51
|
Faconti L, Kulkarni S, Delles C, Kapil V, Lewis P, Glover M, MacDonald TM, Wilkinson IB. Diagnosis and management of primary hyperaldosteronism in patients with hypertension: a practical approach endorsed by the British and Irish Hypertension Society. J Hum Hypertens 2024; 38:8-18. [PMID: 37964158 PMCID: PMC10803267 DOI: 10.1038/s41371-023-00875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Alongside the lack of homogeneity among international guidelines and consensus documents on primary hyperaldosteronism, the National UK guidelines on hypertension do not provide extensive recommendations regarding the diagnosis and management of this condition. Local guidelines vary from area to area, and this is reflected in the current clinical practice in the UK. In an attempt to provide support to the clinicians involved in the screening of subjects with hypertension and clinical management of suspected cases of primary hyperaldosteronism the following document has been prepared on the behalf of the BIHS Guidelines and Information Service Standing Committee. Through remote video conferences, the authors of this document reviewed an initial draft which was then circulated among the BIHS Executive members for feedback. A survey among members of the BIHS was carried out in 2022 to assess screening strategies and clinical management of primary hyperaldosteronism in the different regions of the UK. Feedback and results of the survey were then discussed and incorporated in the final document which was approved by the panel after consensus was achieved considering critical review of existing literature and expert opinions. Grading of recommendations was not performed in light of the limited available data from properly designed randomized controlled trials.
Collapse
Affiliation(s)
- Luca Faconti
- King's College London British Heart Foundation Centre, Department of Clinical Pharmacology, 4th Floor, North Wing, St. Thomas' Hospital, Westminster Bridge, London, SE17EH, UK.
| | - Spoorthy Kulkarni
- Cambridge University hospitals NHS foundation trust, Cambridge United Kingdom (S.K.), Cambridge, UK
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, G12 8TA, UK
| | - Vikas Kapil
- William Harvey Research Institute, Centre for Cardiovascular Medicine and Devices, Queen Mary University London, London, EC1M 6BQ, UK
- Barts BP Centre of Excellence, Barts Heart Centre, London, EC1A 7BE, UK
| | - Philip Lewis
- Department of Cardiology, Stockport NHS Foundation Trust, Stockport, UK
| | - Mark Glover
- Deceased, formerly Division of Therapeutics and Molecular Medicine, School of Medicine, University of Nottingham, Nottingham, UK
| | - Thomas M MacDonald
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Ian B Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
52
|
Campbell AN, Choi WJ, Chi ES, Orun AR, Poland JC, Stivison EA, Kubina JN, Hudson KL, Loi MNC, Bhatia JN, Gilligan JW, Quintanà AA, Blind RD. Steroidogenic Factor-1 form and function: From phospholipids to physiology. Adv Biol Regul 2024; 91:100991. [PMID: 37802761 PMCID: PMC10922105 DOI: 10.1016/j.jbior.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Steroidogenic Factor-1 (SF-1, NR5A1) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors, consisting of a DNA-binding domain (DBD) connected to a transcriptional regulatory ligand binding domain (LBD) via an unstructured hinge domain. SF-1 is a master regulator of development and adult function along the hypothalamic pituitary adrenal and gonadal axes, with strong pathophysiological association with endometriosis and adrenocortical carcinoma. SF-1 was shown to bind and be regulated by phospholipids, one of the most interesting aspects of SF-1 regulation is the manner in which SF-1 interacts with phospholipids: SF-1 buries the phospholipid acyl chains deep in the hydrophobic core of the SF-1 protein, while the lipid headgroups remain solvent-exposed on the exterior of the SF-1 protein surface. Here, we have reviewed several aspects of SF-1 structure, function and physiology, touching on other transcription factors that help regulate SF-1 target genes, non-canonical functions of SF-1, the DNA-binding properties of SF-1, the use of mass spectrometry to identify lipids that associate with SF-1, how protein phosphorylation regulates SF-1 and the structural biology of the phospholipid-ligand binding domain. Together this review summarizes the form and function of Steroidogenic Factor-1 in physiology and in human disease, with particular emphasis on adrenal cancer.
Collapse
Affiliation(s)
- Alexis N Campbell
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Woong Jae Choi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ethan S Chi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Abigail R Orun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James C Poland
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Elizabeth A Stivison
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jakub N Kubina
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kimora L Hudson
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mong Na Claire Loi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jay N Bhatia
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Joseph W Gilligan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Adrian A Quintanà
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Raymond D Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
53
|
Papadopetraki A, Giannopoulos A, Maridaki M, Zagouri F, Droufakou S, Koutsilieris M, Philippou A. The Role of Exercise in Cancer-Related Sarcopenia and Sarcopenic Obesity. Cancers (Basel) 2023; 15:5856. [PMID: 38136400 PMCID: PMC10741686 DOI: 10.3390/cancers15245856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
One of the most common adverse effects of cancer and its therapeutic strategies is sarcopenia, a condition which is characterised by excess muscle wasting and muscle strength loss due to the disrupted muscle homeostasis. Moreover, cancer-related sarcopenia may be combined with the increased deposition of fat mass, a syndrome called cancer-associated sarcopenic obesity. Both clinical conditions have significant clinical importance and can predict disease progression and survival. A growing body of evidence supports the claim that physical exercise is a safe and effective complementary therapy for oncology patients which can limit the cancer- and its treatment-related muscle catabolism and promote the maintenance of muscle mass. Moreover, even after the onset of sarcopenia, exercise interventions can counterbalance the muscle mass loss and improve the clinical appearance and quality of life of cancer patients. The aim of this narrative review was to describe the various pathophysiological mechanisms, such as protein synthesis, mitochondrial function, inflammatory response, and the hypothalamic-pituitary-adrenal axis, which are regulated by exercise and contribute to the management of sarcopenia and sarcopenic obesity. Moreover, myokines, factors produced by and released from exercising muscles, are being discussed as they appear to play an important role in mediating the beneficial effects of exercise against sarcopenia.
Collapse
Affiliation(s)
- Argyro Papadopetraki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Antonios Giannopoulos
- Section of Sports Medicine, Department of Community Medicine & Rehabilitation, Umeå University, 901 87 Umeå, Sweden;
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Dafne, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.)
| |
Collapse
|
54
|
Lalli E. A reappraisal of transcriptional regulation by NR5A1 and beta-catenin in adrenocortical carcinoma. Front Endocrinol (Lausanne) 2023; 14:1303332. [PMID: 38155952 PMCID: PMC10753177 DOI: 10.3389/fendo.2023.1303332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Background Overexpression of the transcription factor NR5A1 and constitutive activation of canonical Wnt signalling leading to nuclear translocation of beta-catenin are hallmarks of malignancy in adrenocortical carcinoma (ACC). Based on the analysis of genomic profiles in H295R ACC cells, Mohan et al. (Cancer Res. 2023; 83: 2123-2141) recently suggested that a major determinant driving proliferation and differentiation in malignant ACC is the interaction of NR5A1 and beta-catenin on chromatin to regulate gene expression. Methods I reanalyzed the same set of data generated by Mohan et al. and other published data of knockdown-validated NR5A1 and beta-catenin target genes. Results Beta-catenin is mainly found in association to canonical T cell factor/lymphoid enhancer factor (TCF/LEF) motifs in genomic DNA. NR5A1 and beta-catenin regulate distinct target gene sets in ACC cells. Conclusion Overall, my analysis suggests a model where NR5A1 overexpression and beta-catenin activation principally act independently, rather than functionally interacting, to drive ACC malignancy.
Collapse
Affiliation(s)
- Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Université Côte d’Azur, Valbonne, France
- Inserm, Valbonne, France
| |
Collapse
|
55
|
Ghosh C, Hu J, Kebebew E. Advances in translational research of the rare cancer type adrenocortical carcinoma. Nat Rev Cancer 2023; 23:805-824. [PMID: 37857840 DOI: 10.1038/s41568-023-00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
Collapse
Affiliation(s)
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
56
|
Gao H, Li L, Chen F, Ren Y, Chen T, Tian H. Bilateral co-secretory lesions presenting with coexisting Cushing syndrome and primary aldosteronism: a case report. BMC Endocr Disord 2023; 23:263. [PMID: 38017509 PMCID: PMC10685549 DOI: 10.1186/s12902-023-01454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/24/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND There is an increasing number of cases of aldosterone- and cortisol-producing adenomas (A/CPAs) reported in the context of primary aldosteronism (PA). Most of these patients have PA complicated with subclinical Cushing's syndrome; cases of apparent Cushing's syndrome (CS) complicated with aldosteronism are less reported. However, Co-secretory tumors were present in the right adrenal gland, a cortisol-secreting adenoma and an aldosterone-producing nodule (APN) were present in the left adrenal gland, and aldosterone-producing micronodules (APMs) were present in both adrenal glands, which has not been reported. Here, we report such a case, offering profound insight into the diversity of clinical and pathological features of this disease. CASE PRESENTATION The case was a 45-year-old female from the adrenal disease diagnosis and treatment centre in West China Hospital of Sichuan University. The patient presented with hypertension, moon-shaped face, central obesity, fat accumulation on the back of the neck, disappearance of cortisol circadian rhythm, ACTH < 5 ng/L, failed elevated cortisol inhibition by dexamethasone, orthostatic aldosterone/renin activity > 30 (ng/dL)/(ng/mL/h), and plasma aldosterone concentration > 10 ng/dL after saline infusion testing. Based on the above, she was diagnosed with non-ACTH-dependent CS complicated with PA. Adrenal vein sampling showed no lateralization for cortisol and aldosterone secretion in the bilateral adrenal glands. The left adrenocortical adenoma was removed by robot-assisted laparoscopic resection. However, hypertension, fatigue and weight gain were not alleviated after surgery; additionally, purple striae appeared in the lower abdomen, groin area and inner thigh, accompanied by systemic joint pain. One month later, the right adrenocortical adenoma was also removed. CYP11B1 were expressed in the bilateral adrenocortical adenomas, and CYP11B2 was also expressed in the right adrenocortical adenomas. APN existed in the left adrenal gland and APMs in the adrenal cortex adjacent to bilateral adrenocortical adenomas. After another surgery, her serum cortisol and plasma aldosterone returned to normal ranges, except for slightly higher ACTH. CONCLUSIONS This case suggests that it is necessary to assess the presence of PA, even in CS with apparent symptoms. As patients with CS and PA may have more complicated adrenal lesions, more data are required for diagnosis.
