51
|
Rong X, Chen J, Pan D, Wang Y, Zhang C, Tang Y. Association between Apolipoprotein E genotype and functional outcome in acute ischemic stroke. Aging (Albany NY) 2023; 15:108-118. [PMID: 36640294 PMCID: PMC9876635 DOI: 10.18632/aging.204460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/15/2023]
Abstract
This study aims to determine whether APOE alleles would affect the functional outcome in acute ischemic stroke (AIS) and whether the relationship between inflammation and stroke-related disability varies according to APOE genotypes. We retrospectively collected the demographic and clinical data of AIS patients within one week of symptom-onset through medical records review. The primary outcome was dependence or death, defined as modified Rankin scale (mRS) score of 2-6, which was assessed at 3 months. Among 1929 enrolled patients, the prevalence of APOE ε4 carriers was 17.73% (342/1929). There were 394 AIS patients (394/1929, 20.43%) showed poor function outcome of 90-day mRS (2-6), of whom 147 (147/342, 42.98%) were APOE ε4 carriers and 247 (247/1587, 15.56%) were non-ε4 carriers. There was a significant increased probability of poor functional outcome after AIS among APOE ε4 carriers versus non-ε4 carriers (adjusted-OR 4.62, 95% CI 3.51 to 6.09, P < 0.001). Among ε4 carriers, high neutrophil-to-lymphocyte ratio (NLR) was significantly associated with stroke-related disability (Ptrend = 0.035); however, no significant association was observed among non-ε4 carriers. Our study showed that the APOE ε4 carriers had worse functional outcome after AIS as compared with non-ε4 carriers. APOE genotype may modify the relationship between NLR and 3-month stroke outcome.
Collapse
Affiliation(s)
- Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingjuan Chen
- Department of Neurology, First People’s Hospital of Foshan, Foshan, People’s Republic of China
| | - Dong Pan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - YuKai Wang
- Department of Neurology, First People’s Hospital of Foshan, Foshan, People’s Republic of China
| | - Chengguo Zhang
- Department of Neurology, First People’s Hospital of Foshan, Foshan, People’s Republic of China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
52
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating Exosomes from Alzheimer's Disease Suppress Vascular Endothelial-Cadherin Expression and Induce Barrier Dysfunction in Recipient Brain Microvascular Endothelial Cell. J Alzheimers Dis 2023; 95:869-885. [PMID: 37661885 DOI: 10.3233/jad-230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Blood-brain barrier (BBB) breakdown is a crucial aspect of Alzheimer's disease (AD) progression. Dysfunction in BBB is primarily caused by impaired tight junction and adherens junction proteins in brain microvascular endothelial cells (BMECs). The role of adherens junctions in AD-related BBB dysfunction remains unclear. Exosomes from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. OBJECTIVE This study aimed to investigate the impact of AD circulating exosomes on brain endothelial dysfunction. METHODS Exosomes were isolated from sera of AD patients and age- and sex-matched cognitively normal controls using size-exclusion chromatography. The study measured the biomechanical nature of BMECs' endothelial barrier, the lateral binding forces between live BMECs. Paracellular expressions of the key adherens junction protein vascular endothelial (VE)-cadherin were visualized in BMEC cultures and a 3D BBB model using human BMECs and pericytes. VE-cadherin signals were also examined in brain tissues from AD patients and normal controls. RESULTS Circulating exosomes from AD patients reduced VE-cadherin expression levels and impaired barrier function in recipient BMECs. Immunostaining analysis demonstrated that AD exosomes damaged VE-cadherin integrity in a 3D microvascular tubule formation model. The study found that AD exosomes weakened BBB integrity depending on their RNA content. Additionally, diminished microvascular VE-cadherin expression was observed in AD brains compared to controls. CONCLUSION These findings highlight the significant role of circulating exosomes from AD patients in damaging adherens junctions of recipient BMECs, dependent on exosomal RNA.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ernesto G Miranda-Morales
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Qini Gan
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Yi Liew
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Balaji Krishnan
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subo Yuan
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiang Fang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
53
|
Peripheral high levels of CRP predict progression from normal cognition to dementia: A systematic review and meta-analysis. J Clin Neurosci 2023; 107:54-63. [PMID: 36502782 DOI: 10.1016/j.jocn.2022.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Several cross-sectional studies have demonstrated a relationship between inflammation and dementia. Uncertainty exists over the ability of C-reactive protein (CRP), one of the most investigated markers of inflammation, to predict the progression of normal cognition to dementia. A systematic review and meta-analysis were performed to assess whether high peripheral levels of CRP are associated with cognitive impairment and whether CRP is a risk factor for predicting progression from normal cognition to cognitive decline or dementia. METHODS Literature published before November 2022 was retrieved from PubMed, Embase, and Web of Science. Prospective cohort studies that employed recognized evaluation instruments to assess global cognitive function or used accepted diagnostic criteria to ascertain dementia were selected. Subgroup analysis was conducted on specific cognitive domains and causes of dementia (i.e., Alzheimer's disease and vascular dementia). Odds ratios (ORs) and hazard ratios (HRs) were extracted and merged to facilitate data analysis. A random-effects model was used for the meta-analysis and a descriptive analysis of the data that could not be merged was conducted. RESULTS A total of 13 articles (14 cohort studies) were included for meta-analysis and six articles were included for descriptive analysis. The results showed that high CRP levels were not related to future cognitive decline (OR = 1.115; 95 % CI: 0.830-1.497; p = 0.469) but were associated with an increased risk of conversion to dementia. (HR = 1.473; 95 % CI: 1.037-2.090; p = 0.0394). This association persisted after full adjustment for potential covariates, with an OR of 1.044 (95 % CI:0.767-1.421, p = 0.785) for cognitive decline and an HR of 1.429 (95 % CI:1.088-1.876, p = 0.010) for dementia. The subgroup analysis showed that a higher level of CRP was related to a decline in visual-spatial ability (OR = 1.402, 95 % CI: 1.045-1.882, p = 0.024) and the risk of conversion to vascular dementia (total effect size of OR and HR = 2.769, 95 % CI: 1.586-4.83, p = 0.000). CONCLUSIONS Higher CRP levels as an indicator of chronic systemic inflammation cannot predict future cognitive decline but may indicate a higher risk of conversion to dementia.
Collapse
|
54
|
Wu Y, Eisel UL. Microglia-Astrocyte Communication in Alzheimer's Disease. J Alzheimers Dis 2023; 95:785-803. [PMID: 37638434 PMCID: PMC10578295 DOI: 10.3233/jad-230199] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
55
|
Huang J, Tao Q, Ang TFA, Farrell J, Zhu C, Wang Y, Stein TD, Lunetta KL, Massaro J, Mez J, Au R, Farrer LA, Qiu WQ, Zhang X. The impact of increasing levels of blood C-reactive protein on the inflammatory loci SPI1 and CD33 in Alzheimer's disease. Transl Psychiatry 2022; 12:523. [PMID: 36550123 PMCID: PMC9780312 DOI: 10.1038/s41398-022-02281-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Apolipoprotein ε4 (APOE ε4) is the most significant genetic risk factor for late-onset Alzheimer's disease (AD). Elevated blood C-reactive protein (CRP) further increases the risk of AD for people carrying the APOE ε4 allele. We hypothesized that CRP, as a key inflammatory element, could modulate the impact of other genetic variants on AD risk. We selected ten single nucleotide polymorphisms (SNPs) in reported AD risk loci encoding proteins related to inflammation. We then tested the interaction effects between these SNPs and blood CRP levels on AD incidence using the Cox proportional hazards model in UK Biobank (n = 279,176 white participants with 803 incident AD cases). The five top SNPs were tested for their interaction with different CRP cutoffs for AD incidence in the Framingham Heart Study (FHS) Generation 2 cohort (n = 3009, incident AD = 156). We found that for higher concentrations of serum CRP, the AD risk increased for SNP genotypes in 3 AD-associated genes (SPI1, CD33, and CLU). Using the Cox model in stratified genotype analysis, the hazard ratios (HRs) for the association between a higher CRP level (≥10 vs. <10 mg/L) and the risk of incident AD were 1.94 (95% CI: 1.33-2.84, p < 0.001) for the SPI1 rs1057233-AA genotype, 1.75 (95% CI: 1.20-2.55, p = 0.004) for the CD33 rs3865444-CC genotype, and 1.76 (95% CI: 1.25-2.48, p = 0.001) for the CLU rs9331896-C genotype. In contrast, these associations were not observed in the other genotypes of these genes. Finally, two SNPs were validated in 321 Alzheimer's Disease Neuroimaging (ADNI) Mild Cognitive Impairment (MCI) patients. We observed that the SPI1 and CD33 genotype effects were enhanced by elevated CRP levels for the risk of MCI to AD conversion. Furthermore, the SPI1 genotype was associated with CSF AD biomarkers, including t-Tau and p-Tau, in the ADNI cohort when the blood CRP level was increased (p < 0.01). Our findings suggest that elevated blood CRP, as a peripheral inflammatory biomarker, is an important moderator of the genetic effects of SPI1 and CD33 in addition to APOE ε4 on AD risk. Monitoring peripheral CRP levels may be helpful for precise intervention and prevention of AD for these genotype carriers.
Collapse
Affiliation(s)
- Jinghan Huang
- Departments of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Qiushan Tao
- Departments of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Ting Fang Alvin Ang
- Departments of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - John Farrell
- Departments of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Departments of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Yixuan Wang
- Departments of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- Alzheimer's Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
| | - Joseph Massaro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
| | - Jesse Mez
- Alzheimer's Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Departments of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Alzheimer's Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Alzheimer's Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Boston University School of Medicine, Framingham, MA, USA
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA
- Departments of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Departments of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Alzheimer's Disease Research Center, Boston University School of Medicine, Boston, MA, USA.
- Departments of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Xiaoling Zhang
- Departments of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
56
|
Temporal Pattern of Neuroinflammation Associated with a Low Glycemic Index Diet in the 5xFAD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2022; 59:7303-7322. [PMID: 36175825 PMCID: PMC9616770 DOI: 10.1007/s12035-022-03047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is associated with brain amyloid-β (Aβ) peptide accumulation and neuroinflammation. Currants, a low glycemic index dried fruit, and their components display pleiotropic neuroprotective effects in AD. We examined how diet containing 5% Corinthian currant paste (CurD) administered in 1-month-old 5xFAD mice for 1, 3, and 6 months affects Aβ levels and neuroinflammation in comparison to control diet (ConD) or sugar-matched diet containing 3.5% glucose/fructose (GFD). No change in serum glucose or insulin levels was observed among the three groups. CurD administered for 3 months reduced brain Aβ42 levels in male mice as compared to ConD and GFD, but after 6 months, Aβ42 levels were increased in mice both on CurD and GFD compared to ConD. CurD for 3 months also reduced TNFα and IL-1β levels in male and female mouse cortex homogenates compared to ConD and GFD. However, after 6 months, TNFα levels were increased in cortex homogenates of mice both on CurD and GFD as compared to ConD. A similar pattern was observed for TNFα-expressing cells, mostly co-expressing the microglial marker CD11b, in mouse hippocampus. IL-1β levels were similarly increased in the brain of all groups after 6 months. Furthermore, a time dependent decrease of secreted TNFα levels was found in BV2 microglial cells treated with currant phenolic extract as compared to glucose/fructose solution. Overall, our findings suggest that a short-term currant consumption reduces neuroinflammation in 5xFAD mice as compared to sugar-matched or control diet, but longer-term intake of currant or sugar-matched diet enhances neuroinflammation.
