51
|
Sun M, Yang Z, Tang F, Li F, Ye Q, Sun C, Liang J. Alcoholic cirrhosis-associated immune dysfunction: What does it imply for us? Ann Hepatol 2025:101927. [PMID: 40379022 DOI: 10.1016/j.aohep.2025.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 05/19/2025]
Abstract
Alcoholic cirrhosis is a leading cause of chronic advanced liver disease. With the gradual eradication of viral hepatitis and the rising levels of alcohol consumption, the incidence of alcoholic cirrhosis is expected to increase steadily. Alcohol is primarily metabolized in the gastrointestinal tract, producing toxic metabolites that enter the portal vein circulation and are subsequently transported to the liver. Excessive alcohol intake activates the microsomal ethanol oxidation system and disrupts the intestinal microbiota-driven microenvironment dictated by intestinal microbiota, and increase intestinal permeability, all of which trigger severe systemic inflammatory responses and impaired immune function. This phenomenon, known as cirrhosis-associated immune dysfunction (CAID), is closely linked to the severity of cirrhosis and can significantly influence disease progression, potentially leading to multi-organ failure. This narrative review sheds light on the relationship between alcoholic cirrhosis and CAID, focusing on tailored interventions to modify immune response and modulate gut microbiota composition in hopes of mitigating the development and deterioration of alcoholic cirrhosis.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Hepatology, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Ziyi Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fei Tang
- Department of Hepatology, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Fenghui Li
- Department of Hepatology, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Qing Ye
- Department of Hepatology, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308, China.
| | - Jing Liang
- Department of Hepatology, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China.
| |
Collapse
|
52
|
Feng T, Shi J, Zhao J, Zhao Q, Wang T, Wan S, Fan C, Wang S, Lai C, Yao Y. Salidroside can protect against ferroptosis in cardiomyocytes and may be related to the regulation of GGT1. Front Pharmacol 2025; 16:1580506. [PMID: 40438595 PMCID: PMC12117263 DOI: 10.3389/fphar.2025.1580506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Indroduction Ferroptosis, an iron-dependent cell death mechanism driven by lipid peroxidation, represents a novel therapeutic target for myocardial injury. Salidroside (SAL), a natural bioactive compound derived from Rhodiola rosea, exhibits cardioprotective effects through multi-target mechanisms with minimal adverse effects, yet its precise role in ferroptosis regulation remains unclear. Methods This study systematically investigated SAL's anti-ferroptotic effects using in vitro (RSL3-induced H9C2 cardiomyocytes) and in vivo (DOX-induced myocardial injury mouse model) approaches. Results SAL treatment significantly enhanced cardiomyocyte viability by attenuating ferroptotic hallmarks, including lipid ROS accumulation, iron overload, lipid peroxidation, and mitochondrial dysfunction. Transcriptomic analysis revealed SAL-mediated modulation of DNA replication/repair, cell cycle regulation, protein autophosphorylation, drug ADME processes, and glutathione metabolism-a critical pathway in ferroptosis. Molecular docking identified γ-glutamyltransferase 1 (GGT1) as a high-affinity SAL target, linking drug metabolism and glutathione homeostasis. In MI mice, SAL downregulated GGT1 expression while restoring ferroptosis-related biomarkers: upregulating GPX4 and reducing SLC7A11/LC3II levels. Mechanistically, SAL suppresses ferroptosis through dual regulation of GGT1: (1) enhancing glutathione synthesis via GGT1 inhibition and (2) potentiating GPX4-mediated antioxidant defense. Discussion These findings establish GGT1 as a pivotal therapeutic target for SAL's cardioprotection, providing a mechanistic basis for its clinical application in ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Tianhang Feng
- Department of International Medical, Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Shi
- Science and Education Section, Hospital of Chengdu Office of People‘s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, China
| | - Jinghua Zhao
- Department of Biological Sample Bank, Hospital of Chengdu Office of People‘s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, China
| | - Qin Zhao
- Department of Cardiology, Hospital of Chengdu Office of People‘s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, China
| | - Tao Wang
- Medical College, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Sha Wan
- Science and Education Section, Hospital of Chengdu Office of People‘s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, China
| | - Chen Fan
- Science and Education Section, Hospital of Chengdu Office of People‘s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, China
| | - Sijia Wang
- Department of International Medical, Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyou Lai
- Department of International Medical, Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutong Yao
- Department of International Medical, Sichuan Provincial Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
53
|
Wang M, Preckel B, Zuurbier CJ, Weber NC. Effects of SGLT2 inhibitors on ion channels in heart failure: focus on the endothelium. Basic Res Cardiol 2025:10.1007/s00395-025-01115-y. [PMID: 40366385 DOI: 10.1007/s00395-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Heart failure (HF) is a life-threatening cardiovascular disease associated with high mortality, diminished quality of life, and a significant economic burden on both patients and society. The pathogenesis of HF is closely related to the endothelium, where endothelial ion channels play an important role in regulating intracellular Ca2+ signals. These ion channels are essential to maintain vascular function, including endothelium-dependent vascular tone, inflammation response, and oxidative stress. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promising cardiovascular benefits in HF patients, reducing mortality risk and hospitalization in several large clinical trials. Clinical and preclinical studies indicate that the cardioprotective effects of SGLT2i in HF are mediated by endothelial nitric oxide (NO) pathways, as well as by reducing inflammation and reactive oxygen species in cardiac endothelial cells. Additionally, SGLT2i may confer endothelial protection by lowering intracellular Ca2+ level through the inhibition of sodium-hydrogen exchanger 1 (NHE1) and sodium-calcium exchanger (NCX) in endothelial cells. In this review, we discuss present knowledge regarding the expression and role of Ca2+-related ion channels in endothelial cells in HF, focusing on the effects of SGLT2i on endothelial NHE1, NCX as well as on vascular tone.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Hoseini Z, Behpour N, Hoseini R. Aerobic training and vitamin D modulate hepatic miRNA expression to improve lipid metabolism and insulin resistance in type 2 diabetes. Sci Rep 2025; 15:16764. [PMID: 40369056 PMCID: PMC12078466 DOI: 10.1038/s41598-025-01757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) has reached epidemic proportions globally, posing a significant burden on public health. Dysregulation of lipid metabolism and insulin resistance in T2DM often leads to hepatic complications, making the modulation of microRNAs (miRNAs) associated with these pathways a promising therapeutic target. This study aimed to investigate the protective effects of aerobic training (AT) and vitamin D supplementation on the liver of individuals with T2DM by examining the modulation of miRNAs related to lipid metabolism and insulin resistance. Specifically, the miRNAs examined in this study were miR-33, miR-122, miR-29, and miR-9. Thirty-two male Wistar rats with T2DM were randomly assigned to four groups: Control (C), AT, moderate dose of Vitamin D supplementation (MD; 5,000 IU), and high dose of Vitamin D supplementation (HD; 10,000 IU). The AT group underwent an eight-week program consisting of treadmill running sessions, five days per week, with a gradual increase in intensity and duration. The vitamin D supplementation groups received either 5,000 or 10,000 IU of vitamin D, administered via injection once weekly for 8 weeks. The study used the STZ + HFD rat model and collected liver tissue samples for analysis. Total RNA, including miRNA, was extracted from the liver tissue samples, and the miRNA expression levels were quantified using quantitative real-time PCR (qRT-PCR). Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test. AT led to significantly lower fasting plasma insulin levels (p < 0.05) and a notable improvement in the homeostatic model assessment of insulin resistance (HOMA-IR) index, indicating enhanced insulin sensitivity compared with the control and other groups. It also resulted in significantly lower triglyceride levels (p < 0.01) and a favorable shift in the HDL/LDL ratio, indicative of improved lipid metabolism. Vitamin D supplementation showed a dose-dependent reduction in insulin resistance, with the 10,000 IU group demonstrating a more pronounced improvement compared with the 5,000 IU group. Rats supplemented with vitamin D exhibited a dose-dependent modulation of lipid profile, with the 10,000 IU group demonstrating a more significant decrease in triglycerides and an increase in HDL/LDL ratio. The expression of miR-33, miR-122, miR-29, and miR-9 differed significantly among the experimental groups. The AT group exhibited a significant downregulation of miR-122 and miR-9 while showing a significant upregulation of miR-33 and miR-29 compared to the C and the MD groups. The HD group showed significant downregulation of miR-122 and miR-9 compared to the C and the MD groups. Both AT and high-dose vitamin D supplementation have beneficial effects on insulin levels, insulin resistance, and lipid metabolism in rats with T2DM by modulating miRNA expression, thereby inhibiting insulin resistance and improving T2DM.
Collapse
Affiliation(s)
- Zahra Hoseini
- PhD of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Nasser Behpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714967346, Kermanshah, Iran.
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O.Box. 6714967346, Kermanshah, Iran
| |
Collapse
|
55
|
Redureau D, Amorim FG, Crasset T, Berger I, Schaffitzel C, Menzies SK, Casewell NR, Quinton L. Dual Proteomics Strategies to Dissect and Quantify the Components of Nine Medically Important African Snake Venoms. Toxins (Basel) 2025; 17:243. [PMID: 40423326 PMCID: PMC12116074 DOI: 10.3390/toxins17050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Snakebite envenoming constitutes a significant global health issue, particularly in Africa, where venomous species such as Echis vipers and Dendroaspis mambas pose substantial risks to human health. This study employs a standardized venomics workflow to comprehensively characterize and comparatively quantify the venom composition of nine medically relevant snake species chosen from among the deadliest in Africa. Utilizing shotgun venom proteomics and venom gland transcriptomics, we report detailed profiles of venom complexity, highlighting the relative abundance of dominant toxin families such as three-finger toxins and Kunitz-type proteins in Dendroaspis, and metalloproteinases and phospholipases A2 in Echis. We delineate here the relative abundance and structural diversity of venom components. Key to our proteomic approach is the implementation of Multi-Enzymatic Limited Digestion (MELD), which improved protein sequence coverage and enabled the identification of rare toxin families such as hyaluronidases and renin-like proteases, by multiplying the overlap of generated peptides and enhancing the characterization of both toxin and non-toxin components within the venoms. The culmination of these efforts resulted in the construction of a detailed toxin database, providing insights into the biological roles and potential therapeutic targets of venom proteins and peptides. The findings here compellingly validate the MELD technique, reinforcing its reproducibility as a valuable characterization approach applied to venomics. This research significantly advances our understanding of venom complexity in African snake species, including representatives of both Viperidae and Elapidae families. By elucidating venom composition and toxin profiles, our study paves the way for the development of targeted therapies aimed at mitigating the morbidity and mortality associated with snakebite envenoming globally.
Collapse
Affiliation(s)
- Damien Redureau
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| | - Thomas Crasset
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (I.B.); (C.S.)
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (I.B.); (C.S.)
| | - Stefanie Kate Menzies
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (N.R.C.)
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (N.R.C.)
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| |
Collapse
|
56
|
Jia K, Zheng J, Hu S, Lei D, Jiang M, Zhang J, Cui M, Wang J, Cui Y, Wang F. Comprehensive transcriptomic and proteomic analysis reveals biological changes and potential regulatory mechanisms of endothelial cells under heat stress conditions. J Therm Biol 2025; 130:104138. [PMID: 40408820 DOI: 10.1016/j.jtherbio.2025.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/16/2025] [Accepted: 05/02/2025] [Indexed: 05/25/2025]
Abstract
Endothelial cells are crucial for vascular function, and they respond to heat stress by altering gene and protein expression. This study investigated the impact of heat stress on endothelial cells using transcriptomic and proteomic analyses. Human umbilical vein endothelial cells (HUVECs) were exposed to heat stress at 43 °C for 6 h, resulting in significant changes in gene and protein expression patterns. In particular, ORAI1, a key regulator of intracellular Ca2+ levels, was significantly upregulated. The integration of transcriptomic and proteomic data revealed genes and proteins associated with endothelial cell damage and repair processes. Validation experiments confirmed the upregulation of ORAI1 and increased intracellular Ca2+ levels under heat stress. These findings enhance our understanding of endothelial cell responses to heat stress and suggest potential therapeutic targets for heat-related diseases.