Collapse
Affiliation(s)
- Hongjiao Gao
- Department of Endocrinology and Metabolism, Adrenal Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, Adrenal Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Chen
- Department of Endocrinology and Metabolism, Adrenal Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Haoming Tian
- Department of Endocrinology and Metabolism, Adrenal Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
57
|
Zagojska E, Malka M, Gorecka A, Ben-Skowronek I. Case Report: Adrenocortical carcinoma in children-symptoms, diagnosis, and treatment. Front Endocrinol (Lausanne) 2023; 14:1216501. [PMID: 38075063 PMCID: PMC10702754 DOI: 10.3389/fendo.2023.1216501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Adrenocortical carcinomas are extremely rare in the paediatric population. Most of them are hormone-secretive lesions; therefore, they should be taken into consideration in a child with signs of precocious puberty and/or Cushing's syndrome symptoms. Nonetheless, differentiation from benign adrenal tumours is necessary. We report a rare case of adrenocortical carcinoma in a girl and a literature review using the PubMed database. A four-year-old girl presented with rapidly progressing precocious puberty and signs of Cushing's syndrome. Imaging of the abdomen revealed a large heterogeneous solid mass. Histopathologic evaluation confirmed adrenocortical carcinoma with high mitotic activity, atypical mitoses, pleomorphism, necrosis, and vascular invasion. After tumourectomy, a decrease of previously elevated hormonal blood parameters was observed. Genetic tests confirmed Li Fraumeni syndrome. Adrenocortical carcinoma should be suspected in children with premature pubarche and signs of Cushing's syndrome. Diagnosis must be based on clinical presentation, hormonal tests, imaging, and histopathological evaluation. Complete surgical resection of the tumour is the gold standard. Oncological treatment in children is not yet well-studied and should be individually considered, especially in advanced, inoperable carcinomas with metastases. Genetic investigations are useful for determining the prognosis in patients and their siblings.
Collapse
Affiliation(s)
| | | | | | - Iwona Ben-Skowronek
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
58
|
Elkhawaga SY, Elshafei A, Elkady MA, Yehia AM, Abulsoud AI, Abdelmaksoud NM, Elsakka EGE, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, Abdel-Reheim MA, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Shahin RK, Zaki MB, Doghish AS. Possible role of miRNAs in pheochromocytoma pathology - Signaling pathways interaction. Pathol Res Pract 2023; 251:154856. [PMID: 37806171 DOI: 10.1016/j.prp.2023.154856] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Pheochromocytoma (PCC) is a type of neuroendocrine tumor that originates from adrenal medulla or extra-adrenal chromaffin cells and results in the production of catecholamine. Paroxysmal hypertension and cardiovascular crises were among the clinical signs experienced by people with PCC. Five-year survival of advanced-stage PCC is just around 40% despite the identification of various molecular-level fundamentals implicated in these pathogenic pathways. MicroRNAs (miRNAs, miRs) are a type of short, non-coding RNA (ncRNA) that attach to the 3'-UTR of a target mRNA, causing translational inhibition or mRNA degradation. Evidence is mounting that miRNA dysregulation plays a role in the development, progression, and treatment of cancers like PCC. Hence, this study employs a comprehensive and expedited survey to elucidate the potential role of miRNAs in the development of PCC, surpassing their association with survival rates and treatment options in this particular malignancy.
Collapse
Affiliation(s)
- Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr 11231, Cairo, Egypt.
| |
Collapse
|
59
|
Hassani B, Attar Z, Firouzabadi N. The renin-angiotensin-aldosterone system (RAAS) signaling pathways and cancer: foes versus allies. Cancer Cell Int 2023; 23:254. [PMID: 37891636 PMCID: PMC10604988 DOI: 10.1186/s12935-023-03080-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS), is an old system with new fundamental roles in cancer biology which influences cell growth, migration, death, and metastasis. RAAS signaling enhances cell proliferation in malignancy directly and indirectly by affecting tumor cells and modulating angiogenesis. Cancer development may be influenced by the balance between the ACE/Ang II/AT1R and the ACE2/Ang 1-7/Mas receptor pathways. The interactions between Ang II/AT1R and Ang I/AT2R as well as Ang1-7/Mas and alamandine/MrgD receptors in the RAAS pathway can significantly impact the development of cancer. Ang I/AT2R, Ang1-7/Mas, and alamandine/MrgD interactions can have anticancer effects while Ang II/AT1R interactions can be involved in the development of cancer. Evidence suggests that inhibitors of the RAAS, which are conventionally used to treat cardiovascular diseases, may be beneficial in cancer therapies.Herein, we aim to provide a thorough description of the elements of RAAS and their molecular play in cancer. Alongside this, the role of RAAS components in sex-dependent cancers as well as GI cancers will be discussed with the hope of enlightening new venues for adjuvant cancer treatment.
Collapse
Affiliation(s)
- Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
60
|
He Z, Zhang J, Chen Y, Ai C, Gong X, Xu D, Wang H. Transgenerational inheritance of adrenal steroidogenesis inhibition induced by prenatal dexamethasone exposure and its intrauterine mechanism. Cell Commun Signal 2023; 21:294. [PMID: 37853416 PMCID: PMC10585925 DOI: 10.1186/s12964-023-01303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Adrenal gland is the synthesis and secretion organ of glucocorticoid, which is crucial to fetal development and postnatal fate. Recently, we found that prenatal dexamethasone exposure (PDE) could cause adrenal dysfunction in offspring rats, but its multigenerational genetic effects and related mechanisms have not been reported. METHODS The PDE rat model was established, and female filial generation 1 (F1) rats mate with wild males to produce the F2, the same way for the F3. Three generation rats were sacrificed for the related detection. SW-13 cells were used to clarify the epigenetic molecular mechanism. RESULTS This study confirmed that PDE could activate fetal adrenal glucocorticoid receptor (GR). The activated GR, on the one hand, up-regulated Let-7b (in human cells) to inhibit steroidogenic acute regulatory protein (StAR) expression directly; on the other hand, down-regulated CCCTC binding factor (CTCF) and up-regulated DNA methyltransferase 3a/3b (Dnmt3a/3b), resulting in H19 hypermethylation and low expression. The decreased interaction of H19 and let-7 can further inhibit adrenal steroidogenesis. Additionally, oocytes transmitted the expression change of H19/let-7c axis to the next generation rats. Due to its genetic stability, F2 generation oocytes indirectly exposed to dexamethasone also inhibited H19 expression, which could be inherited to the F3 generation. CONCLUSIONS This cascade effect of CTCF/H19/Let-7c ultimately resulted in the transgenerational inheritance of adrenal steroidogenesis inhibition of PDE offspring. This study deepens the understanding of the intrauterine origin of adrenal developmental toxicity, and it will provide evidence for the systematic analysis of the transgenerational inheritance effect of acquired traits induced by PDE. Video Abstract.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Xiaohan Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
61
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
62
|
Kim JH, Choi Y, Hwang S, Yoon JH, Kim GH, Yoo HW, Choi JH. Clinical Characteristics and Long-Term Outcomes of Adrenal Tumors in Children and Adolescents. Exp Clin Endocrinol Diabetes 2023; 131:515-522. [PMID: 37437600 DOI: 10.1055/a-2127-9292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Adrenal tumors are generally rare in children and can be a part of familial cancer syndrome. This research was conducted to examine the clinical outcomes, histopathological results, and genetic etiologies of adrenal tumors in children and adolescents. METHODS Thirty-one children and adolescents with adrenal tumors were included. Data on clinical outcomes and endocrine and radiologic results were retrospectively analyzed. Molecular analysis was conducted in select patients according to their phenotype and family history. RESULTS The median age at diagnosis was 7.9 years (range: 0.8-17.8 years) with 5.1±1.8 cm of maximum tumor diameter. Adrenal adenoma (n=7), carcinoma (n=5), borderline (n=2), isolated micronodular adrenocortical disease (n=2), pheochromocytoma (n=8), paraganglioma (n=3), and ganglioneuroma (n=4) are all pathological diagnoses. The most common presenting symptom was excess production of adrenocortical hormones (n=15), including virilization and Cushing syndrome. Non-functioning adrenocortical tumors were found in a patient with congenital adrenal hyperplasia. Genetic etiologies were identified in TP53 (n=5), VHL (n=4), and PRKACA (n=1). Patients with mutations in TP53 were young (1.5±0.5 years) and had large masses (6.1±2.3 cm). CONCLUSIONS This study describes clinical outcomes and the pathological spectrum of adrenal tumors in children and adolescents. Adrenocortical tumors mostly presented with an excess of the adrenocortical hormone. Patients with genetic defects presented at a young age and large size of tumors, necessitating genetic testing in patients at a young age.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yunha Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hee Yoon
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
63
|
Schneider G, Ruggiero C, Renault L, Doghman-Bouguerra M, Durand N, Hingrai G, Dijoud F, Plotton I, Lalli E. ACTH and prolactin synergistically and selectively regulate CYP17 expression and adrenal androgen production in human foetal adrenal organ cultures. Eur J Endocrinol 2023; 189:327-335. [PMID: 37638769 DOI: 10.1093/ejendo/lvad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE The essential role of ACTH on the growth and function of the human foetal adrenal (HFA) has long been recognized. In addition, many studies have suggested a role of the pituitary hormone prolactin (PRL) in the regulation of the HFA, but the effects of this hormone on steroidogenesis and gene expression are still unknown. Our objective was to investigate the effect of ACTH and PRL on the steroidogenic capacities of the HFA. DESIGN In vitro/ex vivo experimental study. METHODS We used a hanging drop in vitro organ culture system. First trimester HFA samples were cultured for 14 days in basal conditions or treated with ACTH, PRL, or a combination of the 2 (3 to 11 replicates depending on the experiment). Steroids were measured by liquid chromatography/tandem mass spectrometry or immunoassay, gene expression by RT-qPCR, and protein expression by immunoblot. RESULTS ACTH significantly increased corticosterone, cortisol, and cortisone production, both by itself and when used together with PRL. PRL stimulation by itself had no effect. Combined stimulation with ACTH + PRL synergistically and selectively increased adrenal androgen (DHEAS and Δ4-androstenedione) production and CYP17A1 expression in the HFA, while treatment with each single hormone had no significant effect on those steroids. CONCLUSIONS These results have important implications for our understanding of the hormonal cues regulating adrenal steroidogenesis in the HFA during the first trimester in physiological and pathological conditions and warrant further studies to characterize the molecular mechanisms of converging ACTH and PRL signalling to regulate CYP17A1 expression.
