51
|
Wang W, Xie X, Zhuang X, Huang Y, Tan T, Gangal H, Huang Z, Purvines W, Wang X, Stefanov A, Chen R, Rodriggs L, Chaiprasert A, Yu E, Vierkant V, Hook M, Huang Y, Darcq E, Wang J. Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep 2023; 42:112089. [PMID: 36796365 PMCID: PMC10404641 DOI: 10.1016/j.celrep.2023.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain μ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Tao Tan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - William Purvines
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lucas Rodriggs
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Anita Chaiprasert
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Emily Yu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Valerie Vierkant
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Michelle Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Emmanuel Darcq
- Department of Psychiatry, University of Strasbourg, INSERM U1114, 67084 Strasbourg Cedex, France
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology, Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Rafizadeh R, Danilewitz M, Bousman CA, Mathew N, White RF, Bahji A, Honer WG, Schütz CG. Effects of clozapine treatment on the improvement of substance use disorders other than nicotine in individuals with schizophrenia spectrum disorders: A systematic review and meta-analysis. J Psychopharmacol 2023; 37:135-143. [PMID: 36507548 PMCID: PMC9912304 DOI: 10.1177/02698811221142575] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Antipsychotic medications are the mainstay of treatment for schizophrenia and are associated with a reduction in psychiatric hospitalization and overall mortality. Some evidence suggest that antipsychotic medications might have a varying effect on the improvement of comorbid substance use disorders (SUDs), with clozapine showing more favorable outcomes. AIM We systematically reviewed all available evidence on effects of clozapine on the improvement of SUDs other than nicotine. METHODS Electronic searches of MEDLINE, Embase, PsycINFO, and CINHAL were conducted up to March 1, 2022. Studies of any methodological design involving two concepts: (1) clozapine and (2) SUD terms (excluding nicotine) were included. For SUD outcomes with three or more comparative studies with available raw data meta-analysis was performed. SUD outcomes not meeting criteria for meta-analysis were described qualitatively. Risk of bias was examined using "Downs and Black," and "Q-Coh" instruments. RESULTS The majority of individuals in the included 31 studies were male and of European ancestry. Abstinence was the most common outcome. Most of the studies were of low-to-moderate quality, and none of the studies met all the quality criteria. Pooled findings from four observational studies in samples of patients with predominantly comorbid alcohol use disorder showed that clozapine treatment is associated with significantly higher odds of remaining abstinent. In addition clozapine was associated with decreased odds of psychiatric hospitalization in all but one observational study. CONCLUSIONS Our systematic review and meta-analysis builds upon previous reviews, and it suggests the association of clozapine treatment with significantly higher odds of remaining abstinent from substance use and decreased likelihood of psychiatric hospitalization, compared with continuing treatment with other antipsychotic medications. Still, the validity of this association needs greater exploration and providing recommendations for the utility of clozapine in individuals without treatment-resistant psychosis and comorbid SUDs would be premature.
Collapse
Affiliation(s)
- Reza Rafizadeh
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.,BC Mental Health and Substance Use Services, Vancouver, BC, Canada.,BC Psychosis Program, Vancouver, BC, Canada.,Lower Mainland Pharmacy Services, Vancouver, BC, Canada
| | - Marlon Danilewitz
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada
| | - Chad A Bousman
- Departments of Psychiatry and Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nickie Mathew
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,BC Psychosis Program, Vancouver, BC, Canada
| | - Anees Bahji
- Departments of Psychiatry and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,BC Mental Health and Substance Use Services, Vancouver, BC, Canada.,BC Psychosis Program, Vancouver, BC, Canada
| | - Christian G Schütz
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| |
Collapse
|
53
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
54
|
Beck A, Ebrahimi C, Rosenthal A, Charlet K, Heinz A. The Dopamine System in Mediating Alcohol Effects in Humans. Curr Top Behav Neurosci 2023. [PMID: 36705911 DOI: 10.1007/7854_2022_415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-imaging studies show that the development and maintenance of alcohol use disorder (AUD) is determined by a complex interaction of different neurotransmitter systems and multiple psychological factors. In this context, the dopaminergic reinforcement system appears to be of fundamental importance. We focus on the excitatory and depressant effects of acute versus chronic alcohol intake and its impact on dopaminergic neurotransmission. Furthermore, we describe alterations in dopaminergic neurotransmission as associated with symptoms of alcohol dependence. We specifically focus on neuroadaptations to chronic alcohol consumption and their effect on central processing of alcohol-associated and reward-related stimuli. Altered reward processing, complex conditioning processes, impaired reinforcement learning, and increased salience attribution to alcohol-associated stimuli enable alcohol cues to drive alcohol seeking and consumption. Finally, we will discuss how the neurobiological and neurochemical mechanisms of alcohol-associated alterations in reward processing and learning can interact with stress, cognition, and emotion processing.
Collapse
Affiliation(s)
- Anne Beck
- Faculty of Health, Health and Medical University, Potsdam, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Katrin Charlet
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
55
|
Dieterich R, Endrass T. Neural Correlates of Cue Reactivity and the Regulation of Craving in Substance Use Disorders. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE 2022. [DOI: 10.1026/1616-3443/a000680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract. Theoretical background: Considerable progress has been made in illuminating the neural basis of the compulsive use patterns characterizing substance use disorders. It has been suggested to utilize these findings to alleviate the health burden associated with substance use. Objective: We address how neuroimaging research can provide these benefits. Methods: Based on neurobiological models of addiction, we highlight neuroimaging research elucidating neural predictors of relapse and how treatments modify these markers. Results: With the focus on cue reactivity, brain activity related to the motivational salience of drugs and automatized use behaviors can predict relapse. Cue reactivity changes with abstinence, and it remains to be determined whether such changes confer periods of critical relapse susceptibility. Conclusions: Several established and emerging interventions modulate brain activity associated with drug value. However, executive deficits in addiction may compromise interventions targeting control-related prefrontal brain areas. Lastly, it remains more difficult to change the brain responses mediating habitual behaviors.
