99651
|
Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T, Boldogh I. OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer. Cancers (Basel) 2023; 16:148. [PMID: 38201575 PMCID: PMC10778025 DOI: 10.3390/cancers16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
8-oxoguanine glycosylase 1 (OGG1), which was initially identified as the enzyme that catalyzes the first step in the DNA base excision repair pathway, is now also recognized as a modulator of gene expression. What is important for cancer is that OGG1 acts as a modulator of NFκB-driven gene expression. Specifically, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, such as NFκB to their cognate sites, enabling the expression of cytokines and chemokines, with ensuing recruitment of inflammatory cells. Recently, we highlighted chief aspects of OGG1 involvement in regulation of gene expression, which hold significance in lung cancer development. However, OGG1 has also been implicated in the molecular underpinning of acute myeloid leukemia. This review analyzes and discusses how these cells adapt through redox-modulated intricate connections, via interaction of OGG1 with NFκB, which provides malignant cells with alternative molecular pathways to transform their microenvironment, enabling adjustment, promoting cell proliferation, metastasis, and evading killing by therapeutic agents.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| | - Lang Pan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Theodoros Karantanos
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Istvan Boldogh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| |
Collapse
|
99652
|
Brait N, Hackl T, Morel C, Exbrayat A, Gutierrez S, Lequime S. A tale of caution: How endogenous viral elements affect virus discovery in transcriptomic data. Virus Evol 2023; 10:vead088. [PMID: 38516656 PMCID: PMC10956553 DOI: 10.1093/ve/vead088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 03/23/2024] Open
Abstract
Large-scale metagenomic and -transcriptomic studies have revolutionized our understanding of viral diversity and abundance. In contrast, endogenous viral elements (EVEs), remnants of viral sequences integrated into host genomes, have received limited attention in the context of virus discovery, especially in RNA-Seq data. EVEs resemble their original viruses, a challenge that makes distinguishing between active infections and integrated remnants difficult, affecting virus classification and biases downstream analyses. Here, we systematically assess the effects of EVEs on a prototypical virus discovery pipeline, evaluate their impact on data integrity and classification accuracy, and provide some recommendations for better practices. We examined EVEs and exogenous viral sequences linked to Orthomyxoviridae, a diverse family of negative-sense segmented RNA viruses, in 13 genomic and 538 transcriptomic datasets of Culicinae mosquitoes. Our analysis revealed a substantial number of viral sequences in transcriptomic datasets. However, a significant portion appeared not to be exogenous viruses but transcripts derived from EVEs. Distinguishing between transcribed EVEs and exogenous virus sequences was especially difficult in samples with low viral abundance. For example, three transcribed EVEs showed full-length segments, devoid of frameshift and nonsense mutations, exhibiting sufficient mean read depths that qualify them as exogenous virus hits. Mapping reads on a host genome containing EVEs before assembly somewhat alleviated the EVE burden, but it led to a drastic reduction of viral hits and reduced quality of assemblies, especially in regions of the viral genome relatively similar to EVEs. Our study highlights that our knowledge of the genetic diversity of viruses can be altered by the underestimated presence of EVEs in transcriptomic datasets, leading to false positives and altered or missing sequence information. Thus, recognizing and addressing the influence of EVEs in virus discovery pipelines will be key in enhancing our ability to capture the full spectrum of viral diversity.
Collapse
Affiliation(s)
- Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | | | - Côme Morel
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Antoni Exbrayat
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Serafin Gutierrez
- ASTRE research unit, Cirad, INRAe, Université de Montpellier, Montpellier 34398, France
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
99653
|
Naglekar A, Chattopadhyay A, Sengupta D. Palmitoylation of the Glucagon-like Peptide-1 Receptor Modulates Cholesterol Interactions at the Receptor-Lipid Microenvironment. J Phys Chem B 2023; 127:11000-11010. [PMID: 38111968 DOI: 10.1021/acs.jpcb.3c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The G protein-coupled receptor (GPCR) superfamily of cell surface receptors has been shown to be functionally modulated by post-translational modifications. The glucagon-like peptide receptor-1 (GLP-1R), which is a drug target in diabetes and obesity, undergoes agonist-dependent palmitoyl tail conjugation. The palmitoylation in the C-terminal domain of GLP-1R has been suggested to modulate the receptor-lipid microenvironment. In this work, we have performed coarse-grain molecular dynamics simulations of palmitoylated and nonpalmitoylated GLP-1R to analyze the differential receptor-lipid interactions. Interestingly, the placement and dynamics of the C-terminal domain of GLP-1R are found to be directly dependent on the palmitoyl tail. We observe that both cholesterol and phospholipids interact with the receptor but display differential interactions in the presence and absence of the palmitoyl tail. We characterize important cholesterol-binding sites and validate sites that have been previously reported in experimentally resolved structures of the receptor. We show that the receptor acts like a conduit for cholesterol flip-flop by stabilizing cholesterol in the membrane core. Taken together, our work represents an important step in understanding the molecular effects of lipid modifications in GPCRs.
Collapse
Affiliation(s)
- Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
99654
|
Cieśla M, Darmochwal-Kolarz DA, Kwaśniak K, Pałka A, Kolarz B. Plasma Circular-RNA 0005567 as a Potential Marker of Disease Activity in Rheumatoid Arthritis. Int J Mol Sci 2023; 25:417. [PMID: 38203588 PMCID: PMC10779327 DOI: 10.3390/ijms25010417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Circular RNAs (circRNAs) are noncoding molecules and are generated through back splicing, during which the 5' and 3' ends are covalently joined. Consequently, the lack of free ends makes them stable and resistant to exonucleases, and they become more suitable biomarkers than other noncoding RNAs. The aim of the study was to find an association between selected circRNAs and disease activity in patients with RA. A total of 71 subjects, 45 patients with RA and 26 healthy controls (HCs), were enrolled. In the RA group, 24 patients had high disease activity (DAS-28-ESR > 5.1) and 21 individuals were in remission (DAS-28-ESR ≤ 2.6). The cell line SW982 was used to evaluate the biological function of circ_0005567. The concentration of circ_0005567 in RA patients was elevated compared to HCs (median, 177.5 [lower-upper quartile, 83.13-234.6] vs. 97.83 [42.03-145.4], p = 0.017). Patients with high disease activity had a higher concentration of circ_0005567 than the control group (185.4 [112.72-249.25] vs. 97.83 [42.03-145.4], p = 0.015). In the cell line model, we found an association between circ_0005567 and miR-194-5p concentration and increased expression of mRNAs that may be related to cell proliferation. The plasma concentration of circ_0005567 may be a new potential biomarker associated with disease activity in patients with RA.
Collapse
Affiliation(s)
- Marek Cieśla
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| | - Dorota A. Darmochwal-Kolarz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| | - Konrad Kwaśniak
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszów University, 35-310 Rzeszow, Poland
| | - Anna Pałka
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| | - Bogdan Kolarz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| |
Collapse
|
99655
|
Zhang Y, Li Y. Clinical Translation of Aptamers for COVID-19. J Med Chem 2023; 66:16568-16578. [PMID: 37880142 DOI: 10.1021/acs.jmedchem.3c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The COVID-19 etiologic agent, SARS-CoV-2, continues to be one of the leading causes of death on a global scale. Although efficient methods for diagnosis and treatment of COVID-19 have been developed, new methods of battling SARS-CoV-2 variants and long COVID are still urgently needed. A number of aptamers have demonstrated tremendous potential to be developed into diagnostic and therapeutic agents for COVID-19. The translation of the aptamers for clinical uses, however, has been extremely slow. Overcoming the difficulties faced by aptamers would advance this technology toward clinical use for COVID-19 and other serious disorders.
Collapse
Affiliation(s)
- Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yongen Li
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
99656
|
Li FX, Zhao WH, Li ZH, Song JL, Gao HF. Moraxella haemolytica sp. nov., isolated from a goat with respiratory disease. Arch Microbiol 2023; 206:45. [PMID: 38153526 DOI: 10.1007/s00203-023-03782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
An aerobic, haemolytic, Gram-negative and rod-shaped bacterial strain ZY171148T was isolated from the lung of a dead goat with respiratory disease in Southwest China. The strain grew at 24-39 °C, at pH 6.0-9.0 and in the presence of 0.5-2.0% (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belongs to the genus Moraxella. The nucleotide sequence similarity analysis of the 16S rRNA gene showed that the strain has the highest similarity of 98.1% to Moraxella (M.) caprae ATCC 700019 T. Phylogenomic analysis of 800 single-copy protein sequences indicated that the strain is a member of the genus Moraxella and forms a separated branch on the Moraxella phylogenetic tree. The strain exhibited the highest orthologous average nucleotide identity (OrthoANI) and average amino acid identity (AAI) values of 77.0 and 77.9% to M. nasibovis CCUG 75921T and M. ovis CCUG 354T, respectively. The strain shared the highest digital DNA-DNA hybridization (dDDH) value of 26.2% to M. osloensis CCUG 350T. The genome G + C content of strain ZY171148T was 42.6 mol%. The strain had C18:1 ω9c (41.7%), C18:0 (11.2%), C16:0 (14.1%) and C12:0 3OH (9.7%) as the predominant fatty acids and CoQ-8 as the major respiratory quinone. The strain contained phosphatidylglycerol, phosphatidylethanolamine, cardiolipin, dilysocardiolipin, monolysocardiolipin and phosphatidic acid as the major polar lipids. β-haemolysis was observed on Columbia blood agar. All results confirmed that strain ZY171148T represents a novel species of the genus Moraxella, for which the name Moraxella haemolytica sp. nov. is proposed, with strain ZY171148T = CCTCC AB 2021471T = CCUG 75920T as the type strain.
Collapse
Affiliation(s)
- Fu-Xiang Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China.
| | - Wen-Hua Zhao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Jian-Ling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Hua-Feng Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| |
Collapse
|
99657
|
Avadhanula V, Agustinho DP, Menon VK, Chemaly RF, Shah DP, Qin X, Surathu A, Doddapaneni H, Muzny DM, Metcalf GA, Cregeen SJ, Gibbs RA, Petrosino JF, Sedlazeck FJ, Piedra PA. Inter and intra-host diversity of RSV in hematopoietic stem cell transplant adults with normal and delayed viral clearance. Virus Evol 2023; 10:vead086. [PMID: 38361816 PMCID: PMC10868550 DOI: 10.1093/ve/vead086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.
