in the afternoon group. There was no effect of stress on memory for neutral material. Altogether, these findings suggest that stressing participants in the morning, at a time of high circulating levels of corticosteroids, over stimulated the corticosteroid receptors in the brain, impairing declarative memory for emotionally arousing material unrelated to the stressor. These findings suggest that the experimental context, i.e., time of day at which the experiment occurs, the nature of the to-be-remembered material (remembering the stressful event itself or material unrelated to the stressor) and the valence of the to-be-remembered material (emotionally arousing vs. neutral), modulates the effects of stress on human declarative memory.
Collapse
Affiliation(s)
- Françoise S Maheu
- Laboratory of Human Stress Research, Douglas Hospital Research Centre, Frank B. Common Pavilion, 6875 LaSalle Blvd, Verdun, Québec, Canada, H4H 1R3
| | | | | | | | | |
Collapse
|
928
|
Li Z, Zhou Q, Li L, Mao R, Wang M, Peng W, Dong Z, Xu L, Cao J. Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 2005; 15:815-24. [PMID: 16015621 DOI: 10.1002/hipo.20104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated vivid recalls or flashbacks of traumatic memories and memory deficits are the cardinal features of post-traumatic stress disorder (PTSD). The underlying mechanisms are not fully understood yet. Here, we examined the effects of very strong fear conditioning (20 pairings of a light with a 1.5-mA, 0.5-s foot shock) and subsequent reexposure to the conditioning context (chamber A), a similar context (chamber B), and/or to the fear conditioned stimulus (CS) (a light) on synaptic plasticity in the hippocampal CA1 area in anesthetized Sprague-Dawley rats. The conditioning procedure resulted in very strong conditioned fear, as reflected by high levels of persistent freezing, to both the contexts and to the CS, 24 h after fear conditioning. The induction of long-term potentiation (LTP) was blocked immediately after fear conditioning. It was still markedly impaired 24 h after fear conditioning; reexposure to the conditioning chamber A (CA) or to a similar chamber B (CB) did not affect the impairment. However, presentation of the CS in the CA exacerbated the impairment of LTP, whereas the CS presentation in a CB ameliorated the impairment so that LTP induction did not differ from that of control groups. The induction of long-term depression (LTD) was facilitated immediately, but not 24 h, after fear conditioning. Only reexposure to the CS in the CA, but not reexposure to either chamber A or B alone, or the CS in chamber B, 24 h after conditioning, reinstated the facilitation of LTD induction. These data demonstrate that unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm can have profound effects on hippocampal synaptic plasticity, which may aid to understand the mechanisms underlying impairments of hippocampus-dependent memory by stress or in PTSD.
Collapse
Affiliation(s)
- Zexuan Li
- Mental Health Institute of the 2nd Xiangya Hospital, Central South University, Changsha 410011, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
929
|
Brunson KL, Kramár E, Lin B, Chen Y, Colgin LL, Yanagihara TK, Lynch G, Baram TZ. Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci 2005; 25:9328-38. [PMID: 16221841 PMCID: PMC3100717 DOI: 10.1523/jneurosci.2281-05.2005] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 12/24/2022] Open
Abstract
Progressive cognitive deficits that emerge with aging are a result of complex interactions of genetic and environmental factors. Whereas much has been learned about the genetic underpinnings of these disorders, the nature of "acquired" contributing factors, and the mechanisms by which they promote progressive learning and memory dysfunction, remain largely unknown. Here, we demonstrate that a period of early-life "psychological" stress causes late-onset, selective deterioration of both complex behavior and synaptic plasticity: two forms of memory involving the hippocampus, were severely but selectively impaired in middle-aged, but not young adult, rats exposed to fragmented maternal care during the early postnatal period. At the cellular level, disturbances to hippocampal long-term potentiation paralleled the behavioral changes and were accompanied by dendritic atrophy and mossy fiber expansion. These findings constitute the first evidence that a short period of stress early in life can lead to delayed, progressive impairments of synaptic and behavioral measures of hippocampal function, with potential implications to the basis of age-related cognitive disorders in humans.