Collapse
Affiliation(s)
- Raoul Dieterich
- Addiction Research, Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, Technische Universität Dresden (TU Dresden), Germany
| | - Tanja Endrass
- Addiction Research, Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, Technische Universität Dresden (TU Dresden), Germany
| |
Collapse
|
56
|
Liu G, Wang R, Chen H, Wu P, Fu Y, Li K, Liu M, Shi Z, Zhang Y, Su Y, Song L, Hou H, Hu Q. Non-nicotine constituents in cigarette smoke extract enhance nicotine addiction through monoamine oxidase A inhibition. Front Neurosci 2022; 16:1058254. [PMID: 36507317 PMCID: PMC9729261 DOI: 10.3389/fnins.2022.1058254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Tobacco addiction has been largely attributed to nicotine, a component in tobacco leaves and smoke. However, extensive evidence suggests that some non-nicotine components of smoke should not be overlooked when considering tobacco dependence. Yet, their individual effect and synergistic effect on nicotine reinforcement remain poorly understood. The study herein focused on the role of non-nicotine constituents in promoting the effects of nicotine and their independent reinforcing effects. Denicotinized cigarettes were prepared by chemical extracting of cut tobacco, and the cigarette smoke extracts (CSE, used as a proxy for non-nicotine ingredients) were obtained by machine-smoking the cigarettes and DMSO extraction. The compositions of harmful components, nicotine, and other minor alkaloids in both cut tobacco and the CSE of experimental denicotinized cigarettes were examined by GC-MS, and compared with 3R4F reference cigarettes. individually and in synergy with nicotine were determined by conditioned place preference (CPP), dopamine (DA) level detection, the open field test (OFT), and the elevated plus maze (EPM). Finally, the potential enhancement mechanism of non-nicotinic constituents was investigated by nicotine metabolism and monoamine oxidase A (MAOA) activity inhibition in the striatum of mice and human recombinant MAOA. Thenicotine content in smoke from the experimental denicotinized cigarettes (under ISO machine-smoking conditions) was reduced by 95.1% and retained most minor alkaloids, relative to the 3R4F reference cigarettes. It was found that non-nicotine constituents increased acute locomotor activities. This was especially pronounced for DA levels in NAc and CPP scores, decreased the time in center zone. There were no differences in these metrics with DNC group when compared to the NS group. Non-nicotine constituents alone did not show reinforcing effects in CPP or striatum DA levels in mice. However, in the presence of nicotine, non-nicotine constituents further increased the reinforcing effects. Furthermore, non-nicotine constituents may enhance nicotine's reinforcing effects by inhibiting striatum MAOA activity rather than affecting nicotine metabolism or total striatum DA content in mice. These findings expand our knowledge of the effect on smoking reinforcement of non-nicotine constituents found in tobacco products.
Collapse
Affiliation(s)
- Guanglin Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Ruiyan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Beijing, China
| | - Yaning Fu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Kaixin Li
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Mingda Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yuan Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yue Su
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Lingxiao Song
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China,*Correspondence: Hongwei Hou,
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China,Qingyuan Hu,
| |
Collapse
|
57
|
Differential Effects of Chronic Methamphetamine Treatment on High-Frequency Oscillations and Responses to Acute Methamphetamine and NMDA Receptor Blockade in Conscious Mice. Brain Sci 2022; 12:brainsci12111503. [DOI: 10.3390/brainsci12111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulation of high-frequency neuronal oscillations has been implicated in the pathophysiology of schizophrenia. Chronic methamphetamine (METH) use can induce psychosis similar to paranoid schizophrenia. The current study in mice aimed to determine the effect of chronic METH treatment on ongoing and evoked neuronal oscillations. C57BL/6 mice were treated with METH or vehicle control for three weeks and implanted with extradural recording electrodes. Two weeks after the last METH injection, mice underwent three EEG recording sessions to measure ongoing and auditory-evoked gamma and beta oscillatory power in response to an acute challenge with METH (2 mg/kg), the NMDA receptor antagonist MK-801 (0.3 mg/kg), or saline control. A separate group of mice pretreated with METH showed significantly greater locomotor hyperactivity to an acute METH challenge, confirming long-term sensitisation. Chronic METH did not affect ongoing or evoked gamma or beta power. Acute MK-801 challenge reduced ongoing beta power whereas acute METH challenge significantly increased ongoing gamma power. Both MK-801 and METH challenge suppressed evoked gamma power. Chronic METH treatment did not modulate these acute drug effects. There were minor effects of chronic METH and acute METH and MK-801 on selected components of event-related potential (ERP) waves. In conclusion, chronic METH treatment did not exert neuroplastic effects on the regulation of cortical gamma oscillations in a manner consistent with schizophrenia, despite causing behavioural sensitisation.