Collapse
Affiliation(s)
- Grégoire Schneider
- Department of Pediatric Surgery, University Hospital of Lyon, 69002 Lyon, France
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
| | - Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Lucie Renault
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Reproductive Medicine and Biology, University Hospital of Lyon, 69002 Lyon, France
| | - Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
| | - Guillaume Hingrai
- Orthogenics Department, University Hospital of Lyon, 69002 Lyon, France
| | - Frédérique Dijoud
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Inserm U1208, 69675 Bron, France
- Department of Pathology, University Hospital of Lyon, 69002 Lyon, France
| | - Ingrid Plotton
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Reproductive Medicine and Biology, University Hospital of Lyon, 69002 Lyon, France
- Inserm U1208, 69675 Bron, France
- Department of Clinical Biochemistry, University Hospital of Lyon, 69002 Lyon, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560 Valbonne, France
- Université Côte d'Azur, 06560 Valbonne, France
- Inserm, 06560 Valbonne, France
| |
Collapse
|
64
|
Gebrie A. The melanocortin receptor signaling system and its role in neuroprotection against neurodegeneration: Therapeutic insights. Ann N Y Acad Sci 2023; 1527:30-41. [PMID: 37526975 DOI: 10.1111/nyas.15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The melanocortin signaling system consists of the melanocortin peptides, their distinctive receptors, accessory proteins, and endogenous antagonists. Melanocortin peptides are small peptide hormones that have been studied in a variety of physiological and pathological conditions. There are five types of melanocortin receptors, and they are distributed within the central nervous system and in several tissues of the periphery. The G protein-coupled melanocortin receptors typically signal through adenylyl cyclase and other downstream signaling pathways. Depending on the ligand, surface expression of melanocortin receptor, receptor occupancy period, related proteins, the type of cell, and other parameters, the signaling pathways are complicated and pleiotropic. While it is known that all five melanocortin receptors are coupled to Gs, they can also occasionally couple to Gq or Gi. Both direct and indirect neuroprotection are induced by the melanocortin signaling system. Targeting several of the components of the melanocortin signaling system (ligands, receptors, accessory proteins, signaling effectors, and regulators) may provide therapeutic opportunities. Activation of the melanocortin system improves different functional traits in neurodegenerative diseases. There is a potential for additional melanocortin system interventions by interfering with dimerization or dissociation. This review aims to discuss the melanocortin receptor signaling system and its role in neuroprotection, as well as its therapeutic potential.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
65
|
Chen Y, Tao Y, Hu K, Lu J. GRP78 inhibitor HA15 increases the effect of Bortezomib on eradicating multiple myeloma cells through triggering endoplasmic reticulum stress. Heliyon 2023; 9:e19806. [PMID: 37809599 PMCID: PMC10559159 DOI: 10.1016/j.heliyon.2023.e19806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Bortezomib (BTZ), a selective proteasome inhibitor, exhibits a significant efficacy in the therapy of multiple myeloma (MM) partly through triggering endoplasmic reticulum (ER) stress-dependent apoptosis. However, sensitivity to BTZ varies greatly among patients. ER stress functions as a double-edged sword in regulating cell survival depending on cell context and ER stress extent. The major aim of this study was to investigate whether GRP78 inhibitor, HA15, increased the therapeutic effect of BTZ on MM to through further increasing ER stress and shifting the balance towards cell apoptosis. The biological role of BTZ and HA15 was assessed using Cell counting kit- (CCK-) 8, colony formation, and Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labelling (TUNEL) assay. We found that BTZ combined with HA15 remarkably decreased MM cell viability more effective than BTZ monotherapy, though low dose of HA15 did not exhibit a significant cytotoxicity to MM cells. BTZ combined with HA15 also repressed colony formation ability of MM cell and accelerated MM cell apoptosis compared with BTZ monotherapy. Mechanistically, HA15 synergized with BTZ to trigger ER stress, as evidence by significantly increased expression of ER stress markers (GRP78, ATF4, CHOP, and XBP1). Importantly, unfolded protein response (UPR) inhibitor significantly damaged the effect of BTZ combined with HA15 on accelerating MM cell death. In vivo, combination treatment with BTZ and HA15 inhibited tumor growth more effective than BTZ alone, whereas these effects were blocked by UPR inhibitor. Taken together, these results demonstrate that ER stress is a critical pathway in regulating MM cell survival, and that combination treatment with BTZ and HA15 may be an effective strategy to treat MM patients that fail to respond to BTZ monotherapy.
Collapse
Affiliation(s)
- Yirong Chen
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuchen Tao
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kexin Hu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jiahui Lu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
66
|
Monageng E, Offor U, Takalani NB, Mohlala K, Opuwari CS. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants (Basel) 2023; 12:1559. [PMID: 37627554 PMCID: PMC10451682 DOI: 10.3390/antiox12081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Leydig cells are essential for steroidogenesis and spermatogenesis. An imbalance in the production of reactive oxygen species (ROS) and the cellular antioxidant level brings about oxidative stress. Oxidative stress (OS) results in the dysfunction of Leydig cells, thereby impairing steroidogenesis, spermatogenesis, and ultimately, male infertility. To prevent Leydig cells from oxidative insults, there needs to be a balance between the ROS production and the cellular protective capacity of antioxidants. Evidence indicates that medicinal plants could improve Leydig cell function at specific concentrations under basal or OS conditions. The increased usage of medicinal plants has been considered a possible alternative treatment for male infertility. This review aims to provide an overview of the impact of oxidative stress on Leydig cells as well as the effects of various medicinal plant extracts on TM3 Leydig cells. The medicinal plants of interest include Aspalathus linearis, Camellia sinensis, Moringa oleifera, Morinda officinale, Taraxacum officinale, Trichilia emetica, Terminalia sambesiaca, Peltophorum africanum, Ximenia caffra, Serenoa repens, Zingiber officinale, Eugenia jambolana, and a combination of dandelion and fermented rooibos (CRS-10). According to the findings obtained from studies conducted on the evaluated medicinal plants, it can, therefore, be concluded that the medicinal plants maintain the antioxidant profile of Leydig cells under basal conditions and have protective or restorative effects following exposure to oxidative stress. The available data suggest that the protective role exhibited by the evaluated plants may be attributed to their antioxidant content. Additionally, the use of the optimal dosage or concentration of the extracts in the management of oxidative stress is of the utmost importance, and the measurement of their oxidation reduction potential is recommended.
Collapse
Affiliation(s)
- Elizabeth Monageng
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Ugochukwu Offor
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Ndivhuho Beauty Takalani
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Kutullo Mohlala
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Chinyerum Sylvia Opuwari
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
67
|
El-Dakroury WA, Midan HM, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, Hashem AH, Moustafa YM, Doghish AS. miRNAs orchestration of adrenocortical carcinoma - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154665. [PMID: 37418996 DOI: 10.1016/j.prp.2023.154665] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Adrenocortical carcinoma (ACC) is an uncommon aggressive endocrine malignancy that is nonetheless associated with significant mortality and morbidity rates because of endocrine and oncological consequences. Recent genome-wide investigations of ACC have advanced our understanding of the disease, but substantial obstacles remain to overcome regarding diagnosis and prognosis. MicroRNAs (miRNAs, miRs) play a crucial role in the development and metastasis of a wide range of carcinomas by regulating the expression of their target genes through various mechanisms causing translational repression or messenger RNA (mRNA) degradation. Along with miRNAs in the adrenocortical cancerous tissue, circulating miRNAs are considered barely invasive diagnostic or prognostic biomarkers of ACC. miRNAs may serve as treatment targets that expand the rather-limited therapeutic repertoire in the field of ACC. Patients with advanced ACC still have a poor prognosis when using the available treatments, despite a substantial improvement in understanding of the illness over the previous few decades. Accordingly, in this review, we provide a crucial overview of the recent studies in ACC-associated miRNAs regarding their diagnostic, prognostic, and potential therapeutic relevance.
Collapse
Affiliation(s)
- Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829 Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884 Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231 Cairo, Egypt.
| |
Collapse
|
68
|
Midan HM, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, El-Dakroury WA, Hashem AH, Doghish AS. The potential role of miRNAs in the pathogenesis of adrenocortical carcinoma - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154690. [PMID: 37473498 DOI: 10.1016/j.prp.2023.154690] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.
