51
|
NFkB Pathway and Hodgkin Lymphoma. Biomedicines 2022; 10:biomedicines10092153. [PMID: 36140254 PMCID: PMC9495867 DOI: 10.3390/biomedicines10092153] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The tumor cells that drive classical Hodgkin lymphoma (cHL), namely, Hodgkin and Reed-Sternberg (HRS) cells, display hallmark features that include their rareness in contrast with an extensive and rich reactive microenvironment, their loss of B-cell phenotype markers, their immune escape capacity, and the activation of several key biological pathways, including the constitutive activation of the NFkB pathway. Both canonical and alternative pathways are deregulated by genetic alterations of their components or regulators, EBV infection and interaction with the microenvironment through multiple receptors, including CD30, CD40, BAFF, RANK and BCMA. Therefore, NFkB target genes are involved in apoptosis, cell proliferation, JAK/STAT pathway activation, B-cell marker expression loss, cellular interaction and a positive NFkB feedback loop. Targeting this complex pathway directly (NIK inhibitors) or indirectly (PIM, BTK or NOTCH) remains a challenge with potential therapeutic relevance. Nodular predominant HL (NLPHL), a distinct and rare HL subtype, shows a strong NFkB activity signature because of mechanisms that differ from those observed in cHL, which is discussed in this review.
Collapse
|
52
|
Patel PD, Alghareeb R, Hussain A, Maheshwari MV, Khalid N. The Association of Epstein-Barr Virus With Cancer. Cureus 2022; 14:e26314. [PMID: 35911302 PMCID: PMC9314235 DOI: 10.7759/cureus.26314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 12/02/2022] Open
Abstract
Epstein-Barr virus (EBV) is classified as a herpesvirus and is known for being one of the few viruses that can lead to the development of cancer. This study has gathered several studies to provide evidence as to this association as well as some of the mechanisms specific to EBV that allow this to happen. The development of EBV into cancer as well as the proteins involved in this oncogenesis play a crucial role in understanding this problem as well as creating a solution for mitigating this disease process in the future. This study summarized three of the most common malignancies caused by EBV in order to consolidate information about each of them. Additional emphasis was placed on finding which EBV serum markers were seen to be most indicative of prognosis and likelihood of developing malignancy. Higher serum EBV viral DNA loads were seen to be a useful indicator in assessing the risk of various cancers and should be studied further in relation to cancers that were not mentioned in this review.
Collapse
|
53
|
p53 and Its Isoforms in Renal Cell Carcinoma—Do They Matter? Biomedicines 2022; 10:biomedicines10061330. [PMID: 35740352 PMCID: PMC9219959 DOI: 10.3390/biomedicines10061330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is a transcription al factor responsible for the maintenance of cellular homeostasis. It has been shown that more than 50% of tumors are connected with mutations in the Tp53 gene. These mutations cause a disturbance in cellular response to stress, and eventually, cancer development. Apart from the full-length p53, at least twelve isoforms of p53 have been characterized. They are able to modulate p53 activity under stress conditions. In 2020, almost a half of million people around the world were diagnosed with renal cancer. One genetic disturbance which is linked to the most common type of kidney cancer, renal cell carcinoma, RCC, occurs from mutations in the VHL gene. Recent data has revealed that the VHL protein is needed to fully activate p53. Disturbance of the interplay between p53 and VHL seems to explain the lack of efficient response to chemotherapy in RCC. Moreover, it has been observed that changes in the expression of p53 isoforms are associated with different stages of RCC and overall survival. Thus, herein, an attempt was made to answer the question whether p53 and its isoforms are important factors in the development of RCC on the one hand, and in positive response to anti-RCC therapy on the other hand.
Collapse
|
54
|
Increased expression of Profilin potentiates chemotherapeutic agent-mediated tumour regression. Br J Cancer 2022; 126:1410-1420. [PMID: 35022526 PMCID: PMC9091232 DOI: 10.1038/s41416-021-01683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Targeted cancer therapy is an alternative to standard chemotherapy for a better prognosis. Although its incompetency for triple-negative breast cancer (TNBC), treatment still relies on classical chemotherapy. Increasing evidence suggest that chemotherapeutic drug-induced toxic effect could be minimised by combinatorial therapy. Profilin's familiar anti-tumorigenic activity can be utilised in combination with the drug to improve efficacy, which could be promising therapeutics to treat TNBC. METHODS All-trans retinoic acid (ATRA) in combination with vinblastine was tested on human MDA MB-231 cell line (MB-231) (in vitro) and MB-231 borne breast cancer in nude mice (in vivo). Effects of combination treatment on tumour growth inhibition and apoptosis were examined by tumour volume, histology and PARP cleavage. ATRA-induced transcriptional regulation of profilin had been evaluated by gel-shift and reporter gene assays. Profilin's role in ATRA-induced vinblastine efficacy was validated in profilin-stable and profilin-silenced cells. RESULTS ATRA binds with RAR/RXR to increase the profilin expression that potentiated cell death by chemotherapeutics. ATRA priming led to vinblastine-mediated potentiation of G2-M phase cell cycle arrest in MB-231 cells and regression of breast cancer in xenograft mice at very low concentration without any adverse effects. Moreover, increased p53 and PTEN but downregulated p65 in the tumour tissues further supported the involvement of profilin for tumour regression. CONCLUSIONS Vinblastine at very low concentration (20 times lesser than the recommended dose for breast cancer therapeutic) significantly regress tumour growth in ATRA-primed mice without any toxic effects suggesting potential combinatorial therapeutics for TNBC.
Collapse
|
55
|
Satou A, Takahara T, Nakamura S. An Update on the Pathology and Molecular Features of Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14112647. [PMID: 35681627 PMCID: PMC9179292 DOI: 10.3390/cancers14112647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hodgkin lymphomas (HLs) include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular findings in HLs have contributed to dramatic changes in the treatment and identification of tumor characteristics. For example, PD-1/PD-L1 blockade and brentuximab vedotin, an anti-CD30 antibody bearing a cytotoxic compound, are now widely used in patients with CHL. Biological continuity between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma has been highlighted. An era of novel therapeutics for HL has begun. The aim of this paper is to review the morphologic, immunophenotypic, and molecular features of CHL and NLPHL, which must be understood for the development of novel therapeutics. Abstract Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular analyses have revealed that an immune evasion mechanism, particularly the PD-1/PD-L1 pathway, plays a key role in the development of CHL. Other highlighted key pathways in CHL are NF-κB and JAK/STAT. These advances have dramatically changed the treatment for CHL, particularly relapsed/refractory CHL. For example, PD-1 inhibitors are now widely used in relapsed/refractory CHL. Compared with CHL, NLPHL is more characterized by preserved B cell features. Overlapping morphological and molecular features between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have been reported, and biological continuity between these two entities has been highlighted. Some THRLBCLs are considered to represent progression from NLPHLs. With considerable new understanding becoming available from molecular studies in HLs, therapies and classification of HLs are continually evolving. This paper offers a summary of and update on the pathological and molecular features of HLs for a better understanding of the diseases.
Collapse
Affiliation(s)
- Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311; Fax: +81-561-61-3811
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan;
| |
Collapse
|
56
|
Bhatia S, Spanier L, Bickel D, Dienstbier N, Woloschin V, Vogt M, Pols H, Lungerich B, Reiners J, Aghaallaei N, Diedrich D, Frieg B, Schliehe-Diecks J, Bopp B, Lang F, Gopalswamy M, Loschwitz J, Bajohgli B, Skokowa J, Borkhardt A, Hauer J, Hansen FK, Smits SHJ, Jose J, Gohlke H, Kurz T. Development of a First-in-Class Small-Molecule Inhibitor of the C-Terminal Hsp90 Dimerization. ACS CENTRAL SCIENCE 2022; 8:636-655. [PMID: 35647282 PMCID: PMC9136973 DOI: 10.1021/acscentsci.2c00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 05/04/2023]
Abstract
Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein-protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.