Collapse
Affiliation(s)
| | | | - Vipin Kumar Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy F Chemaly
- Departments of Infectious Diseases, Infection Control & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dimpy P Shah
- Department of Population Health Sciences, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Surathu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Rice University, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
99658
|
Mansour N, Mehanna S, Bodman-Smith K, Daher CF, Khnayzer RS. A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis. Pharmaceuticals (Basel) 2023; 17:50. [PMID: 38256884 PMCID: PMC10819265 DOI: 10.3390/ph17010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
[Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) (complex 1) is a sterically strained compound that exhibits promising in vitro photocytotoxicity on an array of cell lines. Since lung adenocarcinoma cancer remains the most common lung cancer and the leading cause of cancer deaths, the current study aims to evaluate the plausible effect and uptake of complex 1 on human alveolar carcinoma cells (A549) and mesenchymal stem cells (MSC), and assess its cytotoxicity in vitro while considering its effect on cell morphology, membrane integrity and DNA damage. MSC and A549 cells showed similar rates of complex 1 uptake with a plateau at 12 h. Upon photoactivation, complex 1 exhibited selective, potent anticancer activity against A549 cells with phototoxicity index (PI) values of 16, 25 and 39 at 24, 48 and 72 h, respectively. This effect was accompanied by a significant increase in A549-cell rounding and detachment, loss of membrane integrity and DNA damage. Flow cytometry experiments confirmed that A549 cells undergo apoptosis when treated with complex 1 followed by photoactivation. In conclusion, this present study suggests that complex 1 might be a promising candidate for photochemotherapy with photoproducts that possess selective anticancer effects in vitro. These results are encouraging to probe the potential activity of this complex in vivo.
Collapse
Affiliation(s)
- Najwa Mansour
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Kikki Bodman-Smith
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Costantine F. Daher
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Rony S. Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| |
Collapse
|
99659
|
Xiong L, Li Y, Zeng K, Wei Y, Li H, Ji X. Revealing viral diversity in the Napahai plateau wetland based on metagenomics. Antonie Van Leeuwenhoek 2023; 117:3. [PMID: 38153618 DOI: 10.1007/s10482-023-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
We focused on exploring the diversity of viruses in the Napahai plateau wetland, a unique ecosystem located in Yunnan, China. While viruses in marine environments have been extensively studied for their influence on microbial metabolism and biogeochemical cycles, little is known about their composition and function in plateau wetlands. Metagenomic analysis was employed to investigate the viral diversity and biogeochemical impacts in the Napahai wetland. It revealed that the Caudoviricetes and Malgrandaviricetes class level was the most abundant viral category based on phylogenetic analysis. Additionally, a gene-sharing network highlighted the presence of numerous unexplored viruses and demonstrated their unique characteristics and significant variation within the viral community of the Napahai wetland. Furthermore, the study identified the auxiliary metabolic genes (AMGs). AMGs provide phages with additional functions, such as protection against host degradation and involvement in metabolic pathways, such as the pentose phosphate pathway and DNA biosynthesis. The viruses in the Napahai wetland were found to influence carbon, nitrogen, sulfur, and amino acid metabolism, indirectly contributing to biogeochemical cycling through these AMGs. Overall, the research sheds light on the diverse and unique viral communities in the Napahai plateau wetland and emphasizes the significant roles of viruses in microbial ecology. The findings contribute to a deeper understanding of the characteristics and ecological functions of viral communities in plateau wetland ecosystems.
Collapse
Affiliation(s)
- Lingling Xiong
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yanmei Li
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kun Zeng
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yunlin Wei
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiuling Ji
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
99660
|
SUN XIANGDONG, WEN HUIJUAN, LI FAZHAN, BUKHARI IHTISHAM, REN FEIFEI, XUE XIA, ZHENG PENGYUAN, MI YANG. NAD+ associated genes as potential biomarkers for predicting the prognosis of gastric cancer. Oncol Res 2023; 32:283-296. [PMID: 38186577 PMCID: PMC10765132 DOI: 10.32604/or.2023.044618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays an essential role in cellular metabolism, mitochondrial homeostasis, inflammation, and senescence. However, the role of NAD+-regulated genes, including coding and long non-coding genes in cancer development is poorly understood. We constructed a prediction model based on the expression level of NAD+ metabolism-related genes (NMRGs). Furthermore, we validated the expression of NMRGs in gastric cancer (GC) tissues and cell lines; additionally, β-nicotinamide mononucleotide (NMN), a precursor of NAD+, was used to treat the GC cell lines to analyze its effects on the expression level of NMRGs lncRNAs and cellular proliferation, cell cycle, apoptosis, and senescence-associated secretory phenotype (SASP). A total of 13 NMRGs-related lncRNAs were selected to construct prognostic risk signatures, and patients with high-risk scores had a poor prognosis. Some immune checkpoint genes were upregulated in the high-risk group. In addition, cell cycle, epigenetics, and senescence were significantly downregulated in the high-risk group. Notably, we found that the levels of immune cell infiltration, including CD8 T cells, CD4 naïve T cells, CD4 memory-activated T cells, B memory cells, and naïve B cells, were significantly associated with risk scores. Furthermore, the treatment of NMN showed increased proliferation of AGS and MKN45 cells. In addition, the expression of SASP factors (IL6, IL8, IL10, TGF-β, and TNF-α) was significantly decreased after NMN treatment. We conclude that the lncRNAs associated with NAD+ metabolism can potentially be used as biomarkers for predicting clinical outcomes of GC patients.
Collapse
Affiliation(s)
- XIANGDONG SUN
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - HUIJUAN WEN
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - FAZHAN LI
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - IHTISHAM BUKHARI
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - FEIFEI REN
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XIA XUE
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - PENGYUAN ZHENG
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - YANG MI
- Henan Key Laboratory for Helicobacter Pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
99661
|
Saengha W, Karirat T, Pitisin N, Plangklang S, Butkhup L, Udomwong P, Ma NL, Konsue A, Chanthaket P, Katisart T, Luang-In V. Exploring the Bioactive Potential of Calostoma insigne, an Endangered Culinary Puffball Mushroom, from Northeastern Thailand. Foods 2023; 13:113. [PMID: 38201139 PMCID: PMC10778563 DOI: 10.3390/foods13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Calostoma insigne puffball mushrooms are only found in forests with rich biodiversity in very few countries including Thailand, and their biofunctions remain largely unexplored. This study used the agar disk diffusion assay, the anti-glucosidase assay, and the 3, 4, 5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT) assay to evaluate the bioactive potential of these endangered puffball mushrooms. Internal transcribed spacer (ITS) gene analysis identified C. insigne, a puffball mushroom with green, globose, and spiny spores. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the polysaccharide structure while scanning electron microscopy (SEM) revealed a fiber-like network. The ethanolic gelatinous fruiting body extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging capacity (57.96%), a ferric ion-reducing antioxidant power (FRAP) value of 1.73 mg FeSO4/g, and α-glucosidase inhibition (73.18%). C. insigne cytotoxicity was effective towards HT-29 colon cancer cells using the MTT assay (IC50 of 770.6 µg/mL at 72 h) and also showed antiproliferative capacity (IC50 of 297.1 µg/mL). This puffball mushroom stimulated apoptotic genes and proteins (caspase-3, Bax, and p21) via an intrinsic apoptotic pathway in HT-29 cells. In the laboratory, the medium formula consisting of 20% potato, 2% sucrose, and 0.2% peptone was optimal to increase fungal mycelial biomass (2.74 g DW/100 mL), with propagation at pH 5.0 and 30 °C. Puffball mushrooms are consumed as local foods and also confer several potential health benefits, making them worthy of conservation for sustainable utilization.
Collapse
Affiliation(s)
- Worachot Saengha
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Nathanon Pitisin
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Supawadee Plangklang
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Luchai Butkhup
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Piyachat Udomwong
- International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Ampa Konsue
- Thai Traditional Medicinal Research Unit, Division of Applied Thai Traditional Medicine, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Teeraporn Katisart
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| |
Collapse
|
99662
|
Wang J, Ye H, Li X, Lv X, Lou J, Chen Y, Yu S, Zhang L. Genome-Wide Analysis of the MADS-Box Gene Family in Hibiscus syriacus and Their Role in Floral Organ Development. Int J Mol Sci 2023; 25:406. [PMID: 38203576 PMCID: PMC10779063 DOI: 10.3390/ijms25010406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Hibiscus syriacus belongs to the Malvaceae family, and is a plant with medicinal, edible, and greening values. MADS-box transcription factor is a large family of regulatory factors involved in a variety of biological processes in plants. Here, we performed a genome-wide characterization of MADS-box proteins in H. syriacus and investigated gene structure, phylogenetics, cis-acting elements, three-dimensional structure, gene expression, and protein interaction to identify candidate MADS-box genes that mediate petal developmental regulation in H. syriacus. A total of 163 candidate MADS-box genes were found and classified into type I (Mα, Mβ, and Mγ) and type II (MIKC and Mδ). Analysis of cis-acting elements in the promoter region showed that most elements were correlated to plant hormones. The analysis of nine HsMADS expressions of two different H. syriacus cultivars showed that they were differentially expressed between two type flowers. The analysis of protein interaction networks also indicated that MADS proteins played a crucial role in floral organ identification, inflorescence and fruit development, and flowering time. This research is the first to analyze the MADS-box family of H. syriacus and provides an important reference for further study of the biological functions of the MADS-box, especially in flower organ development.
Collapse
Affiliation(s)
- Jie Wang
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Heng Ye
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China;
| | - Xue Lv
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Jiaqi Lou
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Yulu Chen
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Shuhan Yu
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Lu Zhang
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| |
Collapse
|
99663
|
Demir Gİ, Tekin A. NICE-FF: A non-empirical, intermolecular, consistent, and extensible force field for nucleic acids and beyond. J Chem Phys 2023; 159:244117. [PMID: 38153156 DOI: 10.1063/5.0176641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
A new non-empirical ab initio intermolecular force field (NICE-FF in buffered 14-7 potential form) has been developed for nucleic acids and beyond based on the dimer interaction energies (IEs) calculated at the spin component scaled-MI-second order Møller-Plesset perturbation theory. A fully automatic framework has been implemented for this purpose, capable of generating well-polished computational grids, performing the necessary ab initio calculations, conducting machine learning (ML) assisted force field (FF) parametrization, and extending existing FF parameters by incorporating new atom types. For the ML-assisted parametrization of NICE-FF, interaction energies of ∼18 000 dimer geometries (with IE < 0) were used, and the best fit gave a mean square deviation of about 0.46 kcal/mol. During this parametrization, atom types apparent in four deoxyribonucleic acid (DNA) bases have been first trained using the generated DNA base datasets. Both uracil and hypoxanthine, which contain the same atom types found in DNA bases, have been considered as test molecules. Three new atom types have been added to the DNA atom types by using IE datasets of both pyrazinamide and 9-methylhypoxanthine. Finally, the last test molecule, theophylline, has been selected, which contains already-fitted atom-type parameters. The performance of NICE-FF has been investigated on the S22 dataset, and it has been found that NICE-FF outperforms the well-known FFs by generating the most consistent IEs with the high-level ab initio ones. Moreover, NICE-FF has been integrated into our in-house developed crystal structure prediction (CSP) tool [called FFCASP (Fast and Flexible CrystAl Structure Predictor)], aiming to find the experimental crystal structures of all considered molecules. CSPs, which were performed up to 4 formula units (Z), resulted in NICE-FF being able to locate almost all the known experimental crystal structures with sufficiently low RMSD20 values to provide good starting points for density functional theory optimizations.