Collapse
|
58
|
Sequeira-Cordero A, Brenes JC. Time course of plasticity-related alterations following the first exposure to amphetamine in juvenile rats. Pharmacol Biochem Behav 2022; 221:173489. [PMID: 36375621 DOI: 10.1016/j.pbb.2022.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
In vulnerable consumers, the first drug exposure induces various neurobehavioral adaptations that may represent the starting point toward addiction. Elucidating the neuroplastic mechanisms underlying that first rewarding experience would contribute to understanding the transition from recreational to compulsive drug use. In a preclinical model with juvenile rats, we analyzed the time-dependent fluctuations in the expression of neuroplasticity-related genes like the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and the neurotransmitters contents in the nucleus accumbens (NAc) and the dorsal striatum (DS) 45, 90, and 180 min after an amphetamine (AMPH) injection. As expected, AMPH altered the concentration of norepinephrine, dopamine, DOPAC, and serotonin in a region- and time-dependent manner. Regarding gene expression, AMPH at 45 min upregulated BDNF and primiR-132 expression in NAc and downregulated TrkB expression in DS. At 90 min, AMPH upregulated TrkB, CREB, p250GAP, and primiR-132 expression in NAc and BDNF, primiR-132, and CRF in DS. At 180 min, only BNDF in NAc continued to be upregulated by AMPH. Based on the levels of AMPH-induced hyperactivity, we classified the rats as low and high AMPH responders. High AMPH responders characterized by overexpressing BDNF, CREB, p250GAP, and CRF in NAc and by showing lower levels of dopamine and serotonin metabolites and turnovers in both regions. Our findings demonstrated that a single AMPH administration is enough to induce neuroplastic adaptations, especially in the NAc of prone rats.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
59
|
Say FM, Tryhus AM, Epperly PM, Nader SH, Solingapuram Sai KK, George BE, Kirse HA, Czoty PW. Effects of chronic cocaine and ethanol self‐administration on brain dopamine receptors in a rhesus monkey model of polysubstance abuse. Addict Biol 2022; 27:e13219. [PMID: 36001440 PMCID: PMC9413385 DOI: 10.1111/adb.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Most individuals with cocaine use disorder also use alcohol; however, little is known about the behavioural and pharmacological mechanisms that promote co‐abuse. For example, although studies in humans and animals have documented that chronic use of either alcohol or cocaine alone decreases D2‐like receptor (D2R) availability, effects of co‐abuse of these substances on dopamine receptor function have not been characterized. These studies examined the effects of long‐term cocaine self‐administration in 12 male rhesus monkeys who also consumed either ethanol or an ethanol‐free solution each day (n = 6 per group). Specifically, all monkeys self‐administered cocaine (0.1 mg/kg per injection) 5 days per week in the morning. In the afternoon, six monkeys consumed 2.0 g/kg ethanol over 1 h to model binge drinking and six monkeys drank an ethanol‐free solution. Assessment of D2R availability using positron emission tomography (PET) and [11C]raclopride occurred when monkeys were drug‐naïve and again when monkeys had self‐administered approximately 400‐mg/kg cocaine. D3R function was assessed at the same time points by determining the potency of the D3R‐preferring agonist quinpirole to elicit yawns. Chronic cocaine self‐administration decreased D2R availability in subregions of the basal ganglia in control monkeys, but not those that also drank ethanol. In contrast, D3R sensitivity increased significantly after chronic cocaine self‐administration in ethanol‐drinking monkeys but not controls. These results suggest that co‐use of ethanol substantially changes the effects of chronic cocaine self‐administration on dopamine receptors, specifically implicating D3R as a target for medications in these individuals.
Collapse
Affiliation(s)
- Felicity M. Say
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Aaron M. Tryhus
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Phillip M. Epperly
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Susan H. Nader
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Kiran K. Solingapuram Sai
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Brianna E. George
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Haley A. Kirse
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| | - Paul W. Czoty
- Department of Physiology & Pharmacology Wake Forest School of Medicine Winston‐Salem North Carolina USA
| |
Collapse
|
60
|
Marrero-Cristobal G, Gelpi-Dominguez U, Morales-Silva R, Alvarado-Torres J, Perez-Torres J, Perez-Perez Y, Sepulveda-Orengo M. Aerobic exercise as a promising nonpharmacological therapy for the treatment of substance use disorders. J Neurosci Res 2022; 100:1602-1642. [PMID: 34850988 PMCID: PMC9156662 DOI: 10.1002/jnr.24990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Despite the prevalence and public health impact of substance use disorders (SUDs), effective long-term treatments remain elusive. Aerobic exercise is a promising, nonpharmacological treatment currently under investigation as a strategy for preventing drug relapse. Aerobic exercise could be incorporated into the comprehensive treatment regimens for people with substance abuse disorders. Preclinical studies of SUD with animal models have shown that aerobic exercise diminishes drug-seeking behavior, which leads to relapse, in both male and female rats. Nevertheless, little is known regarding the effects of substance abuse-induced cellular and physiological adaptations believed to be responsible for drug-seeking behavior. Accordingly, the overall goal of this review is to provide a summary and an assessment of findings to date, highlighting evidence of the molecular and neurological effects of exercise on adaptations associated with SUD.
Collapse
Affiliation(s)
| | - Ursula Gelpi-Dominguez
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, PR, USA
| | - Roberto Morales-Silva
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - John Alvarado-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Joshua Perez-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Yobet Perez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
61
|
Oh H, Rajkumar R, Banawa R, Zhou S, Koyanagi A. Illicit and prescription drug use and psychotic experiences among university students in the United States. JOURNAL OF SUBSTANCE USE 2022. [DOI: 10.1080/14659891.2022.2098842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hans Oh
- Suzanne Dworak Peck School of Social Work, University of Southern California, Los Angeles, California, USA
| | - Ravi Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Rachel Banawa
- The Milken Institute School of Public Health, The George Washington University, Washington, George, USA
| | - Sasha Zhou
- Department of Public Health, Wayne State University, Detroit, Michigan, USA
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sant Boi de Llobregat, Spain
| |
Collapse
|
62
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
63
|
Sustained inhibitory transmission but dysfunctional dopamine D2 receptor signaling in dorsal striatal subregions following protracted abstinence from amphetamine. Pharmacol Biochem Behav 2022; 218:173421. [PMID: 35718112 DOI: 10.1016/j.pbb.2022.173421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
Behavioral sensitization to amphetamine is a complex phenomenon that engages several neurotransmitter systems and brain regions. While dysregulated signaling in the mesolimbic dopamine system repeatedly has been linked to behavioral sensitization, later research has implicated dorsal striatal circuits and GABAergic neurotransmission in contributing to behavioral transformation elicited by amphetamine. The aim of this study was thus to determine if repeated amphetamine exposure followed by abstinence would alter inhibitory neurotransmission in dorsal striatal subregions. To this end, male Wistar rats received amphetamine (2.0 mg/kg) in an intermittent manner for a total of five days. Behavioral sensitization to amphetamine was measured in locomotor-activity boxes, while neuroadaptations were recorded in the dorsolateral (DLS) and dorsomedial striatum (DMS) using ex vivo electrophysiology at different timepoints of amphetamine abstinence (2 weeks, 4-5 weeks, 10-11 weeks). Data show that repeated drug-exposure produces behavioral sensitization to the locomotor-stimulatory properties of amphetamine, which sustains for at least ten weeks. Electrophysiological recordings demonstrated a long-lasting suppression of evoked population spikes in both striatal subregions. Furthermore, following ten weeks of abstinence, the responsiveness to a dopamine D2 receptor agonist was significantly impaired in brain slices from rats previously receiving amphetamine. However, neither the frequency nor the amplitude of spontaneous inhibitory currents was affected by treatment at any of the time points analyzed. In conclusion, passive administration of amphetamine initiates long-lasting neuroadaptations in brain regions associated with goal-directed behavior and habitual performance, but these transformations do not appear to be driven by changes in GABAergic neurotransmission.