Collapse
|
57
|
Qiu WQ, Tao Q, Akhter-Khan SC. Author Response: Impact of C-Reactive Protein on Cognition and Alzheimer Disease Biomarkers in Homozygous APOE ɛ4 Carriers. Neurology 2022; 99:919. [PMID: 36376087 DOI: 10.1212/wnl.0000000000201509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
|
58
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
59
|
Nazarian A, Loika Y, He L, Culminskaya I, Kulminski AM. Genome-wide analysis identified abundant genetic modulators of contributions of the apolipoprotein E alleles to Alzheimer's disease risk. Alzheimers Dement 2022; 18:2067-2078. [PMID: 34978151 PMCID: PMC9250541 DOI: 10.1002/alz.12540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The apolipoprotein E (APOE) ε2 and ε4 alleles have beneficial and adverse impacts on Alzheimer's disease (AD), respectively, with incomplete penetrance, which may be modulated by other genetic variants. METHODS We examined whether the associations of the APOE alleles with other polymorphisms in the genome can be sensitive to AD-affection status. RESULTS We identified associations of the ε2 and ε4 alleles with 314 and 232 polymorphisms, respectively. Of them, 35 and 31 polymorphisms had significantly different effects in AD-affected and -unaffected groups, suggesting their potential involvement in the AD pathogenesis by modulating the effects of the ε2 and ε4 alleles, respectively. Our survival-type analysis of the AD risk supported modulating roles of multiple group-specific polymorphisms. Our functional analysis identified gene enrichment in multiple immune-related biological processes, for example, B cell function. DISCUSSION These findings suggest involvement of local and inter-chromosomal modulators of the effects of the APOE alleles on the AD risk.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
60
|
Jun GR, You Y, Zhu C, Meng G, Chung J, Panitch R, Hu J, Xia W, Bennett DA, Foroud TM, Wang L, Haines JL, Mayeux R, Pericak‐Vance MA, Schellenberg GD, Au R, Lunetta KL, Ikezu T, Stein TD, Farrer LA. Protein phosphatase 2A and complement component 4 are linked to the protective effect of APOE ɛ2 for Alzheimer's disease. Alzheimers Dement 2022; 18:2042-2054. [PMID: 35142023 PMCID: PMC9360190 DOI: 10.1002/alz.12607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The apolipoprotein E (APOE) ɛ2 allele reduces risk against Alzheimer's disease (AD) but mechanisms underlying this effect are largely unknown. METHODS We conducted a genome-wide association study for AD among 2096 ɛ2 carriers. The potential role of the top-ranked gene and complement 4 (C4) proteins, which were previously linked to AD in ɛ2 carriers, was investigated using human isogenic APOE allele-specific induced pluripotent stem cell (iPSC)-derived neurons and astrocytes and in 224 neuropathologically examined human brains. RESULTS PPP2CB rs117296832 was the second most significantly associated single nucleotide polymorphism among ɛ2 carriers (P = 1.1 × 10-7 ) and the AD risk allele increased PPP2CB expression in blood (P = 6.6 × 10-27 ). PPP2CB expression was correlated with phosphorylated tau231/total tau ratio (P = .01) and expression of C4 protein subunits C4A/B (P = 2.0 × 10-4 ) in the iPSCs. PPP2CB (subunit of protein phosphatase 2A) and C4b protein levels were correlated in brain (P = 3.3 × 10-7 ). DISCUSSION PP2A may be linked to classical complement activation leading to AD-related tau pathology.
Collapse
Affiliation(s)
- Gyungah R. Jun
- Department of Medicine (Biomedical Genetics), Boston University School of MedicineBostonMassachusettsUSA
- Department of Ophthalmology, Boston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Yang You
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of MedicineBostonMassachusettsUSA
| | - Gaoyuan Meng
- Department of Veterans Affairs Medical CenterBedfordMassachusettsUSA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of MedicineBostonMassachusettsUSA
| | - Rebecca Panitch
- Department of Medicine (Biomedical Genetics), Boston University School of MedicineBostonMassachusettsUSA
| | - Junming Hu
- Department of Medicine (Biomedical Genetics), Boston University School of MedicineBostonMassachusettsUSA
| | - Weiming Xia
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of Veterans Affairs Medical CenterBedfordMassachusettsUSA
| | | | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Tatiana M. Foroud
- Department of Medical and Molecular GeneticsIndiana UniversityIndianapolisIndianaUSA
| | - Li‐San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - Margaret A. Pericak‐Vance
- John P. Hussman Institute for Human Genomics, Department of Human Genetics, and Dr. John T. Macdonald FoundationUniversity of MiamiMiamiFloridaUSA
| | - Gerard D. Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rhoda Au
- Department of Neurology, Boston University School of MedicineBostonMassachusettsUSA
- Department of Anatomy & Neurobiology, Boston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Tsuneya Ikezu
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of Neurology, Boston University School of MedicineBostonMassachusettsUSA
- Center for Systems NeuroscienceBoston University School of MedicineBostonMassachusettsUSA
| | - Thor D. Stein
- Department of Veterans Affairs Medical CenterBedfordMassachusettsUSA
- Department of Pathology & Laboratory Medicine, Boston University School of MedicineBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of MedicineBostonMassachusettsUSA
- Department of Ophthalmology, Boston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of Neurology, Boston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
61
|
Hegazy SH, Thomassen JQ, Rasmussen IJ, Nordestgaard BG, Tybjærg‐Hansen A, Frikke‐Schmidt R. C-reactive protein levels and risk of dementia-Observational and genetic studies of 111,242 individuals from the general population. Alzheimers Dement 2022; 18:2262-2271. [PMID: 35112776 PMCID: PMC9790296 DOI: 10.1002/alz.12568] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Increased plasma levels of C-reactive protein (CRP) in midlife are associated with increased risk of Alzheimer's disease (AD), whereas in older age the opposite association is observed. Whether genetically determined CRP is associated with AD remains unclear. METHODS A total of 111,242 White individuals from the Copenhagen General Population Study and the Copenhagen City Heart Study were included. Plasma levels of CRP and four regulatory genetic variants in the CRP gene were determined. RESULTS For CRP percentile group 1 to 5 (lowest plasma CRP) versus the 50 to 75 group (reference), the hazard ratio for AD was 1.69 (95% confidence interval 1.29-2.16). Genetically low CRP was associated with increased risk of AD in individuals with body mass index ≤25 kg/m2 (P = 4 × 10-6 ). DISCUSSION Low plasma levels of CRP at baseline were associated with high risk of AD in individuals from the general population. These observational findings were supported by genetic studies.
Collapse
Affiliation(s)
- Sharif H. Hegazy
- Department of Clinical BiochemistryCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Jesper Qvist Thomassen
- Department of Clinical BiochemistryCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Ida Juul Rasmussen
- Department of Clinical BiochemistryCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Børge G. Nordestgaard
- The Copenhagen General Population StudyCopenhagen University Hospital–Herlev and GentofteHerlevDenmark,Department of Clinical BiochemistryCopenhagen University Hospital–Herlev and GentofteHerlevDenmark,The Copenhagen City Heart StudyCopenhagen University Hospital–Bispebjerg and FrederiksbergFrederiksbergDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Anne Tybjærg‐Hansen
- Department of Clinical BiochemistryCopenhagen University Hospital–RigshospitaletCopenhagenDenmark,The Copenhagen General Population StudyCopenhagen University Hospital–Herlev and GentofteHerlevDenmark,The Copenhagen City Heart StudyCopenhagen University Hospital–Bispebjerg and FrederiksbergFrederiksbergDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ruth Frikke‐Schmidt
- Department of Clinical BiochemistryCopenhagen University Hospital–RigshospitaletCopenhagenDenmark,The Copenhagen General Population StudyCopenhagen University Hospital–Herlev and GentofteHerlevDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
62
|
Jin R, Chan AKY, Wu J, Lee TMC. Relationships between Inflammation and Age-Related Neurocognitive Changes. Int J Mol Sci 2022; 23:12573. [PMID: 36293430 PMCID: PMC9604276 DOI: 10.3390/ijms232012573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The relationship between inflammation and age-related neurocognitive changes is significant, which may relate to the age-related immune dysfunctions characterized by the senescence of immune cells and elevated inflammatory markers in the peripheral circulation and the central nervous system. In this review, we discuss the potential mechanisms, including the development of vascular inflammation, neuroinflammation, organelle dysfunctions, abnormal cholesterol metabolism, and glymphatic dysfunctions as well as the role that the key molecules play in the immune-cognition interplay. We propose potential therapeutic pharmacological and behavioral strategies for ameliorating age-related neurocognitive changes associated with inflammation. Further research to decipher the multidimensional roles of chronic inflammation in normal and pathological aging processes will help unfold the pathophysiological mechanisms underpinning neurocognitive disorders. The insight gained will lay the path for developing cost-effective preventative measures and the buffering or delaying of age-related neurocognitive decline.
Collapse
Affiliation(s)
- Run Jin
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| | - Aidan Kai Yeung Chan
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Tatia Mei Chun Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
63
|
Seto M, Weiner RL, Dumitrescu L, Mahoney ER, Hansen SL, Janve V, Khan OA, Liu D, Wang Y, Menon V, De Jager PL, Schneider JA, Bennett DA, Gifford KA, Jefferson AL, Hohman TJ. RNASE6 is a novel modifier of APOE-ε4 effects on cognition. Neurobiol Aging 2022; 118:66-76. [PMID: 35896049 PMCID: PMC9721357 DOI: 10.1016/j.neurobiolaging.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E4 (APOE-ε4), the strongest common genetic risk factor for Alzheimer's disease (AD), contributes to worse cognition in older adults. However, many APOE-ε4 carriers remain cognitively normal throughout life, suggesting that neuroprotective factors may be present in these individuals. In this study, we leverage whole-blood RNA sequencing (RNAseq) from 324 older adults to identify genetic modifiers of APOE-ε4 effects on cognition. Expression of RNASE6 interacted with APOE-ε4 status (p = 4.35 × 10-8) whereby higher RNASE6 expression was associated with worse memory at baseline among APOE-ε4 carriers. This interaction was replicated using RNAseq data from the prefrontal cortex in an independent dataset (N = 535; p = 0.002), suggesting the peripheral effect of RNASE6 is also present in brain tissue. RNASE6 encodes an antimicrobial peptide involved in innate immune response and has been previously observed in a gene co-expression network module with other AD-related inflammatory genes, including TREM2 and MS4A. Together, these data implicate neuroinflammation in cognitive decline, and suggest that innate immune signaling may be detectable in blood and confer differential susceptibility to AD depending on APOE-ε4.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rebecca L Weiner
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shania L Hansen
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vaibhav Janve
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Omair A Khan
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dandan Liu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
64
|
Łuc M, Woźniak M, Rymaszewska J. Neuroinflammation in Dementia—Therapeutic Directions in a COVID-19 Pandemic Setting. Cells 2022; 11:cells11192959. [PMID: 36230921 PMCID: PMC9562181 DOI: 10.3390/cells11192959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although dementia is a heterogenous group of diseases, inflammation has been shown to play a central role in all of them and provides a common link in their pathology. This review aims to highlight the importance of immune response in the most common types of dementia. We describe molecular aspects of pro-inflammatory signaling and sources of inflammatory activation in the human organism, including a novel infectious agent, SARS-CoV-2. The role of glial cells in neuroinflammation, as well as potential therapeutic approaches, are then discussed. Peripheral immune response and increased cytokine production, including an early surge in TNF and IL-1β concentrations activate glia, leading to aggravation of neuroinflammation and dysfunction of neurons during COVID-19. Lifestyle factors, such as diet, have a large impact on future cognitive outcomes and should be included as a crucial intervention in dementia prevention. While the use of NSAIDs is not recommended due to inconclusive results on their efficacy and risk of side effects, the studies focused on the use of TNF antagonists as the more specific target in neuroinflammation are still very limited. It is still unknown, to what degree neuroinflammation resulting from COVID-19 may affect neurodegenerative process and cognitive functioning in the long term with ongoing reports of chronic post-COVID complications.