Collapse
Affiliation(s)
- Kristen L Brunson
- Department of Anatomy/Neurobiology, University of California, Irvine, California 92697-4475, USA
| | | | | | | | | | | | | | | |
Collapse
|
930
|
Lim KY, Yang JJ, Lee DS, Noh JS, Jung MW, Chung YK. Lithium attenuates stress-induced impairment of long-term potentiation induction. Neuroreport 2005; 16:1605-8. [PMID: 16148754 DOI: 10.1097/01.wnr.0000179078.54906.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stress impairs the induction of long-term potentiation in the hippocampus as well as hippocampus-dependent memory. Lithium, a classical mood stabilizer, is known to have beneficial effects on stress-induced impairment of spatial memory. In the present study, we investigated lithium effects on the impairment of long-term potentiation induction after exposure to acute immobilization stress. As previously reported, immobilization stress impaired long-term potentiation induction in the CA1 region of rat hippocampal slices. Treating the slices with 0.6 or 1 mM lithium attenuated impaired long-term potentiation induction in stressed animals. Lithium was without effect on long-term potentiation induction in unstressed animals or baseline synaptic responses in unstressed or stressed animals. These results demonstrate a protective effect of lithium against stress-induced impairment of long-term potentiation induction.
Collapse
Affiliation(s)
- Ki-Young Lim
- Department of Psychiatry, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
931
|
Kim JJ, Koo JW, Lee HJ, Han JS. Amygdalar inactivation blocks stress-induced impairments in hippocampal long-term potentiation and spatial memory. J Neurosci 2005; 25:1532-9. [PMID: 15703407 PMCID: PMC6725997 DOI: 10.1523/jneurosci.4623-04.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrolytic lesions to the amygdala, a limbic structure implicated in stress-related behaviors and memory modulation, have been shown to prevent stress-induced impairments of hippocampal long-term potentiation (LTP) and spatial memory in rats. The present study investigated the role of intrinsic amygdalar neurons in mediating stress effects on the hippocampus by microinfusing the GABA(A) receptor agonist muscimol into the amygdala and examining stress effects on Schaffer collateral/commissural-CA1 LTP and spatial memory. The critical period of the amygdalar contribution to stress effects on hippocampal functions was determined by applying muscimol either before stress or immediately after stress. Our results indicate that intra-amygdalar muscimol infusions before uncontrollable restraint-tailshock stress effectively blocked stress-induced physiological and behavioral effects. Specifically, hippocampal slices prepared from vehicle-infused stressed animals exhibited markedly impaired LTP, whereas slices obtained from muscimol-infused stressed animals demonstrated robust LTP comparable with that of unstressed animals. Correspondingly, vehicle-infused stressed animals displayed impaired spatial memory (on a hidden platform version of the Morris water maze task), whereas muscimol-infused stressed animals revealed unimpaired spatial memory. In contrast to prestress muscimol effects, however, immediate poststress infusions of muscimol into the amygdala failed to interfere with stress impairments of LTP and spatial memory. Together, these results suggest that the amygdalar neuronal activity during stress, but not shortly after stress, is essential for the emergence of stress-induced alterations in hippocampal LTP and memory.
Collapse
Affiliation(s)
- Jeansok J Kim
- Department of Psychology and Program in Neurobiology and Behavior, University of Washington, Seattle, Washington 98195-1525, USA.
| | | | | | | |
Collapse
|
932
|
Johnson LR, Farb C, Morrison JH, McEwen BS, LeDoux JE. Localization of glucocorticoid receptors at postsynaptic membranes in the lateral amygdala. Neuroscience 2005; 136:289-99. [PMID: 16181741 DOI: 10.1016/j.neuroscience.2005.06.050] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 06/11/2005] [Accepted: 06/16/2005] [Indexed: 01/08/2023]
Abstract
Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.