Collapse
Affiliation(s)
- Keran Jia
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Jie Zheng
- Department of Nursing, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Saicong Hu
- Department of Clinical Laboratory, Xingtai People's Hospital, Xingtai City, Hebei Province, 054000, China
| | - Daxin Lei
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Mengyu Jiang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Jiajia Zhang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Mengge Cui
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Jia Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Yan Cui
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Fukun Wang
- Department of Clinical Laboratory, The 980th Hospital of PLA Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China.
| |
Collapse
|
57
|
Rabea EY, Mahmoud ED, Mohamed NK, Ansary ER, Alrouby MR, Shehata RR, Mokhtar YY, Arullampalam P, Hegazy AM, Al-Sabi A, Abd El-Aziz TM. Potential of Venom-Derived Compounds for the Development of New Antimicrobial Agents. Toxins (Basel) 2025; 17:238. [PMID: 40423321 DOI: 10.3390/toxins17050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
The emergence of antimicrobial resistance is a significant challenge in global healthcare, necessitating innovative techniques to address multidrug-resistant pathogens. Multidrug-resistant pathogens like Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa pose significant public health threats, as they are increasingly resistant to common antibiotics, leading to more severe and difficult-to-treat infections. These pathogens are part of the ESKAPE group, which includes Enterococcus faecium, Staphylococcus aureus, and Enterobacter species. Animal venoms, derived from a wide range of species such as snakes, scorpions, spiders, bees, wasps, and ants, represent a rich source of bioactive peptides. Venoms have been a valuable source for drug discovery, providing unique compounds with therapeutic potential. Venom-derived drugs are known for their increased bioactivity, specificity, and stability compared to synthetic alternatives. These compounds are being investigated for various conditions, including treatments for diabetes, pain relief, cancer, and infections, showcasing their remarkable antimicrobial efficacy. In this review, we provide a comprehensive investigation into the potential of venom-derived compounds for developing new antimicrobial agents, including antibacterial, antifungal, antiviral, and antiparasitic therapeutics. Key venom components, including melittin from bee venom, phospholipase A2 from snake venom, and chlorotoxin from scorpion venom, exhibit potent antimicrobial effects through mechanisms such as membrane disruption, enzymatic inhibition, and immune modulation. We also explore the challenges related to the development and clinical use of venom-derived antimicrobials, including toxicity, stability, and delivery mechanisms. These compounds hold immense promise as transformative tools against resistant pathogens, offering a unique avenue for groundbreaking advancements in antimicrobial research and therapeutic development.
Collapse
Affiliation(s)
- Esraa Yasser Rabea
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Esraa Dakrory Mahmoud
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Nada Khaled Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Erada Rabea Ansary
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mahmoud Roushdy Alrouby
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Rabab Reda Shehata
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Youssef Yasser Mokhtar
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Prakash Arullampalam
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ahmed M Hegazy
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ahmed Al-Sabi
- College of Integrative Studies, Abdullah Al Salem University, Khaldiya 72303, Kuwait
| | - Tarek Mohamed Abd El-Aziz
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
58
|
Kausar N. Machine learning and explainable artificial intelligence reveals the MicroRNAs associated with survival of head and neck squamous cell carcinoma patients. Comput Biol Chem 2025; 118:108503. [PMID: 40378655 DOI: 10.1016/j.compbiolchem.2025.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Dysregulated microRNAs (miRNAs) play a significant role in cancer development and metastasis. In literature, miRNAs have been used for the survival prediction of different types of cancers using AI. Although AI is useful for diagnosis and prognosis prediction of cancer, however, a major criticism of incorporating it into medical fields is that it is essentially a mechanistically uninterpretable opaque "black box", and hence it may not have the required level of accountability, transparency, and reliability in decisions of cancer diagnosis and prognosis for their adoption in clinical settings. Therefore, there is need to develop intelligent models which may explain their prediction so that they may be reliably used by the clinicians. As dysregulated miRNAs are reported to cause cancer metastasis hence, they can play role in survival of patient. Therefore, there is needed to develop ML based techniques which may automatically indicate specific miRNAs involved in survival of patients. In this research, Machine Learning and Explainable AI (XAI) based models have been developed for survival prediction of Head and Neck Squamous Cell Carcinoma (HNSC) patients using miRNA sequences and clinical datasets. miRNAs dataset contains the data of 485 HNSC patients and clinical dataset contains data of 528 patients. The proposed XAI based model explains its prediction by showing the specific miRNA sequences involved in survival of the patients to demonstrate its reliability to be used by clinicians for therapeutic decisions. In this study, it has been shown that explainable ML can provide explicit knowledge of how models make their predictions, which is necessary for increasing the trust and adoption of innovative ML techniques in oncology and healthcare.
Collapse
Affiliation(s)
- Nabeela Kausar
- Department of Software Engineering and Artificial Intelligence, Iqra University, Islamabad, Pakistan.
| |
Collapse
|
59
|
Huang Y, Ouyang Y, Luo W, Huang S. Identification of genetic indicators linked to immunological infiltration in idiopathic pulmonary fibrosis. Medicine (Baltimore) 2025; 104:e42376. [PMID: 40355204 PMCID: PMC12073941 DOI: 10.1097/md.0000000000042376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
This study employed bioinformatics to investigate potential molecular markers associated with idiopathic pulmonary fibrosis (IPF) and examined their correlation with immune-infiltrating cells. Microarray data for IPF were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and module genes were identified through Limma analysis and weighted gene co-expression network analysis. Enrichment analysis and protein-protein interaction network development were performed on the DEGs. Machine learning algorithms, including least absolute shrinkage and selection operator regression, random forest, and extreme gradient boosting, were applied to identify potential key genes. The predictive accuracy was assessed through a nomogram and a receiver operating characteristic (ROC) curve. Additionally, the correlation between core genes and immune-infiltrating cells was assessed utilizing the CIBERSORT algorithm. An IPF model was established in a human fetal lung fibroblast 1 (HFL-1) through induction with transforming growth factor β1 (TGF-β1), and validation was conducted via reverse transcription-quantitative polymerase chain reaction. A sum of 1246 genes exhibited upregulation, whereas 879 genes were downregulated. Pathway enrichment analysis and functional annotation revealed that DEGs were predominantly involved in extracellular processes. Four key genes - cd19, cxcl13, fcrl5, and slamf7 - were identified. Furthermore, ROC analysis demonstrated high predictive accuracy for these 4 genes. Compared to healthy individuals, lung tissues from IPF patients exhibited an increased presence of plasma cells, CD4 memory-activated T cells, M0 macrophages, activated dendritic cells, resting NK cells, and M2 macrophage infiltration. The upregulation of cd19, cxcl13, fcrl5, and slamf7 in TGF-β1-treated HFL-1 cells was confirmed, aligning with the findings from the microarray data analysis. cd19, cxcl13, fcrl5, and slamf7 serve as diagnostic markers for IPF, providing fresh perspectives regarding the fundamental pathogenesis and molecular mechanisms associated with this condition.
Collapse
Affiliation(s)
- Yan Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Department of Neonatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, China
| | - Yipei Ouyang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Wei Luo
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shiwen Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, China
| |
Collapse
|
60
|
Abebe BK, Guo J, Jilo DD, Wang J, Yu S, Liu H, Cheng G, Zan L. Transforming beef quality through healthy breeding: a strategy to reduce carcinogenic compounds and enhance human health: a review. Mamm Genome 2025:10.1007/s00335-025-10129-9. [PMID: 40343484 DOI: 10.1007/s00335-025-10129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025]
Abstract
The presence of carcinogenic substances in beef poses a significant risk to public health, with far-reaching implications for consumer safety and the meat production industry. Despite advancements in food safety measures, traditional breeding methods have proven inadequate in addressing these risks, revealing a substantial gap in knowledge. This review aims to fill this gap by evaluating the potential of healthy breeding techniques to significantly reduce the levels of carcinogenic compounds in beef. We focus on elucidating the molecular pathways that contribute to the formation of key carcinogens, such as heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs), while exploring the transformative capabilities of advanced genomic technologies. These technologies include genomic selection, CRISPR/Cas9, base editing, prime editing, and artificial intelligence-driven predictive models. Additionally, we examine multi-omics approaches to gain new insights into the genetic and environmental factors influencing carcinogen formation. Our findings suggest that healthy breeding strategies could markedly enhance meat quality, thereby offering a unique opportunity to improve public health outcomes. The integration of these innovative technologies into breeding programs not only provides a pathway to safer beef production but also fosters sustainable livestock management practices. The improvement of these strategies, along with careful consideration of ethical and regulatory challenges, will be crucial for their effective implementation and broader impact.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Department of Animal Science, Werabe University, P.O.Box 46, Werabe, Ethiopia.
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, P.O.Box 46, Werabe, Ethiopia
| | - Haibing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
61
|
Putra MA, Sandora N, Soetisna TW, Kusuma TR, Fitria NA, Karimah B, Noviana D, Gunanti, Busro PW, Supomo, Alwi I. Cocultured amniotic stem cells and cardiomyocytes in a 3-D acellular heart patch reduce the infarct size and left ventricle remodeling: promote angiogenesis in a porcine acute myocardial infarction model. J Cardiothorac Surg 2025; 20:229. [PMID: 40340905 PMCID: PMC12063456 DOI: 10.1186/s13019-025-03453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/06/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) induces significant myocardial damage, ultimately leading to heart failure as the surrounding healthy myocardial tissue undergoes progressive deterioration due to excessive mechanical stress. METHODS This study aimed to investigate myocardial regeneration in a porcine model of AMI using an acellular amniotic membrane with fibrin-termed an amnion bilayer (AB) or heart patch-as a cellular delivery system using porcine amniotic stem cells (pASCs) and autologous porcine cardiomyocytes (pCardios). Fifteen pigs (aged 2-4 months, weighing 50-60 kg) were randomly assigned to three experimental groups (n = 5): control group (AMI induction only), pASC group (pASC transplantation only), and coculture group (pASC and pCardio transplantation). AMI was induced via posterior left ventricular artery ligation and confirmed through standard biomarkers. After eight weeks, histological and molecular analyses were conducted to assess myocardial regeneration. RESULTS Improvement in regional wall motion abnormality (RWMA) was observed in 60% of the coculture group, 25% of the pASC group, and none in the control group. Histological analysis of the control group revealed extensive fibrosis with pronounced lipomatosis, particularly at the infarct center. In contrast, pASC and coculture groups exhibited minimal fibrotic scarring at both the infarct center and border regions. Immunofluorescence analysis demonstrated positive α-actinin expression in both the pASC and coculture groups, with the coculture group displaying sarcomeric structures-an organization absent in control group. RNA expression levels of key cardiomyogenic markers, including cardiac troponin T (cTnT), myosin heavy chain (MHC), and Nkx2.5, were significantly elevated in the treatment groups compared to the controls, with the coculture group exhibiting the highest MHC expression. The expression of c-Kit was also increased in both treatment groups relative to the control. Conversely, apoptotic markers p21 and Caspase-9 were highest in the control group, while coculture group exhibited the lowest p53 expression. CONCLUSION Epicardial transplantation of an acellular amniotic heart patch cocultured with cardiomyocytes and pASCs demonstrated superior cardiomyogenesis after eight weeks compared to pASC transplantation alone or control conditions. The coculture system was found to enhance the cardiac regeneration process, as evidenced by improved RWMA, distinct sarcomeric organization, reduced fibrotic scarring, and lower apoptotic gene expression.