Collapse
Affiliation(s)
- Sanil Bhatia
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49) 211 81 04896.
| | - Lukas Spanier
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - David Bickel
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Niklas Dienstbier
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Vitalij Woloschin
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Melina Vogt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Henrik Pols
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Beate Lungerich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jens Reiners
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Narges Aghaallaei
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniela Diedrich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Benedikt Frieg
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
| | - Julian Schliehe-Diecks
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Bertan Bopp
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Franziska Lang
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mohanraj Gopalswamy
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Baubak Bajohgli
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Julia Skokowa
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Arndt Borkhardt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Julia Hauer
- Department
of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Dresden 01307, Germany
- Partner
Site Dresden, National Center for Tumor
Diseases (NCT), Dresden 01307, Germany
| | - Finn K. Hansen
- Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical
Institute University of Bonn, Bonn 53121, Germany
| | - Sander H. J. Smits
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biochemistry, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Joachim Jose
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
- Phone: (+49)
211 81 13662.
| | - Thomas Kurz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49)
211 81 14984.
| |
Collapse
|
57
|
Hashem Boroojerdi M, Hosseinpour Sarmadi V, Maqbool M, Ling KH, Safarzadeh Kozani P, Safarzadeh Kozani P, Ramasamy R. Directional capacity of human mesenchymal stem cells to support hematopoietic stem cell proliferation in vitro. Gene 2022; 820:146218. [PMID: 35134469 DOI: 10.1016/j.gene.2022.146218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Hematopoietic stem cells (HSCs) reside in a specialised microenvironment in the bone marrow, which is majorly composed of mesenchymal stem cells (MSCs) and its' derivatives. This study aimed to investigate the regulatory role of MSCs to decipher the cellular and humoral communications on HSCs' proliferation, self-renewal, and differentiation at the transcriptomic level. MATERIALS AND METHODS Microarray assay was employed to analyse the gene expression profile of HSCs that imparted by MSCs during co-culture. RESULTS The proliferation of human umbilical cord blood-derived HSCs (hUC-HSCs) markedly propagated when MSCs were used as the feeder layer, without disturbing the undifferentiated state of HSCs, and reduced the cell death of HSCs. Upon co-culture with MSCs, the global microarray analysis of HSCs disclosed 712 differentially expressed genes (DEGs) (561 up-regulated and 151 down-regulated). The dysregulations of various transcripts were enriched for cellular functions such as cell cycle (including CCND1), apoptosis (including TNF), and genes related to signalling pathways governing self-renewal, as well as WNT5A from the Wnt signalling pathway, MAPK, Hedgehog, FGF2 from FGF, Jak-STAT, and PITX2 from the TGF-β signalling pathway. To concur this, real-time quantitative PCR (RT-qPCR) was utilised for corroborating the microarray results from five of the most dysregulated genes. CONCLUSION This study elucidates the underlying mechanisms of the mitogenic influences of MSCs on the propagation of HSCs. The exploitation of such mechanisms provides a potential means for achieving larger quantities of HSCs in vitro, thus obviating the need for manipulating their differentiation potential for clinical application.
Collapse
Affiliation(s)
- Mohadese Hashem Boroojerdi
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Maqbool
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rajesh Ramasamy
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Dental Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| |
Collapse
|
58
|
Lohraseb I, McCarthy P, Secker G, Marchant C, Wu J, Ali N, Kumar S, Daly RJ, Harvey NL, Kawabe H, Kleifeld O, Wiszniak S, Schwarz Q. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nat Commun 2022; 13:2018. [PMID: 35440627 PMCID: PMC9018756 DOI: 10.1038/s41467-022-29660-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/24/2022] [Indexed: 01/02/2023] Open
Abstract
The ubiquitin ligase NEDD4 promotes neural crest cell (NCC) survival and stem-cell like properties to regulate craniofacial and peripheral nervous system development. However, how ubiquitination and NEDD4 control NCC development remains unknown. Here we combine quantitative analysis of the proteome, transcriptome and ubiquitinome to identify key developmental signalling pathways that are regulated by NEDD4. We report 276 NEDD4 targets in NCCs and show that loss of NEDD4 leads to a pronounced global reduction in specific ubiquitin lysine linkages. We further show that NEDD4 contributes to the regulation of the NCC actin cytoskeleton by controlling ubiquitination and turnover of Profilin 1 to modulate filamentous actin polymerization. Taken together, our data provide insights into how NEDD4-mediated ubiquitination coordinates key regulatory processes during NCC development. Here the authors combine multi-omics approaches to uncover a role for ubiquitination and the ubiquitin ligase NEDD4 in targeting the actin binding protein Profilin 1 to regulate actin polymerisation in neural crest cells.
Collapse
Affiliation(s)
- Iman Lohraseb
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Peter McCarthy
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Genevieve Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Ceilidh Marchant
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre & Cancer Division, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Naveid Ali
- Bone Therapeutics Group, Bone Biology Division, Garvan Institute of Medical Research, Sydney, 2010, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, 3800, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Goettingen, 37075, Germany.,Department of Pharmacology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, 5000, Australia.
| |
Collapse
|
59
|
Firlej V, Soyeux P, Nourieh M, Huet E, Semprez F, Allory Y, Londono-Vallejo A, de la Taille A, Vacherot F, Destouches D. Overexpression of Nucleolin and Associated Genes in Prostate Cancer. Int J Mol Sci 2022; 23:4491. [PMID: 35562881 PMCID: PMC9101690 DOI: 10.3390/ijms23094491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/09/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of cancer death in men worldwide. If local PCa presents a favorable prognosis, available treatments for advanced PCa display limiting benefits due to therapeutic resistances. Nucleolin (NCL) is a ubiquitous protein involved in numerous cell processes, such as ribosome biogenesis, cell cycles, or angiogenesis. NCL is overexpressed in several tumor types in which it has been proposed as a diagnostic and prognostic biomarker. In PCa, NCL has mainly been studied as a target for new therapeutic agents. Nevertheless, little data are available concerning its expression in patient tissues. Here, we investigated the expression of NCL using a new cohort from Mondor Hospital and data from published cohorts. Results were then compared with NCL expression using in vitro models. NCL was overexpressed in PCa tissues compared to the normal tissues, but no prognostic values were demonstrated. Nine genes were highly co-expressed with NCL in patient tissues and tumor prostate cell lines. Our data demonstrate that NCL is an interesting diagnostic biomarker and propose a signature of genes co-expressed with NCL.
Collapse
Affiliation(s)
- Virginie Firlej
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Pascale Soyeux
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Maya Nourieh
- Department of Pathology, Institut Curie, F-92210 Saint-Cloud, France; (M.N.); (Y.A.)
| | - Eric Huet
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Fannie Semprez
- SPPIN—Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, F-75006 Paris, France;
| | - Yves Allory
- Department of Pathology, Institut Curie, F-92210 Saint-Cloud, France; (M.N.); (Y.A.)
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS UMR 3244 « Telomeres and Cancer », F-75005 Paris, France;
| | - Alexandre de la Taille
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
- AP-HP, Hôpital Henri-Mondor, Service Urologie, F-94010 Creteil, France
| | - Francis Vacherot
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Damien Destouches
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| |
Collapse
|
60
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
61
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
62
|
Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, Watson LA, Ko T, Guerin LN, Abdurob F, Rengarajan S, Papanastasiou M, Jaffe JD, Tsai LH. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022; 29:116-130.e7. [PMID: 34995493 PMCID: PMC8805993 DOI: 10.1016/j.stem.2021.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023]
Abstract
Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.