Collapse
Affiliation(s)
- L R Johnson
- NIMH Conte Center for the Neuroscience of Fear and Anxiety Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
933
|
Velísek L, Vathy I. Mifepristone (RU486) inhibits lateral perforant path long‐term potentiation in hippocampal slices from prenatally morphine‐exposed female rats. Int J Dev Neurosci 2005; 23:559-65. [PMID: 16165340 DOI: 10.1016/j.ijdevneu.2005.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 08/04/2005] [Indexed: 11/24/2022] Open
Abstract
In brain slices from prenatally saline-exposed female rats during proestrus and diestrus, long-term potentiation (LTP) can be induced in the lateral perforant pathway (LPP). Prenatal morphine exposure suppresses LTP induction in the LPP during proestrus. Here we studied synaptic plasticity in the LPP in slices from female rats prenatally exposed to morphine. Two additional factors were investigated: the role of the estrous cycle and role of glucocorticoid receptors. Hippocampal slices were prepared from adult, prenatally saline- or morphine-exposed female rats. One hour prior to decapitation, vaginal smears were obtained and the rats either in proestrus or diestrus were treated with a non-specific glucocorticoid receptor antagonist mifepristone (RU486) or with a vehicle. LPP was stimulated with high-frequency stimulation. Short-tem plasticity (STP) and the induction and maintenance of long-term potentiation (LTP) were assessed. In all groups of prenatally saline-exposed rats, LTP was induced and maintained with the exception of RU486-treated rats during proestrus where the LTP was induced but not maintained. In prenatally morphine-exposed females in diestrus, both STP and LTP were induced after postnatal vehicle treatment. In morphine-exposed, proestrous females, neither STP nor LTP were induced irrespective of the postnatal treatment. Thus, prenatal morphine exposure suppresses the induction of LTP in the LPP, except during diestrus. Data indicate that the induction and maintenance of LTP in the LPP in hippocampal slices from female rats is multifactorial: ovarian steroids and functionality of glucocorticoid receptors cooperation are necessary for induction and maintenance of the LTP, prenatal morphine exposure interferes with this process possibly by its long-term effects on synaptic plasticity.
Collapse
Affiliation(s)
- Libor Velísek
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
934
|
Yang CH, Huang CC, Hsu KS. Behavioral stress modifies hippocampal synaptic plasticity through corticosterone-induced sustained extracellular signal-regulated kinase/mitogen-activated protein kinase activation. J Neurosci 2005; 24:11029-34. [PMID: 15590919 PMCID: PMC6730281 DOI: 10.1523/jneurosci.3968-04.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The induction of hippocampal long-term synaptic plasticity is exquisitely sensitive to behavioral stress, but the underlying mechanisms are still unclear. We report here that hippocampal slices prepared from adult rats that had experienced unpredictable and inescapable restraint tail-shock stress showed marked impairments of long-term potentiation (LTP) in the CA1 region. The same stress promoted the induction of long-term depression (LTD). These effects were prevented when the animals were given the glucocorticoid receptor antagonist 11beta, 17beta-11[4-(dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)-estra-4-9-dien-3-one before the stress. Immunoblotting analyses revealed that stress induced a profound and prolonged extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK1/2 MAPK) hyperphosphorylation through small GTPase Ras, Raf-1, and MAPK kinase 1/2 (MEK1/2). Furthermore, the stress effects were obviated by the intrahippocampal injection of specific inhibitors of MEK1/2 (U0126), protein kinase C (bisindolylmaleimide I), tyrosine kinase (K252a), and BDNF antisense oligonucleotides. These results suggest that the effects of stress on LTP and LTD originate from the corticosterone-induced sustained activation of ERK1/2-coupled signaling cascades.
Collapse
Affiliation(s)
- Chih-Hao Yang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
935
|
Abstract
In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.
Collapse
Affiliation(s)
- E Ron de Kloet
- Department of Medical Pharmacology, Leiden Amsterdam Center for Drug Research and Leiden University Medical Center, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
936
|
Liu X, Li Y, Zhou L, Chen H, Su Z, Hao W. Conditioned place preference associates with the mRNA expression of diazepam binding inhibitor in brain regions of the addicted rat during withdrawal. ACTA ACUST UNITED AC 2005; 137:47-54. [PMID: 15950760 DOI: 10.1016/j.molbrainres.2005.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 01/31/2005] [Accepted: 02/13/2005] [Indexed: 11/30/2022]
Abstract
The diazepam binding inhibitor (DBI) modulating the functions of the GABAA receptors is involved in the maladaptation of neural system during using opiate, but its role in opiate dependence is not fully understood. Using conditioned place preference (CPP) rat model and in situ hybridization technique, we examined the correlation between opiate dependence and the mRNA expression of DBI. We found that chronic morphine treatment enabled CPP and increased the DBI mRNA expression in crucial brain regions of addiction. Withdrawal for 3 days caused significant physical signs and further increased the DBI mRNA expression. Both the DBI mRNA and CPP expression remained significantly high but physical signs were at control level in the animals withdrawal for 6 days. Remarkably, the DBI mRNA expressions in the CA1 region of the hippocampus (CA1), ventral tagmental area (VTA), nucleus accumbens (NAc) and amygdala (AMG) were positively correlated to CPP during the periods from withdrawal for 3 days to withdrawal for 6 days. These findings suggest that DBI may play a role in both physical and psychological dependence of opiates.