Collapse
Affiliation(s)
- Gözde İniş Demir
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
- Research Institute for Fundamental Sciences (TÜBİTAK-TBAE), Kocaeli, Türkiye
| |
Collapse
|
99664
|
da Silva TF, Sampaio I, Angulo A, Domínguez-Domínguez O, Andrade-Santos J, Guimarães-Costa A, Santos S. Species delimitation by DNA barcoding reveals undescribed diversity in Stelliferinae (Sciaenidae). PLoS One 2023; 18:e0296335. [PMID: 38153939 PMCID: PMC10754464 DOI: 10.1371/journal.pone.0296335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Stelliferinae is the third most speciose subfamily of Sciaenidae, with 51 recognized species arranged in five genera. Phylogenies derived from both morphological and molecular data support the monophyly of this subfamily, although there is no general consensus on the intergeneric relationships or the species diversity of this group. We used the barcoding region of the cytochrome oxidase C subunit I (COI) gene to verify the delimitation of Stelliferinae species based on the Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescence (GMYC), and Bayesian Poisson Tree Process (bPTP) methods. In general, the results of these different approaches were congruent, delimiting 30-32 molecular operational taxonomic units (MOTUs), most of which coincided with valid species. Specimens of Stellifer menezesi and Stellifer gomezi were attributed to a single species, which disagrees with the most recent review of this genus. The evidence also indicated that Odontoscion xanthops and Corvula macrops belong to a single MOTU. In contrast, evidence also indicates presence of distinct lineages in both Odontoscion dentex and Bairdiella chrysoura. Such results are compatible with the existence of cryptic species, which is supported by the genetic divergence and haplotype genealogy. Therefore, the results of the present study indicate the existence of undescribed diversity in the Stelliferinae, which reinforces the need for an ample taxonomic review of the fish in this subfamily.
Collapse
Affiliation(s)
- Tárcia Fernanda da Silva
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Arturo Angulo
- Escuela de Biología, Museo de Zoología/Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET) and Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | - Omar Domínguez-Domínguez
- Laboratory of Aquatic Biology, Faculty of Biology, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morella, Michoacán, Mexico
| | - Jonas Andrade-Santos
- Laboratory of Ichthyology, Vertebrates Department–Federal University of Rio de Janeiro, National Museum, Rio de Janeiro, Brazil
| | - Aurycéia Guimarães-Costa
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Simoni Santos
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| |
Collapse
|
99665
|
Levkova M, Chervenkov T, Angelova L, Dzenkov D. Oxford Nanopore Technology and its Application in Liquid Biopsies. Curr Genomics 2023; 24:337-344. [PMID: 38327653 PMCID: PMC10845067 DOI: 10.2174/0113892029286632231127055733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024] Open
Abstract
Advanced medical technologies are transforming the future of healthcare, in particular, the screening and detection of molecular-genetic changes in patients suspected of having a neoplasm. They are based on the assumption that neoplasms release small amounts of various neoplasm-specific molecules, such as tumor DNA, called circulating DNA (cirDNA), into the extracellular space and subsequently into the blood. The detection of tumor-specific molecules and specific molecular changes in body fluids in a noninvasive or minimally invasive approach is known as "liquid biopsy." The aim of this review is to summarize the current knowledge of the application of ONT for analyzing circulating DNA in the field of liquid biopsies among cancer patients. Databases were searched using the keywords "nanopore" and "liquid biopsy" and by applying strict inclusion criteria. This technique can be used for the detection of neoplastic disease, including metastases, guiding precision therapy, and monitoring its effects. There are many challenges, however, for the successful implementation of this technology into the clinical practice. The first one is the low amount of tumor-specific molecules in the body fluids. Secondly, a tumor molecular signature should be discriminated from benign conditions like clonal hematopoiesis of unknown significance. Oxford Nanopore Technology (ONT) is a third-generation sequencing technology that seems particularly promising to complete these tasks. It offers rapid sequencing thanks to its ability to detect changes in the density of the electric current passing through nanopores. Even though ONT still needs validation technology, it is a promising approach for early diagnosis, therapy guidance, and monitoring of different neoplasms based on analyzing the cirDNA.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
- Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Trifon Chervenkov
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
- Laboratory of Clinical immunology, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| | - Deyan Dzenkov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Division of General and Clinical Pathology, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
99666
|
Shani S, Gana-Weisz M, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Goldstein O, Orr-Urtreger A. MAPT Locus in Parkinson's Disease Patients of Ashkenazi Origin: A Stratified Analysis. Genes (Basel) 2023; 15:46. [PMID: 38254936 PMCID: PMC10815687 DOI: 10.3390/genes15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: MAPT locus is associated with Parkinson's disease (PD), which is located within a large inversion region of high linkage disequilibrium (LD). We aimed to determine whether the H2-haplotype protective effect and its effect size depends on the GBA1 or LRRK2 risk allele carrier status, and to further characterize genetic alterations that might contribute to its effect. Methods: LD analysis was performed using whole-genome sequencing data of 202 unrelated Ashkenazi Jewish (AJ) PDs. A haplotype-divergent variant was genotyped in a cohort of 1200 consecutively recruited AJ-PDs. The odd ratios were calculated using AJ-non-neuro cases from the gnomAD database as the controls in an un-stratified and a stratified manner according to the mutation carrier status, and the effect on the Age at Motor Symptom Onset (AMSO) was examined. Expression and splicing quantitative trait locus (eQTL and sQTL) analyses were carried out using brain tissues from a database. Results: The H2 haplotype exhibited significant association with PD protection, with a similar effect size in GBA1 carriers, LRRK2-G2019S carriers, and non-carriers (OR = 0.77, 0.69, and 0.82, respectively), and there was no effect on AMSO. The LD interval was narrowed to approximately 1.2 Mb. The H2 haplotype carried potential variants in candidate genes (MAPT and SPPL2C); structural deletions and segmental duplication (KANSL1); and variants affecting gene expression and intron excision ratio in brain tissues (LRRC37A/2). Conclusions: Our results demonstrate that H2 is associated with PD and its protective effect is not influenced by the GBA1/LRRK2 risk allele carrier status. This effect may be genetically complex, resulting from different levels of variations such as missense mutations in relevant genes, structural variations, epigenetic modifications, and RNA expression changes, which may operate independently or in synergy.
Collapse
Affiliation(s)
- Shachar Shani
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Mali Gana-Weisz
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Anat Bar-Shira
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Avner Thaler
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tanya Gurevich
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Mirelman
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nir Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Roy N. Alcalay
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Orly Goldstein
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
| | - Avi Orr-Urtreger
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (S.S.); (A.T.); (T.G.); (A.M.); (N.G.); (A.O.-U.)
- The Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (M.G.-W.); (A.B.-S.); (R.N.A.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
99667
|
Krasnoperova EY, Tvorogova VE, Smirnov KV, Efremova EP, Potsenkovskaia EA, Artemiuk AM, Konstantinov ZS, Simonova VY, Brynchikova AV, Yakovleva DV, Pavlova DB, Lutova LA. MtWOX2 and MtWOX9-1 Effects on the Embryogenic Callus Transcriptome in Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2023; 13:102. [PMID: 38202410 PMCID: PMC10780917 DOI: 10.3390/plants13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
WOX family transcription factors are well-known regulators of plant development, controlling cell proliferation and differentiation in diverse organs and tissues. Several WOX genes have been shown to participate in regeneration processes which take place in plant cell cultures in vitro, but the effects of most of them on tissue culture development have not been discovered yet. In this study, we evaluated the effects of MtWOX2 gene overexpression on the embryogenic callus development and transcriptomic state in Medicago truncatula. According to our results, overexpression of MtWOX2 leads to an increase in callus weight. Furthermore, transcriptomic changes in MtWOX2 overexpressing calli are, to a large extent, opposite to the changes caused by overexpression of MtWOX9-1, a somatic embryogenesis stimulator. These results add new information about the mechanisms of interaction between different WOX genes and can be useful for the search of new regeneration regulators.
Collapse
Affiliation(s)
- Elizaveta Y. Krasnoperova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Varvara E. Tvorogova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia
| | - Kirill V. Smirnov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia;
| | - Elena P. Efremova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Elina A. Potsenkovskaia
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia
| | - Anastasia M. Artemiuk
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Zakhar S. Konstantinov
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| | - Veronika Y. Simonova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| | - Anna V. Brynchikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| | - Daria V. Yakovleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Daria B. Pavlova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
| | - Ludmila A. Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 St. Petersburg, Russia; (E.Y.K.); (E.P.E.); (E.A.P.); (A.M.A.); (D.V.Y.); (D.B.P.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (Z.S.K.); (V.Y.S.); (A.V.B.)
| |
Collapse
|
99668
|
Bhowmick C, Rahaman M, Bhattacharya S, Mukherjee M, Chakravorty N, Dutta PK, Mahadevappa M. Identification of hub genes to determine drug-disease correlation in breast carcinomas. Med Oncol 2023; 41:36. [PMID: 38153604 DOI: 10.1007/s12032-023-02246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/11/2023] [Indexed: 12/29/2023]
Abstract
The exact molecular mechanism underlying the heterogeneous drug response against breast carcinoma remains to be fully understood. It is urgently required to identify key genes that are intricately associated with varied clinical response of standard anti-cancer drugs, clinically used to treat breast cancer patients. In the present study, the utility of transcriptomic data of breast cancer patients in discerning the clinical drug response using machine learning-based approaches were evaluated. Here, a computational framework has been developed which can be used to identify key genes that can be linked with clinical drug response and progression of cancer, offering an immense opportunity to predict potential prognostic biomarkers and therapeutic targets. The framework concerned utilizes DeSeq2, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cytoscape, and machine learning techniques to find these crucial genes. Total RNA extraction and qRT-PCR were performed to quantify relative expression of few hub genes selected from the networks. In our study, we have experimentally checked the expression of few key hub genes like APOA2, DLX5, APOC3, CAMK2B, and PAK6 that were predicted to play an immense role in breast cancer tumorigenesis and progression in response to anti-cancer drug Paclitaxel. However, further experimental validations will be required to get mechanistic insights of these genes in regulating the drug response and cancer progression which will likely to play pivotal role in cancer treatment and precision oncology.