Collapse
|
64
|
Tang F, Liu H, Zhang XJ, Zheng HH, Dai YM, Zheng LY, Yang WH, Du YY, Liu J. Evidence for Dopamine Abnormalities Following Acute Methamphetamine Exposure Assessed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Front Aging Neurosci 2022; 14:865825. [PMID: 35707702 PMCID: PMC9190254 DOI: 10.3389/fnagi.2022.865825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeuromelanin-sensitive magnetic resonance imaging (NM-MRI) is a newly developed MRI technique that provides a non-invasive way to indirectly measure of dopamine (DA) function. This study aimed to determine NM concentrations in brain regions following acute methamphetamine (MA) administration using NM-MRI and to explore whether NM-MRI can be used as a biomarker of DA function in non-neurodegenerative diseases.MethodsBaseline NM-MRI, T1-weighted and T2-weighted images were acquired from 27 rats before drug/placebo injection. The control group (n = 11) received acute placebo (Normal saline), while the experimental group (n = 16) received acute MA. NM-MRI scans were performed 5, 30, 60 and 90 min after injection. Regions of interest (ROIs), including the caudate putamen (CP), nucleus accumbens (NAc), hippocampus (HIP), substantia nigra (SN) and crus cerebri (CC), were manually drawn by an experienced radiologist. NM-MRI signal intensity in five brain regions at different time points (baseline and 5, 30, 60, and 90 min) were analyzed.ResultsIn both the control and experimental groups, at each time point (baseline and 5, 30, 60, and 90 min), the SN exhibited significantly higher NM-MRI signal intensity than the other brain regions (P < 0.05). In addition, acute MA administration resulted in a continuous upward trend in NM-MRI signal intensity in each brain region over time. However, there was no such trend over time in the control group. The NM-MRI signal intensity of SN in the experimental group was significantly higher at the 60 and 90 min compared with that in the control group (P values were 0.042 and 0.042 respectively). Within experimental group, the NM-MRI signal intensity of SN was significantly higher at the 60 and 90 min compared with that before MA administration (P values were 0.023 and 0.011 respectively). Increased amplitudes and rates of NM-MRI signal intensity were higher in the SN than in other brain regions after MA administration.ConclusionOur results indicated that NM was mainly deposited in the SN, and the conversion of DA to NM was most significant in the SN after acute MA exposure. Increased DA release induced by acute MA exposure may lead to increased accumulation of NM in multiple brain regions that can be revealed by NM-MRI. NM-MRI may serve as a powerful imaging tool that could have diverse research and clinical applications for detecting pathological changes in drug addiction and related non-neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Tang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Jie Zhang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Hui Zheng
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Ming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Li Yun Zheng
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Wen Han Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Yao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| |
Collapse
|
65
|
Okita K, Matsumoto T, Funada D, Murakami M, Kato K, Shigemoto Y, Sato N, Matsuda H. Potential Treat-to-Target Approach for Methamphetamine Use Disorder: A Pilot Study of Adenosine 2A Receptor Antagonist With Positron Emission Tomography. Front Pharmacol 2022; 13:820447. [PMID: 35645814 PMCID: PMC9130733 DOI: 10.3389/fphar.2022.820447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: The misuse of stimulant drugs such as methamphetamine is a global public health issue. One important neurochemical mechanism of methamphetamine use disorder may be altered dopaminergic neurotransmission. For instance, previous studies using positron emission tomography (PET) have consistently shown that striatal dopamine D2-type receptor availability (quantified as binding potential; BPND) is lower in methamphetamine use disorder. Further, methamphetamine use is known to induce chronic neuroinflammation through multiple physiological pathways. Upregulation of D2-type receptor and/or attenuation of neuroinflammation may therefore provide a therapeutic effect for this disorder. In vitro studies have shown that blockage of adenosine 2A (A2A) receptors may prevent D2-receptor downregulation and neuroinflammation-related brain damage. However, no study has examined this hypothesis yet.Methods and Analysis: Using a within-subject design, this trial will assess the effect of the selective A2A receptor antagonist, istradefylline, primarily on D2-type BPND in the striatum, and secondarily on neuroinflammation in the whole brain in individuals with methamphetamine use disorder. The research hypotheses are that istradefylline will increase striatal D2-type BPND and attenuate neuroinflammation. Twenty participants with methamphetamine use disorder, aged 20–65, will be recruited to undergo [11C]raclopride PET (for every participant) and [11C]DAA1106 PET (if applicable) once before and once after administration of 40 mg/day istradefylline for 2 weeks. Neuropsychological measurements will be performed on the same days of the PET scans.