Collapse
Affiliation(s)
- Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
69
|
Aoyagi C, Tanaka T, Haga N, Yanase T, Kodama S. Differentiation of human adipose tissue-derived mesenchymal stromal cells into steroidogenic cells by adenovirus-mediated overexpression of NR5A1 and implantation into adrenal insufficient mice. Cytotherapy 2023; 25:866-876. [PMID: 37149799 DOI: 10.1016/j.jcyt.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AIMS Cell therapy for adrenal insufficiency is a potential method for physiological glucocorticoid and mineralocorticoid replacement. We have previously shown that mouse mesenchymal stromal cells (MSCs) differentiated into steroidogenic cells by the viral vector-mediated overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1), an essential regulator of steroidogenesis, and their implantation extended the survival of bilateral adrenalectomized (bADX) mice. METHODS In this study, we examined the capability of NR5A1-induced steroidogenic cells prepared from human adipose tissue-derived MSCs (MSC [AT]) and the therapeutic effect of the implantation of human NR5A1-induced steroidogenic cells into immunodeficient bADX mice. RESULTS Human NR5A1-induced steroidogenic cells secreted adrenal and gonadal steroids and exhibited responsiveness to adrenocorticotropic hormone and angiotensin II in vitro. In vivo, the survival time of bADX mice implanted with NR5A1-induced steroidogenic cells was significantly prolonged compared with that of bADX mice implanted with control MSC (AT). Serum cortisol levels, which indicate hormone secretion from the graft, were detected in bADX mice implanted with steroidogenic cells. CONCLUSIONS This is the first report to demonstrate steroid replacement by the implantation of steroid-producing cells derived from human MSC (AT). These results indicate the potential of human MSC (AT) to be a source of steroid hormone-producing cells.
Collapse
Affiliation(s)
- Chikao Aoyagi
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Nobuhiro Haga
- Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
70
|
Cato ML, D'Agostino EH, Spurlin RM, Flynn AR, Cornelison JL, Johnson AM, Fujita RA, Abraham SM, Jui NT, Ortlund EA. Comparison of activity, structure, and dynamics of SF-1 and LRH-1 complexed with small molecule modulators. J Biol Chem 2023; 299:104921. [PMID: 37328104 PMCID: PMC10407255 DOI: 10.1016/j.jbc.2023.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Steroidogenic factor-1 (SF-1) is a phospholipid-sensing nuclear receptor expressed in the adrenal glands, gonads, and hypothalamus which controls steroidogenesis and metabolism. There is significant therapeutic interest in SF-1 because of its oncogenic properties in adrenocortical cancer. Synthetic modulators are attractive for targeting SF-1 for clinical and laboratory purposes due to the poor pharmaceutical properties of its native phospholipid ligands. While small molecule agonists targeting SF-1 have been synthesized, no crystal structures have been reported of SF-1 in complexes with synthetic compounds. This has prevented the establishment of structure-activity relationships that would enable better characterization of ligand-mediated activation and improvement in current chemical scaffolds. Here, we compare the effects of small molecules in SF-1 and its close homolog, liver receptor homolog-1 (LRH-1), and identify several molecules that specifically activate LRH-1. We also report the first crystal structure of SF-1 in complex with a synthetic agonist that displays low nanomolar affinity and potency for SF-1. We use this structure to explore the mechanistic basis for small molecule agonism of SF-1, especially compared to LRH-1, and uncover unique signaling pathways that drive LRH-1 specificity. Molecular dynamics simulations reveal differences in protein dynamics at the pocket mouth as well as ligand-mediated allosteric communication from this region to the coactivator binding interface. Our studies, therefore, shed important insight into the allostery driving SF-1 activity and show potential for modulation of LRH-1 over SF-1.
Collapse
Affiliation(s)
- Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Autumn R Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | | | - Alyssa M Johnson
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Rei A Fujita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah M Abraham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nathan T Jui
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
71
|
Duranova H, Fialkova V, Simora V, Bilcikova J, Massanyi P, Lukac N, Knazicka Z. Impacts of iron on ultrastructural features of NCI-H295R cell line related to steroidogenesis. Acta Histochem 2023; 125:152056. [PMID: 37321134 DOI: 10.1016/j.acthis.2023.152056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
The current study was intended to evaluate impacts of both iron (Fe) enrichment and overload (in the form of ferrous sulphate heptahydrate, FeSO4.7H2O) on ultrastructural characteristics of human adrenocarcinoma NCI-H295R cell line. Here, the NCI-H295R cells were treated with 0, 3.90, and 1000 µM FeSO4.7H2O, and consequently proceeded for purposes of ultrastructural studies. Micrographs taken under transmission electron microscope (TEM) were investigated from the qualitative and quantitative (unbiased stereological approaches) aspects, and obtained findings were compared among the three groups of the cells. The ultrastructural features related to the steroidogenic process were found to be similar between the untreated and both Fe-exposed cell populations, with conspicuous mitochondria with well-defined lamellar cristae (creating clusters of varying sizes in the regions of increased energy demands) and concentric whorls of smooth endoplasmic reticulum (SER) being the most noticeable characteristics. The precise estimates of the component (volume, surface) fractions of the nucleus, mitochondria, and lipid droplets (LDs), as well as of the nucleus/cytoplasm (N/C) ratio have revealed close similarities (P > 0.05) in all cell groups investigated. Nonetheless, the low concentration of FeSO4.7H2O exhibited beneficial action on ultrastructural organization of the NCI-H295R cells. In effect, these cells were distinguished by mitochondria with smoother surfaces and clearer outlines, higher density of thin, parallel lamellar cristae (deeply extending into the mitochondrial matrix), and more widespread distribution of fine SER tubules as compared to the control ones, all of them suggesting higher level of energy requirements and metabolic activity, and more intensive rate of steroidogenesis. Interestingly, no obvious ultrastructural modifications were observed in the NCI-H295R cells treated with high FeSO4.7H2O concentration. This finding can be linked to either an adaptive ultrastructural machinery of these cells to cope with the adverse effect of the element or to insufficient dose of FeSO4.7H2O (1000 µM) to induce ultrastructural signs of cytotoxicity. Purposefully, the results of the current study complement our previous paper dealing with impacts of FeSO4.7H2O on the NCI-H295R cell viability and steroidogenesis at the molecular level. Hence, they fill a knowledge gap considering structure-function coupling in this cellular model system upon the metal exposure. This integrated approach can enhance our understanding of the cellular responses to Fe enrichment and overload which can be helpful for individuals with reproductive health concerns.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
72
|
Zheng Y, Wang S, Wu J, Wang Y. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med 2023; 21:510. [PMID: 37507803 PMCID: PMC10375703 DOI: 10.1186/s12967-023-04367-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease globally, and its associated complications including insulin resistance and diabetes have become threatening conditions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver's lipid metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mitochondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medications, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD was evaluated hoping to provide new insights into NAFLD treatment.
Collapse
Affiliation(s)
- Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shiting Wang
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
73
|
del Valle I, Young MD, Kildisiute G, Ogunbiyi OK, Buonocore F, Simcock IC, Khabirova E, Crespo B, Moreno N, Brooks T, Niola P, Swarbrick K, Suntharalingham JP, McGlacken-Byrne SM, Arthurs OJ, Behjati S, Achermann JC. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 2023; 8:e168177. [PMID: 37440461 PMCID: PMC10443814 DOI: 10.1172/jci.insight.168177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.
Collapse
Affiliation(s)
- Ignacio del Valle
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Matthew D. Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Olumide K. Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Ian C. Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Eleonora Khabirova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Katherine Swarbrick
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Jenifer P. Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sinead M. McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Owen J. Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - John C. Achermann
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| |
Collapse
|
74
|
Zhou M, Kong B, Zhang X, Xiao K, Lu J, Li W, Li M, Li Z, Ji W, Hou J, Xu T. A proximity labeling strategy enables proteomic analysis of inter-organelle membrane contacts. iScience 2023; 26:107159. [PMID: 37485370 PMCID: PMC10362359 DOI: 10.1016/j.isci.2023.107159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Inter-organelle membrane contacts are highly dynamic and act as central hubs for many biological processes, but the protein compositions remain largely unknown due to the lack of efficient tools. Here, we developed BiFCPL to analyze the contact proteome in living cells by a bimolecular fluorescence complementation (BiFC)-based proximity labeling (PL) strategy. BiFCPL was applied to study mitochondria-endoplasmic reticulum contacts (MERCs) and mitochondria-lipid droplet (LD) contacts. We identified 403 highly confident MERC proteins, including many transiently resident proteins and potential tethers. Moreover, we demonstrated that mitochondria-LD contacts are sensitive to nutrient status. A comparative proteomic analysis revealed that 60 proteins are up- or downregulated at contact sites under metabolic challenge. We verified that SQLE, an enzyme for cholesterol synthesis, accumulates at mitochondria-LD contact sites probably to utilize local ATP for cholesterol synthesis. This work provides an efficient method to identify key proteins at inter-organelle membrane contacts in living cells.