Collapse
Affiliation(s)
- Chiranjib Bhowmick
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Shatarupa Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Pranab Kumar Dutta
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India
| | - Manjunatha Mahadevappa
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
99669
|
Baqi A, Samiullah, Rehman W, Bibi I, Menaa F, Khan Y, Albalawi DA, Sattar A. Identification and Validation of Functional miRNAs and Their Main Targets in Sorghum bicolor. Mol Biotechnol 2023:10.1007/s12033-023-00988-5. [PMID: 38155285 DOI: 10.1007/s12033-023-00988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023]
Abstract
MicroRNAs (miRNAs) are typically non-coding RNAs of 18-26 nucleotides (nts) that are produced endogenously and regulated post-transcriptionally through degradation or translational repression. Since miRNAs are evolutionarily conserved, their preservation is essential for important regulatory functions in plant development, growth, and responses to environmental stress. Sorghum bicolor (sbi) is a valuable food and fodder crop which is grown worldwide. A range of sbi miRNAs were identified so far as being connected to plant development and stress responses. Herein, we employed a variety of bioinformatics tools for miRNA profiling in sbi and a PCR-based platform for the validation of these miRNAs. In total, 74 new conserved sbi miRNAs from 52 miRNA families have been predicted. Using the psRNA Target method, 10613 different protein targets of these predicted miRNAs have been attained. These targets include 54 GO-terms which have substantial targets in the biological, molecular, and cellular processes. We particularly found that the sbi-miR1861c and sbi-miR5050 are involved to regulate sulphur compound biosynthetic process, while the significant spliceosomal complex is regulated by sbi-miR815b and sbi-miR7768b. Also, we report that the pre-ribosome, electron transport chain, cell communication, cellular respiration, protein localization, and photosynthesis are controlled by sbi-miR2907b, sbi-miR530, sbi-miR7749, sbi-miR1858a, sbi-mi7729a, and sbi-miR417, respectively. The identification and validation of these novel sbi miRNAs shall contribute a lot in improving the crop yield and ensure sustainable agriculture.
Collapse
Affiliation(s)
- Abdul Baqi
- Department of Chemistry, University of Balochistan, Quetta, 87300, Pakistan
| | - Samiullah
- Department of Chemistry, University of Balochistan, Quetta, 87300, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University Mansehra, Mansehra, Pakistan.
| | - Iram Bibi
- Department of Chemistry, Hazara University Mansehra, Mansehra, Pakistan
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), California Innovations Corporation (CIC), San Diego, CA, 92037, USA.
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Doha A Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Abdul Sattar
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| |
Collapse
|
99670
|
Herfindal AM, van Megen F, Gilde MKO, Valeur J, Rudi K, Skodje GI, Lundin KEA, Henriksen C, Bøhn SK. Effects of a low FODMAP diet on gut microbiota in individuals with treated coeliac disease having persistent gastrointestinal symptoms - a randomised controlled trial. Br J Nutr 2023; 130:2061-2075. [PMID: 37272479 PMCID: PMC10657752 DOI: 10.1017/s0007114523001253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Individuals with coeliac disease (CeD) often experience gastrointestinal symptoms despite adherence to a gluten-free diet (GFD). While we recently showed that a diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAP) successfully provided symptom relief in GFD-treated CeD patients, there have been concerns that the low FODMAP diet (LFD) could adversely affect the gut microbiota. Our main objective was therefore to investigate whether the LFD affects the faecal microbiota and related variables of gut health. In a randomised controlled trial GFD-treated CeD adults, having persistent gastrointestinal symptoms, were randomised to either consume a combined LFD and GFD (n 39) for 4 weeks or continue with GFD (controls, n 36). Compared with the control group, the LFD group displayed greater changes in the overall faecal microbiota profile (16S rRNA gene sequencing) from baseline to follow-up (within-subject β-diversity, P < 0·001), characterised by lower and higher follow-up abundances (%) of genus Anaerostipes (Pgroup < 0·001) and class Erysipelotrichia (Pgroup = 0·02), respectively. Compared with the control group, the LFD led to lower follow-up concentrations of faecal propionic and valeric acid (GC-FID) in participants with high concentrations at baseline (Pinteraction ≤ 0·009). No differences were found in faecal bacterial α-diversity (Pgroup ≥ 0·20) or in faecal neutrophil gelatinase-associated lipocalin (ELISA), a biomarker of gut integrity and inflammation (Pgroup = 0·74), between the groups at follow-up. The modest effects of the LFD on the gut microbiota and related variables in the CeD patients of the present study are encouraging given the beneficial effects of the LFD strategy to treat functional GI symptoms (Registered at clinicaltrials.gov as NCT03678935).
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Frida van Megen
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Unit for Clinical Nutrition, Division of Cancer Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mari K. O. Gilde
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gry I. Skodje
- Healthy Life Centre, Municipality of Nes, Nes, Norway
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siv Kjølsrud Bøhn
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
99671
|
Perlegos AE, Quan X, Donnelly KM, Shen H, Shields EJ, Elashal H, Fange Liu K, Bonini NM. dTrmt10A impacts Hsp70 chaperone m 6A levels and the stress response in the Drosophila brain. Sci Rep 2023; 13:22999. [PMID: 38155219 PMCID: PMC10754819 DOI: 10.1038/s41598-023-50272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Chronic cellular stress has a profound impact on the brain, leading to degeneration and accelerated aging. Recent work has revealed the vital role of RNA modifications, and the proteins responsible for regulating them, in the stress response. In our study, we defined the role of CG14618/dTrmt10A, the Drosophila counterpart of human TRMT10A a N1-methylguanosine methyltransferase, on m6A regulation and heat stress resilience in the Drosophila brain. By m6A-IP RNA sequencing on Drosophila head tissue, we demonstrated that manipulating dTrmt10A levels indirectly regulates m6A levels on polyA + RNA. dTrmt10A exerted its influence on m6A levels on transcripts enriched for neuronal signaling and heat stress pathways, similar to the m6A methyltransferase Mettl3. Intriguingly, its impact primarily targeted 3' UTR m6A, setting it apart from the majority of Drosophila m6A-modified transcripts which display 5' UTR enrichment. Upregulation of dTrmt10A led to increased resilience to acute heat stress, decreased m6A modification on heat shock chaperones, and coincided with decreased decay of chaperone transcripts and increased translation of chaperone proteins. Overall, these findings establish a potential mechanism by which dTrmt10A regulates the acute brain stress response through m6A modification.
Collapse
Affiliation(s)
- Alexandra E Perlegos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiuming Quan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kirby M Donnelly
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Emily J Shields
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Elashal
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
99672
|
O’Brien MP, Pryzhkova MV, Lake EMR, Mandino F, Shen X, Karnik R, Atkins A, Xu MJ, Ji W, Konstantino M, Brueckner M, Ment LR, Khokha MK, Jordan PW. SMC5 Plays Independent Roles in Congenital Heart Disease and Neurodevelopmental Disability. Int J Mol Sci 2023; 25:430. [PMID: 38203602 PMCID: PMC10779392 DOI: 10.3390/ijms25010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Up to 50% of patients with severe congenital heart disease (CHD) develop life-altering neurodevelopmental disability (NDD). It has been presumed that NDD arises in CHD cases because of hypoxia before, during, or after cardiac surgery. Recent studies detected an enrichment in de novo mutations in CHD and NDD, as well as significant overlap between CHD and NDD candidate genes. However, there is limited evidence demonstrating that genes causing CHD can produce NDD independent of hypoxia. A patient with hypoplastic left heart syndrome and gross motor delay presented with a de novo mutation in SMC5. Modeling mutation of smc5 in Xenopus tropicalis embryos resulted in reduced heart size, decreased brain length, and disrupted pax6 patterning. To evaluate the cardiac development, we induced the conditional knockout (cKO) of Smc5 in mouse cardiomyocytes, which led to the depletion of mature cardiomyocytes and abnormal contractility. To test a role for Smc5 specifically in the brain, we induced cKO in the mouse central nervous system, which resulted in decreased brain volume, and diminished connectivity between areas related to motor function but did not affect vascular or brain ventricular volume. We propose that genetic factors, rather than hypoxia alone, can contribute when NDD and CHD cases occur concurrently.
Collapse
Affiliation(s)
- Matthew P. O’Brien
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Marina V. Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services, University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | - Evelyn M. R. Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Ruchika Karnik
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Michelle J. Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Weizhen Ji
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Monica Konstantino
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Laura R. Ment
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Mustafa K. Khokha
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Philip W. Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services, University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
99673
|
Jeong MS, Mun JY, Yang GE, Kim MH, Lee SY, Choi YH, Kim HS, Nam JK, Kim TN, Leem SH. Exploring the Relationship between CLPTM1L-MS2 Variants and Susceptibility to Bladder Cancer. Genes (Basel) 2023; 15:50. [PMID: 38254939 PMCID: PMC10815179 DOI: 10.3390/genes15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
CLPTM1L (Cleft Lip and Palate Transmembrane Protein 1-Like) has previously been implicated in tumorigenesis and drug resistance in cancer. However, the genetic link between CLPTM1L and bladder cancer remains uncertain. In this study, we investigated the genetic association of variable number of tandem repeats (VNTR; minisatellites, MS) regions within CLPTM1L with bladder cancer. We identified four CLPTM1L-MS regions (MS1~MS4) located in intron regions. To evaluate the VNTR polymorphic alleles, we analyzed 441 cancer-free controls and 181 bladder cancer patients. Our analysis revealed a higher frequency of specific repeat sizes within the MS2 region in bladder cancer cases compared to controls. Notably, 25 and 27 repeats were exclusively present in the bladder cancer group. Moreover, rare alleles within the medium-length repeat range (25-29 repeats) were associated with an elevated bladder cancer risk (odds ratio [OR] = 5.78, 95% confidence interval [CI]: 1.49-22.47, p = 0.004). We confirmed that all MS regions followed Mendelian inheritance, and demonstrated that MS2 alleles increased CLPTM1L promoter activity in the UM-UC3 bladder cancer cells through a luciferase assay. Our findings propose the utility of CLPTM1L-MS regions as DNA typing markers, particularly highlighting the potential of middle-length rare alleles within CLPTM1L-MS2 as predictive markers for bladder cancer risk.