Collapse
Affiliation(s)
- Hiruy S. Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elana R. Lockshin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace Y. Akatsu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - L. Ashley Watson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsey N. Guerin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruthi Rengarajan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Jacob D. Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| |
Collapse
|
63
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
64
|
Šimoničová K, Janotka Ľ, Kavcová H, Sulová Z, Breier A, Messingerova L. Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resist Updat 2022; 61:100805. [DOI: 10.1016/j.drup.2022.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
|
65
|
Thyroid hormone receptor alpha sumoylation modulates white adipose tissue stores. Sci Rep 2021; 11:24105. [PMID: 34916557 PMCID: PMC8677787 DOI: 10.1038/s41598-021-03491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Thyroid hormone (TH) and thyroid hormone receptor (THR) regulate stem cell proliferation and differentiation during development, as well as during tissue renewal and repair in the adult. THR undergoes posttranslational modification by small ubiquitin-like modifier (SUMO). We generated the THRA (K283Q/K288R)−/− mouse model for in vivo studies and used human primary preadipocytes expressing the THRA sumoylation mutant (K283R/K288R) and isolated preadipocytes from mutant mice for in vitro studies. THRA mutant mice had reduced white adipose stores and reduced adipocyte cell diameter on a chow diet, compared to wild-type, and these differences were further enhanced after a high fat diet. Reduced preadipocyte proliferation in mutant mice, compared to wt, was shown after in vivo labeling of preadipocytes with EdU and in preadipocytes isolated from mice fat stores and studied in vitro. Mice with the desumoylated THRA had disruptions in cell cycle G1/S transition and this was associated with a reduction in the availability of cyclin D2 and cyclin-dependent kinase 2. The genes coding for cyclin D1, cyclin D2, cyclin-dependent kinase 2 and Culin3 are stimulated by cAMP Response Element Binding Protein (CREB) and contain CREB Response Elements (CREs) in their regulatory regions. We demonstrate, by Chromatin Immunoprecipitation (ChIP) assay, that in mice with the THRA K283Q/K288R mutant there was reduced CREB binding to the CRE. Mice with a THRA sumoylation mutant had reduced fat stores on chow and high fat diets and reduced adipocyte diameter.
Collapse
|
66
|
Reister S, Mahotka C, Grinstein E. Nucleolin as activator of TCF7L2 in human hematopoietic stem/progenitor cells. Leukemia 2021; 35:3616-3618. [PMID: 34799688 PMCID: PMC8632675 DOI: 10.1038/s41375-021-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Sven Reister
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Csaba Mahotka
- Institute of Pathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Edgar Grinstein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
67
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
68
|
Huang Y, Li Z, Lin E, He P, Ru G. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Exp Mol Med 2021; 53:1792-1806. [PMID: 34848840 PMCID: PMC8640061 DOI: 10.1038/s12276-021-00700-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In vitro fertilization (IVF) increases the risk of tumorigenesis in offspring. The increased oxidative damage during IVF may be involved in tumor formation. However, the molecular mechanisms underlying this phenomenon remain largely unclear. Using a well-established model of oxidatively damaged IVF mouse embryos, we applied the iTRAQ method to identify proteins differentially expressed between control and oxidatively damaged zygotes and explored the possible tumorigenic mechanisms, especially with regard to the effects of oxidative damage on ribosome biogenesis closely related to tumorigenesis. The iTRAQ results revealed that ribosomal proteins were upregulated by oxidative stress through the Nucleolin/β-Catenin/n-Myc pathway, which stimulated ribosomes to synthesize an abundance of repair proteins to correct the damaged DNA/chromosomes in IVF-derived embryos. However, the increased percentages of γH2AX-positive cells and apoptotic cells in the blastocyst suggested that DNA repair was insufficient, resulting in aberrant ribosome biogenesis. Overexpression of ribosomal proteins, particularly Rpl15, which gradually increased from the 1-cell to 8-cell stages, indicated persistent hyperactivation of ribosome biogenesis, which promoted tumorigenesis in offspring derived from oxidatively damaged IVF embryos by selectively enhancing the translation of β-Catenin and TGF-β1. The antioxidant epigallocatechin-3-gallate (EGCG) was added to the in vitro culture medium to protect embryos from oxidative damage, and the expression of ribosome-/tumor-related proteins returned to normal after EGCG treatment. This study suggests that regulation of ribosome biogenesis by EGCG may be a means of preventing tumor formation in human IVF-derived offspring, providing a scientific basis for optimizing in vitro culture conditions and improving human-assisted reproductive technology.
Collapse
Affiliation(s)
- Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China.
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, 518000, Shenzhen, Guangdong, China
| | - Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| |
Collapse
|
69
|
Wu A, Lin L, Li X, Xu Q, Xu W, Zhu X, Teng Y, Yang X, Ai Z. Overexpression of ARHGAP30 suppresses growth of cervical cancer cells by downregulating ribosome biogenesis. Cancer Sci 2021; 112:4515-4525. [PMID: 34490691 PMCID: PMC8586670 DOI: 10.1111/cas.15130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
We aimed to identify whether Rho GTPase activating proteins (RhoGAPs) were downregulated in cervical cancers and might be targeted to reduce the growth of cervical cancer using the GEO database and immunohistochemical analysis to identified changes in transcription and protein levels. We analyzed their proliferation, clone formation ability, and their growth as subcutaneous tumors in mice. To detect ARHGAP30 localization in cells, immunofluorescence assays were conducted. Mass spectrometry combined with immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation assays. Western-blot and q-PCR were applied to analyze candidate binding proteins that were associated with ribosome biogenesis. Puromycin incorporation assay was used to detect the global protein synthesis rate. We identified that ARHGAP30 was the only downregulated RhoGAP and was related to the survival of cervical cancer patients. Overexpression of ARHGAP30 in cervical cancer cells inhibited cell proliferation and migration. ARHGAP30 immunoprecipitated proteins were enriched in the ribosome biogenesis process. ARHGAP30 was located in the nucleous and interacted with nucleolin (NCL). Overexpression of ARHGAP30 inhibited rRNA synthesis and global protein synthesis. ARHGAP30 overexpression induced the ubiquitination of NCL and decreased its protein level in Hela cells. The function of ARHGAP30 on cervical cancer cell ribosome biogenesis and proliferation was independent of its RhoGAP activity as assessed with a RhoGAP-deficient plasmid of ARHGAP30R55A . Overall, the findings revealed that ARHGAP30 was frequently downregulated and associated with shorter survival of cervical cancer patients. ARHGAP30 may suppress growth of cervical cancer by reducing ribosome biogenesis and protein synthesis through promoting ubiquitination of NCL.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lan Lin
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao Li
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qinyang Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Wei Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaolu Zhu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yincheng Teng
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao‐Mei Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhihong Ai
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
70
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
71
|
Lee RH, Oh JD, Hwang JS, Lee HK, Shin D. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor. Sci Rep 2021; 11:18445. [PMID: 34531430 PMCID: PMC8446052 DOI: 10.1038/s41598-021-97581-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
72
|
Adaptor SH3BGRL promotes breast cancer metastasis through PFN1 degradation by translational STUB1 upregulation. Oncogene 2021; 40:5677-5690. [PMID: 34331014 DOI: 10.1038/s41388-021-01970-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Metastatic recurrence is still a major challenge in breast cancer treatment, but the underlying mechanisms remain unclear. Here, we report that a small adaptor protein, SH3BGRL, is upregulated in the majority of breast cancer patients, especially elevated in those with metastatic relapse, indicating it as a marker for the poor prognosis of breast cancer. Physiologically, SH3BGRL can multifunctionally promote breast cancer cell tumorigenicity, migration, invasiveness, and efficient lung colonization in nude mice. Mechanistically, SH3BGRL downregulates the acting-binding protein profilin 1 (PFN1) by accelerating the translation of the PFN1 E3 ligase, STUB1 via SH3BGRL interaction with ribosomal proteins, or/and enhancing the interaction of PFN1 with STUB1 to accelerate PFN1 degradation. Loss of PFN1 consequently contributes to downstream multiple activations of AKT, NF-kB, and WNT signaling pathways. In contrast, the forced expression of compensatory PFN1 in SH3BGRL-high cells efficiently neutralizes SH3BGRL-induced metastasis and tumorigenesis with PTEN upregulation and PI3K-AKT signaling inactivation. Clinical analysis validates that SH3BGRL expression is negatively correlated with PFN1 and PTEN levels, but positively to the activations of AKT, NF-kB, and WNT signaling pathways in breast patient tissues. Our results thus suggest that SH3BGRL is a valuable prognostic factor and a potential therapeutic target for preventing breast cancer progression and metastasis.