Collapse
Affiliation(s)
- Muhammad Arza Putra
- Division of Thoracic, Cardiac and Vascular Surgery, Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Normalina Sandora
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Tri Wisesa Soetisna
- Division of Adult Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Tyas Rahmah Kusuma
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Nur Amalina Fitria
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Benati Karimah
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Pribadi Wiranda Busro
- Division of Pediatric and Congenital Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Supomo
- Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55284, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
62
|
Durdurak BB, Morales-Muñoz I, de Cates AN, Wiseman C, Broome MR, Marwaha S. Underlying biological mechanisms of emotion dysregulation in bipolar disorder. Front Psychiatry 2025; 16:1552992. [PMID: 40417273 PMCID: PMC12098583 DOI: 10.3389/fpsyt.2025.1552992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/28/2025] [Indexed: 05/27/2025] Open
Abstract
Difficulties with emotion regulation (ER) are a key feature of bipolar disorder (BD) contributing to poor psychosocial and functional outcomes. Abnormalities within emotion processing and regulation thus provide key targets for treatment strategies and have implications for treatment response. Although biological mechanisms and ER are typically studied independently, emergent findings in BD research suggest that there are important ties between biological mechanisms and the disturbances in ER observed in BD. Therefore, in this narrative review, we provide an overview of the literature on biological mechanisms underlying emotional dysregulation in BD including genetic and epigenetic mechanisms, neuroimaging findings, inflammation, hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroplasticity and brain-derived neurotrophic factor (BDNF), and circadian rhythm disturbances. Finally, we discuss the clinical relevance of the findings and provide future directions for research. The continued exploration of underlying biological mechanisms in ED in BD may not only elucidate fundamental neurobiological mechanisms but also foster advancements in current treatment strategies and the development of novel targeted treatments.
Collapse
Affiliation(s)
- Buse Beril Durdurak
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Isabel Morales-Muñoz
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Angharad N. de Cates
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Coventry and Warwickshire NHS Partnership Trust, Coventry, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Chantelle Wiseman
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Matthew R. Broome
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- East Birmingham Early Intervention in Psychosis Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Steven Marwaha
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Specialist Mood Disorders Clinic, The Barberry Centre for Mental Health, Birmingham and Solihull NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
63
|
Yang L, Luo HJ, Gong ZA, Zhang WT, Cui JX, Fu XP, Zhang WW. miR-2400 promotes proliferation of bovine skeletal muscle-derived satellite cells by regulating MAGED1 genes expression. J Muscle Res Cell Motil 2025:10.1007/s10974-025-09695-x. [PMID: 40338441 DOI: 10.1007/s10974-025-09695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
microRNAs play a crucial role in the intricate process of muscle satellite cells proliferation and differentiation. Previous studies have demonstrated that miR-2400 can regulate bovine skeletal muscle satellite cell (MuSCs) proliferation, yet the underlying mechanism remains incompletely elucidated. In this study, we employed bioinformatics prediction and dual luciferase reporter assays to establish that miR-2400 directly targets the 3' untranslated regions (UTRs) of melanoma antigen family D1 (MAGED1) mRNA, thereby suppressing its expression. To ascertain whether miR-2400 affects the proliferation of MuSCs through MAGED1, we constructed the MAGED1 interference vector using RNA interference technology (RNAi) and assessed changes in MuSCs proliferation subsequent to MAGED1 interference. The experimental data indicate that the cell viability and the rate of EdU-positive cells of MuSCs were increased after interference with MAGED1. The proportion of S-phase cells and the expression level of cell cycle-associated proteins CCND2 and CCNB1 increased. These findings align with miR-2400's role in promoting cell proliferation and suggest that miR-2400 exerts its effects by directly targeting MAGED1.
Collapse
Affiliation(s)
- Li Yang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Hai-Jing Luo
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Zhi-An Gong
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Wen-Tian Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Jing-Xuan Cui
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Xue-Peng Fu
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Wei-Wei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China.
| |
Collapse
|
64
|
Bertram JF, Cullen-McEwen LA, Andrade-Oliveira V, Câmara NOS. The intelligent podocyte: sensing and responding to a complex microenvironment. Nat Rev Nephrol 2025:10.1038/s41581-025-00965-y. [PMID: 40341763 DOI: 10.1038/s41581-025-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Podocytes are key components of the glomerular filtration barrier - a specialized structure that is responsible for the filtration of blood by the kidneys. They therefore exist in a unique microenvironment exposed to mechanical force and the myriad molecules that cross the filtration barrier. To survive and thrive, podocytes must continually sense and respond to their ever-changing microenvironment. Sensing is achieved by interactions with the surrounding extracellular matrix and neighbouring cells, through a variety of pathways, to sense changes in environmental factors such as nutrient levels including glucose and lipids, oxygen levels, pH and pressure. The response mechanisms similarly involve a range of processes, including signalling pathways and the actions of specific organelles that initiate and regulate appropriate responses, including alterations in cell metabolism, immune regulation and changes in podocyte structure and cognate functions. These functions ultimately affect glomerular and kidney health. Imbalances in these processes can lead to inflammation, podocyte loss and glomerular disease.
Collapse
Affiliation(s)
- John F Bertram
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Brisbane, Queensland, Australia
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vinicius Andrade-Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
65
|
Fotovat-Ahmadi N, Siddiqui O, Ong J, Thanitcul C, Reinhardt C, Cologna SM, Aakalu VK. The ocular surface tear film as a biomarker for systemic health. Ocul Surf 2025; 37:283-300. [PMID: 40345388 DOI: 10.1016/j.jtos.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
The tear film is a complex structure with rich interactions with the human body. A growing body of evidence suggests that measuring changes in protein, lipid, or other metabolite concentration in the tear film can be used to help detect disease. Particularly in the era of precision medicine, the tear film serves as a promising source of non-invasive insights into systemic health for early diagnosis and treatment. This paper analyzes the latest research in tear film biomarkers for systemic diseases. The review was conducted through PubMed and Embase databases using the PRISMA protocol and includes 54 articles. This paper first reviews the anatomy and physiology of tear film, as well as the latest proteomic analysis techniques on the tear film. We then provide a disease-by-disease review on the tear film as a biomarker including 5 articles related to Alzheimer's Disease, 10 articles related to Cancers, 1 article related to Cystic Fibrosis, 1 article related to Migraines, 4 articles related to Multiple Sclerosis, 15 articles related to Parkinson's Disease, 7 articles related to Rheumatoid Arthritis, and 11 articles related to Thyroid Disease. This paper highlights the promising results of these studies yet also reviews the challenges with limited sample sizes, reproducibility, and biological understanding of biomarkers. We conclude this paper with insights for future work to ensure clinical validity and generalizability. Ultimately, the tear film is a clinically accessible, complex structure that provides a wealth of information that may contribute to a more comprehensive understanding of systemic health.
Collapse
Affiliation(s)
- Navid Fotovat-Ahmadi
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Omer Siddiqui
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Chanon Thanitcul
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Christian Reinhardt
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Vinay Kumar Aakalu
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States.
| |
Collapse
|
66
|
Yang Z, Li J, Shen J, Cao H, Wang Y, Hu S, Du Y, Wang Y, Yan Z, Xie L, Li Q, Gomaa SE, Liu S, Li X, Li J. Recent progress in tuberculosis diagnosis: insights into blood-based biomarkers and emerging technologies. Front Cell Infect Microbiol 2025; 15:1567592. [PMID: 40406513 PMCID: PMC12094917 DOI: 10.3389/fcimb.2025.1567592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Tuberculosis (TB) remains a global health challenge, with timely and accurate diagnosis being critical for effective disease management and control. Recent advancements in the field of TB diagnostics have focused on the identification and utilization of blood-based biomarkers, offering a non-invasive, rapid, and scalable approach to disease detection. This review provides a comprehensive overview of the latest progress in blood-based biomarkers for TB, highlighting their potential to revolutionize diagnostic strategies. Furthermore, we explore emerging technologies such as NGS, PET-CT, Xpert and line probe assays, which have enhanced the sensitivity, specificity, and accessibility of biomarker-based diagnostics. The integration of artificial intelligence (AI) and machine learning (ML) in biomarker analysis is also examined, showcasing its potential to improve diagnostic accuracy and predictive capabilities. This review underscores the need for multidisciplinary collaboration and continued innovation to translate these promising technologies into practical, point-of-care solutions. By addressing these challenges, blood-based biomarkers and emerging technologies hold the potential to significantly improve TB diagnosis, ultimately contributing to global efforts to eradicate this devastating disease.
Collapse
Affiliation(s)
- Zewei Yang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jingjing Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jiawen Shen
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huiru Cao
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Sensen Hu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yulu Du
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yange Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhongyi Yan
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiming Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Salwa E. Gomaa
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shejuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Nursing and Health, Henan University, Kaifeng, China
| | - Xianghui Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jicheng Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Cell Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
67
|
Jelski W, Okrasinska S, Mroczko B. microRNAs as Biomarkers of Breast Cancer. Int J Mol Sci 2025; 26:4395. [PMID: 40362631 PMCID: PMC12072494 DOI: 10.3390/ijms26094395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Breast cancer (BC) is the most common type of cancer found in women. Detection of this cancer at an early stage is essential for effective treatment and a favorable prognosis. Potential early breast cancer biomarkers useful for diagnosing these tumors are microRNAs. These are small single-stranded RNA chains that can regulate the post-transcriptional expression of many different oncogenes. Cancer cells contain miRNAs that play a special role in the etiology of cancer development. The role of microRNAs in the initiation and development of breast cancer gives us great hope for the creation of molecular tools for early cancer detection. MicroRNAs are characterized by a high stability due to RNase, which protects them from degradation and enables their detection in various biological fluids. Researchers have described multiple serum microRNA signatures useful for detecting breast cancer. This review discusses the importance and potential usefulness of microRNAs in detecting breast cancer at an early stage, predicting the course of the disease, and assessing the effectiveness of treatment.
Collapse
Affiliation(s)
- Wojciech Jelski
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 A, 15-269 Bialystok, Poland;
| | - Sylwia Okrasinska
- Department of Biochemical Diagnostics, University Hospital, Waszyngtona 15 A, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, Waszyngtona 15 A, 15-269 Bialystok, Poland
| |
Collapse
|
68
|
Aja PM, Agu PC, Ogbu C, Alum EU, Fasogbon IV, Musyoka AM, Ngwueche W, Egwu CO, Tusubira D, Ross K. RNA research for drug discovery: Recent advances and critical insight. Gene 2025; 947:149342. [PMID: 39983851 DOI: 10.1016/j.gene.2025.149342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The field of RNA research has experienced significant changes and is now at the forefront of contemporary drug development. This narrative overview explores the scientific developments and historical turning points in RNA research, emphasising the field's critical significance in the development of novel therapeutics. Important discoveries like antisense oligonucleotides (ASOs), mRNA therapies, and RNA interference (RNAi) have created novel treatment options that can be targeted, such as the ground-breaking mRNA vaccinations against COVID-19. Advances in high-throughput sequencing, single-cell RNA sequencing, and epitranscriptomics have further unravelled the complexity of RNA biology, shedding light on the intricacies of gene regulation and cellular diversity. The integration of computational tools and bioinformatics has propelled the identification of RNA-based biomarkers and the development of RNA therapeutics. Despite significant progress, challenges such as RNA stability, delivery, and off-target effects persist, necessitating continuous innovation and ethical considerations. This review provides a critical insight into the current state and prospects of RNA research, emphasising its transformative potential in drug discovery. By examining the interplay between technological advancements and therapeutic applications, we underscore the promising horizon for RNA-based interventions in treating a myriad of diseases, marking a new era in precision medicine.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria.