Collapse
Affiliation(s)
- Xuebing Liu
- Mental Health Institute and WHO Collaborating Center for Psychosocial Factors, Drug Abuse and Health, the 2nd Hospital of Xiangya Medical College, Central South University, Changsha 410011, Hunan, PR China
| | | | | | | | | | | |
Collapse
|
937
|
McEwen BS, Olié JP. Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 2005; 10:525-37. [PMID: 15753957 DOI: 10.1038/sj.mp.4001648] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have provided evidence that structural remodeling of certain brain regions is a feature of depressive illness, and the postulated underlying mechanisms contribute to the idea that there is more to antidepressant actions that can be explained exclusively by a monoaminergic hypothesis. This review summarizes recent neurobiological studies on the antidepressant, tianeptine (S-1574, [3-chloro-6-methyl-5,5-dioxo-6,11-dihydro-(c,f)-dibenzo-(1,2-thiazepine)-11-yl) amino]-7 heptanoic acid, sodium salt), a compound with structural similarities to the tricyclic antidepressant agents, the efficacy and good tolerance of which have been clearly established. These studies have revealed that the neurobiological properties of tianeptine involve the dynamic interplay between numerous neurotransmitter systems, as well as a critical role of structural and functional plasticity in the brain regions that permit the full expression of emotional learning. Although the story is far from complete, the schema underlying the effect of tianeptine on central plasticity is the most thoroughly studied of any antidepressants. Effects of tianeptine on neuronal excitability, neuroprotection, anxiety, and memory have also been found. Together with clinical data on the efficacy of tianeptine as an antidepressant, these actions offer insights into how compounds like tianeptine may be useful in the treatment of neurobiological features of depressive disorders.
Collapse
Affiliation(s)
- B S McEwen
- Harold & Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
938
|
Spedding M, Jay T, Costa e Silva J, Perret L. A pathophysiological paradigm for the therapy of psychiatric disease. Nat Rev Drug Discov 2005; 4:467-76. [PMID: 15931256 DOI: 10.1038/nrd1753] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite enormous progress in fundamental knowledge in neuroscience, no revolutionary therapies in psychiatry (and neurology) have emerged in the past ten years. Most drugs alleviate symptoms, rather than restoring the 'set point' of brain function from a pathological position to a more normal one. We propose a hypothesis-driven, systems-level approach to drug discovery and development that is based on pathophysiology and which uses new animal models.
Collapse
Affiliation(s)
- Michael Spedding
- Institut de Recherches Internationales Servier (IRIS), 11 rue des Moulineaux, Suresnes 92150, France
| | | | | | | |
Collapse
|
939
|
Naylor AS, Persson AI, Eriksson PS, Jonsdottir IH, Thorlin T. Extended Voluntary Running Inhibits Exercise-Induced Adult Hippocampal Progenitor Proliferation in the Spontaneously Hypertensive Rat. J Neurophysiol 2005; 93:2406-14. [PMID: 15615829 DOI: 10.1152/jn.01085.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work has shown that voluntary running increases cell proliferation and neurogenesis in the dentate gyrus of the adult hippocampus. Here we report that long-term running for 24 days results in a down-regulation of hippocampal progenitor proliferation to one-half the level of nonrunning controls compared with a fivefold increase in progenitor proliferation seen after 9 days of voluntary running (short-term running). The negative effects seen on proliferation after 24 days of running were prevented by restricting daily running distances (by 30–50%) during 24 days. Long-term running for 24 days increases the response of the hypothalamic-pituitary-adrenal axis, with an increase in adrenal gland weight and increased plasma corticosterone levels, as well as decreased thymus weight, indicating a stress response as a possible mediator of decreased progenitor proliferation. Furthermore, the negative effects seen on the observed stress response after 24 days of running were prevented by restricting daily running distance. Short-term running did not alter these stress parameters compared with nonrunning controls. However, it increased phosphorylated cyclic AMP response element binding protein (pCREB) in the dentate gyrus, an increase that was not seen in nonrunning controls or after 24 days of running. Taken together, these data suggest that voluntary running does not always enhance proliferation and that the decrease in progenitor proliferation seen in long-term running is possibly mediated by mechanisms involving a stress response in the animal. However, a moderate level of long-term running was able to prevent the negative stress-related changes seen in unrestricted long-term running.