Collapse
|
73
|
Yan Y, Narayan A, Cho S, Cheng Z, Liu JO, Zhu H, Wang G, Wharram B, Lisok A, Brummet M, Saeki H, Huang T, Gabrielson K, Gabrielson E, Cope L, Kanaan YM, Afsari A, Naab T, Yfantis HG, Ambs S, Pomper MG, Sukumar S, Merino VF. CRYβB2 enhances tumorigenesis through upregulation of nucleolin in triple negative breast cancer. Oncogene 2021; 40:5752-5763. [PMID: 34341513 PMCID: PMC10064491 DOI: 10.1038/s41388-021-01975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Expression of β-crystallin B2 (CRYβB2) is elevated in African American (AA) breast tumors. The underlying mechanisms of CRYβB2-induced malignancy and the association of CRYβB2 protein expression with survival have not yet been described. Here, we report that the expression of CRYβB2 in breast cancer cells increases stemness, growth, and metastasis. Transcriptomics data revealed that CRYβB2 upregulates genes that are functionally associated with unfolded protein response, oxidative phosphorylation, and DNA repair, while down-regulating genes related to apoptosis. CRYβB2 in tumors promotes de-differentiation, an increase in mesenchymal markers and cancer-associated fibroblasts, and enlargement of nucleoli. Proteome microarrays identified a direct interaction between CRYβB2 and the nucleolar protein, nucleolin. CRYβB2 induces nucleolin, leading to the activation of AKT and EGFR signaling. CRISPR studies revealed a dependency on nucleolin for the pro-tumorigenic effects of CRYβB2. Triple-negative breast cancer (TNBC) xenografts with upregulated CRYβB2 are distinctively sensitive to the nucleolin aptamer, AS-1411. Lastly, in AA patients, higher levels of nucleolar CRYβB2 in primary TNBC correlates with decreased survival. In summary, CRYβB2 is upregulated in breast tumors of AA patients and induces oncogenic alterations consistent with an aggressive cancer phenotype. CRYβB2 increases sensitivity to nucleolin inhibitors and may promote breast cancer disparity.
Collapse
Affiliation(s)
- Yu Yan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soonweng Cho
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun O Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan Wharram
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ala Lisok
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Brummet
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harumi Saeki
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmine M Kanaan
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Ali Afsari
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Tammey Naab
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Harris G Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vanessa F Merino
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
74
|
Pang X, Gao X, Liu F, Jiang Y, Wang M, Li Q, Li Z. Xanthoangelol modulates Caspase-1-dependent pyroptotic death among hepatocellular carcinoma cells with high expression of GSDMD. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
75
|
MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers (Basel) 2021; 13:cancers13153909. [PMID: 34359809 PMCID: PMC8345394 DOI: 10.3390/cancers13153909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Collapse
|
76
|
Teng Y, Yu Y, Li S, Huang Y, Xu D, Tao X, Fan Y. Ultraviolet Radiation and Basal Cell Carcinoma: An Environmental Perspective. Front Public Health 2021; 9:666528. [PMID: 34368047 PMCID: PMC8339433 DOI: 10.3389/fpubh.2021.666528] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ultraviolet radiation (UVR) is a known carcinogen participated for the development of skin cancers. Solar UVR exposure, particularly ultraviolet B (UVB), is the mostly significant environmental risk factor for the occurrence and progress of basal cell carcinoma(BCC). Both cumulative and intermittent high-grade UVR exposure could promote the uncontrolled replication of skin cells. There are also exsiting other contributing environmental factors that combine with the UVR exposure to promote the development of BCC. DNA damage in formation of skin cancers is considered to be a result of UVR toxicity. It is UVR that could activate a series of oncogenes simultaneously inactivating tumor suppressor genes and aberrant proliferation and survival of keratinocytes that repair these damages. Furthermore, mounting evidence demonstrates that inflammatory responses of immune cells in the tumor microenvironment plays crucial role in the skin tumorigenesis as well. In this chapter, we will follow the function of UVR in the onset and development of BCC. We describe the factors that influence BCC induced by UVR, and also review the recent advances of pathogenesis of BCC induced by UVR from the genetic and inflammatory aspects.
Collapse
Affiliation(s)
- Yan Teng
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yong Yu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sujing Li
- Bengbu Medical College, Bengbu, China
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Danfeng Xu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
77
|
Ravi Kumara GS, Seo YJ. Polymerase-mediated synthesis of p-vinylaniline-coupled fluorescent DNA for the sensing of nucleolin protein- c-myc G-quadruplex interactions. Org Biomol Chem 2021; 19:5788-5793. [PMID: 34085078 DOI: 10.1039/d1ob00863c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper we report the synthesis of two deoxyuridine derivatives (dUCN2, dUPy)-featuring p-vinylaniline-based fluorophores linked through a propargyl unit at the 5' position-that function as molecular rotors. This probing system proved to be useful for the sensing of gene regulation arising from interactions between this G-quadruplex and nucleolin.
Collapse
Affiliation(s)
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
78
|
Tang Y, Lin X, Chen C, Tong Z, Sun H, Li Y, Liang P, Jiang B. Nucleolin Improves Heart Function During Recovery From Myocardial Infarction by Modulating Macrophage Polarization. J Cardiovasc Pharmacol Ther 2021; 26:386-395. [PMID: 33550832 DOI: 10.1177/1074248421989570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nucleolin has multiple functions within cell survival and proliferation pathways. Our previous studies have revealed that nucleolin can significantly reduce myocardial ischemia-reperfusion injury by promoting myocardial angiogenesis and reducing myocardial apoptosis. In this study, we attempted to determine the role of nucleolin in myocardial infarction (MI) injury recovery and the underlying mechanism. METHODS Male BALB/c mice aged 6-8 weeks were used to set up MI models by ligating the left anterior descending coronary artery. Nucleolin expression in the heart was downregulated by intramyocardial injection of a lentiviral vector expressing nucleolin-specific small interfering RNA. Macrophage infiltration and polarization were measured by real-time polymerase chain reaction, flow cytometry, and immunofluorescence. Cytokines were detected by enzyme-linked immunosorbent assay. RESULTS Nucleolin expression in myocardium after MI induction decreased a lot at early phase and elevated at late phase. Nucleolin knockdown impaired heart systolic and diastolic functions and decreased the survival rate after MI. Macrophage infiltration increased in the myocardium after MI. Most macrophages belonged to the M1 phenotype at early phase (2 days) and the M2 phenotype increased greatly at late phase after MI. Nucleolin knockdown in the myocardium led to a decrease in M2 macrophage polarization with no effect on macrophage infiltration after MI. Furthermore, Notch3 and STAT6, key regulators of M2 macrophage polarization, were upregulated by nucleolin in RAW 264.7 macrophages. CONCLUSIONS Lack of nucleolin impaired heart function during recovery after MI by reducing M2 macrophage polarization. This finding probably points to a new therapeutic option for ischemic heart disease.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Zhongyi Tong
- Department of Pathology, The Second Xiangya Hospital of 12570Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Yuanbin Li
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, 12570Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, 12570Central South University, Changsha, Hunan, China
| |
Collapse
|
79
|
Wang F, Zhu C, Cai S, Boudreau A, Kim SJ, Bissell M, Shao J. Ser 71 Phosphorylation Inhibits Actin-Binding of Profilin-1 and Its Apoptosis-Sensitizing Activity. Front Cell Dev Biol 2021; 9:692269. [PMID: 34235154 PMCID: PMC8255618 DOI: 10.3389/fcell.2021.692269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 01/25/2023] Open
Abstract
The essential actin-binding factor profilin-1 (Pfn1) is a non-classical tumor suppressor with the abilities toboth inhibit cellular proliferation and augment chemotherapy-induced apoptosis. Besides actin, Pfn1 interacts with proteins harboring the poly-L-proline (PLP) motifs. Our recent work demonstrated that both nuclear localization and PLP-binding are required for tumor growth inhibition by Pfn1, and this is at least partially due to Pfn1 association with the PLP-containing ENL protein in the Super Elongation Complex (SEC) and the transcriptional inhibition of pro-cancer genes. In this paper, by identifying a phosphorylation event of Pfn1 at Ser71 capable of inhibiting its actin-binding and nuclear export, we provide in vitro and in vivo evidence that chemotherapy-induced apoptotic sensitization by Pfn1 requires its cytoplasmic localization and actin-binding. With regard to tumor growth inhibition byPfn1, our data indicate a requirement for dynamic actin association and dissociation rendered by reversible Ser71phosphorylation and dephosphorylation. Furthermore, genetic and pharmacological experiments showed that Ser71 of Pfn1 can be phosphorylated by protein kinase A (PKA). Taken together, our data provide novel mechanistic insights into the multifaceted anticancer activities of Pfn1 and how they are spatially-defined in the cell and differentially regulated by ligand-binding.