Collapse
Affiliation(s)
- Kyoji Okita
- Department of Psychiatry, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- *Correspondence: Kyoji Okita,
| | - Toshihiko Matsumoto
- Department of Psychiatry, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daisuke Funada
- Department of Psychiatry, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Maki Murakami
- Department of Psychiatry, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koichi Kato
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Department of Radiology, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Radiology, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Drug Discovery and Cyclotron Research Center, Southern TOHOKU Research Institute for Neuroscience, Fukushima, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
66
|
Comparative effects of cannabinoid CB1 receptor agonist and antagonist on timing impulsivity induced by d-amphetamine in a differential reinforcement of low-rate response task in male rats. Psychopharmacology (Berl) 2022; 239:1459-1473. [PMID: 34741633 DOI: 10.1007/s00213-021-06018-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE In human beings and experimental animals, maladaptive impulsivity is manifested by the acute injection of psychostimulants, such as amphetamine. Cannabinoid CB1 receptors have been implicated in the regulation of stimulant-induced impulsive action, but the role of CB1 receptors in timing-related impulsive action by amphetamine remains unknown. METHODS Male rats were used in evaluating the effects of CB1 receptor antagonist and agonist (SR141716A and WIN55,212-2, respectively) systemically administered individually and combined with d-amphetamine on a differential reinforcement of low-rate response (DRL) task, an operant behavioral test of timing and behavioral inhibition characterized as a type of timing impulsive action. RESULTS A distinct pattern of DRL behavioral changes was produced by acute d-amphetamine (0, 0.5, 1.0, and 1.5 mg/kg) treatment in a dose-dependent fashion, whereas no significant dose effect was detected for acute SR141716A (0, 0.3, 1, and 3 mg/kg) or WIN55,212-2 (0, 0.5, 1, and 2 mg/kg) treatment. Furthermore, DRL behavior altered by 1.5 mg/kg d-amphetamine was reversed by a noneffective dose of SR141716A (3 mg/kg) pretreatment. The minimally influenced DRL behavior by 0.5 mg/kg d-amphetamine was affected by pretreatment with a noneffective dose of WIN55,212-2 (1 mg/kg). CONCLUSION These findings reveal that the activation and blockade of CB1 receptors can differentially modulate the timing impulsive action of DRL behavior induced by acute amphetamine treatment. Characterizing how CB1 receptors modulate impulsive behavior will deepen our understanding of the cannabinoid psychopharmacology of impulsivity and may be helpful in developing an optimal pharmacotherapy for reducing maladaptive impulsivity in patients with some psychiatric disorders.
Collapse
|
67
|
Pavel DG, Henderson TA, DeBruin S. The Legacy of the TTASAAN Report-Premature Conclusions and Forgotten Promises: A Review of Policy and Practice Part I. Front Neurol 2022; 12:749579. [PMID: 35450131 PMCID: PMC9017602 DOI: 10.3389/fneur.2021.749579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Brain perfusion single photon emission computed tomography (SPECT) scans were initially developed in 1970's. A key radiopharmaceutical, hexamethylpropyleneamine oxime (HMPAO), was originally approved in 1988, but was unstable. As a result, the quality of SPECT images varied greatly based on technique until 1993, when a method of stabilizing HMPAO was developed. In addition, most SPECT perfusion studies pre-1996 were performed on single-head gamma cameras. In 1996, the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (TTASAAN) issued a report regarding the use of SPECT in the evaluation of neurological disorders. Although the TTASAAN report was published in January 1996, it was approved for publication in October 1994. Consequently, the reported brain SPECT studies relied upon to derive the conclusions of the TTASAAN report largely pre-date the introduction of stabilized HMPAO. While only 12% of the studies on traumatic brain injury (TBI) in the TTASAAN report utilized stable tracers and multi-head cameras, 69 subsequent studies with more than 23,000 subjects describe the utility of perfusion SPECT scans in the evaluation of TBI. Similarly, dementia SPECT imaging has improved. Modern SPECT utilizing multi-headed gamma cameras and quantitative analysis has a sensitivity of 86% and a specificity of 89% for the diagnosis of mild to moderate Alzheimer's disease-comparable to fluorodeoxyglucose positron emission tomography. Advances also have occurred in seizure neuroimaging. Lastly, developments in SPECT imaging of neurotoxicity and neuropsychiatric disorders have been striking. At the 25-year anniversary of the publication of the TTASAAN report, it is time to re-examine the utility of perfusion SPECT brain imaging. Herein, we review studies cited by the TTASAAN report vs. current brain SPECT imaging research literature for the major indications addressed in the report, as well as for emerging indications. In Part II, we elaborate technical aspects of SPECT neuroimaging and discuss scan interpretation for the clinician.
Collapse
Affiliation(s)
- Dan G Pavel
- Pathfinder Brain SPECT Imaging, Deerfield, IL, United States.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States
| | - Simon DeBruin
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Good Lion Imaging, Columbia, SC, United States
| |
Collapse
|
68
|
Hazani HM, Naina Mohamed I, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Pakri Mohamed RM, Mohamad Isa MF, Abdulrahman SM, Ramadah R, Kamaluddin MR, Kumar J. Goofballing of Opioid and Methamphetamine: The Science Behind the Deadly Cocktail. Front Pharmacol 2022; 13:859563. [PMID: 35462918 PMCID: PMC9021401 DOI: 10.3389/fphar.2022.859563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Globally, millions of people suffer from various substance use disorders (SUD), including mono-and polydrug use of opioids and methamphetamine. Brain regions such as the cingulate cortex, infralimbic cortex, dorsal striatum, nucleus accumbens, basolateral and central amygdala have been shown to play important roles in addiction-related behavioral changes. Clinical and pre-clinical studies have characterized these brain regions and their corresponding neurochemical changes in numerous phases of drug dependence such as acute drug use, intoxication, craving, withdrawal, and relapse. At present, many studies have reported the individual effects of opioids and methamphetamine. However, little is known about their combined effects. Co-use of these drugs produces effects greater than either drug alone, where one decreases the side effects of the other, and the combination produces a prolonged intoxication period or a more desirable intoxication effect. An increasing number of studies have associated polydrug abuse with poorer treatment outcomes, drug-related deaths, and more severe psychopathologies. To date, the pharmacological treatment efficacy for polydrug abuse is vague, and still at the experimental stage. This present review discusses the human and animal behavioral, neuroanatomical, and neurochemical changes underlying both morphine and methamphetamine dependence separately, as well as its combination. This narrative review also delineates the recent advances in the pharmacotherapy of mono- and poly drug-use of opioids and methamphetamine at clinical and preclinical stages.