Collapse
Affiliation(s)
- Maoge Zhou
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingjie Kong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Xiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixing Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Zonghong Li
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
75
|
Erenpreisa J, Vainshelbaum NM, Lazovska M, Karklins R, Salmina K, Zayakin P, Rumnieks F, Inashkina I, Pjanova D, Erenpreiss J. The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer. Int J Mol Sci 2023; 24:11660. [PMID: 37511419 PMCID: PMC10380301 DOI: 10.3390/ijms241411660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Collapse
Affiliation(s)
| | | | - Marija Lazovska
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Roberts Karklins
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Juris Erenpreiss
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
| |
Collapse
|
76
|
Butler LM, Evergren E. Ultrastructural analysis of prostate cancer tissue provides insights into androgen-dependent adaptations to membrane contact site establishment. Front Oncol 2023; 13:1217741. [PMID: 37529692 PMCID: PMC10389664 DOI: 10.3389/fonc.2023.1217741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Membrane trafficking and organelle contact sites are important for regulating cell metabolism and survival; processes often deregulated in cancer. Prostate cancer is the second leading cause of cancer-related death in men in the developed world. While early-stage disease is curable by surgery or radiotherapy there is an unmet need to identify prognostic biomarkers, markers to treatment response and new therapeutic targets in intermediate-late stage disease. This study explored the morphology of organelles and membrane contact sites in tumor tissue from normal, low and intermediate histological grade groups. The morphology of organelles in secretory prostate epithelial cells; including Golgi apparatus, ER, lysosomes; was similar in prostate tissue samples across a range of Gleason scores. Mitochondrial morphology was not dramatically altered, but the number of membrane contacts with the ER notably increased with disease progression. A three-fold increase of tight mitochondria-ER membrane contact sites was observed in the intermediate Gleason score group compared to normal tissue. To investigate whether these changes were concurrent with an increased androgen signaling in the tissue, we investigated whether an anti-androgen used in the clinic to treat advanced prostate cancer (enzalutamide) could reverse the phenotype. Patient-derived explant tissues with an intermediate Gleason score were cultured ex vivo in the presence or absence of enzalutamide and the number of ER-mitochondria contacts were quantified for each matched pair of tissues. Enzalutamide treated tissue showed a significant reduction in the number and length of mitochondria-ER contact sites, suggesting a novel androgen-dependent regulation of these membrane contact sites. This study provides evidence for the first time that prostate epithelial cells undergo adaptations in membrane contact sites between mitochondria and the ER during prostate cancer progression. These adaptations are androgen-dependent and provide evidence for a novel hormone-regulated mechanism that support establishment and extension of MAMs. Future studies will determine whether these changes are required to maintain pro-proliferative signaling and metabolic changes that support prostate cancer cell viability.
Collapse
Affiliation(s)
- Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Emma Evergren
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
77
|
Penny MK, Lerario AM, Basham KJ, Chukkapalli S, Mohan DR, LaPensee C, Converso-Baran K, Hoenerhoff MJ, Suárez-Fernández L, del Rey CG, Giordano TJ, Han R, Newman EA, Hammer GD. Targeting Oncogenic Wnt/β-Catenin Signaling in Adrenocortical Carcinoma Disrupts ECM Expression and Impairs Tumor Growth. Cancers (Basel) 2023; 15:3559. [PMID: 37509222 PMCID: PMC10377252 DOI: 10.3390/cancers15143559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but highly aggressive cancer with limited treatment options and poor survival for patients with advanced disease. An improved understanding of the transcriptional programs engaged in ACC will help direct rational, targeted therapies. Whereas activating mutations in Wnt/β-catenin signaling are frequently observed, the β-catenin-dependent transcriptional targets that promote tumor progression are poorly understood. To address this question, we analyzed ACC transcriptome data and identified a novel Wnt/β-catenin-associated signature in ACC enriched for the extracellular matrix (ECM) and predictive of poor survival. This suggested an oncogenic role for Wnt/β-catenin in regulating the ACC microenvironment. We further investigated the minor fibrillar collagen, collagen XI alpha 1 (COL11A1), and found that COL11A1 expression originates specifically from cancer cells and is strongly correlated with both Wnt/β-catenin activation and poor patient survival. Inhibition of constitutively active Wnt/β-catenin signaling in the human ACC cell line, NCI-H295R, significantly reduced the expression of COL11A1 and other ECM components and decreased cancer cell viability. To investigate the preclinical potential of Wnt/β-catenin inhibition in the adrenal microenvironment, we developed a minimally invasive orthotopic xenograft model of ACC and demonstrated that treatment with the newly developed Wnt/β-catenin:TBL1 inhibitor Tegavivint significantly reduced tumor growth. Together, our data support that the inhibition of aberrantly active Wnt/β-catenin disrupts transcriptional reprogramming of the microenvironment and reduces ACC growth and survival. Furthermore, this β-catenin-dependent oncogenic program can be therapeutically targeted with a newly developed Wnt/β-catenin inhibitor. These results show promise for the further clinical development of Wnt/β-catenin inhibitors in ACC and unveil a novel Wnt/β-catenin-regulated transcriptome.
Collapse
Affiliation(s)
- Morgan K. Penny
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Antonio M. Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaitlin J. Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sahiti Chukkapalli
- Mott Solid Tumor Oncology Program, C.S. Mott Children’s and Women’s Hospital, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dipika R. Mohan
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chris LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kimber Converso-Baran
- UMH Frankel Cardiovascular Center Physiology and Phenotyping Core, Ann Arbor, MI 48109, USA
| | - Mark J. Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Laura Suárez-Fernández
- Department Head and Neck Oncology, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Carmen González del Rey
- Department of Pathology, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Thomas J. Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ruolan Han
- Iterion Therapeutics, Inc., Houston, TX 77021, USA
| | - Erika A. Newman
- Mott Solid Tumor Oncology Program, C.S. Mott Children’s and Women’s Hospital, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
78
|
Wu H, Chen W, Chen Z, Li X, Wang M. Novel tumor therapy strategies targeting endoplasmic reticulum-mitochondria signal pathways. Ageing Res Rev 2023; 88:101951. [PMID: 37164161 DOI: 10.1016/j.arr.2023.101951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Organelles form tight connections through membrane contact sites, thereby cooperating to regulate homeostasis and cell function. Among them, the contact between endoplasmic reticulum (ER), the main intracellular calcium storage organelles, and mitochondria has been recognized for decades, and its main roles in the ion and lipid transport, ROS signaling, membrane dynamic changes and cellular metabolism are basically determined. At present, many tumor chemotherapeutic drugs rely on ER-mitochondrial calcium signal to function, but the mechanism of targeting resident molecules at the mitochondria-associated endoplasmic reticulum membranes (MAM) to sensitize traditional chemotherapy and the new tumor therapeutic targets identified based on the signal pathways on the MAM have not been thoroughly discussed. In this review, we highlight the key roles of various signaling pathways at the ER-mitochondria contact site in tumorigenesis and focus on novel anticancer therapy strategies targeting potential targets at this contact site.
Collapse
Affiliation(s)
- Hongzheng Wu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
79
|
Ruggiero C, Tamburello M, Rossini E, Zini S, Durand N, Cantini G, Cioppi F, Hantel C, Kiseljak-Vassiliades K, Wierman ME, Landwehr LS, Weigand I, Kurlbaum M, Zizioli D, Turtoi A, Yang S, Berruti A, Luconi M, Sigala S, Lalli E. FSCN1 as a new druggable target in adrenocortical carcinoma. Int J Cancer 2023; 153:210-223. [PMID: 36971100 DOI: 10.1002/ijc.34526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high risk of relapse and metastatic spread. The actin-bundling protein fascin (FSCN1) is overexpressed in aggressive ACC and represents a reliable prognostic indicator. FSCN1 has been shown to synergize with VAV2, a guanine nucleotide exchange factor for the Rho/Rac GTPase family, to enhance the invasion properties of ACC cancer cells. Based on those results, we investigated the effects of FSCN1 inactivation by CRISPR/Cas9 or pharmacological blockade on the invasive properties of ACC cells, both in vitro and in an in vivo metastatic ACC zebrafish model. Here, we showed that FSCN1 is a transcriptional target for β-catenin in H295R ACC cells and that its inactivation resulted in defects in cell attachment and proliferation. FSCN1 knock-out modulated the expression of genes involved in cytoskeleton dynamics and cell adhesion. When Steroidogenic Factor-1 (SF-1) dosage was upregulated in H295R cells, activating their invasive capacities, FSCN1 knock-out reduced the number of filopodia, lamellipodia/ruffles and focal adhesions, while decreasing cell invasion in Matrigel. Similar effects were produced by the FSCN1 inhibitor G2-044, which also diminished the invasion of other ACC cell lines expressing lower levels of FSCN1 than H295R. In the zebrafish model, metastases formation was significantly reduced in FSCN1 knock-out cells and G2-044 significantly reduced the number of metastases formed by ACC cells. Our results indicate that FSCN1 is a new druggable target for ACC and provide the rationale for future clinical trials with FSCN1 inhibitors in patients with ACC.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Silvia Zini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
| | - Francesca Cioppi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 80045, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, 80045, Aurora, Colorado, USA
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 80045, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, 80045, Aurora, Colorado, USA
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Isabel Weigand
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
- Department of Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Max Kurlbaum
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Daniela Zizioli
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier-INSERM U1194, 34090, Montpellier, France
- Platform for Translational Oncometabolomics, Biocampus, CNRS-INSERM-Université de Montpellier, 34090, Montpellier, France
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 17033, Hershey, Pennsylvania, USA
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
- Inserm, 06560, Valbonne, France
| |
Collapse
|
80
|
Zhu J, Xu Z, Wu P, Zeng C, Peng C, Zhou Y, Xue Q. MicroRNA-92a-3p Inhibits Cell Proliferation and Invasion by Regulating the Transcription Factor 21/Steroidogenic Factor 1 Axis in Endometriosis. Reprod Sci 2023; 30:2188-2197. [PMID: 36650372 PMCID: PMC10310800 DOI: 10.1007/s43032-021-00734-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
Endometriosis (EMS) is an estrogen-dependent disease. However, little is known about the regulation of estrogen, a potential therapeutic target, in EMS, which remains very poorly managed in the clinic. We hypothesized that microRNAs (miRNAs) can be exploited therapeutically to regulate transcription factor 21 (TCF21) and steroidogenic factor-1 (SF-1) gene expression. In our study, paired eutopic and ectopic endometrial samples were obtained from women with EMS and processed by a standard protocol to obtain human endometrial stromal cells (EMs) for in vitro studies. We found that miR-92a-3p levels were decreased in ectopic endometrium and ectopic stromal cells (ESCs) compared with paired eutopic lesions. miR-92a-3p overexpression significantly suppressed the proliferation and migration of ESCs, whereas a decreased level of miR-92a-3p generated the opposite results. Next, we identified TCF21 as a candidate target gene of miR-92a-3p. In vitro cell experiments showed that miR-92a-3p negatively regulated the expression of TCF21 and its downstream target gene SF-1. Moreover, cell proliferation and invasion ability decreased after the silencing of SF-1 and increased after SF-1 overexpression. We also observed that silencing SF-1 while inhibiting miR-92a-3p partially blocked the increase in cell proliferation and invasion ability caused by miR-92a-3p knockdown while overexpressing both SF-1 and miR-92a-3p mitigated the impairment in cell proliferation and invasion ability caused by miR-92a-3p overexpression. Our results may provide a novel potential therapeutic target for the treatment of EMS.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Zijin Xu
- Department of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, and Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peili Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Chao Peng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Yingfang Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China.