Collapse
Affiliation(s)
- Faliang Wang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Surgical Oncology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuige Zhu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Shirong Cai
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aaron Boudreau
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sun-Joong Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mina Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jieya Shao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
80
|
Raineri F, Bourgoin-Voillard S, Cossutta M, Habert D, Ponzo M, Houppe C, Vallée B, Boniotto M, Chalabi-Dchar M, Bouvet P, Couvelard A, Cros J, Debesset A, Cohen JL, Courty J, Cascone I. Nucleolin Targeting by N6L Inhibits Wnt/β-Catenin Pathway Activation in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13122986. [PMID: 34203710 PMCID: PMC8232280 DOI: 10.3390/cancers13122986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and resistant cancer with no available effective therapy. We have previously demonstrated that nucleolin targeting by N6L impairs tumor growth and normalizes tumor vessels in PDAC mouse models. Here, we investigated new pathways that are regulated by nucleolin in PDAC. We found that N6L and nucleolin interact with β-catenin. We found that the Wnt/β-catenin pathway is activated in PDAC and is necessary for tumor-derived 3D growth. N6L and nucleolin loss of function induced by siRNA inhibited Wnt pathway activation by preventing β-catenin stabilization in PDAC cells. N6L also inhibited the growth and the activation of the Wnt/β-catenin pathway in vivo in mice and in 3D cultures derived from MIA PaCa2 tumors. On the other hand, nucleolin overexpression increased β-catenin stabilization. In conclusion, in this study, we identified β-catenin as a new nucleolin interactor and suggest that the Wnt/β-catenin pathway could be a new target of the nucleolin antagonist N6L in PDAC.
Collapse
Affiliation(s)
- Fabio Raineri
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Sandrine Bourgoin-Voillard
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- University of Grenoble Alpes, CNRS, Grenoble INP, Inserm U1055, LBFA and BEeSy, PROMETHEE Proteomic Platform, 38400 Saint-Martin d’Heres, France
- University of Grenoble Alpes, CNRS, Grenoble INP, TIMC, PROMETHEE Proteomic Platform, 38000 Grenoble, France
- CHU Grenoble Alpes, Institut de Biologie et de Pathologie, 38043 Grenoble, France
| | - Mélissande Cossutta
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
| | - Damien Habert
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Matteo Ponzo
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Claire Houppe
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Benoît Vallée
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Michele Boniotto
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Mounira Chalabi-Dchar
- Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, University of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; (M.C.-D.); (P.B.)
| | - Philippe Bouvet
- Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, University of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; (M.C.-D.); (P.B.)
- University of Lyon, Ecole Normale Supérieure de Lyon, 69342 Lyon, France
| | - Anne Couvelard
- Département de Pathologie, Hôpital Bichat APHP DHU UNITY, 75018 Paris, France; (A.C.); (J.C.)
| | - Jerome Cros
- Département de Pathologie, Hôpital Bichat APHP DHU UNITY, 75018 Paris, France; (A.C.); (J.C.)
| | - Anais Debesset
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - José L. Cohen
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
| | - José Courty
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
| | - Ilaria Cascone
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
- Correspondence: ; Tel.: +33-149-813-765
| |
Collapse
|
81
|
Lee SJ, Choi KM, Bang G, Park SG, Kim EB, Choi JW, Chung YH, Kim J, Lee SG, Kim E, Kim JY. Identification of Nucleolin as a Novel AEG-1-Interacting Protein in Breast Cancer via Interactome Profiling. Cancers (Basel) 2021; 13:cancers13112842. [PMID: 34200450 PMCID: PMC8201222 DOI: 10.3390/cancers13112842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is one of the most common malignant diseases worldwide. Astrocyte elevated gene-1 (AEG-1) is upregulated in breast cancer and regulates breast cancer cell proliferation and invasion. However, the molecular mechanisms by which AEG-1 promotes breast cancer have yet to be fully elucidated. In order to delineate the function of AEG-1 in breast cancer development, we mapped the AEG-1 interactome via affinity purification followed by LC-MS/MS. We identified nucleolin (NCL) as a novel AEG-1 interacting protein, and co-immunoprecipitation experiments validated the interaction between AEG-1 and NCL in breast cancer cells. The silencing of NCL markedly reduced not only migration/invasion, but also the proliferation induced by the ectopic expression of AEG-1. Further, we found that the ectopic expression of AEG-1 induced the tyrosine phosphorylation of c-Met, and NCL knockdown markedly reduced this AEG-1 mediated phosphorylation. Taken together, our report identifies NCL as a novel mediator of the oncogenic function of AEG-1, and suggests that c-Met could be associated with the oncogenic function of the AEG-1-NCL complex in the context of breast cancer.
Collapse
Affiliation(s)
- Seong-Jae Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Kyoung-Min Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seo-Gyu Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Eun-Bi Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Jin-Woong Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Young-Ho Chung
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Jinyoung Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seok-Geun Lee
- Bionanocomposite Research Center, Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Correspondence: (E.K.); (J.-Y.K.)
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
- Correspondence: (E.K.); (J.-Y.K.)
| |
Collapse
|
82
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
83
|
Sasikumar R, Vivek K, Jaiswal AK. Effect of spray drying conditions on the physical characteristics, amino acid profile, and bioactivity of blood fruit (
Haematocarpus
validus
Bakh.F. Ex Forman) seed protein isolate. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Raju Sasikumar
- Department of Agribusiness Management and Food Technology North Eastern Hill University (NEHU), Tura Campus Tura, West Garo Hills India
| | | | - Amit K. Jaiswal
- School of Food Science and Environmental Health College of Sciences and HealthTechnological University Dublin ‐ City Campus Grangegorman, Dublin Ireland
- Environmental Sustainability and Health Institute Technological University Dublin City Campus Grangegorman, Dublin Ireland
| |
Collapse
|
84
|
Yenmis G, Yaprak Sarac E, Besli N, Soydas T, Tastan C, Dilek Kancagi D, Yilanci M, Senol K, Karagulle OO, Ekmekci CG, Ovali E, Tuncdemir M, Ulutin T, Kanigur Sultuybek G. Anti-cancer effect of metformin on the metastasis and invasion of primary breast cancer cells through mediating NF-kB activity. Acta Histochem 2021; 123:151709. [PMID: 33711726 DOI: 10.1016/j.acthis.2021.151709] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Current evidence strongly suggests that aberrant activation of the nuclear factor kappa B (NF-kB) signaling cascade is connected to carcinogenesis. The matrix metalloproteinases (MMP) which are also the key agents for tumor metastasis may be potent candidates for tumor diagnosis in clinics. In this in vitro study, we hypothesized that metformin with an effective dose can inhibit tumor cell proliferation and metastasis by modulating the expressions of MMP-2 and -9 and interfering with NF-kB signaling in primary breast cancer cells (PBCCs). 300 000 cells per ml were obtained from biopsies of breast tumors from five human donors. The cell viability and proliferation were tested. Immunocytochemistry was performed for MMP-2, MMP-9, and NF-kB, and enzyme-linked immunosorbent assay for NF-kB activity, quantitative real-time PCR for RELA/p65, IkBα, MMP-2, and MMP-9. Three different doses of metformin (5, 10, and 25 mM) (Met) reduced the viability and proliferation of PBCCs in a dose-dependent manner, maximum inhibition was observed at 25 mM Met. The expression of RELA/p65 was not affected by 25 mM Met. Nuclear immunoreactivity and activity of NF-kB reduced while cytoplasmic NF-kB (p65) elevated by 25 mM Met compared to non-treatment (P < 0.05). The expression and immunoreactivity of MMP-9 but not MMP-2 were decreased by 25 mM Met treatment, compared with the non-treatment (P < 0.05). Metformin may have an essential antitumor role in the invasion and metastasis pathways of PBCCs by downregulating the MMP-9 expression blocking both the activity and nuclear translocation of NF-kB.