Collapse
Affiliation(s)
- Mateusz Łuc
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence:
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
65
|
Fang Y, Doyle MF, Chen J, Alosco ML, Mez J, Satizabal CL, Qiu WQ, Murabito JM, Lunetta KL. Association between inflammatory biomarkers and cognitive aging. PLoS One 2022; 17:e0274350. [PMID: 36083988 PMCID: PMC9462682 DOI: 10.1371/journal.pone.0274350] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory cytokines and chemokines related to the innate and adaptive immune system have been linked to neuroinflammation in Alzheimer's Disease, dementia, and cognitive disorders. We examined the association of 11 plasma proteins (CD14, CD163, CD5L, CD56, CD40L, CXCL16, SDF1, DPP4, SGP130, sRAGE, and MPO) related to immune and inflammatory responses with measures of cognitive function, brain MRI and dementia risk. We identified Framingham Heart Study Offspring participants who underwent neuropsychological testing (n = 2358) or brain MRI (n = 2100) within five years of the seventh examination where a blood sample for quantifying the protein biomarkers was obtained; and who were followed for 10 years for incident all-cause dementia (n = 1616). We investigated the association of inflammatory biomarkers with neuropsychological test performance and brain MRI volumes using linear mixed effect models accounting for family relationships. We further used Cox proportional hazards models to examine the association with incident dementia. False discovery rate p-values were used to account for multiple testing. Participants included in the neuropsychological test and MRI samples were on average 61 years old and 54% female. Participants from the incident dementia sample (average 68 years old at baseline) included 124 participants with incident dementia. In addition to CD14, which has an established association, we found significant associations between higher levels of CD40L and myeloperoxidase (MPO) with executive dysfunction. Higher CD5L levels were significantly associated with smaller total brain volumes (TCBV), whereas higher levels of sRAGE were associated with larger TCBV. Associations persisted after adjustment for APOE ε4 carrier status and additional cardiovascular risk factors. None of the studied inflammatory biomarkers were significantly associated with risk of incident all-cause dementia. Higher circulating levels of soluble CD40L and MPO, markers of immune cell activation, were associated with poorer performance on neuropsychological tests, while higher CD5L, a key regulator of inflammation, was associated with smaller total brain volumes. Higher circulating soluble RAGE, a decoy receptor for the proinflammatory RAGE/AGE pathway, was associated with larger total brain volume. If confirmed in other studies, this data indicates the involvement of an activated immune system in abnormal brain aging.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Jiachen Chen
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
| | - Claudia L. Satizabal
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Wei Qiao Qiu
- Boston University Alzheimer’s Disease Research Center and CTE Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Psychiatry, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Department of Medicine, Section of General Internal Medicine, School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Boston Medical Center, Boston University, Boston, Massachusetts, United States of America
| | - Kathryn L. Lunetta
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
66
|
Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Microglia from APOE Targeted Replacement Mice. Int J Mol Sci 2022; 23:ijms23179829. [PMID: 36077227 PMCID: PMC9456163 DOI: 10.3390/ijms23179829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The sex and APOE4 genotype are significant risk factors for Alzheimer’s disease (AD); however, the mechanism(s) responsible for this interaction are still a matter of debate. Here, we assess the responses of mixed-sex and sex-specific APOE3 and APOE4 primary microglia (PMG) to lipopolysaccharide and interferon-gamma. In our investigation, inflammatory cytokine profiles were assessed by qPCR and multiplex ELISA assays. Mixed-sex APOE4 PMG exhibited higher basal mRNA expression and secreted levels of TNFa and IL1b. In sex-specific cultures, basal expression and secreted levels of IL1b, TNFa, IL6, and NOS2 were 2−3 fold higher in APOE4 female PMG compared to APOE4 males, with both higher than APOE3 cells. Following an inflammatory stimulus, the expression of pro-inflammatory cytokines and the secreted cytokine level were upregulated in the order E4 female > E4 male > E3 female > E3 male in sex-specific cultures. These data indicate that the APOE4 genotype and female sex together contribute to a greater inflammatory response in PMG isolated from targeted replacement humanized APOE mice. These data are consistent with clinical data and indicate that sex-specific PMG may provide a platform for exploring mechanisms of genotype and sex differences in AD related to neuroinflammation and neurodegeneration.
Collapse
|
67
|
Pocevičiūtė D, Nuñez-Diaz C, Roth B, Janelidze S, Giannisis A, Hansson O, Wennström M. Increased plasma and brain immunoglobulin A in Alzheimer’s disease is lost in apolipoprotein E ε4 carriers. Alzheimers Res Ther 2022; 14:117. [PMID: 36008818 PMCID: PMC9414424 DOI: 10.1186/s13195-022-01062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Background Alzheimer’s disease (AD) is foremost characterized by β-amyloid (Aβ)-extracellular plaques, tau-intraneuronal fibrillary tangles (NFT), and neuroinflammation, but over the last years it has become evident that peripheral inflammation might also contribute to the disease. AD patients often demonstrate increased levels of circulating proinflammatory mediators and altered antibody levels in the blood. In our study, we investigated the plasma Immunoglobulin A (IgA) levels in association with apolipoprotein E (APOE) ε4 status and Aβ pathology. Methods IgA levels in antemortem-collected (cohort I) and postmortem-collected (cohort II) plasma samples from AD patients (n = 30 in cohort I and n = 16 in cohort II) and non-demented age-matched controls (NC) (n = 42 in cohort I and n = 7 in cohort II) were measured using ELISA. Hippocampal sections from cohort II were immunostained against IgA, and the IgA area fraction as well as the number of IgA positive (IgA+) cells in the cornu ammonis region were analysed using ImageJ. The relationship between plasma IgA levels and cognition, C-reactive protein (CRP), and cerebrospinal fluid (CSF) AD biomarkers in cohort I as well as neuropathology, IgA+ cell number, and IgA area fraction in cohort II was analysed before and after grouping the cohorts into APOEε4 carriers and APOEε4 non-carriers. Results Plasma IgA levels were higher in AD patients compared to NC in both cohorts. Also, AD patients demonstrated higher IgA area fraction and IgA+ cell number compared to NC. When APOEε4 status was considered, higher plasma IgA levels in AD patients were only seen in APOEε4 non-carriers. Finally, plasma IgA levels, exclusively in APOEε4 non-carriers, were associated with cognition, CRP, and CSF Aβ levels in cohort I as well as with IgA area fraction, IgA+ cell number, and Aβ, Lewy body, and NFT neuropathology in cohort II. Conclusions Our study suggests that AD pathology and cognitive decline are associated with increased plasma IgA levels in an APOE allele-dependent manner, where the associations are lost in APOEε4 carriers. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01062-z.
Collapse
|
68
|
Nair AK, Van Hulle CA, Bendlin BB, Zetterberg H, Blennow K, Wild N, Kollmorgen G, Suridjan I, Busse WW, Rosenkranz MA. Asthma amplifies dementia risk: Evidence from CSF biomarkers and cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12315. [PMID: 35846157 PMCID: PMC9270636 DOI: 10.1002/trc2.12315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022]
Abstract
Introduction Evidence from epidemiology, neuroimaging, and animal models indicates that asthma adversely affects the brain, but the nature and extent of neuropathophysiological impact remain unclear. Methods We tested the hypothesis that asthma is a risk factor for dementia by comparing cognitive performance and cerebrospinal fluid biomarkers of glial activation/neuroinflammation, neurodegeneration, and Alzheimer's disease (AD) pathology in 60 participants with asthma to 315 non-asthma age-matched control participants (45-93 years), in a sample enriched for AD risk. Results Participants with severe asthma had higher neurogranin concentrations compared to controls and those with mild asthma. Positive relationships between cardiovascular risk and concentrations of neurogranin and α-synuclein were amplified in severe asthma. Severe asthma also amplified the deleterious associations that apolipoprotein E ε4 carrier status, cardiovascular risk, and phosphorylated tau181/amyloid beta42 have with rate of cognitive decline. Discussion Our data suggest that severe asthma is associated with synaptic degeneration and may compound risk for dementia posed by cardiovascular disease and genetic predisposition. Highlights Those with severe asthma showed evidence of higher dementia risk than controls evidenced by: higher levels of the synaptic degeneration biomarker neurogranin regardless of cognitive status, cardiovascular or genetic risk, and controlling for demographics.steeper increase in levels of synaptic degeneration biomarkers neurogranin and α-synuclein with increasing cardiovascular risk.accelerated cognitive decline with higher cardiovascular risk, genetic predisposition, or pathological tau.
Collapse
Affiliation(s)
- Ajay Kumar Nair
- Center for Healthy MindsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Carol A. Van Hulle
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at The University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongPeople's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at The University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | | | | | | | - William W. Busse
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Melissa A. Rosenkranz
- Center for Healthy MindsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
69
|
Gan Q, Wong A, Zhang Z, Na H, Tian H, Tao Q, Rajab IM, Potempa LA, Qiu WQ. Monomeric C-reactive protein induces the cellular pathology of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12319. [PMID: 35846159 PMCID: PMC9270638 DOI: 10.1002/trc2.12319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Introduction Human study shows that elevated C-reactive protein (CRP) in blood impacts apolipoprotein E (APOE) ε4, but not APOE ε3 or APOE ε2, genotype to increase the risk of Alzheimer's disease (AD). However, whether CRP is directly involved in cellular AD pathogenesis and in which type of neuronal cells of APOE ε4 carriers are unknown. Methods We aimed to use different primary neuronal cells and investigate if CRP induces cellular AD pathology depending on APOE genotypes. Here the different primary neuronal cells from the different APOE genotype knock-in mice cortex were isolated and used. Results Monomeric CRP (mCRP) increased amyloid beta production and, in parallel, induced tau phosphorylation in addition to their related proteins in the primary neurons in a pattern of APOE ε4 > APOE ε3 > APOE ε2 in a dose- and time-dependent manner. Consistently, mCRP induced the staining of other neurodegenerative biomarkers, including Fluoro-Jade B stain (FjB), TUNEL and Cleaved Caspase-3, in primary neurons in a similar pattern of APOE ε4 > APOE ε3 > APOE ε2. In contrast, pentameric CRP (pCRP) had a tendency to induce cellular AD pathology but did not reach statistical significance. On the other hand, it is intriguing that regardless of APOE genotype, mCRP did not influence the expressions of Iba-1 and CD68 in primary microglia or the expression of glial fibrillary acidic protein in primary astrocytes, and additionally mCRP did not affect the secretions of interleukin (IL)-1α, IL-1β, and tumor necrosis factor α from these cells. Discussion This is the first report to demonstrate that mCRP directly induces cellular AD pathogenesis in neurons in an APOE genotype-dependent pattern, suggesting that mCRP plays a role as a mediator involved in the APOE ε4-related pathway for AD during chronic inflammation. Highlights Pentameric C-reactive protein (pCRP) can be dissociated irreversibly to form free subunits or monomeric CRP (mCRP) during and after the acute phase.mCRP increased amyloid beta production in the primary neurons in a pattern of apolipoprotein E (APOE) ε4 > APOE ε3 > APOE ε2 in a dose-dependent manner.mCRP induced the expression of phosphorylated tau in the primary neurons in a pattern of APOE ε4 > APOE ε3 > APOE ε2 in a dose- and time-dependent manner.mCRP plays an important mediator role in the APOE ε4-related pathway of Alzheimer's disease risk.