Collapse
Affiliation(s)
- Andrew S Naylor
- Department of Physiology, Sahlgrenska Academy, Box 432, 405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
940
|
Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY. Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry 2005; 10:500-13, 425. [PMID: 15685253 DOI: 10.1038/sj.mp.4001636] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trauma survivors show marked differences in the severity and persistence of post-traumatic stress disorder (PTSD) symptoms. Early symptoms subside in most, but persist as acute and chronic PTSD in a significant minority. The underlying molecular mechanisms or outcome predictors determining these differences are not known. Molecular markers for identifying any mental disorder are currently lacking. Gene expression profiling during the triggering and development of PTSD may be informative of its onset and course. We used oligonucleotide microarrays to measure peripheral blood mononuclear cell (PBMC) gene expression of trauma survivors at the emergency room and 4 months later. Gene expression signatures at both time points distinguished survivors who met DSM-IV diagnostic criteria for PTSD at 1 and 4 months, from those who met no PTSD criterion. Expression signatures at both time points correlated with the severity of each of the three PTSD symptom clusters assessed 4 months following exposure among all survivors. Results demonstrate a general reduction in PBMCs' expression of transcription activators among psychologically affected trauma survivors. Several differentiating genes were previously described as having a role in stress response. These findings provide initial evidence that peripheral gene expression signatures following trauma identify an evolving neuropsychiatric disorder and are informative of its key clinical features and outcome. Replications in larger samples, as well as studies focusing on specific markers within the signatures discovered, are warranted to confirm and extend the diagnostic utility and pathogenetic implications of our results.
Collapse
Affiliation(s)
- R H Segman
- Department of Psychiatry, Hadassah University Hospital, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
941
|
Paul ES, Harding EJ, Mendl M. Measuring emotional processes in animals: the utility of a cognitive approach. Neurosci Biobehav Rev 2005; 29:469-91. [PMID: 15820551 DOI: 10.1016/j.neubiorev.2005.01.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 01/01/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Contemporary researchers regard emotional states as multifaceted, comprising physiological, behavioural, cognitive and subjective components. Subjective, conscious experience of emotion can be inferred from linguistic report in humans, but is inaccessible to direct measurement in non-human animals. However, measurement of other components of emotion is possible, and a variety of methods exist for monitoring emotional processes in animals by measuring behavioural and physiological changes. These are important tools, but they have limitations including difficulties of interpretation and the likelihood that many may be sensitive indicators of emotional arousal but not valence-pleasantness/unpleasantness. Cognitive components of emotion are a largely unexplored source of information about animal emotions, despite the fact that cognition-emotion links have been extensively researched in human cognitive science indicating that cognitive processes-appraisals of stimuli, events and situations-play an important role in the generation of emotional states, and that emotional states influence cognitive functioning by inducing attentional, memory and judgement biases. Building on this research, it is possible to design non-linguistic cognitive measures of animal emotion that may be especially informative in offering new methods for assessing emotional valence (positive as well as negative), discriminating same-valenced emotion of different types, identifying phenotypes with a cognitive predisposition to develop affective disorders, and perhaps shedding light on the issue of conscious emotional experiences in animals.