Collapse
|
85
|
Schleiss C, Carapito R, Fornecker LM, Muller L, Paul N, Tahar O, Pichot A, Tavian M, Nicolae A, Miguet L, Mauvieux L, Herbrecht R, Cianferani S, Freund JN, Carapito C, Maumy-Bertrand M, Bahram S, Bertrand F, Vallat L. Temporal multiomic modeling reveals a B-cell receptor proliferative program in chronic lymphocytic leukemia. Leukemia 2021; 35:1463-1474. [PMID: 33833385 PMCID: PMC8102193 DOI: 10.1038/s41375-021-01221-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
B-cell receptor (BCR) signaling is crucial for the pathophysiology of most mature B-cell lymphomas/leukemias and has emerged as a therapeutic target whose effectiveness remains limited by the occurrence of mutations. Therefore, deciphering the cellular program activated downstream this pathway has become of paramount importance for the development of innovative therapies. Using an original ex vivo model of BCR-induced proliferation of chronic lymphocytic leukemia cells, we generated 108 temporal transcriptional and proteomic profiles from 1 h up to 4 days after BCR activation. This dataset revealed a structured temporal response composed of 13,065 transcripts and 4027 proteins, comprising a leukemic proliferative signature consisting of 430 genes and 374 proteins. Mathematical modeling of this complex cellular response further highlighted a transcriptional network driven by 14 early genes linked to proteins involved in cell proliferation. This group includes expected genes (EGR1/2, NF-kB) and genes involved in NF-kB signaling modulation (TANK, ROHF) and immune evasion (KMO, IL4I1) that have not yet been associated with leukemic cells proliferation. Our study unveils the BCR-activated proliferative genetic program in primary leukemic cells. This approach combining temporal measurements with modeling allows identifying new putative targets for innovative therapy of lymphoid malignancies and also cancers dependent on ligand-receptor interactions.
Collapse
Affiliation(s)
- Cedric Schleiss
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Plateforme Genomax, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Plateforme Genomax, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Luc-Matthieu Fornecker
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
- Service d'Hématologie, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Leslie Muller
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Plateforme Genomax, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France
| | - Ouria Tahar
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Plateforme Genomax, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Angelique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Plateforme Genomax, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France
| | - Manuela Tavian
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
| | - Alina Nicolae
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
| | - Laurent Miguet
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
- Laboratoire d'Hématologie, Pôle de Biologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Mauvieux
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
- Laboratoire d'Hématologie, Pôle de Biologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Raoul Herbrecht
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
- Service d'Hématologie, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Jean-Noel Freund
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Myriam Maumy-Bertrand
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France
- Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx IRMIA, Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Plateforme Genomax, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Frederic Bertrand
- Institut de Recherche Mathématique Avancée, CNRS UMR 7501, LabEx IRMIA, Université de Strasbourg, Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France.
- Institut Charles Delaunay, ROSAS, M2S, Université de Technologie de Troyes, Troyes, France.
| | - Laurent Vallat
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Plateforme Genomax, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) Omicare, Université de Strasbourg, Strasbourg, France.
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.
- Laboratoire d'Hématologie, Pôle de Biologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
86
|
Zheng Y, Huang G, Silva TC, Yang Q, Jiang YY, Koeffler HP, Lin DC, Berman BP. A pan-cancer analysis of CpG Island gene regulation reveals extensive plasticity within Polycomb target genes. Nat Commun 2021; 12:2485. [PMID: 33931649 PMCID: PMC8087678 DOI: 10.1038/s41467-021-22720-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023] Open
Abstract
CpG Island promoter genes make up more than half of human genes, and a subset regulated by Polycomb-Repressive Complex 2 (PRC2+-CGI) become DNA hypermethylated and silenced in cancer. Here, we perform a systematic analysis of CGI genes across TCGA cancer types, finding that PRC2+-CGI genes are frequently prone to transcriptional upregulation as well. These upregulated PRC2+-CGI genes control important pathways such as Epithelial-Mesenchymal Transition (EMT) and TNFα-associated inflammatory response, and have greater cancer-type specificity than other CGI genes. Using publicly available chromatin datasets and genetic perturbations, we show that transcription factor binding sites (TFBSs) within distal enhancers underlie transcriptional activation of PRC2+-CGI genes, coinciding with loss of the PRC2-associated mark H3K27me3 at the linked promoter. In contrast, PRC2-free CGI genes are predominantly regulated by promoter TFBSs which are common to most cancer types. Surprisingly, a large subset of PRC2+-CGI genes that are upregulated in one cancer type are also hypermethylated/silenced in at least one other cancer type, underscoring the high degree of regulatory plasticity of these genes, likely derived from their complex regulatory control during normal development.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Guowei Huang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Tiago C Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Qian Yang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan-Yi Jiang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
87
|
Smarca5-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Blood 2021; 137:190-202. [PMID: 32756943 DOI: 10.1182/blood.2020005219] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Nascent hematopoietic stem and progenitor cells (HSPCs) acquire definitive hematopoietic characteristics only when they develop into fetal HSPCs; however, the mechanisms underlying fetal HSPC development are poorly understood. Here, we profiled the chromatin accessibility and transcriptional features of zebrafish nascent and fetal HSPCs using ATAC-seq and RNA-seq and revealed dynamic changes during HSPC transition. Functional assays demonstrated that chromatin remodeler-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Systematical screening of chromatin remodeler-related genes identified that smarca5 is responsible for the maintenance of chromatin accessibility at promoters of hematopoiesis-related genes in fetal HSPCs. Mechanistically, Smarca5 interacts with nucleolin to promote chromatin remodeling, thereby facilitating genomic binding of transcription factors to regulate expression of hematopoietic regulators such as bcl11ab. Our results unravel a new role of epigenetic regulation and reveal that Smarca5-mediated epigenetic programming is responsible for fetal HSPC development, which will provide new insights into the generation of functional HSPCs both in vivo and in vitro.
Collapse
|
88
|
Gul SI, Ayoub A, Ali SA, Hanook S, Baig DN. Profilin 3 genetic architecture in glioma formalin fixed paraffin embedded (FFPE) archive. Gene 2021; 787:145614. [PMID: 33775850 DOI: 10.1016/j.gene.2021.145614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Pfn3 is an intron-less gene, encoding actin binding protein that affects structure of cytoskeleton. Although, Pfn3 is mentioned in Allen Brain Atlas and in adult and prenatal Human Brain Tissue Gene Expression Profiles dataset, however, no report on brain and/or brain tumor associated Pfn3 nucleotide sequences are available in the databases. Moreover, pfn3 and pfn4 are always considered as testicular specific genes. The current study explored transcriptional expression profile and genetic architecture of pfn3 in a cohort of fifty formalin fixed paraffin embedded (FFPE) human glioma archive tissues. Results of designed study highlighted the significant dysregulated transcriptional pattern of pfn3. Molecular similarity index indicated 97% in nucleotide and 93% homology in protein sequences (with clear differences in nine amino acid residues). Thus, molecular variations in the pfn3 may be corelated with the malignancy of brain tumors, as previously, pfn1 and pfn2 were reported as tumor suppressor genes in other types of cancer.
Collapse
Affiliation(s)
- Samar Ijaz Gul
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Aqsa Ayoub
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Syed Aoun Ali
- The Institute of Health and Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Translational Research Institute, 37 Kent St, Woolloongabba, Brisbane, QLD 4102, Australia.
| | - Sharoon Hanook
- Department of Statistics, Forman Christian College (A Chartered University), Lahore 54600, Pakistan.
| | - Deeba Noreen Baig
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan.