Collapse
Affiliation(s)
- Qini Gan
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Alfred Wong
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Hana Na
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Hua Tian
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of PharmacologyXiaman Medical CollegeXiamanPeople's Republic of China
| | - Qiushan Tao
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Ibraheem M. Rajab
- Roosevelt University College of ScienceHealth and PharmacySchaumburgIllinoisUSA
| | - Lawrence A. Potempa
- Roosevelt University College of ScienceHealth and PharmacySchaumburgIllinoisUSA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease CenterBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
70
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
71
|
Wang S, Li B, Solomon V, Fonteh A, Rapoport SI, Bennett DA, Arvanitakis Z, Chui HC, Sullivan PM, Yassine HN. Calcium-dependent cytosolic phospholipase A 2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4. Mol Neurodegener 2022; 17:42. [PMID: 35705959 PMCID: PMC9202185 DOI: 10.1186/s13024-022-00549-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apolipoprotein E4 (APOE4) is associated with a greater response to neuroinflammation and the risk of developing late-onset Alzheimer's disease (AD), but the mechanisms for this association are not clear. The activation of calcium-dependent cytosolic phospholipase A2 (cPLA2) is involved in inflammatory signaling and is elevated within the plaques of AD brains. The relation between APOE4 genotype and cPLA2 activity is not known. METHODS Mouse primary astrocytes, mouse and human brain samples differing by APOE genotypes were collected for measuring cPLA2 expression, phosphorylation, and activity in relation to measures of inflammation and oxidative stress. RESULTS Greater cPLA2 phosphorylation, cPLA2 activity and leukotriene B4 (LTB4) levels were identified in ApoE4 compared to ApoE3 in primary astrocytes, brains of ApoE-targeted replacement (ApoE-TR) mice, and in human brain homogenates from the inferior frontal cortex of persons with AD dementia carrying APOE3/4 compared to APOE3/3. Higher phosphorylated p38 MAPK but not ERK1/2 was found in ApoE4 primary astrocytes and mouse brains than that in ApoE3. Greater cPLA2 translocation to cytosol was observed in human postmortem frontal cortical synaptosomes with recombinant ApoE4 than ApoE3 ex vivo. In ApoE4 astrocytes, the greater levels of LTB4, reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) were reduced after cPLA2 inhibition. CONCLUSIONS Our findings implicate greater activation of cPLA2 signaling system with APOE4, which could represent a potential drug target for mitigating the increased neuroinflammation with APOE4 and AD.
Collapse
Affiliation(s)
- Shaowei Wang
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Boyang Li
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Victoria Solomon
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Alfred Fonteh
- Huntington Medical Research Institutes, Pasadena, CA USA
| | | | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Helena C. Chui
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Patrick M. Sullivan
- Department of Medicine, Duke University Medical Center, Durham Veterans Health Administration Medical Center’s Geriatric Research, Education and Clinical Center, Durham, NC USA
| | - Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
72
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
73
|
Shang X, Zhu Z, Zhang X, Huang Y, Zhang X, Liu J, Wang W, Tang S, Yu H, Ge Z, Yang X, He M. Association of a wide range of chronic diseases and apolipoprotein E4 genotype with subsequent risk of dementia in community-dwelling adults: A retrospective cohort study. EClinicalMedicine 2022; 45:101335. [PMID: 35299656 PMCID: PMC8921546 DOI: 10.1016/j.eclinm.2022.101335] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background Identifying independent and interactive associations of a wide range of diseases and multimorbidity and apolipoprotein E4 (APOE4) with dementia may help promote cognitive health. The main aim of the present study was to investigate associations of such diseases and their multimorbidity with incident dementia. Methods In this retrospective cohort study, we included 471,485 individuals of European ancestry from the UK Biobank, aged 38-73 years at baseline (2006-10). Dementia was identified using inpatient records and death registers. The follow-up period was between March 16, 2006, and Jan 31, 2021. Findings During a median follow-up of 11·9 years, 6189 cases of incident all-cause dementia (503 young-onset cases, 5686 late-onset cases) were documented. In multivariable-adjusted analysis, 33 out of 63 major diseases were associated with an increased risk of dementia. The hazard ratio (HR [95% CI]) ranged from 1·12 (1·06-1·19) for obesity to 14·22 (12·33-16·18) for Parkinson's disease. In addition to conventional diseases, respiratory disorders, musculoskeletal disorders, digestive disorders, painful conditions, and chronic kidney disease were associated with increased dementia risk. A larger HR for dementia was observed for a larger number of diseases (3·97 [3·51-4·48] for ≥6 diseases versus no disease). These individual diseases and multimorbidity were more predictive of young-onset dementia than of late-onset dementia. Dementia risk score incorporating multimorbidity, age, and APOE4 status had strong prediction performance (area under the curve [95% CI]: 82·2% [81·7-82·7%]). APOE4 was more predictive of late-onset dementia (HR [95% CI]: 2·90 [2·75-3·06]) than of young-onset dementia (1·26 [1·03-1·54]). Associations of painful conditions, depression, obesity, diabetes, stroke, Parkinson's disease, high cholesterol, and their multimorbidity with incident dementia were stronger among non-APOE4 carriers. Interpretation Besides conventional diseases, numerous diseases are associated with an increased risk of dementia. These individual diseases and multimorbidity are more predictive of young-onset dementia, whereas APOE4 is more predictive of late-onset dementia. Individual diseases and multimorbidity are stronger predictors of dementia in non-APOE4 carriers. Although multiple risk factors have been adjusted for in the analysis, potential confounding from unknown factors may have biased the associations. Funding The Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Project of Investigation on Health Status of Employees in Financial Industry in Guangzhou, China (Z012014075), Science and Technology Program of Guangzhou, China (202,002,020,049).
Collapse
Key Words
- AD, Alzheimer's disease
- APOE4, apolipoprotein E4
- AUC, area under the curve
- Apolipoprotein E4
- BMI, body mass index
- CAIDE, Cardiovascular Risk Factors, Aging, and Incidence of Dementia
- CI, confidence interval
- CKD, chronic kidney disease
- COPD, chronic obstructive pulmonary disease
- Dementia
- FRS, Framingham Heart Study
- HDL-C, high-density lipoprotein cholesterol
- HIV, human immunodeficiency virus
- HR, hazard ratio
- HbA1c, Glycosylated haemoglobin
- ICD, international classification diseases
- IQR, interquartile range
- Interaction
- LDL-C, low-density lipoprotein cholesterol
- Late-onset dementia
- Major chronic diseases
- Multimorbidity
- PAR, Population attributable risk
- ROC, receiver operating characteristic curve
- SD, standard deviation
- VD, vascular dementia
- Young-onset dementia
Collapse
Affiliation(s)
- Xianwen Shang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Eye Research Australia, The University of Melbourne, Level 7, 32 Gisborne Street, Melbourne, VIC 3002, Australia
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Eye Research Australia, The University of Melbourne, Level 7, 32 Gisborne Street, Melbourne, VIC 3002, Australia
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
| | - Yu Huang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiayin Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiahao Liu
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne VIC 3010, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shulin Tang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne VIC 3800, Australia
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
| | - Mingguang He
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510080, China
- Centre for Eye Research Australia, The University of Melbourne, Level 7, 32 Gisborne Street, Melbourne, VIC 3002, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
74
|
Baril AA, Beiser AS, Sanchez E, Mysliwiec V, Redline S, Gottlieb DJ, O’Connor GT, Gonzales MM, Himali D, Seshadri S, Himali JJ, Pase MP. Insomnia symptom severity and cognitive performance: Moderating role of APOE genotype. Alzheimers Dement 2022; 18:408-421. [PMID: 34310026 PMCID: PMC8802306 DOI: 10.1002/alz.12405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION We evaluated whether insomnia symptom severity was associated with cognitive function, and whether this relationship was modified by biomarkers associated with Alzheimer's disease risk. METHODS We examined insomnia symptoms and neuropsychological performance 3.4 years later in 511 dementia-free Framingham Heart Study participants (62.65 ± 8.7 years, 50.9% male). Additionally, we explored insomnia symptoms combined with self-reported short habitual sleep duration and effect modification by apolipoprotein E (APOE) ε4 allele status. RESULTS More severe insomnia symptoms were associated with lower performance on global cognition, and immediate and delayed Logical Memory recall, especially when insomnia symptoms were combined with short sleep duration. The association between insomnia symptoms and poorer memory recall was more pronounced in APOE ε4 allele carriers. DISCUSSION Insomnia symptom severity was associated with worse subsequent global cognitive and memory performance, which was especially apparent in APOE ε4 allele carriers, suggesting that poor sleep might be particularly detrimental when the brain is already vulnerable to neurodegeneration.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexa S. Beiser
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Erlan Sanchez
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalCIUSSS-NIM, Montreal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Québec, Canada
| | - Vincent Mysliwiec
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - George T. O’Connor
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Dibya Himali
- The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Jayandra J. Himali
- The Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences Center, San Antonio, Texas, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Matthew P. Pase
- The Framingham Heart Study, Framingham, Massachusetts, USA
- School of Psychological Sciences, Turner Institute for Brain and Mental Health Monash University, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
75
|
Zajac DJ, Green SJ, Johnson LA, Estus S. APOE genetics influence murine gut microbiome. Sci Rep 2022; 12:1906. [PMID: 35115575 PMCID: PMC8814305 DOI: 10.1038/s41598-022-05763-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 01/03/2023] Open
Abstract
Apolipoprotein E (APOE) alleles impact pathogenesis and risk for multiple human diseases, making them primary targets for disease treatment and prevention. Previously, we and others reported an association between APOE alleles and the gut microbiome. Here, we evaluated effects of APOE heterozygosity and tested whether these overall results extended to mice maintained under ideal conditions for microbiome analyses. To model human APOE alleles, this study used APOE targeted replacement (TR) mice on a C57Bl/6 background. To minimize genetic drift, homozygous APOE3 mice were crossed to homozygous APOE2 or homozygous APOE4 mice prior to the study, and the resulting heterozygous progeny crossed further to generate the study mice. To maximize environmental homogeneity, mice with mixed genotypes were housed together and used bedding from the cages was mixed and added back as a portion of new bedding. Fecal samples were obtained from mice at 3-, 5- and 7-months of age, and microbiota analyzed by 16S ribosomal RNA gene amplicon sequencing. Linear discriminant analysis of effect size (LefSe) identified taxa associated with APOE status, depicted as cladograms to show phylogenetic relatedness. The influence of APOE status was tested on alpha-diversity (Shannon H index) and beta-diversity (principal coordinate analyses and PERMANOVA). Individual taxa associated with APOE status were identified by classical univariate analysis. Whether findings in the APOE mice were replicated in humans was evaluated by using published microbiome genome wide association data. Cladograms revealed robust differences with APOE in male mice and limited differences in female mice. The richness and evenness (alpha-diversity) and microbial community composition (beta-diversity) of the fecal microbiome was robustly associated with APOE status in male but not female mice. Classical univariate analysis revealed individual taxa that were significantly increased or decreased with APOE, illustrating a stepwise APOE2-APOE3-APOE4 pattern of association with heterozygous animals trending as intermediate in the stepwise pattern. The relative abundance of bacteria from the class Clostridia, order Clostridiales, family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of Erysipelotrichia increased with APOE4 status, a finding that extended to humans. In this study, wherein mice were maintained in an ideal fashion for microbiome studies, gut microbiome profiles were strongly and significantly associated with APOE status in male APOE-TR mice. Erysipelotrichia are increased with APOE4 in both mice and humans. APOE allelic effects appeared generally intermediate in heterozygous animals. Further evaluation of these findings in humans, as well as studies evaluating the impact of the APOE-associated microbiota on disease-relevant phenotypes, will be necessary to determine if alterations in the gut microbiome represent a novel mechanism whereby APOE alleles impact disease.
Collapse
Affiliation(s)
- Diana J Zajac
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - Lance A Johnson
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, 789 S. Limestone, Rm. 537, Lexington, KY, 40536, USA.
| |
Collapse
|
76
|
Botchway BOA, Okoye FC, Chen Y, Arthur WE, Fang M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis 2022; 13:87-102. [PMID: 35111364 PMCID: PMC8782546 DOI: 10.14336/ad.2021.0616] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a current public health challenge and will remain until the development of an effective intervention. However, developing an effective treatment for the disease requires a thorough understanding of its etiology, which is currently lacking. Although several studies have shown the association between oxidative damage and AD, only a few have clarified the specific mechanisms involved. Herein, we reviewed recent preclinical and clinical studies that indicated the significance of oxidative damage in AD, as well as potential antioxidants. Although several factors regulate oxidative stress in AD, we centered our investigation on apolipoprotein E and the gut microbiome. Apolipoprotein E, particularly apolipoprotein E-ε4, can impair the structural facets of the mitochondria. This, in turn, can minimize the mitochondrial functionality and result in the progressive build-up of free radicals, eventually leading to oxidative stress. Similarly, the gut microbiome can influence oxidative stress to a significant degree via its metabolite, trimethylamine N-oxide. Given the various roles of these two factors in modulating oxidative stress, we also discuss the possible relationship between them and provide future research directions.