Collapse
Affiliation(s)
- Mi-So Jeong
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan 46033, Republic of Korea
| | - Jeong-Yeon Mun
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Gi-Eun Yang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| | - Min-Hye Kim
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea;
| | - Heui Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Kil Nam
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Yangsan 50612, Republic of Korea;
| | - Tae Nam Kim
- Department of Urology, Pusan National University Hospital, Pusan National University School of Medicine, Biomedical Research Institute and Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
99674
|
Xiong YM, Zhou F, Zhou JW, Liu F, Zhou SQ, Li B, Liu ZJ, Qin Y. Aberrant Expressions of PSMD14 in Tumor Tissue are the Potential Prognostic Biomarkers for Hepatocellular Carcinoma after Curative Resection. Curr Genomics 2023; 24:368-384. [PMID: 38327651 PMCID: PMC10845065 DOI: 10.2174/0113892029277262231108105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) has a high mortality rate, with curative resection being the primary treatment. However, HCC patients have a large possibility of recurrence within 5 years after curative resection. Methods Thus, identifying biomarkers to predict recurrence is crucial. In our study, we analyzed data from CCLE, GEO, and TCGA, identifying eight oncogenes associated with HCC. Subsequently, the expression of 8 genes was tested in 5 cases of tumor tissues and the adjacent non-tumor tissues. Then ATP6AP1, PSMD14 and HSP90AB1 were selected to verify the expression in 63 cases of tumor tissues and the adjacent non-tumor tissues. The results showed that ATP6AP1, PSMD14, HSP90AB1 were generally highly expressed in tumor tissues. A five-year follow-up of the 63 clinical cases, combined with Kaplan-Meier Plotter's relapse-free survival (RFS) analysis, found a significant correlation between PSMD14 expression and recurrence in HCC patients. Subsequently, we analyzed the PSMD14 mutations and found that the PSMD14 gene mutations can lead to a shorter disease-free survival time for HCC patients. Results The results of enrichment analysis indicated that the differentially expressed genes related to PSMD14 are mainly enriched in the signal release pathway. Conclusion In conclusion, our research showed that PSMD14 might be related to recurrence in HCC patients, and the expression of PSMD14 in tumor tissue might be a potential prognostic biomarker after tumor resection in HCC patients.
Collapse
Affiliation(s)
- Yi-Mei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Fang Zhou
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Jia-Wen Zhou
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Fei Liu
- Division of Liver Transplantation, Department of Surgery, West China Hospital, Sichuan University, Chengdu, 610 041, China
| | - Si-Qi Zhou
- Division of Liver Transplantation, Department of Surgery, West China Hospital, Sichuan University, Chengdu, 610 041, China
| | - Bo Li
- Division of Liver Transplantation, Department of Surgery, West China Hospital, Sichuan University, Chengdu, 610 041, China
| | - Zhong-Jian Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610 041, China
| |
Collapse
|
99675
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
99676
|
Tian M, Zhang W, Zhang G, Bahadur A, Wu S, Yu X, Wu Y, Jia P, Chen T, Liu G. A novel UV-resistant bacterium Sphingomonas endolithica sp. nov., and genomic analysis, isolated from the north slope of Mount Everest. Antonie Van Leeuwenhoek 2023; 117:5. [PMID: 38153511 DOI: 10.1007/s10482-023-01903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Gram-stain-negative, aerobic, rod-shaped, non-motile bacterium strain ZFBP2030T was isolated from a rock on the North slope of Mount Everest. This strain contained a unique ubiquinone-10 (Q-10) as a predominant respiratory quinone. Among the tested fatty acids, the strain contained summed feature 8, C14:0 2OH, and C16:0, as major cellular fatty acids. The polar lipid profile contained phosphatidyl glycerol, phosphatidyl ethanolamine, three unidentified phospholipids, two unidentified aminolipids, and six unidentified lipids. The cell-wall peptidoglycan was a meso-diaminopimelic acid, and cell-wall sugars were ribose and galactose. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain ZFBP2030T was a member of the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas aliaeris DH-S5T (97.9%), Sphingomonas alpina DSM 22537T (97.3%) and Sphingomonas hylomeconis CCTCC AB 2013304T (97.0%). The 16S rRNA gene sequence similarity between ZFBP2030T and other typical strains was less than 97.0%. The average amino acid identity values, average nucleotide identity, and digital DNA-DNA hybridization values between strain ZFBP2030T and its highest sequence similarity strains were 56.9-79.9%, 65.1-82.2%, and 19.3-25.8%, respectively. The whole-genome size of the novel strain ZFBP2030T was 4.1 Mbp, annotated with 3838 protein-coding genes and 54 RNA genes. Moreover, DNA G + C content was 64.7 mol%. Stress-related functions predicted in the subsystem classification of the strain ZFBP2030T genome included osmotic, oxidative, cold/heat shock, detoxification, and periplasmic stress responses. The overall results of this study clearly showed that strain ZFBP2030T is a novel species of the genus Sphingomonas, for which the name Sphingomonas endolithica sp. nov. is proposed. The type of strain is ZFBP2030T (= EE 013T = GDMCC 1.3123T = JCM 35386T).
Collapse
Affiliation(s)
- Mao Tian
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Yu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Yujie Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Puchao Jia
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Guangxiu Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
99677
|
Li X, Wang J, Guo Z, Ma Y, Xu D, Fan D, Dai P, Chen Y, Liu Q, Jiao J, Fan J, Wu N, Li X, Li G. Copper metabolism-related risk score identifies hepatocellular carcinoma subtypes and SLC27A5 as a potential regulator of cuproptosis. Aging (Albany NY) 2023; 15:15084-15113. [PMID: 38157255 PMCID: PMC10781498 DOI: 10.18632/aging.205334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
AIMS Dysregulated copper metabolism has been noticed in many types of cancer including hepatocellular carcinoma (HCC); however, a comprehensive understanding about this dysregulation still remains unclear in HCC. METHODS A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of copper metabolism-related genes. A related risk score, termed as CMscore, was developed via univariate Cox regression, least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression. Pathway enrichment analyses and tumor immune cell infiltration were further investigated in CMscore stratified HCC patients. Weighted correlation network analysis (WGCNA) was used to identify potential regulator of cuproptosis. RESULTS Copper metabolism was dysregulated in HCC. HCC patients in the high-CMscore group showed a significantly lower overall survival (OS) and enriched in most cancer-related pathways. Besides, HCC patients with high CMscore had higher expression of pro-tumor immune infiltrates and immune checkpoints. Moreover, cancer patients with high CMscore from two large cohorts exhibited significantly prolonged survival time after immunotherapy. WGCNA and subsequently correlation analysis revealed that SLC27A5 might be a potential regulator of cuproptosis in HCC. In vitro experiments revealed that SLC27A5 inhibited cell proliferation and migration of HCC cells and could upregulate FDX1, the key regulator of cuproptosis. SIGNIFICANCE The CMscore is helpful in clustering HCC patients with distinct prognosis, gene mutation signatures, and sensitivity to immunotherapy. SLC27A5 might serve as a potential target in the induction of cuproptosis in HCC.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zongliang Guo
- Department of General Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong Ma
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dawei Xu
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Daguang Fan
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Dai
- Department of Hepatobiliary and Pancreatic Surgery, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yifan Chen
- College of Management, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qiongwen Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinke Jiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinhan Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ningxue Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xin Li
- Department of Geriatric Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, Shannxi, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
99678
|
Kumar V, Shankar G, Akhter Y. Deciphering drug discovery and microbial pathogenesis research in tuberculosis during the two decades of postgenomic era using entity mining approach. Arch Microbiol 2023; 206:46. [PMID: 38153595 DOI: 10.1007/s00203-023-03776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
We examined literature on Mycobacterium tuberculosis (Mtb) subsequent to its genome release, spanning years 1999-2020. We employed scientometric mapping, entity mining, visualization techniques, and PubMed and PubTator databases. Most popular keywords, most active research groups, and growth in quantity of publications were determined. By gathering annotations from the PubTator, we determined direction of research in the areas of drug hypersensitivity, drug resistance (AMR), and drug-related side effects. Additionally, we examined the patterns in research on Mtb metabolism and various forms of tuberculosis, including skin, brain, pulmonary, extrapulmonary, and latent tuberculosis. We discovered that 2011 had the highest annual growth rate of publications, at 19.94%. The USA leads the world in publications with 18,038, followed by China with 14,441, and India with 12,158 publications. Studies on isoniazid and rifampicin resistance showed an enormous increase. Non-tuberculous mycobacteria also been the subject of more research in effort to better understand Mtb physiology and as model organisms. Researchers also looked at co-infections like leprosy, hepatitis, plasmodium, HIV, and other opportunistic infections. Host perspectives like immune response, hypoxia, and reactive oxygen species, as well as comorbidities like arthritis, cancer, diabetes, and kidney disease etc. were also looked at. Symptomatic aspects like fever, coughing, and weight loss were also investigated. Vitamin D has gained popularity as a supplement during illness recovery, however, the interest of researchers declined off late. We delineated dominant researchers, journals, institutions, and leading nations globally, which is crucial for aligning ongoing and evolving landscape of TB research efforts. Recognising the dominant patterns offers important information about the areas of focus for current research, allowing biomedical scientists, clinicians, and organizations to strategically coordinate their efforts with the changing priorities in the field of tuberculosis research.