| | - Peter Chinedu Agu
- Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria; Department of Biochemistry, Faculty of Science, Evangel University, Nigeria
| | - Celestine Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Esther Ugo Alum
- Publications and Extension Department, Kampala International University, P. O. Box 20000, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Ilemobayo Victor Fasogbon
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Angela Mumbua Musyoka
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Wisdom Ngwueche
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinedu Ogbonia Egwu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
69
|
Raghani NR, Chorawala MR, Parekh K, Sharma A, Alsaidan OA, Alam P, Fareed M, Prajapati B. Exosomal miRNA-based theranostics in cervical cancer: bridging diagnostics and therapy. Med Oncol 2025; 42:193. [PMID: 40320487 DOI: 10.1007/s12032-025-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025]
Abstract
Cervical cancer (CC) remains a significant global health burden, particularly in low- and middle-income countries, where access to effective screening and treatment is limited. Despite advancements in conventional therapies, such as surgery, chemotherapy, and radiotherapy, challenges related to late-stage diagnosis, treatment resistance, and disease recurrence persist. The emergence of microRNAs (miRNAs) as key regulators of gene expression has revolutionized cancer diagnostics and therapeutics. Exosomal miRNAs, in particular, have garnered attention due to their stability, detectability in bodily fluids, and pivotal roles in tumor progression, metastasis, and immune modulation. This review provides a comprehensive overview of the role of exosomal miRNAs in the theranostic landscape of CC. We explore their involvement in disease pathogenesis, highlighting their potential as minimally invasive diagnostic biomarkers for early detection and disease monitoring. Furthermore, we examine their utility in therapeutic strategies, including miRNA-mediated drug delivery systems and miRNA-targeted interventions to overcome chemoresistance. Integrating exosomal miRNA profiling with current diagnostic modalities could enhance screening sensitivity and specificity, while miRNA-based therapies offer novel avenues to improve treatment efficacy. This review discusses recent advancements in miRNA research, current challenges in clinical translation, and future perspectives on leveraging exosomal miRNAs for personalized CC care.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Kavya Parekh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anvesha Sharma
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 13713, Saudi Arabia
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Mahesana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
70
|
Gupta DG, Monika, Varma N. Bridging the Gap: Cost-Effective Strategies for Detecting Ph-Like B-Lineage ALL in Resource-Limited Settings. Mol Diagn Ther 2025; 29:329-344. [PMID: 40155589 DOI: 10.1007/s40291-025-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
Acute lymphoblastic leukemia (ALL) is a complex hematologic disorder primarily affecting children, characterized by genetic mutations that disrupt normal lymphoid cell differentiation and promote abnormal proliferation. A particularly high-risk subtype, Philadelphia chromosome-like ALL (Ph-like ALL), mirrors the genetic profile of Philadelphia chromosome-positive (Ph-positive) ALL but lacks the BCR::ABL1 fusion gene. While Ph-like ALL has been extensively studied in high-income countries (HICs), it remains under-researched in low- and middle-income countries (LMICs), where resource limitations hinder accurate diagnosis and targeted therapy. This review addresses this gap by providing a comprehensive overview of the incidence, genetic landscape, and detection strategies for Ph-like ALL, with a special focus on LMICs. It underscores the prevalence of Ph-like ALL and its association with poor clinical outcomes, emphasizing the critical need for cost-effective diagnostic methodologies tailored to resource-constrained settings. Despite advancements in diagnostic technologies, such as whole gene expression profiling and next-generation sequencing, their high cost and extended turnaround times limit their feasibility in LMICs. Innovative methods, such as the PGIMER In-House Rapid and Cost-Effective (PHi-RACE) classifier, which employs real-time quantitative polymerase chain reaction (PCR), offer promising solutions by delivering high sensitivity and specificity at a significantly reduced cost. This approach is further complemented using fluorescence in situ hybridization (FISH) to characterize kinase alterations, enabling the identification of targeted therapies. This method addresses the urgent need for accessible diagnostic tools in LMICs, enabling early detection and personalized treatment planning. As the landscape of Ph-like ALL detection evolves, integrating low-cost, rapid-turnaround approaches holds significant promise for improving patient outcomes globally. This review aims to highlight the challenges and opportunities in diagnosing and treating Ph-like ALL in LMICs, fostering efforts towards more accessible and effective diagnostic strategies to enhance patient care and prognosis.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Urology and Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Monika
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
71
|
Zhang H, Yu Y, Qian C. Oligonucleotide-Based Modulation of Macrophage Polarization: Emerging Strategies in Immunotherapy. Immun Inflamm Dis 2025; 13:e70200. [PMID: 40325939 PMCID: PMC12053320 DOI: 10.1002/iid3.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 03/10/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Recent advances in immunotherapy have spotlighted macrophages as central mediators of disease treatment. Their polarization into pro‑inflammatory (M1) or anti‑inflammatory (M2) states critically influences outcomes in cancer, autoimmunity, and chronic inflammation. Oligonucleotides have emerged as highly specific, scalable, and cost‑effective agents for reprogramming macrophage phenotypes. OBJECTIVE To review oligonucleotide strategies-including ASOs, siRNAs, miRNA mimics/inhibitors, and aptamers-for directing macrophage polarization and their therapeutic implications. REVIEW SCOPE We examine key signaling pathways governing M1/M2 phenotypes, describe four classes of oligonucleotides and their mechanisms, and highlight representative preclinical and clinical applications. KEY INSIGHTS Agents such as AZD9150, MRX34, and AS1411 demonstrate macrophage reprogramming in cancer, inflammation, and infection models. Advances in ligand‑conjugated nanoparticles and chemical modifications improve delivery and stability, yet immunogenicity, off‑target effects, and formulation challenges remain significant barriers. FUTURE PERSPECTIVES Optimizing delivery platforms, enhancing molecular stability, and rigorous safety profiling are critical. Integration with emerging modalities-such as engineered CAR‑macrophages-will enable precise, disease‑specific interventions, and advance oligonucleotide‑guided macrophage modulation toward clinical translation.
Collapse
Affiliation(s)
- Hanfu Zhang
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
- School of Molecular SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
72
|
Pan S, Peng S, Feng C, Zhang H, Qi S, Lan D, Wang Y. Modifying loop regions in lipase from Caldibacillus thermoamylovorans for enhancing thermostability. Int J Biol Macromol 2025; 309:142646. [PMID: 40210068 DOI: 10.1016/j.ijbiomac.2025.142646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
Lipases are widely used as green industrial catalysts. Lipases from thermophilic microorganisms are particularly valuable due to their expected thermostability. However, the natural catalytic abilities and tolerance to extreme conditions of most enzymes are often not directly suited to the demands of industrial applications. Enzyme thermostability is closely associated with its structure, making it a target for improving enzyme thermostability. Therefore, we obtained the crystal structure of lipase from Caldibacillus thermoamylovorans (CtLip) with a resolution of 2.2 Å using X-ray diffraction and identified its optimal temperature at 50 °C, with a half-life (t1/2) of 21.59 min at 50 °C. Mutants B1 (R269E/G270S/V271I/V272L), A335I and the stacked mutant B1/A335I (R269E/G270S/V271I/V272L/A335I) in loop region were constructed under the guidance of molecular dynamics analysis. Optimal temperature of mutant B1/A335I increased by 5 °C, with a half-life 8.36 times longer than that of the wild-typed. Our findings provide strategies to improve lipase thermostability by modification of the loop region of the enzyme.
Collapse
Affiliation(s)
- Siyu Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shudong Peng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chenhao Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huifang Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - SuiJian Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Yueshan Special Nutrition Technology Co. Ltd., Foshan 528000, China.
| |
Collapse
|
73
|
Jha V, Freed BM, Sunderhaus ER, Lee JE, Prage EB, Miglani M, Rosloniec EF, Matsuda JL, Coulombe MG, McKee AS, Roark CL. Substitution of Glutamic Acid at Position 71 of DRβ1*04:01 and Collagen-Specific Tolerance Without Alloreactivity. Arthritis Rheumatol 2025; 77:526-535. [PMID: 39609038 PMCID: PMC12039470 DOI: 10.1002/art.43067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/11/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE The DRB1 locus is strongly associated with both susceptibility and resistance to rheumatoid arthritis (RA). DRB1 alleles encoding the VKA or VRA epitope in positions 11, 71, and 74 confer the highest risk of developing RA, whereas the allele encoding VEA is protective. We therefore investigated the feasibility of creating antigen-specific tolerance without inducing alloreactivity by replacing lysine with glutamic acid at position 71 in DRβ1*04:01. METHODS Individual DRB1 alleles and the DRB1*04:01K71E allele were cloned into T2 cell lines to measure binding of biotinylated peptides. Transgenic animals expressing DRB1*04:01, DRB1*01:01, or DRB1*04:01K71E were injected with collagen to measure T cell proliferation. Skin and bone marrow transplants between DRB1*04:01K71E and DRB1*04:01 mice were performed to determine if the single amino acid change at position 71 would be recognized as foreign. DRB1*04:01 mice transplanted with DRB1*04:01K71E bone marrow were injected with collagen to test if resistance to collagen sensitization could be transferred. RESULTS Replacing lysine (K) at position 71 in DRβ1*04:01 with glutamic acid (E) blocked collagen peptide binding and rendered the DRB1*04:01K71E mice resistant to collagen sensitization. Skin and bone marrow transplants from DRB1*04:01K71E mice were not rejected by DRB1*04:01 mice, suggesting the single E71 difference was not recognized as allogeneic. Bone marrow from DRB1*04:01K71E mice adoptively transferred antigen-specific tolerance to collagen to DRB1*04:01 mice. CONCLUSION These studies demonstrate that editing a single amino acid in DRβ1*04:01 blocks collagen peptide binding without inducing alloreactivity and could therefore represent a gene therapy approach to induce antigen-specific passive tolerance.
Collapse
Affiliation(s)
- Vibha Jha
- University of Colorado, Anschutz Medical CampusAuroraColorado
| | - Brian M. Freed
- University of Colorado, Anschutz Medical CampusAuroraColorado
| | | | - Jessica E. Lee
- University of Colorado, Anschutz Medical CampusAuroraColorado
| | - Edward B. Prage
- University of Colorado, Anschutz Medical CampusAuroraColorado
| | - Manjula Miglani
- University of Colorado, Anschutz Medical CampusAuroraColorado
| | - Edward F. Rosloniec
- Lt. Col. Luke Weathers, Jr. Veterans Affairs Medical Center and University of Tennessee Health Science CenterMemphisTennessee
| | | | | | - Amy S. McKee
- University of Colorado, Anschutz Medical CampusAuroraColorado
| | | |
Collapse
|
74
|
Bianco E, Bonassera M, Uliana F, Tilma J, Winkler M, Zencir S, Gossert A, Oborská-Oplová M, Dechant R, Hugener J, Panse VG, Pilhofer M, Albert B, Kimmig P, Peter M. Stm1 regulates Ifh1 activity revealing crosstalk between ribosome biogenesis and ribosome dormancy. Mol Cell 2025; 85:1806-1823.e17. [PMID: 40315826 DOI: 10.1016/j.molcel.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/26/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
Nutrient abundance boosts ribosome biogenesis, whereas ribosome dormancy factors limit ribosome degradation upon starvation. The equilibrium between the two pathways governs cell growth. In this study, we identified suppressor of Tom1 (Stm1) as a molecular link between ribosome protection and biogenesis in Saccharomyces cerevisiae. While Stm1 was previously described as a dormancy factor, we show that it activates Ifh1, a transcriptional activator of ribosomal protein genes. Stm1 transiently localizes to the nucleolus, where it interacts with pre-ribosomes and directly binds RNA and Ifh1 through its C-terminal intrinsically disordered region (IDR). Although the IDR is dispensable for ribosome protection, its loss compromises cell growth. The IDR is phosphorylated upon nutrient starvation, which disrupts its interaction with Ifh1. Our findings reveal a molecular pathway sensing and adjusting ribosome abundance in response to nutrient availability, reinforcing the relevance of regulated ribosome homeostasis in physiology and disease.
Collapse
Affiliation(s)
- Eliana Bianco
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| | - Martina Bonassera
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Janny Tilma
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Martin Winkler
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Sevil Zencir
- Department of Cell Biology Sciences III, Université de Genève, 1211 Geneva, Switzerland
| | - Alvar Gossert
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland; Biomolecular NMR Spectroscopy Platform (BNSP), Department of Biology, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | | | - Reinhard Dechant
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Jannik Hugener
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Philipp Kimmig
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland.
| |
Collapse
|
75
|
Noor MI, Rahman MS. Effects of Environmentally Relevant Concentrations of Roundup on Oxidative-Nitrative Stress, Cellular Apoptosis, Prooxidant-Antioxidant Homeostasis, Renin and CYP1A Expressions in Goldfish: Molecular Mechanisms Underlying Kidney Damage During Roundup Exposure. ENVIRONMENTAL TOXICOLOGY 2025; 40:817-834. [PMID: 39853848 DOI: 10.1002/tox.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 01/12/2025] [Indexed: 01/26/2025]
Abstract
Roundup is one of the most widely used glyphosate-based harmful herbicides in the United States as well as globally, which poses a severe risk for terrestrial and aquatic organisms. In order to identify the detrimental effects of Roundup exposure in aquatic organisms, we investigated the environmentally relevant concentrations of Roundup exposure (low dose: 0.5 μg/L and high dose: 5.0 μg/L for 2 weeks) on renin expression, oxidative-nitrative stress biomarkers (e.g., 2,4-dinitrophenol, DNP; and 3-nitrotyrosine protein, NTP), prooxidant-antioxidant enzymes expressions (e.g., superoxide dismutase, SOD; and catalase, CAT), cellular apoptosis, and cytochrome P450 1A (CYP1A) mRNA levels in the kidneys of goldfish ( Carassius auratus ). Histopathological and in situ TUNEL analyses showed widespread tissue disruption (e.g., bowman's capsule shrinkage, melanin pigment formation, etc.) and induced apoptotic nuclei in the kidneys of goldfish. Immunohistochemical and quantitative real-time PCR (qRT-PCR) analyses showed a significant (p < 0.05) increase in the expression of renin, DNP, NTP, SOD, and CAT, as well as CYP1A mRNA levels in the kidneys of fish exposed to Roundup. These results suggest that environmentally relevant concentrations of Roundup disrupt kidney architecture by inducing oxidative-nitrative stress, cellular apoptosis, and change in osmoregulatory enzymes (i.e., renin) and prooxidant-antioxidant systems in the kidneys of teleost fishes.