Collapse
Affiliation(s)
- Benson OA Botchway
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| | - Favour C Okoye
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Chen
- Neurosurgery Department, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - William E Arthur
- Department of Internal Medicine, Eastern Regional Hospital, Koforidua, Ghana
| | - Marong Fang
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW To highlight recent developments in studying mechanisms by which the apolipoprotein E4 (APOE4) allele affects the metabolism of brain lipids and predisposes the brain to inflammation and Alzheimer's disease (AD) dementia. RECENT FINDINGS APOE4 activates Ca2+ dependent phospholipase A2 (cPLA2) leading to changes in arachidonic acid (AA), eicosapentaenoic acid and docosahexaenoic acid signaling cascades in the brain. Among these changes, the increased conversion of AA to eicosanoids associates with sustained and unresolved chronic brain inflammation. The effects of APOE4 on the brain differ by age, disease stage, nutritional status and can be uncovered by brain imaging studies of brain fatty acid uptake. Reducing cPLA2 expression in the dementia brain presents a viable strategy that awaits to be tested. SUMMARY Fatty acid brain imaging techniques can clarify how changes to brain polyunsaturated fatty acid metabolism during the various phases of AD and guide the development of small molecules to mitigate brain inflammation.
Collapse
Affiliation(s)
| | - Brandon Ebright
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy
| | - Hussein N Yassine
- Department of Neurology and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
78
|
Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses reveal differences between low-grade inflammation and severe exhaustion in LPS-challenged murine monocytes. Commun Biol 2022; 5:102. [PMID: 35091696 PMCID: PMC8799722 DOI: 10.1038/s42003-022-03035-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging studies suggest that monocytes can be trained by bacterial endotoxin to adopt distinct memory states ranging from low-grade inflammation to immune exhaustion. While low-grade inflammation may contribute to the pathogenesis of chronic diseases, exhausted monocytes with pathogenic and immune-suppressive characteristics may underlie the pathogenesis of polymicrobial sepsis including COVID-19. However, detailed processes by which the dynamic adaption of monocytes occur remain poorly understood. Here we exposed murine bone-marrow derived monocytes to chronic lipopolysaccharide (LPS) stimulation at low-dose or high-dose, as well as a PBS control. The cells were profiled for genome-wide H3K27ac modification and gene expression. The gene expression of TRAM-deficient and IRAK-M-deficient monocytes with LPS exposure was also analyzed. We discover that low-grade inflammation preferentially utilizes the TRAM-dependent pathway of TLR4 signaling, and induces the expression of interferon response genes. In contrast, high dose LPS uniquely upregulates exhaustion signatures with metabolic and proliferative pathways. The extensive differences in the epigenomic landscape between low-dose and high-dose conditions suggest the importance of epigenetic regulations in driving differential responses. Our data provide potential targets for future mechanistic or therapeutic studies.
Collapse
Affiliation(s)
- Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
79
|
Custodia A, Ouro A, Romaus-Sanjurjo D, Pías-Peleteiro JM, de Vries HE, Castillo J, Sobrino T. Endothelial Progenitor Cells and Vascular Alterations in Alzheimer’s Disease. Front Aging Neurosci 2022; 13:811210. [PMID: 35153724 PMCID: PMC8825416 DOI: 10.3389/fnagi.2021.811210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease representing the most common type of dementia worldwide. The early diagnosis of AD is very difficult to achieve due to its complexity and the practically unknown etiology. Therefore, this is one of the greatest challenges in the field in order to develop an accurate therapy. Within the different etiological hypotheses proposed for AD, we will focus on the two-hit vascular hypothesis and vascular alterations occurring in the disease. According to this hypothesis, the accumulation of β-amyloid protein in the brain starts as a consequence of damage in the cerebral vasculature. Given that there are several vascular and angiogenic alterations in AD, and that endothelial progenitor cells (EPCs) play a key role in endothelial repair processes, the study of EPCs in AD may be relevant to the disease etiology and perhaps a biomarker and/or therapeutic target. This review focuses on the involvement of endothelial dysfunction in the onset and progression of AD with special emphasis on EPCs as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Alberto Ouro,
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Helga E. de Vries
- Neuroimmunology Research Group, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino,
| |
Collapse
|
80
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
81
|
Fang Y, Doyle MF, Alosco ML, Mez J, Satizabal CL, Qiu WQ, Lunetta KL, Murabito JM. Cross-Sectional Association Between Blood Cell Phenotypes, Cognitive Function, and Brain Imaging Measures in the Community-Based Framingham Heart Study. J Alzheimers Dis 2022; 87:1291-1305. [PMID: 35431244 PMCID: PMC9969805 DOI: 10.3233/jad-215533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Peripheral inflammation is associated with increased risk for dementia. Neutrophil to lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV), are easily measured circulating blood cell phenotypes reflecting chronic peripheral inflammation, but their association with dementia status is unclear. OBJECTIVE We sought to investigate the cross-sectional association of these inflammatory measures with neuropsychological (NP) test performance, and brain magnetic resonance imaging (MRI) measures in the Framingham Heart Study (FHS) Offspring, Third-generation, and Omni cohorts. METHODS We identified FHS participants who attended an exam that included a complete blood cell count (CBC) and underwent NP testing (n = 3,396) or brain MRI (n = 2,770) within five years of blood draw. We investigated the association between NLR, RDW, and MPV and NP test performance and structural MRI-derived volumetric measurements using linear mixed effect models accounting for family relationships and adjusting for potential confounders. RESULTS Participants were on average 60 years old, 53% female, and about 80% attended some college. Higher NLR was significantly associated with poorer performance on visual memory, and visuospatial abilities, as well as with larger white matter hyperintensity volume. We also observed associations for higher RDW with poorer executive function and smaller total cerebral brain volume. CONCLUSION Chronic peripheral inflammation as measured by NLR and RDW was associated with worse cognitive function, reduced brain volume, and greater microvascular disease in FHS participants. If confirmed in other samples, CBC may provide informative and cost-effective biomarkers of abnormal brain aging in the community.
Collapse
Affiliation(s)
- Yuan Fang
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Margaret F. Doyle
- University of Vermont, Larner College of Medicine, Department of Pathology and Laboratory Medicine, Burlington, VT
| | - Michael L. Alosco
- Boston University School of Medicine, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston, MA, USA.,Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | - Jesse Mez
- Boston University School of Medicine, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston, MA, USA.,Boston University School of Medicine, Department of Neurology, Boston, MA, USA.,Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, MA, USA
| | - Claudia L. Satizabal
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA.,University of Texas Health Science Center at San Antonio, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, USA
| | - Wei Qiao Qiu
- Boston University School of Medicine, Boston University Alzheimer’s Disease Research Center and CTE Center, Boston, MA, USA.,Boston University School of Medicine, Department of Psychiatry, Boston, MA, USA.,Boston University School of Medicine, Department of Pharmacology & Experimental Therapeutics, Boston, MA, USA
| | - Kathryn L. Lunetta
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, MA, USA.,Boston University School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA, USA
| |
Collapse
|
82
|
Parhizkar S, Holtzman DM. APOE mediated neuroinflammation and neurodegeneration in Alzheimer's disease. Semin Immunol 2022; 59:101594. [PMID: 35232622 PMCID: PMC9411266 DOI: 10.1016/j.smim.2022.101594] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023]
Abstract
Neuroinflammation is a central mechanism involved in neurodegeneration as observed in Alzheimer's disease (AD), the most prevalent form of neurodegenerative disease. Apolipoprotein E4 (APOE4), the strongest genetic risk factor for AD, directly influences disease onset and progression by interacting with the major pathological hallmarks of AD including amyloid-β plaques, neurofibrillary tau tangles, as well as neuroinflammation. Microglia and astrocytes, the two major immune cells in the brain, exist in an immune-vigilant state providing immunological defense as well as housekeeping functions that promote neuronal well-being. It is becoming increasingly evident that under disease conditions, these immune cells become progressively dysfunctional in regulating metabolic and immunoregulatory pathways, thereby promoting chronic inflammation-induced neurodegeneration. Here, we review and discuss how APOE and specifically APOE4 directly influences amyloid-β and tau pathology, and disrupts microglial as well as astroglial immunomodulating functions leading to chronic inflammation that contributes to neurodegeneration in AD.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
83
|
Wang YC, Lin MS, Huang APH, Wu CC, Kung WM. Association between systemic rheumatic diseases and dementia risk: A meta-analysis. Front Immunol 2022; 13:1054246. [PMID: 36439141 PMCID: PMC9682025 DOI: 10.3389/fimmu.2022.1054246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND AIMS Epidemiological studies have been conducted on the relationship between systemic rheumatic diseases (SRDs) and dementia. Therefore, we focused on determining the extent of alliances bounded by SRDs, along with the risk of dementia. MATERIALS AND METHODS Two independent reviewers assessed all studies retrieved from the PubMed, EMBASE, Scopus, and Web of Science databases between January 1, 2000 and November 30, 2021. Only observational studies that estimated the possibility of dementia in participants with SRD were considered. The random-effects model was applied to forecast pooled risk ratios (RRs) and 95% confidence intervals (CI). Heterogeneity among the studies was evaluated using the Q and I2 statistics. The quality of the included studies was assessed using the Newcastle-Ottawa Scale. Funnel plots were used to calculate the risk of bias. RESULTS Seventeen observational studies with 17,717,473 participants were recruited. Our findings showed that among the participants with SRDs, those with osteoarthritis, systemic lupus erythematosus, and Sjogren's syndrome were highly related to an elevated risk of dementia (pooled RR: 1.31; 95% CI: 1.15-1.49, p<0.001; pooled RR: 1.43; 95% CI: 1.19-1.73, p<0.001; and pooled RR: 1.26; 95% CI: 1.14-1.39, p<0.001, respectively). However, participants with rheumatoid arthritis (RA) were not associated with an increased risk of dementia (pooled RR: 0.98; 95% CI: 0.90-1.07, p<0.001). CONCLUSION This systematic review and meta-analysis demonstrated an increased dementia risk among SRDs participants, except for RA.
Collapse
Affiliation(s)
- Yao-Chin Wang
- Department of Emergency, Min-Sheng General Hospital, Taoyuan, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| | - Abel Po-Hao Huang
- Department of Surgery, Division of Neurosurgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Chen Wu
- Department of Healthcare Information and Management, School of Health Technology, Ming Chuan University, Taipei, Taiwan
| | - Woon-Man Kung
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
- *Correspondence: Woon-Man Kung,
| |
Collapse
|
84
|
Dvir-Szternfeld R, Castellani G, Arad M, Cahalon L, Colaiuta SP, Keren-Shaul H, Croese T, Burgaletto C, Baruch K, Ulland T, Colonna M, Weiner A, Amit I, Schwartz M. Alzheimer's disease modification mediated by bone marrow-derived macrophages via a TREM2-independent pathway in mouse model of amyloidosis. NATURE AGING 2022; 2:60-73. [PMID: 37118355 DOI: 10.1038/s43587-021-00149-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Microglia and monocyte-derived macrophages (MDM) are key players in dealing with Alzheimer's disease. In amyloidosis mouse models, activation of microglia was found to be TREM2 dependent. Here, using Trem2-/-5xFAD mice, we assessed whether MDM act via a TREM2-dependent pathway. We adopted a treatment protocol targeting the programmed cell death ligand-1 (PD-L1) immune checkpoint, previously shown to modify Alzheimer's disease via MDM involvement. Blockade of PD-L1 in Trem2-/-5xFAD mice resulted in cognitive improvement and reduced levels of water-soluble amyloid beta1-42 with no effect on amyloid plaque burden. Single-cell RNA sequencing revealed that MDM, derived from both Trem2-/- and Trem2+/+5xFAD mouse brains, express a unique set of genes encoding scavenger receptors (for example, Mrc1, Msr1). Blockade of monocyte trafficking using anti-CCR2 antibody completely abrogated the cognitive improvement induced by anti-PD-L1 treatment in Trem2-/-5xFAD mice and similarly, but to a lesser extent, in Trem2+/+5xFAD mice. These results highlight a TREM2-independent, disease-modifying activity of MDM in an amyloidosis mouse model.