Collapse
Affiliation(s)
- Vinit Kumar
- Department of Library and Information Science, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India.
| | - Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
99679
|
Chen SY, Koch M, Chávez-Gutiérrez L, Zacharias M. How Modulator Binding at the Amyloidβ-γ-Secretase Interface Enhances Substrate Binding and Attenuates Membrane Distortion. J Med Chem 2023; 66:16772-16782. [PMID: 38059872 DOI: 10.1021/acs.jmedchem.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inhibition of γ-secretase, an intramembrane protease, to reduce secretion of Amyloid-β (Aβ) peptides has been considered for treating Alzheimer's disease. However, γ-secretase inhibitors suffer from severe side effects. As an alternative, γ-secretase modulators (GSM) reduce the generation of toxic peptides by enhancing the cleavage processivity without diminishing the enzyme activity. Starting from a known γ-secretase structure without substrate but in complex with an E2012 GSM, we generated a structural model that included a bound Aβ43 peptide and studied interactions among enzyme, substrate, GSM, and lipids. Our result suggests that E2012 binding at the enzyme-substrate-membrane interface attenuates the membrane distortion by shielding the substrate-membrane interaction. The model predicts that the E2012 modulation is charge-dependent and explains the preserved hydrogen acceptor and the aromatic ring observed in many imidazole-based GSM. Predicted effects of γ-secretase mutations on E2012 modulation were confirmed experimentally. We anticipate that the study will facilitate the future development of effective GSMs.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Center for Functional Protein Assemblies, Garching 85748, Germany
| | - Matthias Koch
- VIB/KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
| | | | - Martin Zacharias
- Center for Functional Protein Assemblies, Garching 85748, Germany
| |
Collapse
|
99680
|
Singh P, Pandit S, Sinha M, Yadav D, Parthasarathi R. Computational Risk Assessment of Persistence, Bioaccumulation, and Toxicity of Novel Flame-Retardant Chemicals. J Phys Chem A 2023; 127:10747-10757. [PMID: 38108655 DOI: 10.1021/acs.jpca.3c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Novel brominated flame retardants (NBFRs) have emerged as chemicals of environmental concern, as they have been widely used as an alternative to polybrominated diphenyl ethers (PBDEs). Considering the similar structural features of NBFRs and PBDEs necessitates a comprehensive investigation to understand the physicochemical relationships of these compounds and their ability to alter biological functions. In this study, we investigated the persistent nature of NBFRs in terms of thyroid-disrupting potential by understanding the structure-stability aspects using density functional theory (DFT)-based reactivity parameters and interactions via molecular docking and molecular dynamics (MD) simulations. The results indicate that the DFT-based stability descriptor (chemical hardness) is associated with the persistent nature of NBFRs. The computed molecular interaction profile revealed prominent interactions between thyroid receptor-β (TR-β) and NBFRs. Stable trajectory and interactions with TR-β were obtained with ATE, p-TBX, PBT, PBEB, and TBBPA-DBPE during 100 ns of MD simulation. The results of these studies have suggested that the presence of a higher number of halogenated atoms increases the stability vis-à-vis the persistence and endocrine disruption potential of NBFRs.
Collapse
Affiliation(s)
- Prakrity Singh
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shraddha Pandit
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Meetali Sinha
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Dhvani Yadav
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
99681
|
Kinmonth-Schultz H, Walker SM, Bingol K, Hoyt DW, Kim YM, Markillie LM, Mitchell HD, Nicora CD, Taylor R, Ward JK. Oligosaccharide production and signaling correlate with delayed flowering in an Arabidopsis genotype grown and selected in high [CO2]. PLoS One 2023; 18:e0287943. [PMID: 38153952 PMCID: PMC10754469 DOI: 10.1371/journal.pone.0287943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
Since industrialization began, atmospheric CO2 ([CO2]) has increased from 270 to 415 ppm and is projected to reach 800-1000 ppm this century. Some Arabidopsis thaliana (Arabidopsis) genotypes delayed flowering in elevated [CO2] relative to current [CO2], while others showed no change or accelerations. To predict genotype-specific flowering behaviors, we must understand the mechanisms driving flowering response to rising [CO2]. [CO2] changes alter photosynthesis and carbohydrates in plants. Plants sense carbohydrate levels, and exogenous carbohydrate application influences flowering time and flowering transcript levels. We asked how organismal changes in carbohydrates and transcription correlate with changes in flowering time under elevated [CO2]. We used a genotype (SG) of Arabidopsis that was selected for high fitness at elevated [CO2] (700 ppm). SG delays flowering under elevated [CO2] (700 ppm) relative to current [CO2] (400 ppm). We compared SG to a closely related control genotype (CG) that shows no [CO2]-induced flowering change. We compared metabolomic and transcriptomic profiles in these genotypes at current and elevated [CO2] to assess correlations with flowering in these conditions. While both genotypes altered carbohydrates in response to elevated [CO2], SG had higher levels of sucrose than CG and showed a stronger increase in glucose and fructose in elevated [CO2]. Both genotypes demonstrated transcriptional changes, with CG increasing genes related to fructose 1,6-bisphosphate breakdown, amino acid synthesis, and secondary metabolites; and SG decreasing genes related to starch and sugar metabolism, but increasing genes involved in oligosaccharide production and sugar modifications. Genes associated with flowering regulation within the photoperiod, vernalization, and meristem identity pathways were altered in these genotypes. Elevated [CO2] may alter carbohydrates to influence transcription in both genotypes and delayed flowering in SG. Changes in the oligosaccharide pool may contribute to delayed flowering in SG. This work extends the literature exploring genotypic-specific flowering responses to elevated [CO2].
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- Departiment of Biology, Tennessee Technological University, Cookeville, TN, United States of America
| | - Stephen Michael Walker
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| | - Kerem Bingol
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - David W. Hoyt
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Lye Meng Markillie
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Hugh D. Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Carrie D. Nicora
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Ronald Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Joy K. Ward
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
99682
|
Fair T, Pavlovic BJ, Schaefer NK, Pollen AA. Mapping cis- and trans-regulatory target genes of human-specific deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573461. [PMID: 38234800 PMCID: PMC10793408 DOI: 10.1101/2023.12.27.573461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Deletion of functional sequence is predicted to represent a fundamental mechanism of molecular evolution1,2. Comparative genetic studies of primates2,3 have identified thousands of human-specific deletions (hDels), and the cis-regulatory potential of short (≤31 base pairs) hDels has been assessed using reporter assays4. However, how structural variant-sized (≥50 base pairs) hDels influence molecular and cellular processes in their native genomic contexts remains unexplored. Here, we design genome-scale libraries of single-guide RNAs targeting 7.2 megabases of sequence in 6,358 hDels and present a systematic CRISPR interference (CRISPRi) screening approach to identify hDels that modify cellular proliferation in chimpanzee pluripotent stem cells. By intersecting hDels with chromatin state features and performing single-cell CRISPRi (Perturb-seq) to identify their cis- and trans-regulatory target genes, we discovered 19 hDels controlling gene expression. We highlight two hDels, hDel_2247 and hDel_585, with tissue-specific activity in the liver and brain, respectively. Our findings reveal a molecular and cellular role for sequences lost in the human lineage and establish a framework for functionally interrogating human-specific genetic variants.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
99683
|
Le VV, Ko SR, Oh HM, Ahn CY. Genomic Insights into Paucibacter aquatile DH15, a Cyanobactericidal Bacterium, and Comparative Genomics of the Genus Paucibacter. J Microbiol Biotechnol 2023; 33:1615-1624. [PMID: 37811910 PMCID: PMC10772561 DOI: 10.4014/jmb.2307.07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Microcystis blooms threaten ecosystem function and cause substantial economic losses. Microorganism-based methods, mainly using cyanobactericidal bacteria, are considered one of the most ecologically sound methods to control Microcystis blooms. This study focused on gaining genomic insights into Paucibacter aquatile DH15 that exhibited excellent cyanobactericidal effects against Microcystis. Additionally, a pan-genome analysis of the genus Paucibacter was conducted to enhance our understanding of the ecophysiological significance of this genus. Based on phylogenomic analyses, strain DH15 was classified as a member of the species Paucibacter aquatile. The genome analysis supported that strain DH15 can effectively destroy Microcystis, possibly due to the specific genes involved in the flagellar synthesis, cell wall degradation, and the production of cyanobactericidal compounds. The pan-genome analysis revealed the diversity and adaptability of the genus Paucibacter, highlighting its potential to absorb external genetic elements. Paucibacter species were anticipated to play a vital role in the ecosystem by potentially providing essential nutrients, such as vitamins B7, B12, and heme, to auxotrophic microbial groups. Overall, our findings contribute to understanding the molecular mechanisms underlying the action of cyanobactericidal bacteria against Microcystis and shed light on the ecological significance of the genus Paucibacter.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
99684
|
Stanbury K, Stavinohova R, Pettitt L, Dixon C, Schofield EC, Mclaughlin B, Pettinen I, Lohi H, Ricketts SL, Oliver JA, Mellersh CS. Multiocular defect in the Old English Sheepdog: A canine form of Stickler syndrome type II associated with a missense variant in the collagen-type gene COL11A1. PLoS One 2023; 18:e0295851. [PMID: 38153936 PMCID: PMC10754463 DOI: 10.1371/journal.pone.0295851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Multiocular defect has been described in different canine breeds, including the Old English Sheepdog. Affected dogs typically present with multiple and various ocular abnormalities. We carried out whole genome sequencing on an Old English Sheepdog that had been diagnosed with hereditary cataracts at the age of five and then referred to a board-certified veterinary ophthalmologist due to owner-reported visual deterioration. An ophthalmic assessment revealed that there was bilateral vitreal degeneration, macrophthalmos, and spherophakia in addition to cataracts. Follow-up consultations revealed cataract progression, retinal detachment, uveitis and secondary glaucoma. Whole genome sequence filtered variants private to the case, shared with another Old English Sheepdog genome and predicted to be deleterious were genotyped in an initial cohort of six Old English Sheepdogs (three affected by multiocular defect and three control dogs without evidence of inherited eye disease). Only one of the twenty-two variants segregated correctly with multiocular defect. The variant is a single nucleotide substitution, located in the collagen-type gene COL11A1, c.1775T>C, that causes an amino acid change, p.Phe1592Ser. Genotyping of an additional 14 Old English Sheepdogs affected by multiocular defect revealed a dominant mode of inheritance with four cases heterozygous for the variant. Further genotyping of hereditary cataract-affected Old English Sheepdogs revealed segregation of the variant in eight out of nine dogs. In humans, variants in the COL11A1 gene are associated with Stickler syndrome type II, also dominantly inherited.