Collapse
Affiliation(s)
- Elizabeth S Paul
- Centre for Behavioural Biology, Department of Clinical Veterinary Science, University of Bristol, Langford House, Langford BS40 5DU, UK.
| | | | | |
Collapse
|
942
|
Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, Peddie CJ, Rodriguez JJ, Cordero MI, Donohue HS, Gabbott PLA, Popov VI. Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 2005; 131:43-54. [PMID: 15680690 DOI: 10.1016/j.neuroscience.2004.10.031] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 11/18/2022]
Abstract
Chronic stress and spatial training have been proposed to affect hippocampal structure and function in opposite ways. Previous morphological studies that addressed structural changes after chronic restraint stress and spatial training were based on two-dimensional morphometry which does not allow a complete morphometric characterisation of synaptic features. Here, for the first time in such studies, we examined these issues by using three-dimensional (3-D) reconstructions of electron microscope images taken from thorny excrescences of hippocampal CA3 pyramidal cells. Ultrastructural alterations in postsynaptic densities (PSDs) of thorny excrescences receiving input from mossy fibre boutons were also determined, as were changes in numbers of multivesicular bodies (endosome-like structures) within thorny excrescences and dendrites. Quantitative 3-D data demonstrated retraction of thorny excrescences after chronic restraint stress which was reversed after water maze training, whilst water maze training alone increased thorny excrescence volume and number of thorns per thorny excrescence. PSD surface area was unaffected by restraint stress but water maze training increased both number and area of PSDs per thorny excrescence. In restrained rats that were water maze trained PSD volume and surface area increased significantly. The proportion of perforated PSDs almost doubled after water maze training and restraint stress. Numbers of endosome-like structures in thorny excrescences decreased after restraint stress and increased after water maze training. These findings demonstrate that circuits involving contacts between mossy fibre terminals and CA3 pyramidal cells at stratum lucidum level are affected conversely by water maze training and chronic stress, confirming the remarkable plasticity of CA3 dendrites. They provide a clear illustration of the structural modifications that occur after life experiences noted for their different impact on hippocampal function.
Collapse
Affiliation(s)
- M G Stewart
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
943
|
Sandi C, Woodson JC, Haynes VF, Park CR, Touyarot K, Lopez-Fernandez MA, Venero C, Diamond DM. Acute stress-induced impairment of spatial memory is associated with decreased expression of neural cell adhesion molecule in the hippocampus and prefrontal cortex. Biol Psychiatry 2005; 57:856-64. [PMID: 15820706 DOI: 10.1016/j.biopsych.2004.12.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 10/25/2004] [Accepted: 12/17/2004] [Indexed: 12/27/2022]
Abstract
BACKGROUND There is an extensive literature describing how stress disturbs cognitive processing and can exacerbate psychiatric disorders. There is, however, an insufficient understanding of the molecular mechanisms involved in stress effects on brain and behavior. METHODS Rats were given spatial memory training in a hippocampus-dependent water maze task. We investigated how a fear-provoking experience (predator exposure) would affect their spatial memory and neural cell adhesion molecule (NCAM) levels in the hippocampus, prefrontal cortex (PFC), amygdala, and cerebellum. RESULTS Whereas the control (nonstress) group exhibited excellent memory for the hidden platform location in the water maze, the cat-exposed (stress) group exhibited a profound impairment of memory and a marked suppression of levels of the NCAM-180 isoform in the hippocampus. Predator stress produced a more global reduction of NCAM levels in the PFC but had no effect on NCAM levels in the amygdala and cerebellum. CONCLUSIONS This work provides a novel perspective into dynamic and structure-specific changes in the molecular events involved in learning, memory, and stress. The selective suppression of NCAM-180 in the hippocampus and the more general suppression of NCAM in the PFC provide insight into the mechanisms underlying the great sensitivity of these two structures to be disturbed by stress.
Collapse
Affiliation(s)
- Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
944
|
Abstract
Aging is associated with a progressive decline in physical and cognitive functions. The impact of age-dependent endocrine changes regulated by the central nervous system on the dynamics of neuronal behavior, neurodegeneration, cognition, biological rhythms, sexual behavior, and metabolism are reviewed. We also briefly review how functional deficits associated with increases in glucocorticoids and cytokines and declining production of sex steroids, GH, and IGF are likely exacerbated by age-dependent molecular misreading and alterations in components of signal transduction pathways and transcription factors.