Collapse
Affiliation(s)
- Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Castellani
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Arad
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Liora Cahalon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Chiara Burgaletto
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd, Ness Ziona, Israel
| | - Tyler Ulland
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
85
|
Butler L, Walker KA. The Role of Chronic Infection in Alzheimer's Disease: Instigators, Co-conspirators, or Bystanders? CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:199-212. [PMID: 35186664 PMCID: PMC8849576 DOI: 10.1007/s40588-021-00168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Herein, we provide a critical review of the clinical and translational research examining the relationship between viral and bacterial pathogens and Alzheimer's disease. In addition, we provide an overview of the biological pathways through which chronic infection may contribute to Alzheimer's disease. RECENT FINDINGS Dementia due to Alzheimer's disease is a leading cause of disability among older adults in developed countries, yet knowledge of the causative factors that promote Alzheimer's disease pathogenesis remains incomplete. Over the past several decades, numerous studies have demonstrated an association of chronic viral and bacterial infection with Alzheimer's disease. Implicated infectious agents include numerous herpesviruses (HSV-1, HHV-6, HHV-7) and various gastric, enteric, and oral bacterial species, as well as Chlamydia pneumonia and multiple spirochetes. SUMMARY Evidence supports the association between multiple pathogens and Alzheimer's disease risk. Whether these pathogens play a causal role in Alzheimer's pathophysiology remains an open question. We propose that the host immune response to active or latent infection in the periphery or in the brain triggers or accelerates the Alzheimer's disease processes, including the accumulation of amyloid-ß and pathogenic tau, and neuroinflammation. While recent research suggests that such theories are plausible, additional longitudinal studies linking microorganisms to Aß and phospho-tau development, neuroinflammation, and clinically defined Alzheimer's dementia are needed.
Collapse
Affiliation(s)
- Lauren Butler
- National Institutes of Health, National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, United States
| | - Keenan A Walker
- National Institutes of Health, National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, United States
| |
Collapse
|
86
|
APOE2, E3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Reports 2021; 17:110-126. [PMID: 34919811 PMCID: PMC8758949 DOI: 10.1016/j.stemcr.2021.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
The apolipoprotein E4 (APOE4) variant is the strongest genetic risk factor for Alzheimer disease (AD), while the APOE2 allele is protective. A major question is how different APOE genotypes affect the physiology of astrocytes, the main APOE-producing brain cells. Here, we differentiated human APOE-isogenic induced pluripotent stem cells (iPSCs) (APOE4, E3, E2, and APOE knockout [APOE-KO]) to functional “iAstrocytes”. Mass-spectrometry-based proteomic analysis showed genotype-dependent reductions of cholesterol and lipid metabolic and biosynthetic pathways (reduction: APOE4 > E3 > E2). Cholesterol efflux and biosynthesis were reduced in APOE4 iAstrocytes, while subcellular localization of cholesterol in lysosomes was elevated. An increase in immunoregulatory proteomic pathways (APOE4 > E3 > E2) was accompanied by elevated cytokine release in APOE4 cells (APOE4 > E3 > E2 > KO). Activation of iAstrocytes exacerbated proteomic changes and cytokine secretion mostly in APOE4 iAstrocytes, while APOE2 and APOE-KO iAstrocytes were least affected. Taken together, APOE4 iAstrocytes reveal a disease-relevant phenotype, causing dysregulated cholesterol/lipid homeostasis, increased inflammatory signaling, and reduced β-amyloid uptake, while APOE2 iAstrocytes show opposing effects. Human astrocytes show strong proteomic differences depending on their APOE genotype Aβ uptake is highest in APOE-KO and lowest in APOE4 astrocytes (KO > E2 > E3 > E4) APOE4 astrocytes show exacerbated pro-inflammatory reactions (APOE4 > E3 > E2 > KO) Cholesterol synthesis and efflux are reduced in APOE4 astrocytes
Collapse
|
87
|
Uchio R, Kawasaki K, Okuda-Hanafusa C, Saji R, Muroyama K, Murosaki S, Yamamoto Y, Hirose Y. Curcuma longa extract improves serum inflammatory markers and mental health in healthy participants who are overweight: a randomized, double-blind, placebo-controlled trial. Nutr J 2021; 20:91. [PMID: 34774052 PMCID: PMC8590273 DOI: 10.1186/s12937-021-00748-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Background The dietary spice Curcuma longa, also known as turmeric, has various biological effects. Both a water extract and a supercritical carbon dioxide extract of C. longa showed anti-inflammatory activities in animal studies. However, the anti-inflammatory effect in humans of a mixture of these two C. longa extracts (CLE) is poorly understood. Therefore, we investigated the effect of CLE containing anti-inflammatory turmeronols on chronic inflammation and general health. Methods We performed a randomized, double-blind, placebo-controlled study in healthy subjects aged 50 to 69 years with overweight. Participants took two capsules containing CLE (CLE group, n = 45) or two placebo capsules (placebo group, n = 45) daily for 12 weeks, and serum inflammatory markers were measured. Participants also completed two questionnaires: the Medical Outcomes Study (MOS) 36-Item Short-Form Health Survey (SF-36) and the Profile of Mood States (POMS) scale. Treatment effects were analyzed by two way analysis of variance followed by a t test (significance level, p < 0.05). Results After the intervention, the CLE group had a significantly lower body weight (p < 0.05) and body mass index (p < 0.05) than the placebo group and significantly lower serum levels of C-reactive protein (p < 0.05) and complement component 3 (p < 0.05). In addition, the CLE group showed significant improvement of the MOS SF-36 mental health score (p < 0.05) and POMS anger-hostility score (p < 0.05). Conclusion CLE may ameliorate chronic low-grade inflammation and thus help to improve mental health and mood disturbance. Trial registration UMIN-CTR, UMIN000037370. Registered 14 July 2019, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000042607 Supplementary Information The online version contains supplementary material available at 10.1186/s12937-021-00748-8.
Collapse
Affiliation(s)
- Ryusei Uchio
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan.
| | - Kengo Kawasaki
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Chinatsu Okuda-Hanafusa
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Ryosuke Saji
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Koutarou Muroyama
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Shinji Murosaki
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Yoshihiro Yamamoto
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Yoshitaka Hirose
- Research & Development Institute, House Wellness Foods Corp., 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| |
Collapse
|
88
|
Zhang Z, Na H, Gan Q, Tao Q, Alekseyev Y, Hu J, Yan Z, Yang JB, Tian H, Zhu S, Li Q, Rajab IM, Blusztajn JK, Wolozin B, Emili A, Zhang X, Stein T, Potempa LA, Qiu WQ. Monomeric C-reactive protein via endothelial CD31 for neurovascular inflammation in an ApoE genotype-dependent pattern: A risk factor for Alzheimer's disease? Aging Cell 2021; 20:e13501. [PMID: 34687487 PMCID: PMC8590103 DOI: 10.1111/acel.13501] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
In chronic peripheral inflammation, endothelia in brain capillary beds could play a role for the apolipoprotein E4 (ApoE4)‐mediated risk for Alzheimer's disease (AD) risk. Using human brain tissues, here we demonstrate that the interactions of endothelial CD31 with monomeric C‐reactive protein (mCRP) versus ApoE were linked with shortened neurovasculature for AD pathology and cognition. Using ApoE knock‐in mice, we discovered that intraperitoneal injection of mCRP, via binding to CD31 on endothelial surface and increased CD31 phosphorylation (pCD31), leading to cerebrovascular damage and the extravasation of T lymphocytes into the ApoE4 brain. While mCRP was bound to endothelial CD31 in a dose‐ and time‐dependent manner, knockdown of CD31 significantly decreased mCRP binding and altered the expressions of vascular‐inflammatory factors including vWF, NF‐κB and p‐eNOS. RNAseq revealed endothelial pathways related to oxidative phosphorylation and AD pathogenesis were enhanced, but endothelial pathways involving in epigenetics and vasculogenesis were inhibited in ApoE4. This is the first report providing some evidence on the ApoE4‐mCRP‐CD31 pathway for the cross talk between peripheral inflammation and cerebrovasculature leading to AD risk.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Hana Na
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Qini Gan
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Qiushan Tao
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Yuriy Alekseyev
- Microarray and Sequencing Core Facility Boston University School of Medicine Boston Massachusetts USA
| | - Junming Hu
- Department of Medicine Boston University School of Medicine Boston Massachusetts USA
| | - Zili Yan
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Jack B. Yang
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
- Department of Pharmacology Xiaman Medical College Xiaman China
| | - Shenyu Zhu
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Qiang Li
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
- Nursing School Qiqihar Medical University Qiqihar China
| | | | - Jan Krizysztof Blusztajn
- Department of Pathology and Laboratory Medicine Boston University School of Medicine Boston Massachusetts USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - Andrew Emili
- Department of Biochemistry Boston University School of Medicine Boston Massachusetts USA
| | - Xiaoling Zhang
- Department of Medicine Boston University School of Medicine Boston Massachusetts USA
| | - Thor Stein
- Department of Pathology and Laboratory Medicine Boston University School of Medicine Boston Massachusetts USA
- Alzheimer’s Disease Center Boston University School of Medicine Boston Massachusetts USA
- VA Boston Healthcare System Boston Massachusetts USA
- Department of Veterans Affairs Medical Center Bedford Massachusetts USA
| | | | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
- Alzheimer’s Disease Center Boston University School of Medicine Boston Massachusetts USA
- Department of Psychiatry Boston University School of Medicine Boston Massachusetts USA
| |
Collapse
|
89
|
Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat Rev Neurol 2021; 17:689-701. [PMID: 34522039 PMCID: PMC8439173 DOI: 10.1038/s41582-021-00549-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Dysregulation of the immune system is a cardinal feature of Alzheimer disease (AD), and a considerable body of evidence indicates pathological alterations in central and peripheral immune responses that change over time. Considering AD as a systemic immune process raises important questions about how communication between the peripheral and central compartments occurs and whether this crosstalk represents a therapeutic target. We established a whitepaper workgroup to delineate the current status of the field and to outline a research prospectus for advancing our understanding of peripheral-central immune crosstalk in AD. To guide the prospectus, we begin with an overview of seminal clinical observations that suggest a role for peripheral immune dysregulation and peripheral-central immune communication in AD, followed by formative animal data that provide insights into possible mechanisms for these clinical findings. We then present a roadmap that defines important next steps needed to overcome conceptual and methodological challenges, opportunities for future interdisciplinary research, and suggestions for translating promising mechanistic studies into therapeutic interventions.