Collapse
Affiliation(s)
- Md Imran Noor
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
76
|
Liu C, Tian Q, Li Z, Wang G, Han W, Jiang S, Sun Z, Xu Q, Wang L, Liao J, Li M. FOXO3a-BAP1 axis regulates neuronal ferroptosis in early brain injury after subarachnoid hemorrhage. Redox Biol 2025; 82:103550. [PMID: 40080966 PMCID: PMC11946873 DOI: 10.1016/j.redox.2025.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025] Open
Abstract
Subarachnoid hemorrhage (SAH) is a serious and common disease and accounts for about 10 % of acute stroke cases. BRCA-associated protein 1 (BAP1) belongs to the ubiquitin C-terminal hydrolases (UCHs) family, which plays an important role in cell metabolism and cell death, but its role in early brain injury (EBI) after SAH requires further study. Forkhead box protein O3a (FOXO3a) is a transcription factor involved in the regulation of cellular function and survival in the nervous system, including the oxidative stress response and neuronal death. This study aimed to explore the effect of FOXO3a and BAP1 on neuronal ferroptosis in the pathogenesis of EBI after SAH. In this study, the overexpression of BAP1 significantly inhibited GPX4 expression and exacerbated the degree of lipid peroxidation and ferroptosis in neurons after SAH. BAP1 regulated the transcription level of the SLC7A11 promoter by H2Aub. FOXO3a could transcriptionally regulate BAP1 to influence the levels of SLC7A11 and GPX4, and mediate lipid peroxidation and neuronal ferroptosis after SAH. Silencing FOXO3 and BAP1 significantly improved neurological deficit and cerebral edema, and reduced oxidative stress damage in SAH mice. After SAH, BAP1 could directly bind to the FKH-DBD + NLS domain located in FOXO3a protein through the UCH domain, and mediates deubiquitination of FOXO3a protein by the K48 site to maintain the stability of FOXO3a. Our findings elucidate the impact of FOXO3a and BAP1 on SLC7A11-related ferroptosis following SAH both in vivo and in vitro, and the inhibition of the FOXO3a-BAP1 axis can significantly attenuate neuronal damage and ferroptosis in EBI after SAH.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Shengming Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Zhou Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Qingqing Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China.
| |
Collapse
|
77
|
Osburn SC, Smith ME, Wahl D, LaRocca TJ. Novel effects of reverse transcriptase inhibitor supplementation in skeletal muscle of old mice. Physiol Genomics 2025; 57:308-320. [PMID: 40062980 DOI: 10.1152/physiolgenomics.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 02/15/2025] [Indexed: 04/01/2025] Open
Abstract
Aging is the primary risk factor for the development of many chronic diseases, including dementias, cardiovascular disease, and diabetes. There is significant interest in identifying novel "geroprotective" agents, including by repurposing existing drugs, but such treatments may affect organ systems differently. One current example is the nucleoside reverse transcriptase inhibitor 3TC, which has been increasingly studied as a potential gerotherapeutic. Recent data suggest that 3TC may reduce inflammation and improve cognitive function in older mice; however, the effects of 3TC on other tissues in aged animals are less well characterized. Here, we use transcriptomics (RNA-seq) and targeted metabolomics to investigate the influence of 3TC supplementation on skeletal muscle in older mice. We show that 3TC 1) does not overtly affect muscle mass or functional/health markers, 2) largely reverses age-related changes in gene expression and metabolite signatures, and 3) is potentially beneficial for mitochondrial function in old animals via increases in antioxidant enzymes and decreases in mitochondrial reactive oxygen species. Collectively, our results suggest that, in addition to its protective effects in other tissues, 3TC supplementation does not have adverse effects in aged muscle and may even protect muscle/mitochondrial health in this context.NEW & NOTEWORTHY Recent studies suggest that the nucleoside reverse transcriptase inhibitor 3TC may improve brain health and cognitive function in old mice, but its effects on other aging tissues have not been comprehensively studied. This is the first study to use a multiomics approach to investigate the effects of 3TC treatment on skeletal muscle of old mice. The results suggest that 3TC reverses age-related transcriptomic and metabolite signatures and is potentially beneficial for mitochondrial function in aged muscle.
Collapse
Affiliation(s)
- Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
78
|
Dong K, Bai Z, He X, Zhang L, Hu G, Yao Y, Cai CL, Zhou J. Generation of a novel constitutive smooth muscle cell-specific Myh11-driven Cre mouse model. J Mol Cell Cardiol 2025; 202:144-152. [PMID: 40122158 DOI: 10.1016/j.yjmcc.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Dysfunction in either embryonic or postnatal smooth muscle cells (SMCs) significantly contributes to the progression of various cardiovascular and visceral diseases. Therefore, elucidating the molecular mechanisms governing SMC development and homeostasis is crucial. MYH11 is the most reliable lineage gene for SMCs and has been utilized to develop tamoxifen-inducible Cre driver lines for achieving SMC-specific gene manipulation by crossing with mice carrying the loxP-flanked gene, particularly in adult mice. For studies involving SMCs during embryogenesis, the commonly used constitutive Cre driver is controlled by the Tagln (also known as SM22α) promoter. However, this Cre driver exhibits activity in multiple non-SMC populations, including cardiomyocytes and skeletal muscle precursors, introducing confounding effects. Additionally, most existing SMC-specific Cre drivers are generated using a transgenic approach, raising concerns about random site integration and variable gene copy numbers. To address these limitations, we report a novel Cre mouse model generated by knock-in (KI) of a nuclear-localized Cre recombinase into the Myh11 gene locus using homologous recombination. We confirmed that the Cre activity precisely recapitulates endogenous Myh11 expression by crossing with Rosa26 mTmG or tdTomato reporter mice. Moreover, Myh11-driven Cre can efficiently delete the floxed allele of the transcription factor Tead1 specifically in SMCs. The Tead1 SMC-specific knockout mice did not exhibit an overt phenotype, thereby circumventing the embryonic lethal phenotype mediated by Tagln-driven Cre, as we previously reported. These findings establish this novel Cre driver line as a robust tool for tracing the Myh11-positive SMC lineage and manipulating gene function specifically in SMCs during embryonic development in both male and female mice.
Collapse
Affiliation(s)
- Kunzhe Dong
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhixia Bai
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Xiangqin He
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lu Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yali Yao
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chen-Leng Cai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China.
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
79
|
Patel SN, Sonani RR, Gupta GD, Singh NK, Upadhyaya C, Sonavane B, Amin S, Kumar V, Madamwar D. Structure and stability of phycocyanin from thermotolerant Oscillatoria. FEBS Lett 2025; 599:1420-1432. [PMID: 40297916 DOI: 10.1002/1873-3468.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025]
Abstract
Phycocyanin (PC), a pigment-protein complex with diverse biotechnological applications, plays a key role in light energy transfer for photosynthesis in cyanobacteria. PC (O-PC) from a thermotolerant cyanobacteria Oscillatoria sp. N09DM exhibits remarkable stability compared to its mesophilic counterparts, making it highly valuable for industrial and medical applications. To understand the basis of its stability, the crystal structure of O-PC is solved and analysed. Structural analysis reveals a key molecular interaction, including hydrogen bonds, salt bridges and hydrophobic interactions, along with amino acid substitutions that provide the thermal stability. Additionally, structural results provide insights into chromophore-protein interactions for understanding O-PC's role in the efficient transfer of light energy.
Collapse
Affiliation(s)
- Stuti N Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, Gujarat, India
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Gagan D Gupta
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Niraj Kumar Singh
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Chandni Upadhyaya
- Shree P. M. Patel Institute of Integrated M. Sc. in Biotechnology, Sardar Patel University, Anand, Gujarat, India
| | - Bhargavi Sonavane
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, Gujarat, India
| | - Seema Amin
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, Gujarat, India
| | - Vinay Kumar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, Gujarat, India
| |
Collapse
|
80
|
Guo S, Cao J, Hong G, Song Y, Xia M, Li P, Yuan W, Xiao Y, Sun G, Liu S, Cao S, Qi J, Bi X, Liu Z, Wu Y, Li W, Zhao X, Gao J, Chai R, Fu X. mRNA metabolism regulator human antigen R (HuR) regulates age-related hearing loss in aged mice. NATURE AGING 2025; 5:848-867. [PMID: 40394214 DOI: 10.1038/s43587-025-00860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/31/2025] [Indexed: 05/22/2025]
Abstract
Age-related hearing loss (ARHL) is among the most prevalent and complex disorders in older adults. However, the pathogenesis of ARHL remains poorly understood. Using a single-cell transcriptomic landscape of mouse cochlea at five time points (1, 2, 5, 12 and 15 months), we found that the levels of human antigen R (HuR)-a classical RNA-binding protein-increase with age. Here we show that HuR is specifically transported from the nucleus to the cytoplasm in hair cells in both aging mice and nonhuman primates. HuR overexpression in cochlea could successfully alleviate ARHL in aged mice. Meanwhile, HuR deficiency led to premature hearing dysfunction characterized by degeneration of stereocilia and the subsequent loss of hair cells. RNA immunoprecipitation sequencing analysis revealed that HuR can bind to messenger RNAs that enable stereocilia maintenance, including Gnai3. Adeno-associated virus-mediated Gnai3 overexpression partially rescues the hearing defects in HuR-deficient mice. Taken together, these findings indicate that HuR is a potential therapeutic target for ARHL.
Collapse
Affiliation(s)
- Siwei Guo
- School of Life Science, Shandong University, Qingdao, China
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jieying Cao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guodong Hong
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuning Song
- School of Life Science, Shandong University, Qingdao, China
| | - Ming Xia
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, China
| | - Wei Yuan
- Chongqing General Hospital, Chongqing, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, China
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- The Key Laboratory of Animal Resistant Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Jieyu Qi
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiuli Bi
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ziyi Liu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yunhao Wu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen Li
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxu Zhao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, China.
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Southeast University Shenzhen Research Institute, Shenzhen, China.
| | - Xiaolong Fu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
81
|
Schimmelpfennig J, Jankowiak-Siuda K. Exploring DMT: Endogenous role and therapeutic potential. Neuropharmacology 2025; 268:110314. [PMID: 39832530 DOI: 10.1016/j.neuropharm.2025.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
N,N-Dimethyltryptamine (DMT) is a naturally occurring amine and psychedelic compound, found in plants, animals, and humans. While initial studies reported only trace amounts of DMT in mammalian brains, recent findings have identified alternative methylation pathways and DMT levels comparable to classical neurotransmitters in rodent brains, calling for a re-evaluation of its biological role and exploration of this inconsistency. This study evaluated DMT's biosynthetic pathways, focusing on indolethylamine N-methyltransferase (INMT) and its isoforms, and possible regulatory mechanisms, including alternative routes of synthesis and how physiological conditions, such as stress and hypoxia influence DMT levels. This review considers the impact of endogenous regulatory factors on DMT synthesis and degradation, particularly under conditions affecting monoamine oxidase (MAO) efficiency and activity. We also examined DMT's potential roles in various physiological processes, including neuroplasticity and neurogenesis, mitochondrial homeostasis, immunomodulation, and protection against hypoxia and oxidative stress. DMT's lipophilic properties allow it to cross cell membranes and activate intracellular 5-HT2A receptors, contributing to its role in neuroplasticity. This suggests DMT may act as an endogenous ligand for intracellular receptors, highlighting its broader biological significance beyond traditional receptor pathways. The widespread evolutionary presence of DMT's biosynthetic pathways across diverse species suggests it may play essential roles in various developmental stages and cellular adaptation to environmental challenges, highlighting the neurobiological significance of DMT and its potential clinical applications. We propose further research to explore the role of endogenous DMT, particularly as a potential neurotransmitter.