Collapse
Affiliation(s)
- Hanis Mohammad Hazani
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, National University of Malaysia, Cheras, Malaysia
| | | | | | | | - Ravi Ramadah
- National Anti-Drugs Agency Malaysia, Selangor, Malaysia
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, The National University of Malaysia, Cheras, Malaysia
| |
Collapse
|
69
|
Caravaggio F, Barnett AJ, Nakajima S, Iwata Y, Kim J, Borlido C, Mar W, Gerretsen P, Remington G, Graff-Guerrero A. The effects of acute dopamine depletion on resting-state functional connectivity in healthy humans. Eur Neuropsychopharmacol 2022; 57:39-49. [PMID: 35091322 DOI: 10.1016/j.euroneuro.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
Alpha-methyl-para-tyrosine (AMPT), a competitive inhibitor of tyrosine hydroxylase, can be used to deplete endogenous dopamine in humans. We examined how AMPT-induced dopamine depletion alters resting-state functional connectivity of the basal ganglia, and canonical resting-state networks, in healthy humans. Fourteen healthy participants (8 females; age [mean ± SD] = 27.93 ± 9.86) completed the study. Following dopamine depletion, the caudate showed reduced connectivity with the medial prefrontal cortex (mPFC) (Cohen's d = 1.89, p<.0001). Moreover, the caudate, putamen, globus pallidus, and midbrain all showed reduced connectivity with the occipital cortex (Cohen's d = 1.48-1.90; p<.0001-0.001). Notably, the dorsal caudate showed increased connectivity with the sensorimotor network (Cohen's d = 2.03, p=.002). AMPT significantly decreased self-reported motivation (t(13)=4.19, p=.001) and increased fatigue (t(13)=4.79, p=.0004). A greater increase in fatigue was associated with a greater reduction in connectivity between the substantia nigra and the mPFC (Cohen's d = 3.02, p<.00001), while decreased motivation was correlated with decreased connectivity between the VTA and left sensorimotor cortex (Cohen's d = 2.03, p=.00004). These findings help us to better understand the role of dopamine in basal ganglia function and may help us better understand neuropsychiatric diseases where abnormal dopamine levels are observed.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada.
| | - Alexander J Barnett
- Center for Neuroscience, University of California, Davis, 1515 Newton Ct, Davis, California 95618, United States of America
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University, 2 Chome-15-45 Mita, Tokyo 108-8345, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi, 4 Chome-4-37 Takeda, Kofu 400-8510, Japan
| | - Julia Kim
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Carol Borlido
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Wanna Mar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Philip Gerretsen
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Gary Remington
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
70
|
Applying the Addictions Neuroclinical Assessment to derive neurofunctional domains in individuals who use methamphetamine. Behav Brain Res 2022; 427:113876. [PMID: 35378110 DOI: 10.1016/j.bbr.2022.113876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
Abstract
The Addictions Neuroclinical Assessment (ANA) was proposed as a neuroscience-informed clinical framework to understand heterogeneity in addiction encompassing dysfunction in three domains: incentive salience, negative emotionality, and executive functions. The ANA has been validated in the alcohol field but has not been extended to other substances. Thus, the objective of the current study was to replicate and extend the ANA framework to methamphetamine use disorder. Non-treatment seeking individuals (N = 185) who reported regular methamphetamine use completed a deep phenotyping battery comprising self-report and behavioral measures that assessed methamphetamine craving and emotional withdrawal symptoms, mood and anxiety symptomatology, risk-taking behaviors, working memory, attention, and impulsivity. Factor analytic techniques were used in an iterative manner to derive latent factors that explained biobehavioral variation in the sample. The relationship between factor scores and demographic and clinical indicators of methamphetamine use were examined to assess the construct validity of the latent factors. Deep phenotyping combined with factor analytic techniques implicated three intercorrelated neurofunctional domains that map on to the proposed ANA domains: incentive salience, negative emotionality, and executive function. Each of the domains were associated with demographic and clinical indicators of methamphetamine use providing initial support for their construct validity. The ANA framework holds promise for explaining heterogeneity in addiction by identifying neuroscience-informed phenotypes. Knowledge from the ANA framework may be applied to advance precision medicine and inform medications development for a host of substance use disorders, particularly those with no approved pharmacotherapy such as methamphetamine.