| |
Collapse
|
89
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021; 12:660085. [PMID: 33815422 PMCID: PMC8012763 DOI: 10.3389/fimmu.2021.660085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy harnessing the host immune system for tumor destruction revolutionized oncology research and advanced treatment strategies for lymphoma patients. Lymphoma is a heterogeneous group of cancer, where the central roles in pathogenesis play immune evasion and dysregulation of multiple signaling pathways. Immunotherapy-based approaches such as engineered T cells (CAR T), immune checkpoint modulators and NK cell-based therapies are now in the frontline of lymphoma research. Even though emerging immunotherapies showed promising results in treating lymphoma patients, low efficacy and on-target/off-tumor toxicity are of a major concern. To address that issue it is suggested to look into the emerging role of heat shock proteins. Heat shock proteins (HSPs) showed to be highly expressed in lymphoma cells. HSPs are known for their abilities to modulate immune responses and inhibit apoptosis, which made their successful entry into cancer clinical trials. Here, we explore the role of HSPs in Hodgkin and Non-Hodgkin lymphoma and their involvement in CAR T therapy, checkpoint blockade and NK cell- based therapies. Understanding the role of HSPs in lymphoma pathogenesis and the ways how HSPs may enhance anti-tumor responses, may help in the development of more effective, specific and safe immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
90
|
Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia 2021; 35:968-981. [PMID: 33686198 PMCID: PMC8024192 DOI: 10.1038/s41375-021-01204-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Classical Hodgkin lymphoma (cHL) is unique among lymphoid malignancies in several key biological features. (i) The Hodgkin and Reed-Sternberg (HRS) tumor cells are rare among an extensive and complex microenvironment. (ii) They derive from B cells, but have largely lost the B-cell typical gene expression program. (iii) Their specific origin appears to be pre-apoptotic germinal center (GC) B cells. (iv) They consistently develop bi- or multinucleated Reed-Sternberg cells from mononuclear Hodgkin cells. (v) They show constitutive activation of numerous signaling pathways. Recent studies have begun to uncover the basis of these specific features of cHL: HRS cells actively orchestrate their complex microenvironment and attract many distinct subsets of immune cells into the affected tissues, to support their survival and proliferation, and to create an immunosuppressive environment. Reed-Sternberg cells are generated by incomplete cytokinesis and refusion of Hodgkin cells. Epstein-Barr virus (EBV) plays a major role in the rescue of crippled GC B cells from apoptosis and hence is a main player in early steps of lymphomagenesis of EBV+ cHL cases. The analysis of the landscape of genetic lesions in HRS cells so far did not reveal any highly recurrent HRS cell-specific lesions, but major roles of genetic lesions in members of the NF-κB and JAK/STAT pathways and of factors of immune evasion. It is perhaps the combination of the genetic lesions and the peculiar cellular origin of HRS cells that are disease defining. A combination of such genetic lesions and multiple cellular interactions with cells in the microenvironment causes the constitutive activation of many signaling pathways, often interacting in complex fashions. In nodular lymphocyte predominant Hodgkin lymphoma, the GC B cell-derived tumor cells have largely retained their typical GC B-cell expression program and follicular microenvironment. For IgD-positive cases, bacterial antigen triggering has recently been implicated in early stages of its pathogenesis.
Collapse
Affiliation(s)
- Marc A Weniger
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
91
|
The Nonstructural Protein NSs of Severe Fever with Thrombocytopenia Syndrome Virus Causes a Cytokine Storm through the Hyperactivation of NF- κB. Mol Cell Biol 2021; 41:e0054220. [PMID: 33288641 PMCID: PMC8088271 DOI: 10.1128/mcb.00542-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging highly pathogenic phlebovirus. The syndrome is characterized by the substantial production of inflammatory cytokines and chemokines, described as a cytokine storm, which correlates with multiorgan failure and high mortality. SFSTV nonstructural (NSs) protein was suggested to mediate the pathogenesis by inhibiting antiviral interferon signaling in the host. However, whether SFTSV NSs protein mediates the induction of a fatal cytokine storm remains unaddressed. We demonstrated that SFTSV NSs promotes the hyperinduction of cytokine/chemokine genes in vitro, reminiscent of a cytokine storm. Using gene deletion and pharmacological intervention, we found that the induced cytokine storm is driven by the transcription factor NF-κB. Our investigation revealed that TANK-binding kinase 1 (TBK1) suppresses NF-κB signaling and cytokine/chemokine induction in a kinase activity-dependent manner and that NSs sequesters TBK1 to prevent it from suppressing NF-κB, thereby promoting the activation of NF-κB and its target cytokine/chemokine genes. Of note, NF-κB inhibition suppressed the induction of proinflammatory cytokines in SFTSV-infected type I interferon (IFN-I) receptor 1-deficient (Ifnar1-/-) mice. These findings establish the essential role of NSs in SFTS pathogenesis and suggest NF-κB as a possible therapeutic target.
Collapse
|
92
|
The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Viruses 2021; 13:v13020239. [PMID: 33546431 PMCID: PMC7913651 DOI: 10.3390/v13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Nuclear domains 10 (ND10), a.k.a. promyelocytic leukemia nuclear bodies (PML-NBs), are membraneless subnuclear domains that are highly dynamic in their protein composition in response to cellular cues. They are known to be involved in many key cellular processes including DNA damage response, transcription regulation, apoptosis, oncogenesis, and antiviral defenses. The diversity and dynamics of ND10 residents enable them to play seemingly opposite roles under different physiological conditions. Although the molecular mechanisms are not completely clear, the pro- and anti-cancer effects of ND10 have been well established in tumorigenesis. However, in herpesvirus research, until the recently emerged evidence of pro-viral contributions, ND10 nuclear bodies have been generally recognized as part of the intrinsic antiviral defenses that converge to the incoming viral DNA to inhibit the viral gene expression. In this review, we evaluate the newly discovered pro-infection influences of ND10 in various human herpesviruses and analyze their molecular foundation along with the traditional antiviral functions of ND10. We hope to shed light on the explicit role of ND10 in both the lytic and latent cycles of herpesvirus infection, which is imperative to the delineation of herpes pathogenesis and the development of prophylactic/therapeutic treatments for herpetic diseases.
Collapse
|
93
|
Han X, Kuang Y, Chen H, Liu T, Zhang J, Liu J. p19INK4d: More than Just a Cyclin-Dependent Kinase Inhibitor. Curr Drug Targets 2021; 21:96-102. [PMID: 31400265 DOI: 10.2174/1389450120666190809161901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
Cyclin-dependent kinase inhibitors (CDKIs) are important cell cycle regulators. The CDKI family is composed of the INK4 family and the CIP/KIP family. p19INK4d belongs to the INK4 gene family and is involved in a series of normal physiological activities and the pathogenesis of diseases. Many factors play regulatory roles in the p19INK4d gene expression at the transcriptional and posttranscriptional levels. p19INK4d not only regulates the cell cycle but also plays regulatory roles in apoptosis, DNA damage repair, cell differentiation of hematopoietic cells, and cellular senescence. In this review, the regulatory network of the p19INK4d gene expression and its biological functions are summarized, which provides a basis for further study of p19INK4d as a drug target for disease treatment.
Collapse
Affiliation(s)
- Xu Han
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yijin Kuang
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huiyong Chen
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ting Liu
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
94
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
95
|
Schweer D, McCorkle JR, Rohr J, Tsodikov OV, Ueland F, Kolesar J. Mithramycin and Analogs for Overcoming Cisplatin Resistance in Ovarian Cancer. Biomedicines 2021; 9:70. [PMID: 33445667 PMCID: PMC7828137 DOI: 10.3390/biomedicines9010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable. Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-resistance. This article summarizes recent clinical developments related to mithramycin and postulates a role for the use of mithramycin, or its analog, in the treatment of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- David Schweer
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Lexington, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - J. Robert McCorkle
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (J.R.M.); (J.R.); (O.V.T.)
| | - Jurgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (J.R.M.); (J.R.); (O.V.T.)
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (J.R.M.); (J.R.); (O.V.T.)
| | - Frederick Ueland
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Lexington, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Jill Kolesar
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Lexington, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (D.S.); (F.U.)
| |
Collapse
|
96
|
Alam MN, Yu JQ, Beale P, Huq F. Dose and Sequence Dependent Synergism from the Combination of Oxaliplatin with Emetine and Patulin Against Colorectal Cancer. Anticancer Agents Med Chem 2021; 20:264-273. [PMID: 31736447 DOI: 10.2174/1871520619666191021112042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Colorectal cancer is the third most commonly diagnosed cancer in the world, causing many deaths every year. Combined chemotherapy has opened a new horizon in treating colorectal cancer. The objective of the present study is to investigate the activity of oxaliplatin in combination with emetine and patulin against colorectal cancer models. METHODS IC50 values of oxaliplatin, emetine and patulin were determined against human colorectal cancer cell lines (HT-29 and Caco-2) using MTT reduction assay. Synergistic, antagonistic and additive effects from the selected binary combinations were determined as a factor of sequence of administration and added concentrations. Proteomics was carried out to identify the proteins which were accountable for combined drug action applying to the selected drug combination. RESULTS Oxaliplatin in combination with patulin produced synergism against human colorectal cancer models depending on dose and sequence of drug administration. Bolus administration of oxaliplatin with patulin proved to be the best in terms of synergistic outcome. Altered expressions of nine proteins (ACTG, PROF1, PPIA, PDIA3, COF1, GSTP1, ALDOA, TBA1C and TBB5) were considered for combined drug actions of oxaliplatin with patulin. CONCLUSION Bolus administration of oxaliplatin with patulin has the potential to be used in the treatment of colorectal cancer, and would warrant further evaluation using suitable animal model.