Collapse
|
82
|
Cohen D, Rogers C, Gabre J, Dionigi B. The Young: Early-Onset Colon Cancer. Clin Colon Rectal Surg 2025; 38:173-178. [PMID: 40292000 PMCID: PMC12020630 DOI: 10.1055/s-0044-1787883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Early-onset colorectal cancer (EO-CRC), characterized by diagnosis before the age of 50 years, has emerged as a significant healthcare challenge with increasing global incidence. While traditional risk factors such as family history and inherited syndromes contribute to EO-CRC, a substantial proportion of cases remain sporadic, necessitating further investigation into additional etiological factors. Molecular studies reveal heterogeneity in EO-CRC, with distinct mutational profiles compared to late-onset CRC. Clinical management presents unique considerations, including challenges in early detection and treatment strategies tailored to younger patients. Addressing EO-CRC requires a multidisciplinary approach integrating epidemiological, molecular, and clinical insights to improve prevention, diagnosis, and therapeutic outcomes. Emerging research avenues explore novel biomarkers and therapeutic targets, offering promise for advancing understanding and management of this disease in contemporary oncology practice.
Collapse
Affiliation(s)
- David Cohen
- Department of Surgery, New York-Presbyterian/Columbia University Irving Medical Center, New York, New York
| | - Caitlin Rogers
- Herbert Irving Comprehensive Cancer Research Center, Columbia University, New York, New York
| | - Joel Gabre
- Herbert Irving Comprehensive Cancer Research Center, Columbia University, New York, New York
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Beatrice Dionigi
- Division of Colon and Rectal Surgery, New York-Presbyterian/Columbia University Medical Center, New York, New York
| |
Collapse
|
83
|
Osipov AV, Starkov VG, Tsetlin VI, Utkin YN. Cobra Three-Finger Toxins Interact with RNA and DNA: Nucleic Acids as Their Putative Biological Targets. Int J Mol Sci 2025; 26:4291. [PMID: 40362528 PMCID: PMC12072136 DOI: 10.3390/ijms26094291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Three-finger toxins (TFTs), including neurotoxins and cytotoxins, form one of the largest families of snake venom proteins and interact with various biological targets. Neurotoxins target proteinaceous receptors while cytotoxins interact mainly with the lipids of cell membranes and to a lesser extent with carbohydrates. However, no data about the interaction of TFTs with nucleic acids can be found. To detect this interaction, we applied spectrophotometry, ion-paired HPLC and electrophoretic mobility shift assay (EMSA). Using spectrophotometry, we found that TFTs from cobra venom increased the optical density of an RNA solution in a time-dependent manner indicating toxin interaction with RNA. A decrease in the net negative charge of the RNA molecule upon interaction with neurotoxin II from cobra venom was revealed by ion-pair HPLC. EMSA showed decreased electrophoretic mobility of both RNA and DNA upon addition of different TFTs including the non-conventional cobra toxin WTX and water-soluble recombinant human three-finger protein lynx1. We suggest that the interaction with nucleic acids may be a common property of TFTs, and some biological effects of TFTs, for example, cytotoxin-induced apoptosis in cancer cell lines, may be mediated by interaction with nucleic acids.
Collapse
Affiliation(s)
| | | | | | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (A.V.O.); (V.G.S.); (V.I.T.)
| |
Collapse
|
84
|
Venturini P, Faria PL, Cordeiro JV. AI and omics technologies in biobanking: Applications and challenges for public health. Public Health 2025; 243:105726. [PMID: 40315692 DOI: 10.1016/j.puhe.2025.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/10/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
OBJECTIVES Considering the growing intersection of biobanks, artificial intelligence (AI) and omics research, and their critical impact on public health, this study aimed to explore the current and future public health implications and challenges of AI and omics-driven innovations in biobanking. STUDY DESIGN Narrative literature review. METHODS A structured literature search was conducted in Scopus, PubMed, Web of Science and IEEExplore databases using relevant search terms. Additional references were identified through backward and forward citation chaining. Key themes were aggregated and analysed through thematic analysis. RESULTS Thirty-seven studies were selected for analysis, leading to the identification and categorisation of key developments. Several key technical, ethical and implementation challenges were also identified, including AI model selection, data accessibility, variability and quality issues, lack of robust and standardised validation methods, explainability, accountability, lack of transparency, algorithmic bias, privacy, security and fairness issues, and governance model selection. Based on these results, potential future scenarios of AI and omics integration in biobanking and their related public health implications were considered. CONCLUSIONS While AI and omics-driven innovations in biobanking offer specific transformative public health benefits, addressing their technical, ethical and implementation challenges is crucial. Robust regulatory frameworks, feasible governance models, access to quality data, interdisciplinary collaboration, and transparent and validated AI systems are essential to maximise benefits and mitigate risks. Further research and policy development are needed to support the responsible integration of these technologies in biobanking and public health.
Collapse
Affiliation(s)
- Pedro Venturini
- NOVA National School of Public Health, NOVA University Lisbon, Lisbon, Portugal.
| | - Paula Lobato Faria
- NOVA National School of Public Health, NOVA University Lisbon, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Avenida Padre Cruz, Lisbon, 1600-560, Portugal; Interdisciplinary Center of Social Sciences, NOVA University of Lisbon, Portugal
| | - João V Cordeiro
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Avenida Padre Cruz, Lisbon, 1600-560, Portugal; Interdisciplinary Center of Social Sciences, NOVA University of Lisbon, Portugal
| |
Collapse
|
85
|
Nejat Dehkordi A, Maddahi M, Vafa P, Ebrahimi N, Aref AR. Salivary biomarkers: a promising approach for predicting immunotherapy response in head and neck cancers. Clin Transl Oncol 2025; 27:1887-1920. [PMID: 39377974 DOI: 10.1007/s12094-024-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 04/27/2025]
Abstract
Head and neck cancers, including cancers of the mouth, throat, voice box, salivary glands, and nose, are a significant global health issue. Radiotherapy and surgery are commonly used treatments. However, due to treatment resistance and disease recurrence, new approaches such as immunotherapy are being explored. Immune checkpoint inhibitors (ICIs) have shown promise, but patient responses vary, necessitating predictive markers to guide appropriate treatment selection. This study investigates the potential of non-invasive biomarkers found in saliva, oral rinses, and tumor-derived exosomes to predict ICI response in head and neck cancer patients. The tumor microenvironment significantly impacts immunotherapy efficacy. Oral biomarkers can provide valuable information on composition, such as immune cell presence and checkpoint expression. Elevated tumor mutation load is also associated with heightened immunogenicity and ICI responsiveness. Furthermore, the oral microbiota may influence treatment outcomes. Current research aims to identify predictive salivary biomarkers. Initial studies indicate that tumor-derived exosomes and miRNAs present in saliva could identify immunosuppressive pathways and predict ICI response. While tissue-based markers like PD-L1 have limitations, combining multiple oral fluid biomarkers could create a robust panel to guide treatment decisions and advance personalized immunotherapy for head and neck cancer patients.
Collapse
Affiliation(s)
| | - Moein Maddahi
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Parinaz Vafa
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
86
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
87
|
Huang Y, Huang S, Li Q, Zhang H, Xiao W, Chen Y. miR-338-3p Targets SIRT6 to Inhibit Liver Cancer Malignancy and Paclitaxel Resistance. Drug Dev Res 2025; 86:e70089. [PMID: 40258128 DOI: 10.1002/ddr.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
For patients with liver cancer, a widespread and lethal tumor on a global scale, chemotherapy and immunotherapy are often the top choices. Paclitaxel, a widely administered chemotherapy drug, faces the dual issues of poor tumor response rates and the rapid onset of chemoresistance. This study delves into the functions of SIRT6 and miR-338-3p in malignancy and paclitaxel resistance of liver cancer cells. Bioinformatics and qRT-PCR were engaged to predict and examine expression profiles of SIRT6 and miR-338-3p in liver cancer tissues and cell lines. A paclitaxel-resistant cell line (MHCC97-PTX) was established for dissecting cellular responses to drug treatment. CCK-8 and colony formation tests measured cell vitality and proliferation, respectively. Flow cytometry assessed apoptotic cell death, and the paclitaxel IC50 values were derived for each group. We utilized online tools to predict miR-338-3p as an upstream regulator of SIRT6, and a dual-luciferase reporter assay verified their direct interaction. SIRT6 is abundantly expressed in liver cancer tissues and cells. SIRT6 knockdown decreased cell vitality and proliferation while promoting apoptosis and paclitaxel sensitivity. miR-338-3p, an upstream regulator of SIRT6 in liver cancer cells, binds to SIRT6 and downregulates its expression, modulating cell malignancy and drug resistance. The duo of miR-338-3p and SIRT6 can drive the aggressiveness and chemoresistance of liver cancer, emerging as hopeful candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yiyuan Huang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Sunhui Huang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Quan Li
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Hongchang Zhang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Xiao
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yunhui Chen
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
88
|
Li Z, Chen S, Wu X, Liu F, Zhu J, Chen J, Lu X, Chi R. Research advances in branched-chain amino acid metabolism in tumors. Mol Cell Biochem 2025; 480:2707-2723. [PMID: 39576465 DOI: 10.1007/s11010-024-05163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
The metabolic reprogramming of amino acids is an important component of tumor metabolism. Branched-chain amino acids (BCAAs) perform important functions in tumor progression. They are the important amino donor and are involved in the synthesis of various non-essential amino acids, nucleotides, and polyamines to satisfy the increased demand for nitrogen sources. This review summarizes the studies related to abnormalities in BCAA metabolism during tumorigenesis and the potential therapeutic targets. The expression of BCAA transporters was significantly upregulated in tumor cells, which increases BCAA uptake. High expression of the BCAA transaminases is prevalent in various tumors, however, the dehydrogenation step of BCAA catabolism is inhibited in tumors. This review shows that BCAA metabolic reprogramming is an important tumor metabolic feature, and metabolic genes of BCAAs play a crucial role in tumor metabolism, representing a good auxiliary target for early clinical diagnosis and treatment. In addition, BCAAs are indispensable for maintaining immune system function, and dietary supplementation with BCAAs can enhance the activity of immune cells. Therefore, BCAA supplementation in tumor patients may affect the interaction between the immune system and tumors.
Collapse
Affiliation(s)
- Zheng Li
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | | | - Xuechao Wu
- Wuxi Neurosurgical Institute, Wuxi, China
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Fei Liu
- Department of Neurosurgery, Jiangnan University, Medical Center, Wuxi, China
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX, 76010, USA
| | - Jiayi Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, Jilin, China.
| | - Xiaojie Lu
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Nanjing Medical University, Nanjing, China.
- Wuxi Neurosurgical Institute, Wuxi, China.
- Department of Neurosurgery, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| | - Rui Chi
- The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.