| |
Collapse
|
81
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
82
|
Hong SP, Kim KW, Ahn SK. Inhibition of GLI Transcriptional Activity and Prostate Cancer Cell Growth and Proliferation by DAX1. Curr Issues Mol Biol 2023; 45:5347-5361. [PMID: 37504255 PMCID: PMC10378570 DOI: 10.3390/cimb45070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway plays an essential role in the initiation and progression of prostate cancer. This is mediated by transcriptional factors belonging to the GLI (glioma-associated oncogene) family, which regulate downstream targets to drive prostate cancer progression. The activity of GLI proteins is tightly controlled by a range of mechanisms, including molecular interactions and post-translational modifications. In particular, mitogenic and oncogenic signaling pathways have been shown to regulate GLI protein activity independently of upstream Hh pathway signaling. Identifying GLI protein regulators is critical for the development of targeted therapies that can improve patient outcomes. This study aimed to identify a novel protein that directly regulates the activity of GLI transcription factors in prostate cancer. We performed gene expression, cellular analyses, and reporter assays to demonstrate that DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) interacts with GLI1 and GLI2, the master regulators of Hh signaling. Interestingly, DAX1 overexpression significantly inhibited Hh signaling by reducing GLI1 and GLI2 activity, prostate cancer cell proliferation, and viability. Our results shed light on a novel regulatory mechanism of Hh signaling in prostate cancer cells. The interaction between DAX1 and GLI transcription factors provides insight into the complex regulation of Hh signaling in prostate cancer. Given the importance of Hh signaling in prostate cancer progression, targeting DAX1-GLI interactions may represent a promising therapeutic approach against prostate cancer. Overall, this study provides new insights into the regulation of the Hh pathway and its role in prostate cancer progression. The findings suggest that DAX1 could serve as a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Sung Pyo Hong
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kil Won Kim
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
83
|
Bitetto G, Lopez G, Ronchi D, Pittaro A, Melzi V, Peverelli E, Cribiù FM, Comi GP, Mantovani G, Di Fonzo A. SCARB1 downregulation in adrenal insufficiency with Allgrove syndrome. Orphanet J Rare Dis 2023; 18:152. [PMID: 37331934 DOI: 10.1186/s13023-023-02763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/04/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Allgrove disease is a rare genetic syndrome characterized by adrenal insufficiency, alacrimia, achalasia and complex neurological involvement. Allgrove disease is due to recessive mutations in the AAAS gene, which encodes for the nucleoporin Aladin, implicated in the nucleocytoplasmic transport. The adrenal insufficiency has been suggested to rely on adrenal gland-ACTH resistance. However, the link between the molecular pathology affecting the nucleoporin Aladin and the glucocorticoid deficiency is still unknown. RESULTS By analyzing postmortem patient's adrenal gland, we identified a downregulation of Aladin transcript and protein. We found a downregulation of Scavenger receptor class B-1 (SCARB1), a key component of the steroidogenic pathway, and SCARB1 regulatory miRNAs (mir125a, mir455) in patient's tissues. With the hypothesis of an impairment in the nucleocytoplasmic transport of the SCARB1 transcription enhancer cyclic AMP-dependent protein kinase (PKA), we detected a reduction of nuclear Phospho-PKA and a cytoplasmic mislocalization in patient's samples. CONCLUSIONS These results shed a light on the possible mechanisms linking ACTH resistance, SCARB1 impairment, and defective nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Giacomo Bitetto
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Dario Ronchi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Pittaro
- Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Fulvia Milena Cribiù
- Division of Pathology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
84
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Hassan M, Kloczkowski A, Chun W. Investigation of Flavonoid Scaffolds as DAX1 Inhibitors against Ewing Sarcoma through Pharmacoinformatic and Dynamic Simulation Studies. Int J Mol Sci 2023; 24:9332. [PMID: 37298283 PMCID: PMC10253386 DOI: 10.3390/ijms24119332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX1) is an orphan nuclear receptor encoded by the NR0B1 gene. The functional study showed that DAX1 is a physiologically significant target for EWS/FLI1-mediated oncogenesis, particularly Ewing Sarcoma (ES). In this study, a three-dimensional DAX1 structure was modeled by employing a homology modeling approach. Furthermore, the network analysis of genes involved in Ewing Sarcoma was also carried out to evaluate the association of DAX1 and other genes with ES. Moreover, a molecular docking study was carried out to check the binding profile of screened flavonoid compounds against DAX1. Therefore, 132 flavonoids were docked in the predicted active binding pocket of DAX1. Moreover, the pharmacogenomics analysis was performed for the top ten docked compounds to evaluate the ES-related gene clusters. As a result, the five best flavonoid-docked complexes were selected and further evaluated by Molecular Dynamics (MD) simulation studies at 100 ns. The MD simulation trajectories were evaluated by generating RMSD, hydrogen bond plot analysis, and interaction energy graphs. Our results demonstrate that flavonoids showed interactive profiles in the active region of DAX1 and can be used as potential therapeutic agents against DAX1-mediated augmentation of ES after in-vitro and in-vivo evaluations.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Hee-Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (A.K.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (A.K.)
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.); (H.-J.L.)
| |
Collapse
|
85
|
Sedlack AJH, Hatfield SJ, Kumar S, Arakawa Y, Roper N, Sun NY, Nilubol N, Kiseljak-Vassiliades K, Hoang CD, Bergsland EK, Hernandez JM, Pommier Y, del Rivero J. Preclinical Models of Adrenocortical Cancer. Cancers (Basel) 2023; 15:2873. [PMID: 37296836 PMCID: PMC10251941 DOI: 10.3390/cancers15112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Adrenocortical cancer is an aggressive endocrine malignancy with an incidence of 0.72 to 1.02 per million people/year, and a very poor prognosis with a five-year survival rate of 22%. As an orphan disease, clinical data are scarce, meaning that drug development and mechanistic research depend especially on preclinical models. While a single human ACC cell line was available for the last three decades, over the last five years, many new in vitro and in vivo preclinical models have been generated. Herein, we review both in vitro (cell lines, spheroids, and organoids) and in vivo (xenograft and genetically engineered mouse) models. Striking leaps have been made in terms of the preclinical models of ACC, and there are now several modern models available publicly and in repositories for research in this area.
Collapse
Affiliation(s)
- Andrew J. H. Sedlack
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samual J. Hatfield
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nai-Yun Sun
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80016, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Emily K. Bergsland
- University of California, San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | | | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jaydira del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
86
|
Li J, Xiao W, Wei W, Wu M, Xiong K, Lyu J, Li Y. HSPA5, as a ferroptosis regulator, may serve as a potential therapeutic for head and neck squamous cell carcinoma. Mol Immunol 2023; 158:79-90. [PMID: 37172353 DOI: 10.1016/j.molimm.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a ferroptosis sensitive tumor type with high mortality rate. However, it remains largely unknown whether ferroptosis influences the tumor cell in HNSCC. MATERIALS AND METHODS To investigate how ferroptosis regulators were differentially expressed between normal and tumor tissue, data related to HNSCC was downloaded from The Cancer Genome Atlas. The expression levels of key factors in HNSCC and the relationship between key factors and ferroptosis in HNSCC were conducted in vitro, and then analyzed to correlate with the differences in prognosis and survival. This was then combined with TNM staging data, and the migration effects of key factors in HNSCC were verified by scratch test and transwell test. RESULTS In this study, gene expression analysis and correlation studies between genes showed that HSPA5 was a potentially key associated ferroptosis regulator in HNSCC. Bioinformatics analysis showed that high expression of HSPA5 in HNSCC was positively correlated with poor prognosis and distal metastasis of HNSCC. In vitro immunohistochemistry and western blot tests confirmed that HSPA5 was highly expressed in HNSCC tissues and cell lines. In vitro inhibition of HSPA5 reduced the viability of HNSCC cells and increased ferroptosis. The results of scratch, transwell, and immunofluorescence tests showed that HSPA5 was related to the migration of HNSCC. In addition, a pan-cancer analysis showed that HSPA5 was also overexpressed in many types of cancer with poor prognoses. CONCLUSION In total, our study demonstrates the critical role of ferroptosis regulators in HNSCC and that HSPA5, as a ferroptosis regulator, can be regarded as a key molecular target for designing new therapeutic regimens to control HNSCC metastasis and progression.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenke Xiao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Miaomiao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kaixin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinglu Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
87
|
Kim SH, Son GH, Seok JY, Chun SK, Yun H, Jang J, Suh YG, Kim K, Jung JW, Chung S. Identification of a novel class of cortisol biosynthesis inhibitors and its implications in a therapeutic strategy for hypercortisolism. Life Sci 2023; 325:121744. [PMID: 37127185 DOI: 10.1016/j.lfs.2023.121744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
AIMS Dysregulation of adrenocortical steroid (corticosteroids) biosynthesis leads to pathological conditions such as Cushing's syndrome. Although several classes of steroid biosynthesis inhibitors have been developed to treat cortisol overproduction, limitations such as insufficient efficacy, adverse effects, and/or tolerability still remain. The present study aimed to develop a new class of small molecules that inhibit cortisol production, and investigated their putative modes of action. MAIN METHODS We screened an in-house chemical library with drug-like chemical scaffolds using human adrenocortical NCI-H295R cells. We then evaluated and validated the effects of the selected compounds at multiple regulatory steps of the adrenal steroidogenic pathway. Finally, genome-wide RNA expression analysis coupled with gene enrichment analysis was conducted to infer possible action mechanisms. KEY FINDINGS A subset of benzimidazolylurea derivatives, including a representative compound (designated as CJ28), inhibited both basal and stimulated production of cortisol and related intermediate steroids. CJ28 attenuated the mRNA expression of multiple genes involved in steroidogenesis and cholesterol biosynthesis. Furthermore, CJ28 significantly attenuated de novo cholesterol biosynthesis, which contributed to its suppression of cortisol production. SIGNIFICANCE We identified a novel chemical scaffold that exerts inhibitory effects on cortisol and cholesterol biosynthesis via coordinated transcriptional silencing of gene expression networks. Our findings also reveal an additional adrenal-directed pharmacological strategy for hypercortisolism involving a combination of inhibitors targeting steroidogenesis and de novo cholesterol biosynthesis.