Collapse
Affiliation(s)
- Md Nur Alam
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Jun Q Yu
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139, Australia
| | - Fazlul Huq
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
97
|
Wu Z, Nicoll M, Ingham RJ. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol 2021; 10:4. [PMID: 33413671 PMCID: PMC7792353 DOI: 10.1186/s40164-020-00197-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) and anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) are B and T cell lymphomas respectively, which express the tumour necrosis factor receptor superfamily member, CD30. Another feature shared by cHL and ALK+ ALCL is the aberrant expression of multiple members of the activator protein-1 (AP-1) family of transcription factors which includes proteins of the Jun, Fos, ATF, and Maf subfamilies. In this review, we highlight the varied roles these proteins play in the pathobiology of these lymphomas including promoting proliferation, suppressing apoptosis, and evading the host immune response. In addition, we discuss factors contributing to the elevated expression of these transcription factors in cHL and ALK+ ALCL. Finally, we examine therapeutic strategies for these lymphomas that exploit AP-1 transcriptional targets or the signalling pathways they regulate.
Collapse
Affiliation(s)
- Zuoqiao Wu
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.17063.330000 0001 2157 2938Present Address: Department of Medicine, University of Toronto, Toronto, Canada
| | - Mary Nicoll
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.14709.3b0000 0004 1936 8649Present Address: Department of Biology, McGill University, Montreal, Canada
| | - Robert J. Ingham
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| |
Collapse
|
98
|
Vester SK, Beavil RL, Lynham S, Beavil AJ, Cunninghame Graham DS, McDonnell JM, Vyse TJ. Nucleolin acts as the receptor for C1QTNF4 and supports C1QTNF4-mediated innate immunity modulation. J Biol Chem 2021; 296:100513. [PMID: 33676896 PMCID: PMC8042453 DOI: 10.1016/j.jbc.2021.100513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
The C1q and TNF related 4 (C1QTNF4) protein is a structurally unique member of the C1QTNF family, a family of secreted proteins that have structural homology with both complement C1q and the tumor necrosis factor superfamily. C1QTNF4 has been linked to the autoimmune disease systemic lupus erythematosus through genetic studies; however, its role in immunity and inflammation remains poorly defined and a cell surface receptor of C1QTNF4 has yet to be identified. Here we report identification of nucleolin as a cell surface receptor of C1QTNF4 using mass spectrometric analysis. Additionally, we present evidence that the interaction between C1QTNF4 and nucleolin is mediated by the second C1q-like domain of C1QTNF4 and the C terminus of nucleolin. We show that monocytes and B cells are target cells of C1QTNF4 and observe extensive binding to dead cells. Imaging flow cytometry experiments in monocytes show that C1QTNF4 becomes actively internalized upon cell binding. Our results suggest that nucleolin may serve as a docking molecule for C1QTNF4 and act in a context-dependent manner through coreceptors. Taken together, these findings further our understanding of C1QTNF4's function in the healthy immune system and how dysfunction may contribute to the development of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Susan K Vester
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Rebecca L Beavil
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Andrew J Beavil
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Timothy J Vyse
- Department of Medical & Molecular Genetics, King's College London, London, UK.
| |
Collapse
|
99
|
Hsuan CF, Lu YC, Tsai IT, Houng JY, Wang SW, Chang TH, Chen YL, Chang CC. Glossogyne tenuifolia Attenuates Proliferation and Migration of Vascular Smooth Muscle Cells. Molecules 2020; 25:molecules25245832. [PMID: 33321921 PMCID: PMC7763981 DOI: 10.3390/molecules25245832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) are essential in the pathogenesis of various vascular diseases, such as atherosclerosis and restenosis. Among the mediators of VSMC during atherosclerosis development, platelet-derived growth factor (PDGF)-BB is a potent mitogen for VSMCs and greatly contributes to the intimal accumulation of VSMCs. Glossogyne tenuifolia (GT, Xiang-Ru) is a traditional antipyretic and hepatoprotective herb from Penghu Island, Taiwan. This study evaluated the inhibitory effect of GT ethanol extract (GTE) and GT water extract (GTW) on proliferative and migratory activities in PDGF-BB-induced VSMCs. The experimental results demonstrated that GTE significantly inhibited the PDGF-BB-stimulated VSMC proliferation and migration, as shown by MTT, wound healing, and Boyden chamber assays. GTE was found to have a much more potent inhibitory activity than GTW. Based on the Western blot analysis, GTE significantly blocked the PDGF-BB-induced phosphorylation of NF-κB and mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinase (ERK), p38, and JNK, in VSMCs. In addition, GTE retarded the PDGF-BB-mediated migration through the suppression of matrix metalloproteinase (MMP)-2 and MMP-9 expression in VSMCs. Three main ingredients of GT-chlorogenic acid, luteolin-7-glucoside, and luteolin-all showed significant anti-proliferative effects on PDGF-BB-induced VSMCs. As a whole, our findings indicated that GTE has the potential to be a therapeutic agent to prevent or treat restenosis or atherosclerosis.
Collapse
Affiliation(s)
- Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-F.H.); (I.-T.T.); (S.-W.W.)
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-F.H.); (I.-T.T.); (S.-W.W.)
- Department of Emergency, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Jer-Yiing Houng
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan; (J.-Y.H.); (T.-H.C.)
- Department of Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Shih-Wei Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-F.H.); (I.-T.T.); (S.-W.W.)
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Tzu-Hsien Chang
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan; (J.-Y.H.); (T.-H.C.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan;
| | - Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-6150011 (ext. 251168)
| |
Collapse
|
100
|
Zhang Z, Zheng Q, Liu Y, Sun L, Han P, Wang R, Zhao J, Hu S, Zhao X. Human CD133-positive hematopoietic progenitor cells enhance the malignancy of breast cancer cells. BMC Cancer 2020; 20:1158. [PMID: 33243165 PMCID: PMC7690192 DOI: 10.1186/s12885-020-07633-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Human CD133+ hematopoietic progenitor cells (HPCs) are a specific subset of cells that can regulate tumor malignancy. However, the mechanism by which CD133+ HPCs affect the malignancy of human breast cancer has not been reported. METHODS CD133+ HPCs were isolated and purified from human umbilical cord blood (UCB). We used in vitro culture of MCF-7 and MDA-MB-231 cell lines, and MCF-7 and MDA-MB-231 cells in nude mice to evaluate whether CD133+ HPCs affected the apoptosis, proliferation, invasion and epithelial mesenchymal transition EMT of breast cancer cells. RESULTS Co-culture with CD133+ HPCs, but not UCB CD133- cells, promoted the proliferation of human breast cancer MCF-7 and MDA-MB-231 cells, accompanied by reducing in vitro spontaneous apoptosis. Co-administration of these two lines with CD133+ HPCs significantly enhanced the growth of implanted breast cancer in vivo. Furthermore, co-culture with CD133+ HPCs, enhanced the invasion of breast cancer cells, N-cadherin and Vimentin expression, but reduced E-cadherin expression in breast cancer cells. CONCLUSIONS Our study demonstrated that CD133+ HPCs enhance the malignancy of breast cancer cells by attenuating spontaneous apoptosis and promoting the process of epithelial mesenchymal transition. These findings may provide new insights into the role of human CD133+ HPCs in breast cancer pathogenesis. Therefore, CD133+ HPCs may be a new therapeutic target for inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Qinglian Zheng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yonghui Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lianqing Sun
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Pingping Han
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Rui Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiao Zhao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shan Hu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinhan Zhao
- Department of Medical Oncology, the First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|