Collapse
Affiliation(s)
- Brianne M Bettcher
- Behavioral Neurology Section, Department of Neurology, University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Malú G Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
| | - Guillaume Dorothée
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Team "Immune System and Neuroinflammation", Hôpital Saint-Antoine, Paris, France
| | - Michael T Heneka
- Department of Neurodegenerative Diseases & Geropsychiatry/Neurology, University of Bonn Medical Center, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
90
|
Saleh RNM, West AL, Ostermann AI, Schebb NH, Calder PC, Minihane AM. APOE Genotype Modifies the Plasma Oxylipin Response to Omega-3 Polyunsaturated Fatty Acid Supplementation in Healthy Individuals. Front Nutr 2021; 8:723813. [PMID: 34604280 PMCID: PMC8484638 DOI: 10.3389/fnut.2021.723813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
The omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mediate inflammation in large part by affecting pro-inflammatory and anti-inflammatory/pro-resolving oxylipin concentrations. Common gene variants are thought to underlie the large inter-individual variation in oxylipin levels in response to n-3 PUFA supplementation, which in turn is likely to contribute to the overall heterogeneity in response to n-3 PUFA intervention. Given its known role in inflammation and as a modulator of the physiological response to EPA and DHA, here we explore, for the first time, the differential response of plasma hydroxy-, epoxy- and dihydroxy-arachidonic acid, EPA and DHA oxylipins according to apolipoprotein E (APOE) genotype using samples from a dose-response parallel design RCT. Healthy participants were given doses of EPA+DHA equivalent to intakes of 1, 2, and 4 portions of oily fish per week for 12 months. There was no difference in the plasma levels of EPA, DHA or ARA between the wildtype APOE3/E3 and APOE4 carrier groups after 3 or 12 months of n-3 PUFA supplementation. At 12 months, hydroxy EPAs (HEPEs) and hydroxy-DHAs (HDHAs) were higher in APOE4 carriers, with the difference most evident at the highest EPA+DHA intake. A significant APOE*n-3 PUFA dose effect was observed for the CYP-ω hydroxylase products 19-HEPE (p = 0.027) and 20-HEPE (p = 0.011). 8-HEPE, which, along with several other plasma oxylipins, is an activator of peroxisome proliferator activated receptors (PPARs), showed the highest fold change in APOE4 carriers (14-fold) compared to APOE3/E3 (4-fold) (p = 0.014). Low basal plasma EPA levels (EPA < 0.85% of total fatty acids) were associated with a greater change in 5-HEPE, 9-HEPE, 11-HEPE, and 20-HEPE compared to high basal EPA levels (EPA > 1.22% of total fatty acids). In conclusion, APOE genotype modulated the plasma oxylipin response to increased EPA+DHA intake, with APOE4 carriers presenting with the greatest increases following high dose n-3 PUFA supplementation for 12 months.
Collapse
Affiliation(s)
- Rasha N M Saleh
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Marie Minihane
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
91
|
Piantella S, Dragano N, McDonald SJ, Wright BJ. Depression symptoms mediate the association between workplace stress and interleukin 6 in women, but not men: The Whitehall II study. Brain Behav Immun Health 2021; 12:100215. [PMID: 34589736 PMCID: PMC8474445 DOI: 10.1016/j.bbih.2021.100215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023] Open
Abstract
Workplace stress and depression are positively related with inflammation, and each other. Low-grade inflammation and concurrent high levels of workplace stress or depression has been related with future morbidity. The potential pathway between constructs however, remains elusive. For the first time, this study explored the concurrent relationship between workplace stress, depressive symptomology and low-grade inflammation, and considered the role of gender in these relationships. Data from the Whitehall II cohort study (N = 2528, Mage = 57.01, 23.7% females) provided measures of workplace stress (job demand-control; JDC), depressive symptomology (Centre for Epidemiological Studies Depression scale; CES-D) and circulating inflammatory markers, interleukin-6 (IL-6) and C-reactive protein (CRP) collected on the same day from a single time point. Females had higher workplace stress, depressive symptoms and lower serum IL-6 concentrations. For males, higher workplace stress was associated with higher depressive symptoms. For females, higher depressive symptoms were related with elevated IL-6 levels, and both higher workplace stress and IL-6 levels were associated with higher depressive symptoms. Higher depressive symptoms were related with higher CRP levels in men only. Higher depressive symptoms statistically mediated the relationship between higher workplace stress and IL-6 levels in females only, b = 0.016, CI [0.002, 0.039]. Females in this large cohort had higher levels of job strain, depression and lower IL-6 concentrations than males. In females, higher depressive symptoms were associated with higher serum IL-6 levels and workplace stress was not. Considered together, these findings suggest that low job control may be more apparent in females than males, but it is primarily negative affect that drives the positive relationship between work stress and serum IL-6 concentrations in females. Replicating the current design with a suitably proximal follow-up is required to determine if the associations identified are causal. Females had higher workplace stress, depressive symptoms and lower IL-6. Association between stress, depression and inflammation was stronger in women. Among females, depressive symptoms and not stress associated with serum IL-6. .
Collapse
Key Words
- CES-D, Centre for Epidemiological Studies Depression scale
- CESgrp, CES-D group
- CRP
- CRP, C-reactive protein
- Demand-control model
- ERI, Effort-reward imbalance
- Gender
- IL-6, interleukin-6
- Inflammation
- JC, Job control
- JD, Job demand
- JDC, Job demand control ratio
- JDR, Job demand-resources
- JSgrp, Job strain group
- Job strain
- OJ, Organisational Justice
- Stress and coping model
- TMSC, Transactional model of stress and coping
Collapse
Affiliation(s)
- Stefan Piantella
- School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia
| | - Nico Dragano
- Institute of Medical Sociology, Medical Faculty, University of Duesseldorf, Universitaetstrasse 1, Duesseldorf, 40255, Germany
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bradley J Wright
- School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
92
|
Garcia AR, Finch C, Gatz M, Kraft T, Eid Rodriguez D, Cummings D, Charifson M, Buetow K, Beheim BA, Allayee H, Thomas GS, Stieglitz J, Gurven MD, Kaplan H, Trumble BC. APOE4 is associated with elevated blood lipids and lower levels of innate immune biomarkers in a tropical Amerindian subsistence population. eLife 2021; 10:68231. [PMID: 34586066 PMCID: PMC8480980 DOI: 10.7554/elife.68231] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
In post-industrial settings, apolipoprotein E4 (APOE4) is associated with increased cardiovascular and neurological disease risk. However, the majority of human evolutionary history occurred in environments with higher pathogenic diversity and low cardiovascular risk. We hypothesize that in high-pathogen and energy-limited contexts, the APOE4 allele confers benefits by reducing innate inflammation when uninfected, while maintaining higher lipid levels that buffer costs of immune activation during infection. Among Tsimane forager-farmers of Bolivia (N = 1266, 50% female), APOE4 is associated with 30% lower C-reactive protein, and higher total cholesterol and oxidized LDL. Blood lipids were either not associated, or negatively associated with inflammatory biomarkers, except for associations of oxidized LDL and inflammation which were limited to obese adults. Further, APOE4 carriers maintain higher levels of total and LDL cholesterol at low body mass indices (BMIs). These results suggest that the relationship between APOE4 and lipids may be beneficial for pathogen-driven immune responses and unlikely to increase cardiovascular risk in an active subsistence population.
Collapse
Affiliation(s)
- Angela R Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,Department of Anthropology, Emory University, Atlanta, United States
| | - Caleb Finch
- Leonard Davis School of Gerontology, Dornsife College, University of Southern California, Los Angeles, Los Angeles, United States
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, Los Angeles, United States
| | - Thomas Kraft
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Daniel Cummings
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Mia Charifson
- Vilcek Institute of Graduate Biomedical Sciences, New York University, New York, United States
| | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,School of Life Sciences, Arizona State University, Tempe, United States
| | - Bret A Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hooman Allayee
- Department of Preventive Medicine and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States.,Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States
| | - Gregory S Thomas
- Long Beach Memorial, Long Beach and University of California Irvine, Irvine, United States
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Universite Toulouse, Toulouse, France
| | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, United States
| |
Collapse
|
93
|
Du M, Andersen SL, Schupf N, Feitosa MF, Barker MS, Perls TT, Sebastiani P. Association Between APOE Alleles and Change of Neuropsychological Tests in the Long Life Family Study. J Alzheimers Dis 2021; 79:117-125. [PMID: 33216038 DOI: 10.3233/jad-201113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Long Life Family Study (LLFS) is a family based, prospective study of healthy aging and familial longevity. The study includes two assessments of cognitive function that were administered approximately 8 years apart. OBJECTIVE To test whether APOE genotype is associated with change of cognitive function in older adults. METHODS We used Bayesian hierarchical models to test the association between APOE alleles and change of cognitive function. Six longitudinally collected neuropsychological test scores were modelled as a function of age at enrollment, follow-up time, gender, education, field center, birth cohort indicator (≤1935, or >1935), and the number of copies of ɛ2 or ɛ4 alleles. RESULTS Out of 4,587 eligible participants, 2,064 were male (45.0%), and age at enrollment ranged from 25 to 110 years, with mean of 70.85 years (SD: 15.75). We detected a significant cross-sectional effect of the APOEɛ4 allele on Logical Memory. Participants carrying at least one copy of the ɛ4 allele had lower scores in both immediate (-0.31 points, 95% CI: -0.57, -0.05) and delayed (-0.37 points, 95% CI: -0.64, -0.10) recall comparing to non-ɛ4 allele carriers. We did not detect any significant longitudinal effect of the ɛ4 allele. There was no cross-sectional or longitudinal effect of the ɛ2 allele. CONCLUSION The APOEɛ4 allele was identified as a risk factor for poorer episodic memory in older adults, while the APOEɛ2 allele was not significantly associated with any of the cognitive test scores.
Collapse
Affiliation(s)
- Mengtian Du
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stacy L Andersen
- Geriatrics Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Schupf
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and the Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA.,Department of Epidemiology, Columbia University Mailman School of Public Health, Sergievsky Center, New York, NY, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan S Barker
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and the Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
| | - Thomas T Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
94
|
García-Aviles JE, Méndez-Hernández R, Guzmán-Ruiz MA, Cruz M, Guerrero-Vargas NN, Velázquez-Moctezuma J, Hurtado-Alvarado G. Metabolic Disturbances Induced by Sleep Restriction as Potential Triggers for Alzheimer's Disease. Front Integr Neurosci 2021; 15:722523. [PMID: 34539357 PMCID: PMC8447653 DOI: 10.3389/fnint.2021.722523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid β peptide (Aβ) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aβ in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aβ clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.
Collapse
Affiliation(s)
- Jesús Enrique García-Aviles
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Bioquímica, Mexico City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
95
|
Tao Q, Alvin Ang TF, Akhter-Khan SC, Itchapurapu IS, Killiany R, Zhang X, Budson AE, Turk KW, Goldstein L, Mez J, Alosco ML, Qiu WQ. Impact of C-Reactive Protein on Cognition and Alzheimer Disease Biomarkers in Homozygous APOE ɛ4 Carriers. Neurology 2021; 97:e1243-e1252. [PMID: 34266923 PMCID: PMC8480484 DOI: 10.1212/wnl.0000000000012512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/28/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Previous research has shown that elevated blood C-reactive protein (CRP) is associated with increased Alzheimer disease (AD) risk only in APOE ε4 allele carriers; the objective of this study was to examine the interactive effects of plasma CRP and APOE genotype on cognition and AD biomarkers. METHODS Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study were analyzed, including APOE genotype; plasma CRP concentrations; diagnostic status (i.e., mild cognitive impairment and dementia due to AD); Mini-Mental State Examination (MMSE) and Clinical Dementia Rating Dementia Staging Instrument scores; CSF concentrations of β-amyloid peptide (Aβ42), total tau (t-Tau) and phosphorylated tau (p-Tau); and amyloid (AV45) PET imaging. Multivariable regression analyses tested the associations between plasma CRP and APOE on cognitive and biomarker outcomes. RESULTS Among 566 ADNI participants, 274 (48.4%) had no, 222 (39.2%) had 1, and 70 (12.4%) had 2 APOE ε4 alleles. Among only participants who had 2 APOE ε4 alleles, elevated CRP was associated with lower MMSE score at baseline (β [95% confidence interval] -0.52 [-1.01, -0.12]) and 12-month follow-up (β -1.09 [-1.88, -0.17]) after adjustment for sex, age, and education. The interaction of 2 APOE ε4 alleles and elevated plasma CRP was associated with increased CSF levels of t-Tau (β = 11.21, SE 3.37, p < 0.001) and p-Tau (β = +2.74, SE 1.14, p < 0.01). Among those who had no APOE ε4 alleles, elevated CRP was associated with decreased CSF t-Tau and p-Tau. These effects were stronger at the 12-month follow-up. DISCUSSION CRP released during peripheral inflammation could be a mediator in APOE ε4-related AD neurodegeneration and serve as a drug target for AD.