Collapse
Affiliation(s)
- Soo Hyun Kim
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences and Department of Legal Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joo Young Seok
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Pocheon 11160, Republic of Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jong-Wha Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
88
|
de Ridder I, Kerkhofs M, Lemos FO, Loncke J, Bultynck G, Parys JB. The ER-mitochondria interface, where Ca 2+ and cell death meet. Cell Calcium 2023; 112:102743. [PMID: 37126911 DOI: 10.1016/j.ceca.2023.102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.
Collapse
Affiliation(s)
- Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Fernanda O Lemos
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| |
Collapse
|
89
|
Naotunna NPGCR, Siriwardana HVDN, Lakmini BC, Gamage DS, Gunarathna S, Samarasinghe M, Gunasekara S, Atapattu N. Adrenocortical tumors in children: Sri Lankan experience from a single center, and a mini review. J Med Case Rep 2023; 17:137. [PMID: 37046342 PMCID: PMC10099899 DOI: 10.1186/s13256-023-03890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Pediatric adrenocortical tumors include both benign adenomas and highly virulent malignant tumors. However, they are very rare among children. The aim of this study is to evaluate the clinicopathological data of children presenting with adrenocortical tumors and assess their survival in a South Asian population. CASE PRESENTATION This is a retrospective cohort study that includes patients diagnosed with adrenocortical tumors from August 2020 to August 2022 followed-up at Lady Ridgeway Hospital. Seven children were diagnosed with adrenal cortical tumors. Their ages ranged from 10 months to 6.5 years. Five of them were boys. All displayed signs of peripheral precocious puberty. One boy phenotypically had features of Beckwith-Wiedemann syndrome. The median time for diagnosis after the onset of symptoms was 4.4 months. The preoperative diagnosis was based on clinical manifestations, elevated dehydroepiandrosterone sulfate levels, and suprarenal masses on computed tomography. All five boys had right-sided suprarenal masses, while the two girls had them on the left side. All underwent surgery for tumor resection. The diagnosis was confirmed based on the histopathology of the adrenal specimens. Four children had a Wieneke score of 4 or more, suggesting the possibility of adrenocortical carcinoma; however, only two of them behaved as malignant tumors. To date, two children have developed local recurrences within a very short period. CONCLUSION Adrenocortical tumors are uncommon in children, and treatment options are limited. To identify early recurrences, routine clinical, radiological, and biochemical examinations at least once every 6-8 weeks is important.
Collapse
Affiliation(s)
| | | | | | - Dilhara Senani Gamage
- Endocrine and Diabetic Unit, Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
| | | | - Malik Samarasinghe
- University Surgical Unit, Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
- Department of Surgery, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Navoda Atapattu
- Endocrine and Diabetic Unit, Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
| |
Collapse
|
90
|
Key genes expressed in mitochondria‑endoplasmic reticulum contact sites in cancer (Review). Oncol Rep 2023; 49:77. [PMID: 36866764 PMCID: PMC10018458 DOI: 10.3892/or.2023.8514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 03/04/2023] Open
Abstract
Cell fate is critically affected by mitochondrial activity, from ATP production to metabolism, Ca2+ homeostasis and signaling. These actions are regulated by proteins expressed in mitochondria (Mt)‑endoplasmic reticulum contact sites (MERCSs). The literature supports the fact that disruption to the physiology of the Mt and/or MERCSs can be due to alterations in the Ca2+ influx/efflux, which further regulates autophagy and apoptosis activity. The current review presents the findings of numerous studies with regard to the involvement of proteins positioned in MERCSs and how they express anti‑ and pro‑apoptotic properties by adjusting Ca2+ across membranes. The review also explores the involvement of mitochondrial proteins as hot spots in cancer development, cell death and/or survival, and the method via which they can potentially be targeted as a therapeutic option.
Collapse
|
91
|
Luconi M, Cantini G, van Leeuwaarde RS, Roebaar R, Fei L, Propato AP, Santi R, Ercolino T, Mannelli M, Canu L, de Krijger RR, Nesi G. Prognostic Value of Microscopic Tumor Necrosis in Adrenal Cortical Carcinoma. Endocr Pathol 2023:10.1007/s12022-023-09760-6. [PMID: 36952130 DOI: 10.1007/s12022-023-09760-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
Adrenal cortical carcinoma (ACC) is an uncommon neoplasm with variable prognosis. Several histologic criteria have been identified as predictors of malignancy in adrenal cortical tumors. The Weiss score is the system most widely employed for diagnostic purposes, but also possesses prognostic value. We aim to determine the relative impact of each Weiss parameter on ACC patient survival. A multicenter retrospective analysis was conducted on a series of 79 conventional ACCs surgically treated at the Florence and Utrecht centers of the European Network for the Study of Adrenal Tumors (ENSAT). Weiss classification was recapitulated using principal component analysis (PCA). The Kaplan-Meier and Cox multivariate regression analyses were applied in order to estimate the prognostic power of Weiss versus other clinical parameters. PCA reduced the nine Weiss parameters to the best fitting 4-component model, each parameter clustering with a single component. Necrosis and venous invasion clustered together with the highest scores, thus establishing the most relevant component (Component 1) to explain Weiss distribution variability. Only Component 1 significantly predicted overall survival (OS, log-rank = 0.008) and disease-free survival (DFS, log-rank < 0.001). When considering the prognostic power of Weiss parameters, necrosis alone could independently assess OS (log-rank = 0.004) and DFS (log-rank < 0.001) at both the Kaplan-Meier and multivariate Cox regression analyses [hazard ratio (HR) = 7.8, 95% confidence interval [CI] = 1.0-63.5, p = 0.05, and HR = 12.2, 95% CI = 1.6-95.0, p = 0.017, respectively]. The presence of necrosis significantly shortened time to survival (TtS) and time to recurrence (TtR), 57.5 [31.5-103.5] vs 34 [12-78] months (p = 0.05) and 57.5 [31.5-103.5] vs 7 [1.0-31.5] months (p < 0.001), respectively. Our study suggests that, of the Weiss parameters, necrosis is the most powerful adverse factor and the best predictor of OS and DFS in ACC patients.
Collapse
Affiliation(s)
- Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy.
- Centro di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy.
- ENS@T Center of Excellence, Florence, Italy.
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy
- Centro di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
- ENS@T Center of Excellence, Florence, Italy
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Rogina Roebaar
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Laura Fei
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy
| | - Arianna Pia Propato
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy
| | - Raffaella Santi
- Pathology Section, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy
| | - Tonino Ercolino
- Endocrinology Unit, Careggi University Hospital (AOUC), Florence, 50139, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy
- Centro di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
- ENS@T Center of Excellence, Florence, Italy
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy
- Centro di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
- ENS@T Center of Excellence, Florence, Italy
| | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, Utrecht, 3584 CS, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Gabriella Nesi
- Centro di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy.
- ENS@T Center of Excellence, Florence, Italy.
- Pathology Section, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini 6, Florence, 50139, Italy.
| |
Collapse
|
92
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
93
|
Yao J, He W, Chen H, Qi Y. Nursing effect of continuous nursing intervention based on "Internet Plus" on patients with severe adrenal tumor. Medicine (Baltimore) 2023; 102:e33187. [PMID: 36897676 PMCID: PMC9997785 DOI: 10.1097/md.0000000000033187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Adrenal tumors are a common type of tumor whose incidence increases with age. This study aims to apply the continuous nursing mode of "Internet Plus" to patients with severe adrenal tumors, and preliminarily evaluate the nursing effect of continuous nursing intervention based on "Internet Plus" on patients with severe adrenal tumors. A single-center, retrospective, observational study was carried out on severe adrenal tumor patients. A total of 128 patients admitted to our hospital from June 2020 to August 2021 were selected and divided into 2 groups: the observation group (n = 64) received routine care and the control group (n = 64) received continuing care based on "Internet Plus." The first time to get out of bed, 72 hours postoperative sleep time, 72 hours postoperative visual analog scale score, hospital length of stay, upper limb swelling to subside time, self-rating anxiety scale, Symptom Checklist-90, quality of life scores, and self-rating depression scale of cancer patients were compared between the 2 groups. T test and χ2 test were used for statistical analysis. The first time to get out of bed (t = 10.64, 95% confidence interval [CI] = 5.32-16.53, P < .001), upper limb swelling to subside time (t = 16.50, 95% CI = 7.21-26.15, P < .001) and the length of hospital stay (t = 11.82, 95% CI = 5.61-17.95, P < .001) were significantly shorter, 72 hours postoperative sleep time (t = 9.46, 95% CI = 4.93-15.48, P < .001) was significantly longer, and the visual analog scale score of 72 hours after operation (t = 15.95, 95% CI = 7.32-24.09, P < .001) was significantly lower in the observation group than that in the control group. After receiving nursing intervention, the scores of somatization (t = 17.56, 95% CI = 9.51-27.96, P < .001), anxiety (t = 21.85, 95% CI = 12.35-33.71, P < .001), depression (t = 18.29, 95% CI = 9.63-28.22, P < .001), self-rating anxiety scale (t = 33.67, 95% CI = 19.65-46.13, P < .001), self-rating depression scale (t = 31.92, 95% CI = 20.73-45.88, P < .001), and the quality of life score (t = 21.54, 95% CI = 8.92-40.37, P < .001) were significantly lower, and the positive coping (t = 16.30, 95% CI = 5.15-18.14, P < .001) and negative coping (t = 20.54, 95% CI = 9.34-33.12, P < .001) scores were significantly higher in the observation group than those in the control group. Nursing intervention based on "Internet Plus" continuous mode can promote the recovery of physical function, reduce psychological pressure and negative emotions, and then improve the quality of life of severe adrenal tumor patients.