- Department of Laboratory Medicine, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, China.
| |
Collapse
|
89
|
Klangkalya N, Esteve-Sole A, Gil Silva AA, Stoddard JL, Niemela JE, Prader S, Dueckers G, Igel L, Niehues T, Stewart-Bates BC, Mousallem T, Fleisher TA, Rosenzweig SD, Kuehn HS. IKAROS protein stability is regulated by its early N-terminal region and C-terminal dimerization domain. Clin Immunol 2025; 274:110469. [PMID: 40024461 PMCID: PMC11929600 DOI: 10.1016/j.clim.2025.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
IKAROS, encoded by IKZF1, is a six zinc-finger (ZF) transcription factor integral to lymphocyte development and function. IKZF1 mutations affecting DNA-binding (ZF1-4) and dimerization (ZF5-6) have been extensively reported and result in human disease. Herein, we investigated IKZF1 mutations affecting protein stability. We identified ten individuals in three families carrying IKZF1 mutations mapping either to the pre-ZF1 area (D22N), or the dimerization domain (M494Vfs*86, Y503*) presenting with infections, immune dysregulation and/or lymphoproliferation with incomplete clinical penetrance. IKAROS expression was reduced in all mutation-carrier evaluated. Protein stability was decreased for D22N, V52L (another pre-ZF1 variant reported in COSMIC), Y503* and Del1-116, a laboratory-designed mutant encompassing the pre-ZF1 area. Mutants Y503* and Del1-116 also exhibited other impaired functions. IKAROS N-terminal pre-ZF1 area, encompassing a previously uncharacterized protein stability-associated region (PSAR), is crucial for IKAROS stability. Variants in the IKAROS PSAR leading to decreased protein stability and IKAROS haploinsufficiency seem sufficient to result in immune defects and IKAROS-associated diseases.
Collapse
Affiliation(s)
- Natchanun Klangkalya
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA; Department of Pediatric, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ana Esteve-Sole
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Agustin A Gil Silva
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Seraina Prader
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gregor Dueckers
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Lina Igel
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Academic Hospital of the RWTH, Aachen, Germany
| | - Benjamin C Stewart-Bates
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Talal Mousallem
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA.
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
90
|
Zhu J, Wang T, Liu X, Lu T, Zhuo J, Li X, Yu Z, Cui G, Shen H. Overexpression of LSR suppresses glioma proliferation and invasion via regulating FOXO3a. J Neurooncol 2025; 173:179-192. [PMID: 39992572 DOI: 10.1007/s11060-025-04976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE Gliomas, the most prevalent type of central nervous system tumors, currently lack effective therapeutic options. Lipolysis-stimulated lipoprotein receptors (LSR) have been implicated in tumor development and progression. This study aims to investigate the influence of LSR on gliomas and elucidate the underlying mechanisms. METHODS We analyze LSR expression in gliomas and its association with patient prognosis using bioinformatics tools. Western blotting and immunohistochemistry revealed differential expression of LSR across different grades of glioma. The effects of LSR on glioma cell proliferation and invasion are evaluated through a series of cellular assays. Subcutaneous xenografts in nude mice are utilized to assess the impact of LSR on gliomas in vivo. Additionally, western blotting is employed to detect changes in protein levels related to the FOXO3a signaling pathway following LSR overexpression. RESULTS LSR expression is higher in tissues from low-grade gliomas compared to those from glioblastomas. Patients with low LSR expression exhibit poorer prognoses. Overexpression of LSR inhibit glioma cell proliferation and invasion. The protein levels of PCNA, Cyclin D1, MMP2, and MMP9 are significantly decreased in the OE-LSR group. Tumor volume is reduced in nude mice injected subcutaneously with LSR-overexpressing glioma cells. Overexpression of LSR increases nuclear FOXO3a level while reduces p-FOXO3a and p-14-3-3 levels. Knockdown of FOXO3a reverse the inhibitory effects of LSR overexpression on glioma cell proliferation and invasion. CONCLUSION Low LSR expression is associated with adverse prognosis in glioma patients. By modulating FOXO3a, LSR overexpression suppresses glioma cell proliferation and invasion.
Collapse
Affiliation(s)
- Jinlong Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225012, P.R. China
| | - Tong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xi Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Jianwei Zhuo
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiangying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
91
|
Hu Y, He J, Ma Y, Ge L, Lou B, Fang X, Wang H, Xu Y. Arsenic and metabolic diseases: New insights from mesenchymal stem cells. Toxicol Appl Pharmacol 2025; 498:117299. [PMID: 40081540 DOI: 10.1016/j.taap.2025.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Arsenic is a common toxic metal contaminant in the environment. Humans are exposed to arsenic through drinking water, air, food, and medical treatment. Chronic exposure to arsenic is a well-documented risk factor of type 2 diabetes and a potential risk factor of osteoporosis and obesity. Mesenchymal stem cells (MSCs) are adult stem cells with multiple differentiation potential and immunomodulatory capacity. These cells have shown therapeutic potential in experimental studies of metabolic diseases by differentiating into parenchymal cells of damaged tissues, such as islet-like cells and osteoblasts, and resisting chronic inflammation. Meanwhile, when key functional genes were suppressed in MSCs, experimental animals showed metabolic disease-related changes, such as insulin resistance and obesity. Arsenic exposure inhibits the differentiation capacity of MSCs, leads to changes in the synthesis and secretion of immunomodulatory factors, and induces cellular senescence and apoptosis. Therefore, dysfunction and death of MSCs may be important pathogenesis of arsenic-related metabolic diseases. Future studies on the functional changes of MSCs in arsenic-related metabolic diseases and the role of MSCs in arsenic pathogenesis are worthwhile. In addition, the mechanism of arsenic-induced dysfunction in MSCs needs to be explored in depth.
Collapse
Affiliation(s)
- Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Jialin He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Yue Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Lili Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Bin Lou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Xin Fang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China; School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
92
|
Nazir A, Nazir A, Afzaal U, Aman S, Sadiq SUR, Akah OZ, Jamal MSW, Hassan SZ. Advancements in Biomarkers for Early Detection and Risk Stratification of Cardiovascular Diseases-A Literature Review. Health Sci Rep 2025; 8:e70878. [PMID: 40432692 PMCID: PMC12106349 DOI: 10.1002/hsr2.70878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/16/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction CVDs is a leading cause of morbidity, mortality, and healthcare expenditure worldwide. Identifying individuals at risk or in the incipient stages of disease is instrumental in enabling timely interventions, preventive measures, and tailored treatment regimens. The landscape of CVDs is complicated by their heterogeneity, encompassing a spectrum of conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. In recent years, the integration of biomarkers into cardiovascular medicine has emerged as a paradigm-shifting approach with the potential to revolutionize early detection and risk stratification. By synthesizing a multitude of studies, we aim to provide a comprehensive resource that illuminates the transformative potential of biomarkers in ushering in a new era of precision cardiovascular medicine. Aim To identify the biomarkers for the detection and diagnosis of CVDs. Materials and Methods This review examines key studies from 2015 to the present that investigate the impact of cardiac biomarkers on cardiovascular outcomes. Data were gathered from PubMed, Cochrane Library, and Embase to ensure a comprehensive analysis. The review focuses on various cardiac biomarkers, assessing their levels and changes in relation to cardiovascular health, with special emphasis on advanced biomarkers such as proteomic and metabolomic markers in cardiovascular disease (CVD) diagnosis. Peer-reviewed studies published in English that evaluated the diagnostic, prognostic, or therapeutic role of cardiac biomarkers were included, with priority given to clinical trials, cohort studies, systematic reviews, and meta-analyses providing quantitative biomarker data. Studies unrelated to cardiac biomarkers, case reports, editorials, conference abstracts, and those with small sample sizes or insufficient methodological rigor were excluded. The review also accounts for potential confounding factors and research limitations, ensuring a balanced assessment of the literature. By synthesizing data from academic papers, clinical reports, and research articles, this study provides a comprehensive evaluation of the evolving role of cardiac biomarkers in CVD diagnosis and risk stratification. Results Biomarkers play a pivotal role in cardiovascular disease risk prediction, diagnosis, and treatment by providing dynamic biological insights. High-sensitivity cardiac troponins (hs-cTn) enhance myocardial injury detection, while circulating microRNAs (miR-208, miR-499) serve as early indicators of myocardial infarction and heart failure. Lipoprotein(a) [Lp(a)] predicts long-term cardiovascular risk, and inflammatory biomarkers such as C-reactive protein (CRP) and interleukin-6 (IL-6) are linked to adverse outcomes. Multi-biomarker panels, such as hs-cTn with B-type natriuretic peptide (BNP), improve heart failure prognosis, while metabolomic profiling enables precision medicine. Additionally, biomarkers like BNP and NT-proBNP facilitate real-time therapeutic monitoring. These findings underscore the critical role of biomarkers in refining risk stratification, improving diagnostic accuracy, and enabling personalized treatment strategies in cardiovascular medicine. Conclusion The advancement of cardiovascular biomarkers has significantly enhanced early detection, risk stratification, and personalized treatment. Emerging biomarkers, including genetic variants, metabolomics, microRNAs, and imaging-based markers, provide deeper insights into disease mechanisms. Integrating multi-omic approaches with artificial intelligence may further refine predictive accuracy and therapeutic decision-making. However, clinical translation requires rigorous validation through large-scale, multicenter studies to ensure reliability and applicability across diverse populations. Standardization, cost-effectiveness assessments, and the development of biomarker panels are essential for clinical adoption. Future research should focus on bridging discovery and implementation, advancing precision medicine to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Awais Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Usama Afzaal
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Shafaq Aman
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- St John of God Midland HospitalsAustralia
| | | | | | | | - Syed Zawahir Hassan
- Division of Cardiovascular PreventionHouston Methodist DeBakey Heart & Vascular CenterHoustonUSA
| |
Collapse
|
93
|
Moradi-Sardareh H, Esmaeili F, Momtahan S, Tehrani SS, Paknejad M. A double-edged sword effect of silver nanoparticles on angiogenesis in 4T1 breast cancer-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5321-5333. [PMID: 39549061 DOI: 10.1007/s00210-024-03516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are increasingly known to have anticancer effects, but few studies have examined their adverse effects, so the underlying mechanisms are not yet fully understood. The current study investigated the critical influence of AgNPs on angiogenesis in 4T1 breast cancer-bearing mice. METHODS The sub-lethal dose of AgNPs (0.25 mg/kg) was carried out. Female BALB/c mice (N = 35) were divided into 7 groups; normal control, cancer control, AgNPs control (one dose of (0.25 mg/kg) AgNPs), single dose AgNPs before cancer, single dose AgNPs after cancer, 5 doses AgNPs after cancer, and doxorubicin. 4T1 breast cancer cell induction was performed subcutaneously on the left flank. Intraperitoneal (IP) administration of AgNPs and doxorubicin was carried out for all studied groups. RESULTS Weight gain was normal in all study groups except the doxorubicin-treated group. Administering AgNPs before cancer induction promotes tumorigenesis, raises MMP-2 and MMP-9 activity, and increases CD31 and Ki67 expression. The cancer control group experienced the same outcomes. On the other hand, depending on the administered doses, the injection of AgNPs after tumor induction resulted in a notable decrease in tumor volume. In the doxorubicin-treated group, similar results were observed, while a dose of AgNPs before cancer induction lead to increasing tumor volume compared to the cancer control group. The differences of biochemical markers including LDH, ALP, AST, ALT, BUN, and Cr between different groups were not significant. Significant differences were seen among all studied groups except doxorubicin and single dose AgNPs before cancer groups for serum TAC levels. CONCLUSIONS It appears that AgNPs are considered a double-edged sword in the fight against cancer. AgNPs not only have anti-cancer effects on tumor size and angiogenesis, but they also might have cancer-stimulating roles. To confirm this conclusion, more detailed investigations are needed.
Collapse
Affiliation(s)
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Momtahan
- Department of Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
94
|
Hernández-Villa L, Palacios-Abella A, Gómez-Mínguez Y, Costigliolo-Rojas C, Minguet EG, Alabadí D. PDRG1 is essential for early plant development as a component of the prefoldin-like complex. FEBS Lett 2025; 599:1386-1406. [PMID: 40026265 DOI: 10.1002/1873-3468.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
p53 AND DNA DAMAGE-REGULATED GENE1 (PDRG1) is part of the prefoldin-like complex (PFDLc) in plants and animals. Whether PDRG1 acts primarily as a subunit of PFDLc or as an independent subunit is not known in any eukaryote. Here, we show that impairment of PDRG1 activity in Arabidopsis thaliana leads to embryonic lethality, as is the case for the other prefoldin-like proteins UXT and AtURI. The subunits of PFDLc are the main interactors of PDRG1 in vivo, and the interactomes of PDRG1, UXT, and AtURI show strong overlaps, including subunits of nuclear RNA polymerases and various complexes of the spliceosome. Our results show that PDRG1 plays an essential role in Arabidopsis mainly as a subunit of PFDLc.