Collapse
|
71
|
Jarcho JM, Wyngaarden JB, Johnston CR, Quarmley M, Smith DV, Cassidy CM. Substance Abuse in Emerging Adults: The Role of Neuromelanin and Ventral Striatal Response to Social and Monetary Rewards. Brain Sci 2022; 12:352. [PMID: 35326308 PMCID: PMC8946041 DOI: 10.3390/brainsci12030352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Perturbations in dopamine system function may increase risk of substance use disorder (SUD). We recently demonstrated that neuromelanin (NM) MRI signal in the substantia nigra, a non-invasive index of dopamine system function, is elevated in long term cocaine users (Cassidy et al., 2020). However, it is unclear whether elevated NM-MRI signal is linked to risk of SUD, or is a byproduct of long-term drug use. Our prior work failed to show relations between NM-MRI signal and functional engagement of ventral striatum during a monetary reward task. However, social experiences are commonly linked to drug use and relapse. Given that, NM-MRI signal may be more closely linked to ventral striatal engagement during social, rather than monetary reward processing. Emerging adults (n = 33, 21.88 ± 4.35 years) with varying levels of substance abuse, but without SUD, underwent NM-MRI and fMRI during social and monetary reward processing tasks. Voxelwise analysis within the substantia nigra (SN) demonstrated lower NM-MRI signal was associated with more severe substance abuse. Lower right ventral striatal engagement to social reward was also associated with more severe substance abuse. This relation was moderated by SN NM-MRI signal such that diminished striatal response to reward was associated with greater substance abuse among those with low NM-MRI signal, but lower substance abuse among those with high NM-MRI signal. Unexpectedly, higher right ventral striatal engagement during monetary reward was associated with more severe substance abuse. This relation was moderated by SN NM-MRI signal such that greater striatal response to reward was associated with greater substance abuse among those with low NM-MRI signal. Taken together, we provide preliminary evidence that, in emerging adults, low rather than high dopamine system function may increase risk of substance abuse, and strengthen the association between substance use and the brain's sensitivity to social and monetary outcomes in different ways.
Collapse
Affiliation(s)
- Johanna M. Jarcho
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA; (J.B.W.); (C.R.J.); (M.Q.); (D.V.S.)
| | - James B. Wyngaarden
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA; (J.B.W.); (C.R.J.); (M.Q.); (D.V.S.)
| | - Camille R. Johnston
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA; (J.B.W.); (C.R.J.); (M.Q.); (D.V.S.)
| | - Megan Quarmley
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA; (J.B.W.); (C.R.J.); (M.Q.); (D.V.S.)
| | - David V. Smith
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA; (J.B.W.); (C.R.J.); (M.Q.); (D.V.S.)
| | - Clifford M. Cassidy
- University of Ottawa Institute of Mental Health Research, Affiliated with The Royal, Ottawa, ON K1Z 8N3, Canada;
| |
Collapse
|
72
|
Abdullah M, Huang LC, Lin SH, Yang YK. Dopaminergic and glutamatergic biomarkers disruption in addiction and regulation by exercise: a mini review. Biomarkers 2022; 27:306-318. [PMID: 35236200 DOI: 10.1080/1354750x.2022.2049367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Drug addiction is associated with disruption of a multitude of biomarkers in various brain regions, particularly in the reward center. The most pronounced are dopaminergic and glutamatergic biomarkers, which are affected at various levels. Neuropathological changes in biomarkers alter the homeostasis of the glutamatergic and dopaminergic nervous systems and promote addiction-associated characteristics such as repeated intake, maintenance, withdrawal, reinstatement, and relapse. Exercise has been shown to have a buffering effect on such biomarkers and reverse the effects of addictive substances. METHODS A review of the literature searched in PubMed, examining drug addiction and physical exercise in relation to dopaminergic and glutamatergic systems at any of the three biomarker levels (i.e., neurotransmitter, receptor, or transporter). RESULTS We review the collective impact of addictive substances on the dopaminergic and glutamatergic systems and the beneficial effect of exercise in terms of reversing the damage to these systems. We propose future directions, including implications of exercise as an add-on therapy, substance use disorder (SUD) prognosis and diagnosis and designing of optimized exercise and pharmaceutical regimens based on the aforementioned biomarkers. CONCLUSION Exercise is beneficial for all types of drug addiction at all stages, by reversing molecular damages caused to dopaminergic and glutamatergic systems.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Chia-Yi Branch, Taichung Veterans General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| |
Collapse
|
73
|
Sankaran D, Lakshminrusimha S, Manja V. Methamphetamine: burden, mechanism and impact on pregnancy, the fetus, and newborn. J Perinatol 2022; 42:293-299. [PMID: 34785765 DOI: 10.1038/s41372-021-01271-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023]
Abstract
While the opioid epidemic has garnered worldwide attention, increasing methamphetamine use has drawn less scrutiny. Methamphetamine is a highly addictive psychostimulant affecting people from all backgrounds and regions. It is a potent vasoconstrictor, is associated with arrhythmias and dilated cardiomyopathy. Cardiovascular disease-related mortality is a leading cause of death in methamphetamine users. Women of childbearing age increasingly use methamphetamine and continue during pregnancy. In the short term, prenatal methamphetamine use is associated with fetal growth restriction and low birth weight in the newborn. Animal studies show reduction in uterine and umbilical blood flow following maternal methamphetamine administration. Based on currently available evidence, prenatal methamphetamine exposure has transient effects on gross motor development, no effect on language and cognition, and modest effects on behavior and executive functioning with poor inhibitory control, which may be attributable to early adversity. Further research is needed to evaluate long-term effects of prenatal methamphetamine exposure.
Collapse
Affiliation(s)
- Deepika Sankaran
- Department of Pediatrics, Adventist Health Rideout Hospital, Marysville, CA, USA. .,Division of Neonatology, Department of Pediatrics, University of California, Davis, CA, USA.
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, University of California, Davis, CA, USA
| | - Veena Manja
- Division of Cardiology, Veterans Affairs Medical Center, Mather, USA.,Department of Surgery, University of California, Davis, CA, USA
| |
Collapse
|
74
|
Kapfhammer HP. [Comorbidity of posttraumatic stress disorder and addiction from a biopsychosocial perspective]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2022; 36:1-18. [PMID: 33439473 PMCID: PMC8916999 DOI: 10.1007/s40211-020-00384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Posttraumatic stress disorder and substance use disorder often co-occur within the health care system. Their comorbidity is associated with more serious acute clinical symptomatology, more frequent hospital admissions in state of emergency and significantly lower chances of improvement by psychological and pharmacological treatment. Their comorbidity contributes to dramatically unfavourable courses of illness as regards all biopsychosocial levels. The survey presented will discuss empirical findings from various perspectives: general epidemiology, substance use disorder as risk factor of trauma and PTSD, trauma and PTSD as risk factor of SUD, neurobiological effects of SUD converging towards neurobiology of PTSD, shared common factors of genetics/epigenetics, personality traits, and early developmental stress and trauma. The main focus of analysis will be put on processes that are intrinsically linked to the development and course of both disorders.