Collapse
Affiliation(s)
- Qiushan Tao
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Ting Fang Alvin Ang
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Samia C Akhter-Khan
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Indira Swetha Itchapurapu
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Ronald Killiany
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Xiaoling Zhang
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Andrew E Budson
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Katherine W Turk
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Lee Goldstein
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Jesse Mez
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Michael L Alosco
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA
| | - Wei Qiao Qiu
- From the Department of Pharmacology and Experimental Therapeutics (Q.T., I.S.I., W.Q.Q.), Framingham Heart Study (Q.T., T.F.A.A.), Department of Anatomy and Neurobiology (T.F.A.A., R.K.), Slone Epidemiology Center (T.F.A.A.), Department of Medicine (X.Z.), Department of Neurology (A.E.B., K.W.T., J.M., M.L.A.), Department of Psychiatry (W.Q.Q.), and Alzheimer's Disease and CTE Centers (A.E.B., K.W.T., L.G., J.M., M.L.A., W.Q.Q.), Boston University School of Medicine, MA; Department of Psychology (S.C.A.-K.), Humboldt University of Berlin, Germany; Department of Health Service and Population Research (S.C.A.-K.), King's College London, UK; and Veterans Affairs Boston Healthcare System (A.E.B., K.W.T.), MA.
| |
Collapse
|
96
|
Patients With High Chronic Postoperative Knee Pain 5 Years After Total Knee Replacement Demonstrate Low-grad Inflammation, Impairment of Function, and High Levels of Pain Catastrophizing. Clin J Pain 2021; 37:161-167. [PMID: 33290348 DOI: 10.1097/ajp.0000000000000907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Total knee replacement (TKR) normally provides improvements of physical function and reduces pain. However, ∼20% of the patients report chronic postoperative knee pain. The aims of the present study were to assess the pain, physical function, and physiological characteristics 5 years after TKR surgery. MATERIALS AND METHODS Eighty patients were recruited 5 years after TKR and divided into 2 groups based on their average 24-hour knee pain intensity assessed on a visual analog scale (VAS 0 to 10) ("high pain group": VAS≥3; "low pain group": VAS<3). The patients completed the PainDETECT Questionnaire (PDQ), Oxford Knee Score (OKS), Pain Catastrophizing Scale, and Forgotten Joint Score-12. Furthermore, the patients underwent a clinical examination of the knees and high-sensitivity serum C-reactive protein was measured as an inflammatory marker. RESULTS A total of 53% of the patients in the high pain group were not satisfied with the outcome, while only 11% of the patients in the low pain group was not satisfied, and the pain intensities in the 2 groups were 5.1 (4.6 to 5 to 6) and 1.1 (0.6 to 1.5) (P<0.001), respectively. Furthermore, the high pain group demonstrates worse scores in: Forgotten Joint Score-12 (P=0.001), OKS function (P<0.001), OKS pain (P<0.001), and Pain Catastrophizing Scale (P<0.001).The high pain group demonstrated increased level of high-sensitivity serum C-reactive protein (4.3 mg/L [3.2 to 5.5] vs. 1.7 mg/L [1.2 to 2.2], P<0.001), and decreased range of motion in the knee (110 vs. 119-degree range of motion, P=0.013). DISCUSSION Patients with high chronic postoperative knee pain 5 years after TKR demonstrate decreased physical function, higher levels of catastrophizing thoughts, and increased levels of inflammation.
Collapse
|
97
|
Chen XR, Shao Y, Sadowski MJ. Segmented Linear Mixed Model Analysis Reveals Association of the APOEɛ4 Allele with Faster Rate of Alzheimer's Disease Dementia Progression. J Alzheimers Dis 2021; 82:921-937. [PMID: 34120907 PMCID: PMC8461709 DOI: 10.3233/jad-210434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: APOEɛ4 allele carriers present with an increased risk for late-onset Alzheimer’s disease (AD), show cognitive symptoms at an earlier age, and are more likely to transition from mild cognitive impairment (MCI) to dementia but despite this, it remains unclear whether or not the ɛ4 allele controls the rate of disease progression. Objective: To determine the effects of the ɛ4 allele on rates of cognitive decline and brain atrophy during MCI and dementia stages of AD. Methods: A segmented linear mixed model was chosen for longitudinal modeling of cognitive and brain volumetric data of 73 ɛ3/ɛ3, 99 ɛ3/ɛ4, and 39 ɛ4/ɛ4 Alzheimer’s Disease Neuroimaging Initiative participants who transitioned during the study from MCI to AD dementia. Results: ɛ4 carriers showed faster decline on MMSE, ADAS-11, CDR-SB, and MoCA scales, with the last two measures showing significant ɛ4 allele-dose effects after dementia transition but not during MCI. The ɛ4 effect was more prevalent in younger participants and in females. ɛ4 carriers also demonstrated faster rates of atrophy of the whole brain, the hippocampus, the entorhinal cortex, the middle temporal gyrus, and expansion of the ventricles after transitioning to dementia but not during MCI. Conclusion: Possession of the ɛ4 allele is associated with a faster progression of dementia due to AD. Our observations support the notion that APOE genotype not only controls AD risk but also differentially regulates mechanisms of neurodegeneration underlying disease advancement. Furthermore, our findings carry significance for AD clinical trial design.
Collapse
Affiliation(s)
- X Richard Chen
- University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.,Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Martin J Sadowski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.,Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | | |
Collapse
|
98
|
Si S, Li J, Tewara MA, Xue F. Genetically Determined Chronic Low-Grade Inflammation and Hundreds of Health Outcomes in the UK Biobank and the FinnGen Population: A Phenome-Wide Mendelian Randomization Study. Front Immunol 2021; 12:720876. [PMID: 34386016 PMCID: PMC8353321 DOI: 10.3389/fimmu.2021.720876] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background C-reactive protein (CRP) has been used as a biomarker of chronic low-grade inflammation in observational studies. We aimed to determine whether genetically determined CRP was associated with hundreds of human phenotypes to guide anti-inflammatory interventions. Methods We used individual data from the UK Biobank to perform a phenome-wide two-stage least squares (2SLS) Mendelian randomization (MR) analysis for CRP with 879 diseases. Summary-level data from the FinnGen consortium were utilized to perform phenome-wide two-sample MR analysis on 821 phenotypes. Systematic two-sample MR methods included MR-IVW, MR-WME, MR-Mod, and MR-PRESSO as sensitivity analyses combined with multivariable MR to identify robust associations. Genetic correlation analysis was applied to identify shared genetic risks. Results We found genetically determined CRP was robustly associated with 15 diseases in the UK Biobank and 11 diseases in the FinnGen population (P < 0.05 for all MR analyses). CRP was positively associated with tongue cancer, bronchitis, hydronephrosis, and acute pancreatitis and negatively associated with colorectal cancer, colon cancer, cerebral ischemia, electrolyte imbalance, Parkinson's disease, epilepsy, anemia of chronic disease, encephalitis, psychophysical visual disturbances, and aseptic necrosis of bone in the UK Biobank. There were positive associations with impetigo, vascular dementia, bipolar disorders, hypercholesterolemia, vertigo, and neurological diseases, and negative correlations with degenerative macular diseases, metatarsalgia, interstitial lung disease, and idiopathic pulmonary fibrosis, and others. in the FinnGen population. The electrolyte imbalance and anemia of chronic disease in UK Biobank and hypercholesterolemia and neurological diseases in FinnGen pass the FDR corrections. Neurological diseases and bipolar disorders also presented positive genetic correlations with CRP. We found no overlapping causal associations between the populations. Previous causal evidence also failed to support these associations (except for bipolar disorders). Conclusions Genetically determined CRP was robustly associated with several diseases in the UK Biobank and the FinnGen population, but could not be replicated, suggesting heterogeneous and non-repeatable effects of CRP across populations. This implies that interventions at CRP are unlikely to result in decreased risk for most human diseases in the general population but may benefit specific high-risk populations. The limited causal evidence and potential double-sided effects remind us to be cautious about CRP interventions.
Collapse
Affiliation(s)
- Shucheng Si
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Jiqing Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Marlvin Anemey Tewara
- Center for Health Promotion and Research (Former Tuberculosis Reference Laboratory), Bamenda, Cameroon
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute for Medical Dataology, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| |
Collapse
|
99
|
Goldstein MR, Cheslock M. On the prevention and treatment of Alzheimer's disease: Control the promoters and look beyond the brain. Med Hypotheses 2021; 154:110645. [PMID: 34315048 DOI: 10.1016/j.mehy.2021.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/05/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is a progressive incurable neurodegenerative disease of the brain afflicting a third of the population aged 85 and older. Pathologic hallmarks include extracellular plaques of amyloid-beta (Aß), intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein, synaptic destruction, neuronal death, and brain atrophy. Neuroinflammation, mediated by microglia, is a central component of the disease, and is intricately connected with peripheral inflammation. The clinical manifestations include progressive memory loss and eventual death. The present treatment of AD is largely ineffective. Nearly all AD is late-onset and presents age 65 or older, and the most common genetic risk factor is carriage of an apolipoprotein (APO) E4 allele, seen in about 25% of the general population. Individuals carrying an APOE4 allele produce more Aß and clear it less efficiently from the brain throughout life. There has been accumulating pathologic and clinical evidence that microbes, particularly the herpes simplex virus (HSV), is a causative factor for AD, most notable in carriers of the APOE4 allele. Eighty percent of the adult population harbors HSV and it resides in the trigeminal ganglion in latent state throughout life, but periodically reactivates, traveling antegrade resulting in herpes labialis and traveling retrograde into the brain leading to neuroinflammation. Functioning as an antimicrobial peptide, Aß inactivates HSV and the recurring process culminates in a buildup of Aß plaque and other hallmarks of AD over time. Periodontal disease exists in 20-50% of the adult population and is also a causative factor for AD. Accordingly, bacteria causing periodontal disease and their byproducts can enter the brain directly via the trigeminal nerve or indirectly through the bloodstream, resulting in AD pathology over time. There are many other promoters of AD, particularly inflammatory conditions outside of the brain, that can be mitigated. Small trials are finally in progress testing antimicrobial drugs for the prevention and treatment of AD. In the meantime, a more proactive approach to the prevention and treatment of AD is posited, with an emphasis on prevention, since the pathologic underpinnings of the disease start decades before the clinical manifestations. Individuals can be stratified in risk categories using family history, periodontal disease presence, APOE4 carriage, and HSV IgG positivity. Moderate- and high-risk individuals can be treated safely with various preventive measures and appropriate antimicrobial agents as discussed. Importantly, the proposed treatments are concordant with the accepted practice of medicine, and if utilized, could significantly decrease AD prevalence.
Collapse
Affiliation(s)
| | - Megan Cheslock
- Harvard Medical School Multi-Campus Geriatric Fellowship, Boston, Massachusetts, USA.
| |
Collapse
|
100
|
Ma X, Ma J, Guo R, Du J, Feng B, Liu X, Du X, Ma Z, Cui H. Blood-derived integration-free induced pluripotent stem cells (iPSCs) from one 53-years-old male donor with APOE-ε4/ε4 genotype. Stem Cell Res 2021; 54:102450. [PMID: 34218115 DOI: 10.1016/j.scr.2021.102450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
Apolipoprotein E ε4 allele (APOE4) is a minor allele of the APOE gene associated with a higher risk for Alzheimer's Disease (AD) and Vascular Dementia (VD). While lipid deposition and chronic inflammation in glia are the commonalities between atherosclerosis, VD, and AD. Hence, we presented an iPSC line of an AD male donor suffering from Cerebrovascular Atherosclerosis with APOE-ε4/ε4 alleles background. Furthermore, we differentiated the iPSCs into astrocyte to explore pathogenesis in APOE4 related dementia. The characterized iPSC line expressed typical pluripotency markers and showed differentiation potential and normal karyotype.
Collapse
Affiliation(s)
- Xiaowei Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China; Department of Neurology, The First Hospital of Hebei Medical University, Hebei Province 050017, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China; Human Anatomy Department, Hebei Medical University, Hebei Province 050017, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China
| | - Juan Du
- Human Anatomy Department, Hebei Medical University, Hebei Province 050017, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China
| | - Zhenhuan Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Hebei Province 050017, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Province 050017, China; Human Anatomy Department, Hebei Medical University, Hebei Province 050017, China.
| |
Collapse
|