Collapse
Affiliation(s)
- Juan Yao
- Department of Urology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Wen He
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Huifang Chen
- VIP Ward, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Qi
- VIP Ward, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
94
|
New discoveries in ER-mitochondria communication. Biochem Soc Trans 2023; 51:571-577. [PMID: 36892405 DOI: 10.1042/bst20221305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The study of endoplasmic reticulum (ER)-mitochondria communication is a vast and expanding field with many novel developments in the past few years. In this mini-review, we focus on several recent publications that identify novel functions of tether complexes, in particular autophagy regulation and lipid droplet biogenesis. We review novel findings that shed light on the role of triple contacts between ER and mitochondria with peroxisomes or lipid droplets as the third player. We also summarize recent findings on the role of ER-mitochondria contacts in human neurodegenerative diseases, which implicate either enhanced or reduced ER-mitochondria contacts in neurodegeneration. Taken together, the discussed studies highlight the need for further research into the role of triple organelle contacts, as well as into the exact mechanisms of increased and decreased ER-mitochondria contacts in neurodegeneration.
Collapse
|
95
|
Sassano ML, van Vliet AR, Vervoort E, Van Eygen S, Van den Haute C, Pavie B, Roels J, Swinnen JV, Spinazzi M, Moens L, Casteels K, Meyts I, Pinton P, Marchi S, Rochin L, Giordano F, Felipe-Abrio B, Agostinis P. PERK recruits E-Syt1 at ER-mitochondria contacts for mitochondrial lipid transport and respiration. J Cell Biol 2023; 222:e202206008. [PMID: 36821088 PMCID: PMC9998969 DOI: 10.1083/jcb.202206008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Alexander R. van Vliet
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Sofie Van Eygen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Chris Van den Haute
- Research Group for Neurobiology and Gene Therapy, Department of Neuroscience, Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | | | - Joris Roels
- VIB-bioimaging Center UGent, Ghent, Belgium
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marco Spinazzi
- Neuromuscular Reference Center, CHU Angers, Angers, France
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department for Development and Regeneration, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | | | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
96
|
The Characteristics of Tumor Microenvironment Predict Survival and Response to Immunotherapy in Adrenocortical Carcinomas. Cells 2023; 12:cells12050755. [PMID: 36899891 PMCID: PMC10000893 DOI: 10.3390/cells12050755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.
Collapse
|
97
|
Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Is a Promising Signature to Predict Prognosis and Therapies for Hepatocellular Carcinoma (HCC). J Clin Med 2023; 12:jcm12051830. [PMID: 36902617 PMCID: PMC10003122 DOI: 10.3390/jcm12051830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The roles of mitochondria and the endoplasmic reticulum (ER) in the progression of hepatocellular carcinoma (HCC) are well established. However, a special domain that regulates the close contact between the ER and mitochondria, known as the mitochondria-associated endoplasmic reticulum membrane (MAM), has not yet been investigated in detail in HCC. METHODS The TCGA-LIHC dataset was only used as a training set. In addition, the ICGC and several GEO datasets were used for validation. Consensus clustering was applied to test the prognostic value of the MAM-associated genes. Then, the MAM score was constructed using the lasso algorithm. In addition, uncertainty of clustering in single-cell RNA-seq data using a gene co-expression network (AUCell) was used for the detection of the MAM scores in various cell types. Then, CellChat analysis was applied for comparing the interaction strength between the different MAM score groups. Further, the tumor microenvironment score (TME score) was calculated to compare the prognostic values, the correlation with the other HCC subtypes, tumor immune infiltration landscape, genomic mutations, and copy number variations (CNV) of different subgroups. Finally, the response to immune therapy and sensitivity to chemotherapy were also determined. RESULTS First, it was observed that the MAM-associated genes could differentiate the survival rates of HCC. Then, the MAM score was constructed and validated using the TCGA and ICGC datasets, respectively. The AUCell analysis indicated that the MAM score was higher in the malignant cells. In addition, enrichment analysis demonstrated that malignant cells with a high MAM score were positively correlated with energy metabolism pathways. Furthermore, the CellChat analysis indicated that the interaction strength was reinforced between the high-MAM-score malignant cells and T cells. Finally, the TME score was constructed, which demonstrated that the HCC patients with high MAM scores/low TME scores tend to have a worse prognosis and high frequency of genomic mutations, while those with low MAM scores/high TME scores were more likely to have a better response to immune therapy. CONCLUSIONS MAM score is a promising index for determining the need for chemotherapy, which reflects the energy metabolic pathways. A combination of the MAM score and TME score could be a better indicator to predict prognosis and response to immune therapy.
Collapse
|
98
|
Nitzsche B, Höpfner M, Biersack B. Synthetic Small Molecule Modulators of Hsp70 and Hsp40 Chaperones as Promising Anticancer Agents. Int J Mol Sci 2023; 24:4083. [PMID: 36835501 PMCID: PMC9964478 DOI: 10.3390/ijms24044083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.
Collapse
Affiliation(s)
- Bianca Nitzsche
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernhard Biersack
- Organische Chemie 1, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
99
|
Steroidogenic Factor 1, a Goldilocks Transcription Factor from Adrenocortical Organogenesis to Malignancy. Int J Mol Sci 2023; 24:ijms24043585. [PMID: 36835002 PMCID: PMC9959402 DOI: 10.3390/ijms24043585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Steroidogenic factor-1 (SF-1, also termed Ad4BP; NR5A1 in the official nomenclature) is a nuclear receptor transcription factor that plays a crucial role in the regulation of adrenal and gonadal development, function and maintenance. In addition to its classical role in regulating the expression of P450 steroid hydroxylases and other steroidogenic genes, involvement in other key processes such as cell survival/proliferation and cytoskeleton dynamics have also been highlighted for SF-1. SF-1 has a restricted pattern of expression, being expressed along the hypothalamic-pituitary axis and in steroidogenic organs since the time of their establishment. Reduced SF-1 expression affects proper gonadal and adrenal organogenesis and function. On the other hand, SF-1 overexpression is found in adrenocortical carcinoma and represents a prognostic marker for patients' survival. This review is focused on the current knowledge about SF-1 and the crucial importance of its dosage for adrenal gland development and function, from its involvement in adrenal cortex formation to tumorigenesis. Overall, data converge towards SF-1 being a key player in the complex network of transcriptional regulation within the adrenal gland in a dosage-dependent manner.
Collapse
|
100
|
Abate A, Tamburello M, Rossini E, Basnet RM, Ribaudo G, Gianoncelli A, Hantel C, Cosentini D, Laganà M, Grisanti S, Tiberio GAM, Memo M, Berruti A, Sigala S. Trabectedin impairs invasiveness and metastasis in adrenocortical carcinoma preclinical models. Endocr Relat Cancer 2023; 30:e220273. [PMID: 36449565 DOI: 10.1530/erc-22-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The pharmacological approach to adrenocortical carcinoma (ACC) is based on mitotane with/without etoposide, doxorubicin, and cisplatin, according to the disease stage. Considering the limited efficacy and toxicity of this treatment, new strategies are required. Trabectedin is a marine-derivated antitumoral agent that inhibits oncogenic transcription. We have already demonstrated trabectedin cytotoxic activity at sub-nanomolar concentrations in ACC cells. Here, we expanded the investigation of trabectedin effect on ACC preclinical models, evaluating whether trabectedin could affect ACC cells' invasiveness and metastasis formation. NCI-H295R, MUC-1, and TVBF-7 cell lines were used. Cell tumor xenografts in Danio rerio embryos were performed. The tumor mass areas and the number of embryos with metastasis were evaluated. The in vitro invasiveness of cells was evaluated. Effects of trabectedin of MMP2, TIMP1, and TIMP2 were evaluated at gene level qRT-PCR. MMP2 secreted in the cell medium was evaluated by Western blot and by zymography. Xenograft experiments demonstrated that trabectedin significantly reduced the tumor area in each ACC cell model and metastasis formation in embryos injected with metastasis-derived cell lines. Trabectedin treatment reduced the invasiveness of ACC cells across the matrix, which was greater at baseline for the metastatic models. In metastatic cell models, protein analysis demonstrated a reduction of MMP2 secretion and activity in the culture medium after treatment. Our results indicate that trabectedin interferes with invasiveness and metastasis processes, both dramatic features of ACC. Furthermore, these results support those previously published in providing the rationale for a clinical evaluation of the efficacy of trabectedin in ACC patients.
Collapse
Affiliation(s)
- Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ram Manohar Basnet
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Ribaudo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Deborah Cosentini
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marta Laganà
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Guido Alberto Massimo Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|