Collapse
Affiliation(s)
- Katherine Stanbury
- Kennel Club Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Louise Pettitt
- Kennel Club Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Ellen C. Schofield
- Kennel Club Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Bryan Mclaughlin
- Kennel Club Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Inka Pettinen
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Sally L. Ricketts
- Kennel Club Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Cathryn S. Mellersh
- Kennel Club Genetics Centre, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
99685
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023:1-32. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
99686
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|
99687
|
da Cunha Agostini L, Almeida TC, da Silva GN. ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases. Mol Biol Rep 2023; 51:31. [PMID: 38155319 DOI: 10.1007/s11033-023-09007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/30/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. They are non-transmissible diseases that affect the cardiovascular system and have different etiologies such as smoking, lipid disorders, diabetes, stress, sedentary lifestyle and genetic factors. To date, lncRNAs have been associated with increased susceptibility to the development of cardiovascular diseases such as hypertension, acute myocardial infarction, stroke, angina and heart failure. In this way, lncRNAs are becoming a very promising point for the prevention and diagnosis of cardiovascular diseases. Therefore, this review highlights the most important and recent discoveries about the mechanisms of action of the lncRNAs ANRIL, H19 and TUG1 and their clinical relevance in these pathologies. This may contribute to early detection of cardiovascular diseases in order to prevent the pathological phenotype from becoming established.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil
| | - Tamires Cunha Almeida
- Escola Superior Instituto Butantan (ESIB), Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Prêto, Brazil.
| |
Collapse
|
99688
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
99689
|
Malik PK, Trivedi S, Kolte AP, Mohapatra A, Biswas S, Bhattar AVK, Bhatta R, Rahman H. Comparative Rumen Metagenome and CAZyme Profiles in Cattle and Buffaloes: Implications for Methane Yield and Rumen Fermentation on a Common Diet. Microorganisms 2023; 12:47. [PMID: 38257874 PMCID: PMC10818812 DOI: 10.3390/microorganisms12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
A study was undertaken to compare the rumen microbial community composition, methane yield, rumen fermentation, and CAZyme profiles between cattle and buffaloes. The primary aim of this study was to ascertain the impact of the host species on the above when diet and environmental factors are fixed. A total of 43 phyla, 200 orders, 458 families, and 1722 microbial genera were identified in the study. Bacteroidetes was the most prominent bacterial phylum and constituted >1/3rd of the ruminal microbiota; however, their abundances were comparable between cattle and buffaloes. Firmicutes were the second most abundant bacteria, found to be negatively correlated with the Bacteroidetes. The abundances of Firmicutes as well as the F/B ratio were not different between the two host species. In this study, archaea affiliated with the nine phyla were identified, with Euryarchaeota being the most prominent. Like bacterial phyla, the abundances of Euryarchaeota methanogens were also similar between the cattle and buffaloes. At the order level, Methanobacteriales dominated the archaea. Methanogens from the Methanosarcinales, Methanococcales, Methanomicrobiales, and Methanomassiliicoccales groups were also identified, but at a lower frequency. Methanobrevibacter was the most prevalent genus of methanogens, accounting for approximately three percent of the rumen metagenome. However, their distribution was not different between the two host species. CAZymes affiliated with five classes, namely CBM, CE, GH, GT, and PL, were identified in the metagenome, where the GH class was the most abundant and constituted ~70% of the total CAZymes. The protozoal numbers, including Entodiniomorphs and Holotrichs, were also comparable between the cattle and buffaloes. Results from the study did not reveal any significant difference in feed intake, nutrient digestibility, and rumen fermentation between cattle and buffaloes fed on the same diet. As methane yield due to the similar diet composition, feed ingredients, rumen fermentation, and microbiota composition did not vary, these results indicate that the microbiota community structure and methane emissions are under the direct influence of the diet and environment, and the host species may play only a minor role until the productivity does not vary. More studies are warranted to investigate the effect of different diets and environments on microbiota composition and methane yield. Further, the impact of variable productivity on both the cattle and buffaloes when the diet and environmental factors are fixed needs to be ascertained.
Collapse
Affiliation(s)
- Pradeep K. Malik
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Shraddha Trivedi
- International Livestock Research Institute, South Asia Regional Office, New Delhi 110012, India
| | - Atul P. Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Archit Mohapatra
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Siddharth Biswas
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Ashwin V. K. Bhattar
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Raghavendra Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India; (P.K.M.)
| | - Habibar Rahman
- International Livestock Research Institute, South Asia Regional Office, New Delhi 110012, India
| |
Collapse
|
99690
|
Pfotenhauer AC, Reuter DN, Clark M, Harbison SA, Schimel TM, Stewart CN, Lenaghan SC. Development of new binary expression systems for plant synthetic biology. PLANT CELL REPORTS 2023; 43:22. [PMID: 38150091 DOI: 10.1007/s00299-023-03100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE A novel plant binary expression system was developed from the compactin biosynthetic pathway 27 of Penicillium citrinum ML-236B. The system achieved >fivefold activation of gene expression in 28 transgenic tobacco. A diverse and well-characterized genetic toolset is fundamental to achieve the overall goals of plant synthetic biology. To properly coordinate expression of a multigene pathway, this toolset should include binary systems that control gene expression at the level of transcription. In plants, few highly functional, orthogonal transcriptional regulators have been identified. Here, we describe the process of developing synthetic plant transcription factors using regulatory elements from the Penicillium citrinum ML-236B (compactin) pathway. This pathway contains several genes including mlcA and mlcC that are transcriptionally regulated in a dose-dependent manner by the activator mlcR. In Nicotiana benthamiana, we first expressed mlcR with several cognate synthetic promoters driving expression of GFP. Synthetic promoters contained operator sequences from the compactin gene cluster. Following identification of the most active synthetic promoter, the DNA-binding domain from mlcR was used to generate chimeric transcription factors containing variable activation domains, including QF from the Neurospora crassa Q-system. Activity was measured at both protein and RNA levels which correlated with an R2 value of 0.94. A synthetic transcription factor with a QF activation domain increased gene expression from its synthetic promoter up to sixfold in N. benthamiana. Two systems were characterized in transgenic tobacco plants. The QF-based plants maintained high expression in tobacco, increasing expression from the cognate synthetic promoter by fivefold. Transgenic plants and non-transgenic plants were morphologically indistinguishable. The framework of this study can easily be adopted for other putative transcription factors to continue improvement of the plant synthetic biology toolbox.
Collapse
Affiliation(s)
- Alexander C Pfotenhauer
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - D Nikki Reuter
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mikayla Clark
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Stacee A Harbison
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tayler M Schimel
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Food Science, The University of Tennessee, Knoxville, Knoxville, TN, USA.
| |
Collapse
|
99691
|
Pokharel K, Weldenegodguad M, Dudeck S, Honkatukia M, Lindeberg H, Mazzullo N, Paasivaara A, Peippo J, Soppela P, Stammler F, Kantanen J. Whole-genome sequencing provides novel insights into the evolutionary history and genetic adaptation of reindeer populations in northern Eurasia. Sci Rep 2023; 13:23019. [PMID: 38155192 PMCID: PMC10754820 DOI: 10.1038/s41598-023-50253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Domestic reindeer (Rangifer tarandus) play a vital role in the culture and livelihoods of indigenous people across northern Eurasia. These animals are well adapted to harsh environmental conditions, such as extreme cold, limited feed availability and long migration distances. Therefore, understanding the genomics of reindeer is crucial for improving their management, conservation and utilisation. In this study, we have generated a new genome assembly for the Fennoscandian domestic reindeer with high contiguity, making it the most complete reference genome for reindeer to date. The new genome assembly was utilised to explore genetic diversity, population structure and selective sweeps in Eurasian Rangifer tarandus populations which was based on the largest population genomic dataset for reindeer, encompassing 58 individuals from diverse populations. Phylogenetic analyses revealed distinct genetic clusters, with the Finnish wild forest reindeer (Rangifer tarandus fennicus) standing out as a unique subspecies. Divergence time estimates suggested a separation of ~ 52 thousand years ago (Kya) between the northern European Rangifer tarandus fennicus and Rangifer tarandus tarandus. Our study identified four main genetic clusters: Fennoscandian, the eastern/northern Russian and Alaskan group, the Finnish forest reindeer, and the Svalbard reindeer. Furthermore, two independent reindeer domestication processes were inferred, suggesting separate origins for the domestic Fennoscandian and eastern/northern Russian reindeer. Notably, shared genes under selection, including retroviral genes, point towards molecular domestication processes that aided adaptation of this species to diverse environments.
Collapse
Affiliation(s)
- Kisun Pokharel
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
| | - Melak Weldenegodguad
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
| | - Stephan Dudeck
- Arctic Centre, University of Lapland, 96100, Rovaniemi, Finland
| | | | - Heli Lindeberg
- Natural Resources Institute Finland (Luke), 71750, Maaninka, Finland
| | - Nuccio Mazzullo
- Arctic Centre, University of Lapland, 96100, Rovaniemi, Finland
| | - Antti Paasivaara
- Natural Resources Institute Finland (Luke), Paavo Havaksentie 3, 90570, Oulu, Finland
| | - Jaana Peippo
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland
- NordGen-Nordic Genetic Resource Center, 1432, Ås, Norway
| | - Päivi Soppela
- Arctic Centre, University of Lapland, 96100, Rovaniemi, Finland
| | | | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600, Jokioinen, Finland.
| |
Collapse
|
99692
|
Kubatzky KF, Gao Y, Yu D. Post-translational modulation of cell signalling through protein succinylation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1260-1285. [PMID: 38213532 PMCID: PMC10776603 DOI: 10.37349/etat.2023.00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 01/13/2024] Open
Abstract
Cells need to adapt their activities to extra- and intracellular signalling cues. To translate a received extracellular signal, cells have specific receptors that transmit the signal to downstream proteins so that it can reach the nucleus to initiate or repress gene transcription. Post-translational modifications (PTMs) of proteins are reversible or irreversible chemical modifications that help to further modulate protein activity. The most commonly observed PTMs are the phosphorylation of serine, threonine, and tyrosine residues, followed by acetylation, glycosylation, and amidation. In addition to PTMs that involve the modification of a certain amino acid (phosphorylation, hydrophobic groups for membrane localisation, or chemical groups like acylation), or the conjugation of peptides (SUMOylation, NEDDylation), structural changes such as the formation of disulphide bridge, protein cleavage or splicing can also be classified as PTMs. Recently, it was discovered that metabolites from the tricarboxylic acid (TCA) cycle are not only intermediates that support cellular metabolism but can also modify lysine residues. This has been shown for acetate, succinate, and lactate, among others. Due to the importance of mitochondria for the overall fitness of organisms, the regulatory function of such PTMs is critical for protection from aging, neurodegeneration, or cardiovascular disease. Cancer cells and activated immune cells display a phenotype of accelerated metabolic activity known as the Warburg effect. This metabolic state is characterised by enhanced glycolysis, the use of the pentose phosphate pathway as well as a disruption of the TCA cycle, ultimately causing the accumulation of metabolites like citrate, succinate, and malate. Succinate can then serve as a signalling molecule by directly interacting with proteins, by binding to its G protein-coupled receptor 91 (GPR91) and by post-translationally modifying proteins through succinylation of lysine residues, respectively. This review is focus on the process of protein succinylation and its importance in health and disease.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yue Gao
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Dayoung Yu
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
99693
|
Hay AN, Vickers ER, Patwardhan M, Gannon J, Ruger L, Allen IC, Vlaisavljevich E, Tuohy J. Investigating cell death responses associated with histotripsy ablation of canine osteosarcoma. Int J Hyperthermia 2023; 40:2279027. [PMID: 38151477 PMCID: PMC10764077 DOI: 10.1080/02656736.2023.2279027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most frequently occurring primary bone tumor in dogs and people and innovative treatment options are profoundly needed. Histotripsy is an emerging tumor ablation modality, and it is essential for the clinical translation of histotripsy to gain knowledge about the outcome of nonablated tumor cells that could remain postablation. The objective of this study was to characterize the cell death genetic signature and proliferation response of canine OS cells post a near complete histotripsy ablation (96% ± 1.5) and to evaluate genetic cell death signatures associated with histotripsy ablation and OS in vivo. METHODS In the current study, we ablated three canine OS cell lines with a histotripsy dose that resulted in near complete ablation to allow for a viable tumor cell population for downstream analyses. To assess the in vivo cell death genetic signature, we characterized cell death genetic signature in histotripsy-ablated canine OS tumors collected 24-h postablation. RESULTS Differential gene expression changes observed in the 4% viable D17 and D418 cells, and histotripsy-ablated OS tumor samples, but not in Abrams cells, were associated with immunogenic cell death (ICD). The 4% viable OS cells demonstrated significantly reduced proliferation, compared to control OS cells, in vitro. CONCLUSION Histotripsy ablation of OS cell lines leads to direct and potentially indirect cell death as evident by, reduced proliferation in remaining viable OS cells and cell death genetic signatures suggestive of ICD both in vitro and in vivo.