Collapse
Affiliation(s)
- Roy G Smith
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, M320, Houston, TX 77030, USA.
| | | | | |
Collapse
|
945
|
Rosenbrock H, Koros E, Bloching A, Podhorna J, Borsini F. Effect of chronic intermittent restraint stress on hippocampal expression of marker proteins for synaptic plasticity and progenitor cell proliferation in rats. Brain Res 2005; 1040:55-63. [PMID: 15804426 DOI: 10.1016/j.brainres.2005.01.065] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Chronic restraint stress may change hippocampal mRNA levels of markers for synaptic plasticity such as synaptophysin, growth-associated protein 43 (GAP-43), and brain-derived neurotrophic factor (BDNF). In order to examine the relation between that stressor and those biochemical markers on protein level as well as the Ki-67 protein, a marker of progenitor cell proliferation, we subjected rats to chronic intermittent restraint stress for 6 h per day for 14 days excluding the weekends. This stress intensity caused a significant increase in adrenal gland weight and decrease in body weight gain. However, we did not find significant alteration of protein expression levels for synaptophysin, GAP-43, and BDNF by using Western blot analysis. Unlike these findings, the hippocampal protein expression of Ki-67 was significantly reduced by using both Western blot and immunohistochemical analyses. This reduction of Ki-67 expression in chronically stressed rats was correlated with increased adrenal gland weight and decreased body weight gain. All marker proteins used did not show any changes of hippocampal expression level after a single restraint stress session of 3 h. In conclusion, chronic intermittent restraint stress caused changes in the physiological stress response in rats, and a decrease of hippocampal progenitor cells using the Ki-67 protein as marker which indicates a suppression of adult neurogenesis. The results might contribute to understand the relationship between stress and cellular neurobiology of depression, since chronic antidepressant treatment have been shown to increase adult neurogenesis in the rat hippocampus.
Collapse
Affiliation(s)
- Holger Rosenbrock
- Department of CNS research, Boehringer-Ingelheim Pharma GmbH and Co KG, Birkendorfer Strasse 65, D-88397 Biberach, Germany.
| | | | | | | | | |
Collapse
|
946
|
Payne JD, Nadel L. Sleep, dreams, and memory consolidation: the role of the stress hormone cortisol. Learn Mem 2005; 11:671-8. [PMID: 15576884 PMCID: PMC534695 DOI: 10.1101/lm.77104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We discuss the relationship between sleep, dreams, and memory, proposing that the content of dreams reflects aspects of memory consolidation taking place during the different stages of sleep. Although we acknowledge the likely involvement of various neuromodulators in these phenomena, we focus on the hormone cortisol, which is known to exert influence on many of the brain systems involved in memory. The concentration of cortisol escalates over the course of the night's sleep, in ways that we propose can help explain the changing nature of dreams across the sleep cycle.
Collapse
Affiliation(s)
- Jessica D Payne
- The University of Arizona, Department of Psychology, Tucson, Arizona 85721, USA
| | | |
Collapse
|
947
|
Centonze D, Siracusano A, Calabresi P, Bernardi G. Long-term potentiation and memory processes in the psychological works of Sigmund Freud and in the formation of neuropsychiatric symptoms. Neuroscience 2005; 130:559-65. [PMID: 15590140 DOI: 10.1016/j.neuroscience.2004.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
Far from disproving the model of mind functioning proposed by psychoanalysis, the recent advances in neuropsychiatrical research confirmed the crucial ideas of Sigmund Freud. The hypothesis that the origin of mental illnesses lies in the impossibility for a subject to erase the long-term effects of a remote adverse event is in tune with the view that several psychiatric disturbances reflect the activation of aberrant unconscious memory processes. Freud's insights did not stop here, but went on to describe in an extremely precise manner the neural mechanisms of memory formation almost a century before the description of long-term synaptic potentiation.