Collapse
Affiliation(s)
| | | | - Yaiza Gómez-Mínguez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | | | - Eugenio G Minguet
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
- Departament de Biologia Vegetal, Universitat de València, Burjassot, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| |
Collapse
|
95
|
Dong L, Zhang H, Kang Y, Wang F, Bai T, Yang Y. NLRP3 and Gut-Liver Axis: New Possibility for the Treatment of Alcohol-Associated Liver Disease. J Gastroenterol Hepatol 2025; 40:1070-1078. [PMID: 40091479 DOI: 10.1111/jgh.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Alcohol-associated liver disease (ALD) is one of the most prevalent chronic diseases worldwide, with persistently high morbidity and mortality rates. Previous studies have identified NLRP3 inflammasome as a class of receptors of intracellular intrinsic immunity. These receptors can be activated by both intrinsic and extracellular danger signals, leading to the release of downstream pro-inflammatory factors, including interleukin IL-1β and IL-18. These vesicles are critical for maintaining host defense. Concurrently, researchers have identified a close relationship between the microbiome, gut-liver axis, and NLRP3 inflammasome with ALD. Consequently, the present study focus on the structure and activation of the NLRP3 inflammasome, the gut-liver axis, and intestinal microecological regulation, as well as the relationship between bile acid metabolism and the gut-liver axis. The objective of this study is to provide a foundation of knowledge and references for the development of targeted therapeutic interventions of ALD that are informed by the dynamic interplay between the NLRP3 inflammasome and the gut-liver axis.
Collapse
Affiliation(s)
- Lu Dong
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Haotian Zhang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Yanyu Kang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Fei Wang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Ting Bai
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| | - Yong Yang
- Dalian key Laboratory of Chronic Disease Research Center, Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
96
|
Zhang Q, Liao J, Liu Z, Song S, Tian L, Wang Y. The immune tolerance role of Bregs in inhibiting human inflammatory diseases, with a focus on diabetes mellitus. Front Immunol 2025; 16:1565158. [PMID: 40370441 PMCID: PMC12074967 DOI: 10.3389/fimmu.2025.1565158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Regulatory B cells (Bregs) are pivotal modulators of immune tolerance, suppressing inflammation through cytokine secretion and cellular interactions. Their role is particularly significant in inflammatory diseases such as type 1 and type 2 diabetes mellitus (T1DM and T2DM), where immune dysregulation contributes to disease progression. In T1DM, Bregs mitigate β-cell autoimmunity via IL-10 production and FOXP3-mediated pathways, but genetic mutations and dysfunctions in these mechanisms exacerbate autoimmunity. In T2DM, chronic inflammation and metabolic stress impair Breg numbers and function, further fueling insulin resistance. While Bregs play a central role in T1DM by directly preventing β-cell destruction, their role in T2DM is more supportive, modulating inflammation in metabolically stressed tissues. Emerging therapeutic strategies aim to enhance Breg function through IL-10 induction, ex vivo expansion, or targeting Breg-specific pathways using gene-editing and small molecules. Future research should explore Breg heterogeneity, novel markers, and personalized therapies to unlock their full potential. Understanding and leveraging the immune tolerance role of Bregs may offer transformative strategies to inhibit inflammatory diseases like diabetes mellitus.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Pathology Department, University of Texas, MD Anderson Cancer Center, Texas, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Limin Tian
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
97
|
Zhou C, Chen H, Wu X, Dong H, Feng S, Tie Y, Zhao Z, Si L. Mechanism of GBE Combined with TP on the Effect of AMPK/SREBP-1C/ACC Pathway on Lipid Metabolism in Heat-Stressed Broiler Liver. Vet Sci 2025; 12:424. [PMID: 40431517 PMCID: PMC12115693 DOI: 10.3390/vetsci12050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The liver accounts for almost 95% of lipid metabolism in broilers and serves as a crucial metabolic organ. Stress, which occurs when broilers are exposed to a heated environment, inhibits liver metabolism, significantly impacting their growth. This experiment investigated the combination of GBE with TP to improve hepatic lipid metabolism in heat-stressed broiler chickens by inhibiting the AMPK/SREBP-1C/ACC pathway. Three hundred broilers were reared usually until 21 days and randomly divided into six groups, namely CON group, HS group, TP group (300 mg/kg), GBE100 group (GBE100 mg/kg + TP300 mg/kg), GBE300 group (GBE 300 mg/kg + TP 300 mg/kg), GBE600 (600 mg/kg + TP 300 mg/kg) groups, where the CON group was kept at 23 °C, and the HS group and the TP, GBE100, GBE300, and GBE600 groups of each medication group were kept at 35 ± 2 °C for 10 h per day. Liver and serum samples were extracted at 28 and 42 days of age, respectively. The results showed that, at 42 days of age, the GBE600 group exhibited significantly superior performance to the HS group in ADG, ADFI, and F/G (p < 0.01). Serum TG, TC, and LDL-C levels were significantly lower (p < 0.01), while HDL-C levels were significantly higher (p < 0.05). Additionally, the mRNA expression levels of LKB1, AMPK, SREBP-1C, and ACC were markedly reduced (p < 0.01). In contrast, the mRNA expression of HSL and CPT1A was significantly elevated (p < 0.01), indicating that the GBE600 was more effective in mitigating heat stress in broiler chickens at 42 days of age. It showed that the GBE600 was more effective in ameliorating heat stress in broilers at 42 days of age, thus providing an ethical basis for ameliorating the flocculation of hepatic lipid metabolism in heat-stressed broilers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lifang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
98
|
Zhang Z, Li J, Willis D, Shi S, Tu H, Costa M. Isorhapontigenin Inhibits Cell Growth, Angiogenesis, Migration, and Invasion of Non-Small-Cell Lung Cancer Cells Through NEDD9 Signaling. Int J Mol Sci 2025; 26:4207. [PMID: 40362444 PMCID: PMC12071804 DOI: 10.3390/ijms26094207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Lung cancer is the leading cause of cancer deaths among American men, even though various treatments are available. The discovery and use of new alternative drugs to treat lung cancers are needed to reduce lung cancer mortality. Phytochemicals are potentially desirable therapeutic agents due to their better safety profiles. Isorhapontigenin (ISO) is an orally bioavailable dietary stilbene. Our studies show that treatment with ISO inhibits human lung cancer cell growth, angiogenesis, invasion, and migration. Neural precursor cell expressed developmentally downregulated 9 (NEDD9), a multi-domain scaffolding protein, regulates various processes crucial for tumorigenesis and metastasis. Our results show that NEDD9 is upregulated in the lung tissues from human lung adenocarcinomas (LUADs) and squamous-cell carcinomas (LUSCs) compared to normal lungs. Overexpression of NEDD9 elevates the invasion and migration of human lung cancer cells. Treatment of human lung cancer cells with ISO decreases NEDD9 protein levels. Our studies have also demonstrated that NEDD9 positively regulates angiogenesis, an essential factor in cancer progression. ISO treatment reduces angiogenesis. Moreover, ISO reduces the protein levels of hypoxia-inducible factor-1α (HIF-1α), a transcription factor critical for angiogenesis. Aberrant high expression of β-Catenin leads to various diseases including cancer. Our results show that ISO treatment reduces the activation of β-Catenin through the downregulation of NEDD9. Studies indicate that ISO decreases NEDD9, causing the suppression of cell growth, angiogenesis, invasion, and migration of human lung cancer cells. ISO is a potent therapeutic agent for lung cancer treatment.
Collapse
MESH Headings
- Humans
- Cell Movement/drug effects
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Cell Proliferation/drug effects
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Stilbenes/pharmacology
- Signal Transduction/drug effects
- Cell Line, Tumor
- Neoplasm Invasiveness
- Phosphoproteins/metabolism
- Phosphoproteins/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Angiogenesis
Collapse
Affiliation(s)
| | | | | | | | | | - Max Costa
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, 341 E 25th Street, New York, NY 10010, USA
| |
Collapse
|
99
|
Lindsey B, Shaul Y, Martin J. Salivary biomarkers of tactical athlete readiness: A systematic review. PLoS One 2025; 20:e0321223. [PMID: 40299918 PMCID: PMC12040155 DOI: 10.1371/journal.pone.0321223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 05/01/2025] Open
Abstract
Tactical athletes must maintain high levels of physical and cognitive readiness to handle the rigorous demands of their roles. They frequently encounter acute stressors like sleep deprivation, muscle fatigue, dehydration, and harsh environmental conditions, which can impair their readiness and increase the risk of mission failure. Given the challenging conditions these athletes face, there is a vital need for non-invasive, rapidly deployable point-of-care assessments to effectively measure the impact of these stressors on their operational readiness. Salivary biomarkers are promising in this regard, as they reflect physiological changes due to stress. This systematic review aims to investigate salivary markers as potential indicators for readiness, specifically focusing on their sensitivity to acute stressors like sleep deprivation, dehydration, environmental factors, and muscle fatigue. A search was conducted using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (PROSPERO; registration #: CRD42022370388). The primary inclusion criteria were the use of a quantitative analysis to assess salivary biomarkers changes in response to acute stressors. Risk of bias and methodological quality were evaluated with the modified Downs and Black checklist. Hormonal salivary biomarkers were the most commonly studied biomarkers. Muscle damage and fatigue were the most frequently studied acute stressors, followed by sleep deprivation, multiple stressors, dehydration, and environmental. Biomarkers such as creatine kinase, aspartate aminotransferase, uric acid, cortisol, testosterone, and the testosterone to cortisol ratio were indicative of muscle damage. Dehydration influenced osmolality, total protein, flow rate, and chloride ion concentrations. Sleep deprivation affected proteins, peptides, and alpha-amylase levels. Environmental stressors, such as hypoxia and cold temperatures, altered cortisol, pH, dehydroepiandrosterone-sulfate (DHEA-s), and salivary IgA levels. The current body of research highlights that various salivary biomarkers react to acute stressors, and proteomic panels appear promising for predicting physical and cognitive outcomes relevant to the operational readiness of tactical athletes.
Collapse
Affiliation(s)
- Bryndan Lindsey
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, United States of America
| | - Yosef Shaul
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, United States of America
| | - Joel Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, United States of America
- Center for the Advancement of Well-Being, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
100
|
Jinzhong Wang MS, Jian Fu MS. STAT3/FoxO3a/Sirt1 pathway inhibition by ginsenoside Rc ameliorates cardiomyocyte damage in septic cardiomyopathy by altering macrophage polarization. J Mol Histol 2025; 56:148. [PMID: 40293549 DOI: 10.1007/s10735-025-10417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
This study explored the role and mechanism of action of ginsenoside Rc in treating septic cardiomyopathy. Ginsenoside Rc mitigated LPS-induced oxidative stress, inflammation, apoptosis, and mitochondrial dysfunction in cardiomyocytes and inhibited M1 polarization in macrophages. Ginsenoside Rc reduced the stimulating effect of M1-polarized macrophages on LPS-induced cardiomyocyte injury. Network pharmacological analysis suggested that ginsenoside Rc may play a role in septic cardiomyopathy through modulation of the STAT3/FoxO3a/Sirt1 pathway, which was validated in in vitro experiments. Ginsenoside Rc suppressed the expression of STAT3/FoxO3a pathway proteins and upregulated Sirt1. Moreover, influences of ginsenoside Rc on LPS-induced cardiomyocyte injury and macrophage polarization were abolished by ML115, a STAT3 agonist. In vivo, ginsenoside Rc notably improved myocardial injury and attenuated macrophage activation and inflammation in septic mice. Collectively, Ginsenoside Rc can ameliorate septic cardiomyopathy by modulating the STAT3/FoxO3a/Sirt1 pathway and altering macrophage polarization.
Collapse
Affiliation(s)
- M S Jinzhong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 48. Baishuitang Road, Haikou City, Hainan province, 570311, China.
| | - M S Jian Fu
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, Hainan, 570311, China
| |
Collapse
|