Collapse
Affiliation(s)
- Alayna N. Hay
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, 24061
| | - Elliana R. Vickers
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, 24061
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
- Graduate program in Translational, Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, 24016
| | - Manali Patwardhan
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, 24061
- Graduate program in Translational, Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, 24016
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | - Lauren Ruger
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, 24061
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, 24061
| |
Collapse
|
99694
|
Liu HL, Peng H, Huang CH, Zhou HY, Ge J. Mutational separation and clinical outcomes of TP53 and CDH1 in gastric cancer. World J Gastrointest Surg 2023; 15:2855-2865. [PMID: 38222005 PMCID: PMC10784822 DOI: 10.4240/wjgs.v15.i12.2855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a deadly tumor with the fifth highest occurrence and highest global mortality rates. Owing to its heterogeneity, the underlying mechanism of GC remains unclear, and chemotherapy offers little benefit to individuals. AIM To investigate the clinical outcomes of TP53 and CDH1 mutations in GC. METHODS In this study, 202 gastric adenocarcinoma tumor tissues and their corresponding normal tissues were collected. A total of 490 genes were identified using target capture. Through t-test and Wilcoxon rank-sum test, somatic mutations, microsatellite instability, and clinical statistics, including overall survival, were detected, compared, and calculated. RESULTS The mutation rates of 32 genes, including TP53, SPEN, FAT1, and CDH1 exceeded 10%. TP53 mutations had a slightly lower overall occurrence rate (33%). The TP53 mutation rate was significantly higher in advanced stages (stage III/IV) than that in early stages (stage I/II) (P < 0.05). In contrast, CDH1 mutations were significantly associated with diffuse GC. TP53 is related to poor prognosis of advanced-stage tumors; nevertheless, CDH1 corresponds to a diffuse type of cancer. TP53 is exclusively mutated in CDH1 and is primarily affected by two distinct GC mechanisms. CONCLUSION Different somatic mutation patterns in TP53 and CDH1 indicate two major mechanisms of GC.
Collapse
Affiliation(s)
- He-Li Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Huan Peng
- Clinical Nursing Teaching and Research Section, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Chang-Hao Huang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hai-Yan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jie Ge
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
99695
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
99696
|
Jaroch M, Sun G, Tsui HCT, Reed C, Sun J, Jörg M, Winkler ME, Rice KC, Stich TA, Dedon PC, Dos Santos PC, de Crécy-Lagard V. Alternate routes to mnm 5 s 2 U synthesis in Gram-positive bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572861. [PMID: 38187551 PMCID: PMC10769405 DOI: 10.1101/2023.12.21.572861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Collapse
|
99697
|
Subaramaniyam U, Ramalingam D, Balan R, Paital B, Sar P, Ramalingam N. Annonaceous acetogenins as promising DNA methylation inhibitors to prevent and treat leukemogenesis - an in silico approach. J Biomol Struct Dyn 2023:1-14. [PMID: 38149859 DOI: 10.1080/07391102.2023.2297010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Leukemia is a haematological malignancy affecting blood and bone marrow, ranking 10th among the other common cancers. DNA methylation is an epigenetic dysregulation that plays a critical role in leukemogenesis. DNA methyltransferases (DNMTs) such as DNMT1, DNMT3A and DNMT3B are the key enzymes catalysing DNA methylation. Inhibition of DNMT1 with secondary metabolites from medicinal plants helps reverse DNA methylation. The present study focuses on inhibiting DNMT1 protein (PDB ID: 3PTA) with annonaceous acetogenins through in-silico studies. The docking and molecular dynamic (MD) simulation study was carried out using Schrödinger Maestro and Desmond, respectively. These compounds' drug likeliness, ADMET properties and bioactivity scores were analysed. About 76 different acetogenins were chosen for this study, among which 17 showed the highest binding energy in the range of -8.312 to -10.266 kcal/mol. The compounds with the highest negative binding energy were found to be annohexocin (-10.266 kcal/mol), isoannonacinone (-10.209 kcal/mol) and annonacin (-9.839 kcal/mol). MD simulation results reveal that annonacin remains stable throughout the simulation time of 100 ns and also binds to the catalytic domain of DNMT1 protein. From the above results, it can be concluded that annonacin has the potential to inhibit the DNA methylation process and prevent leukemogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Pranati Sar
- Biotechnology Department, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
99698
|
Maeng JH, Jang HJ, Du AY, Tzeng SC, Wang T. Using long-read CAGE sequencing to profile cryptic-promoter-derived transcripts and their contribution to the immunopeptidome. Genome Res 2023; 33:2143-2155. [PMID: 38065624 PMCID: PMC10760525 DOI: 10.1101/gr.277061.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/13/2023] [Indexed: 01/04/2024]
Abstract
Recent studies have shown that the noncoding genome can produce unannotated proteins as antigens that induce immune response. One major source of this activity is the aberrant epigenetic reactivation of transposable elements (TEs). In tumors, TEs often provide cryptic or alternate promoters, which can generate transcripts that encode tumor-specific unannotated proteins. Thus, TE-derived transcripts (TE transcripts) have the potential to produce tumor-specific, but recurrent, antigens shared among many tumors. Identification of TE-derived tumor antigens holds the promise to improve cancer immunotherapy approaches; however, current genomics and computational tools are not optimized for their detection. Here we combined CAGE technology with full-length long-read transcriptome sequencing (long-read CAGE, or LRCAGE) and developed a suite of computational tools to significantly improve immunopeptidome detection by incorporating TE and other tumor transcripts into the proteome database. By applying our methods to human lung cancer cell line H1299 data, we show that long-read technology significantly improves mapping of promoters with low mappability scores and that LRCAGE guarantees accurate construction of uncharacterized 5' transcript structure. Augmenting a reference proteome database with newly characterized transcripts enabled us to detect noncanonical antigens from HLA-pulldown LC-MS/MS data. Lastly, we show that epigenetic treatment increased the number of noncanonical antigens, particularly those encoded by TE transcripts, which might expand the pool of targetable antigens for cancers with low mutational burden.
Collapse
Affiliation(s)
- Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - H Josh Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Shin-Cheng Tzeng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
99699
|
Kim JS, Lee M, Heo J, Kwon SW, Yun BS, Kim Y. Neodothiora pruni sp. nov., a Biosurfactant-Producing Ascomycetous Yeast Species Isolated from Flower of Prunus mume. MYCOBIOLOGY 2023; 51:388-392. [PMID: 38179118 PMCID: PMC10763881 DOI: 10.1080/12298093.2023.2282257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
A yeast strain, designated as JAF-11T, was isolated from flower of Prunus mume Sieb. et Zucc. in Gwangyang, Republic of Korea. Phylogenetic analysis showed that strain JAF-11T was closely related to Neodothiora populina CPC 39399T with 2.07 % sequence divergence (12 nucleotide substitutions and three gaps in 581 nucleotides) in the D1/D2 domain of the large subunit (LSU) rRNA gene, and Rhizosphaera macrospora CBS 208.79T with 4.66 % sequence divergence (25 nucleotide substitutions and five gaps in 535 nucleotides) in the internal transcribed spacer (ITS) region. Further analysis based on the concatenated sequences of the D1/D2 domain of the LSU rRNA gene and the ITS region confirmed that strain JAF-11T was well-separated from Neodothiora populina CPC 39399T. In addition to the phylogenetic differences, strain JAF-11T was distinguished from its closest species, Neodothiora populina CPC 39399T and Rhizosphaera macrospora CBS 208.79T belonging to the family Dothioraceae by its phenotypic characteristics, such as assimilation of carbon sources. Hence, the name Neodothiora pruni sp. nov. is proposed with type strain JAF-11T (KACC 48808T; MB 850034).
Collapse
Affiliation(s)
- Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Miran Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
99700
|
McGregor NS, de Boer C, Foucart QPO, Beenakker T, Offen WA, Codée JDC, Willems LI, Overkleeft HS, Davies GJ. A Multiplexing Activity-Based Protein-Profiling Platform for Dissection of a Native Bacterial Xyloglucan-Degrading System. ACS CENTRAL SCIENCE 2023; 9:2306-2314. [PMID: 38161374 PMCID: PMC10755729 DOI: 10.1021/acscentsci.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Bacteria and yeasts grow on biomass polysaccharides by expressing and excreting a complex array of glycoside hydrolase (GH) enzymes. Identification and annotation of such GH pools, which are valuable commodities for sustainable energy and chemistries, by conventional means (genomics, proteomics) are complicated, as primary sequence or secondary structure alignment with known active enzymes is not always predictive for new ones. Here we report a "low-tech", easy-to-use, and sensitive multiplexing activity-based protein-profiling platform to characterize the xyloglucan-degrading GH system excreted by the soil saprophyte, Cellvibrio japonicus, when grown on xyloglucan. A suite of activity-based probes bearing orthogonal fluorophores allows for the visualization of accessory exo-acting glycosidases, which are then identified using biotin-bearing probes. Substrate specificity of xyloglucanases is directly revealed by imbuing xyloglucan structural elements into bespoke activity-based probes. Our ABPP platform provides a highly useful tool to dissect xyloglucan-degrading systems from various sources and to rapidly select potentially useful ones. The observed specificity of the probes moreover bodes well for the study of other biomass polysaccharide-degrading systems, by modeling probe structures to those of desired substrates.
Collapse
Affiliation(s)
| | - Casper de Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Quentin P. O. Foucart
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Thomas Beenakker
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Wendy A. Offen
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Lianne I. Willems
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Gideon J. Davies
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| |
Collapse
|