Collapse
Affiliation(s)
- D Centonze
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, via Montpellier 1, 00133 Rome, Italy.
| | | | | | | |
Collapse
|
948
|
Dubrovsky BO. Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:169-92. [PMID: 15694225 DOI: 10.1016/j.pnpbp.2004.11.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
The term "neurosteroid" (NS) was introduced by Baulieu in 1981 to name a steroid hormone, dehydroepiandrosterone sulfate (DHEAS), that was found at high levels in the brain long after gonadectomy and adrenalectomy, and shown later to be synthetized by the brain. Later, androstenedione, pregnenolone and their sulfates and lipid derivatives as well as tetrahydrometabolites of progesterone (P) and deoxycorticosterone (DOC) were identified as neurosteroids. The term "neuroactive steroid" (NAS) refers to steroids which, independent of their origin, are capable of modifying neural activities. NASs bind and modulate different types of membrane receptors. The GABA and sigma receptor complexes have been the most extensively studied, while glycine-activated chloride channels, nicotinic acetylcholine receptors, voltage-activated calcium channels, although less explored, are also modulated by NASs. Within the glutamate receptor family, N-methyl-d-aspartate (NMDA) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and kainate receptors have also been demonstrated to be a target for steroid modulation. Besides their membrane effects, once inside the neuron oxidation of Ring A reduced pregnanes, THP and THDOC, bind to the progesterone intracellular receptor and regulate gene expression through this path. The involvement of NASs on depression syndromes, anxiety disorders, stress responses to different stress stimuli, memory processes and related phenomena such as long-term potentiation are reviewed and critically evaluated. The importance of context for the interpretation of behavioral effects of hormones as well as for hormonal levels in body fluids is emphasized. Some suggestions for further research are given.
Collapse
Affiliation(s)
- Bernardo O Dubrovsky
- McGill University, 3445 Drummond Street, #701, Montreal, Quebec, H3G 1X9, Canada.
| |
Collapse
|
949
|
Abstract
Stress has profound effects on brain structure and function, but the underlying mechanisms are still poorly understood. Recent studies imply that neuronal cell adhesion molecules of the immunoglobulin superfamily--NCAM and L1--are important mediators of the effects of stress on the brain. Chronic stress regimes that lead to hippocampal atrophy and spatial-learning impairment in rodents simultaneously induce a pattern of changes in cell adhesion molecule expression that fits with a role for these molecules in stress-induced neuronal damage and neuroprotective mechanisms. These findings highlight cell adhesion molecules as potential therapeutic targets to treat stress-related cognitive disturbances.
Collapse
Affiliation(s)
- Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
950
|
Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A, Bah MJ, Dawood MY, Shah JD, Mark B, Kendall N, Smith MA, Saviolakis GA, Meyerhoff JL. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res 2005; 1025:10-20. [PMID: 15464739 DOI: 10.1016/j.brainres.2004.06.085] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 01/17/2023]
Abstract
Acute social defeat in mice activates the hypothalamic-pituitary-adrenal axis (HPA) and induces long-term behavioral changes, including exaggerated fear responses and inhibition of territorial behavior. Stress-induced hormonal and neurotransmitter release may contribute to disruption of expression of genes important for cell survival, neuronal plasticity, and neuronal remodeling. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor associated with structural cellular changes that occur during nervous system development and contributes to neural plasticity in the adult brain. In rats, acute (1-2 h) restraint stress transiently reduces BDNF mRNA expression in the hippocampus, a region important in the memory and in HPA regulation; restraint stress also decreases BDNF expression in the basolateral amygdala (BLA), a region important for fear consolidation and emotional memory. We hypothesized that a brief (10 min) exposure to intense social stress, a more naturalistic stressor than restraint stress, would also reduce BDNF mRNA in the hippocampus and BLA of mice. In the present study, we examined the time course of expression of BDNF mRNA expression in the hippocampus and amygdala, as well as other subcortical and cortical brain regions, following acute social stress. In situ hybridization analysis for BDNF mRNA expression showed that there was a significant decrease in BDNF mRNA expression in all regions studied in mice 24 h after social defeat when compared to control (naive) mice (P<0.05). These findings support our hypothesis that BDNF mRNA levels are reduced by social stress, and may have implications for brain plasticity and behavioral changes following social stress.
Collapse
Affiliation(s)
- José M Pizarro
- Division of Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|