Collapse
Affiliation(s)
- Hans-Peter Kapfhammer
- Universitätsklinik für Psychiatrie und Psychotherapeutische Medizin, Medizinische Universität Graz, Auenbruggerplatz 31, 8036, Graz, Österreich.
| |
Collapse
|
75
|
Psychomotor Symptoms in Chronic Cocaine Users: An Interpretative Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031897. [PMID: 35162918 PMCID: PMC8835199 DOI: 10.3390/ijerph19031897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
According to the latest estimates, there are around 24.6 million cocaine users worldwide, and it is estimated that around a quarter of the population worldwide has used cocaine at some point in their lifetime. It follows that such widespread consumption represents a major risk for public health. Long-term use of cocaine, in addition to being related to many cerebral and cardiovascular diseases, is increasingly associated with a higher incidence of psychomotor symptoms and neurodegenerative disorders. In recent years, numerous studies have shown an increased risk of antipsychotic-induced extrapyramidal symptoms (EPSs) in patients with psychotic spectrum disorders comorbid with psychostimulant misuse, particularly of cocaine. In the present paper, we describe the case of a young patient on his first entry into a psychiatric setting with previous cocaine misuse who rapidly presented psychomotor symptoms and was poorly responsive to symptomatic therapy consisting of benzodiazepines and anticholinergics, in relation to the introduction of various antipsychotics (first, second, and third generation). Furthermore, we propose neurobiological mechanisms underlying the hypothesized increased vulnerability to psychomotor symptoms in chronic cocaine abusers. Specifically, we supposed that the chronic administration of cocaine produces important neurobiological changes, causing a complex dysregulation of various neurotransmitter systems, mainly affecting subcortical structures and the dopaminergic and glutamatergic pathways. We believe that a better understanding of these neurochemical and neurobiological processes could have useful clinical and therapeutic implications by providing important indications to increase the risk–benefit ratio in pharmacological choice in patients with psychotic spectrum disorders comorbid with a substance use disorder.
Collapse
|
76
|
Koob GF. Anhedonia, Hyperkatifeia, and Negative Reinforcement in Substance Use Disorders. Curr Top Behav Neurosci 2022; 58:147-165. [PMID: 35112332 DOI: 10.1007/7854_2021_288] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug addiction has been defined as a chronically relapsing disorder that is characterized by a compulsion to seek and take a drug or stimulus, the loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug or stimulus is prevented, a component of which is anhedonia. The present review explores a heuristic framework for understanding the role of anhedonia in addiction, in which anhedonia is a key component of hyperkatifeia (conceptualized as the potentiated intensity of negative emotional/motivational symptoms during drug withdrawal) and negative reinforcement in addiction. The neural substrates that mediate such anhedonia and crosstalk between elements of hyperkatifeia that contribute to anhedonia are then explored, including crosstalk between physical pain and emotional pain systems. The present review explores current knowledge of neurochemical neurocircuitry changes that are associated with conditioned hyperkatifeia/anhedonia. The overall hypothesis is that the shift in motivation toward negative reinforcement in addiction reflects the allostatic misregulation of hedonic tone, such that drug taking makes anhedonia worse during the process of seeking temporary relief by compulsive drug taking, thereby perpetuating the addiction cycle and hedonic comorbidities that are associated with addiction.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA. .,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
77
|
Jones CM, Houry D, Han B, Baldwin G, Vivolo-Kantor A, Compton WM. Methamphetamine use in the United States: epidemiological update and implications for prevention, treatment, and harm reduction. Ann N Y Acad Sci 2022; 1508:3-22. [PMID: 34561865 PMCID: PMC9097961 DOI: 10.1111/nyas.14688] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Recent attention has focused on the growing role of psychostimulants, such as methamphetamine in overdose deaths. Methamphetamine is an addictive and potent stimulant, and its use is associated with a range of physical and mental health harms, overdose, and mortality. Adding to the complexity of this resurgent methamphetamine threat is the reality that the increases in methamphetamine availability and harms are occurring in the midst of and intertwined with the ongoing opioid overdose crisis. Opioid involvement in psychostimulant-involved overdose deaths increased from 34.5% of overdose deaths in 2010 to 53.5% in 2019-an increase of more than 50%. This latest evolution of the nation's overdose epidemic poses novel challenges for prevention, treatment, and harm reduction. This narrative review synthesizes what is known about changing patterns of methamphetamine use with and without opioids in the United States, other characteristics associated with methamphetamine use, the contributions of the changing illicit drug supply to use patterns and overdose risk, motivations for couse of methamphetamine and opioids, and awareness of exposure to opioids via the illicit methamphetamine supply. Finally, the review summarizes illustrative community and health system strategies and research opportunities to advance prevention, treatment, and harm reduction policies, programs, and practices.
Collapse
Affiliation(s)
- Christopher M. Jones
- National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Debra Houry
- National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Beth Han
- National Institute on Drug Abuse, National Institutes of Health, Rockville, Maryland
| | - Grant Baldwin
- Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alana Vivolo-Kantor
- Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wilson M. Compton
- National Institute on Drug Abuse, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
78
|
Pal RS, Pal Y, Katiyar D, Khera K, Punniyakotti S. Herbal Drug Addiction: Latest Information on Trends and Outlines. PHARMACOPHORE 2022. [DOI: 10.51847/gt5jwqvgca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
79
|
Strickland JC, Gipson CD, Dunn KE. Dopamine Supersensitivity: A Novel Hypothesis of Opioid-Induced Neurobiological Mechanisms Underlying Opioid-Stimulant Co-use and Opioid Relapse. Front Psychiatry 2022; 13:835816. [PMID: 35492733 PMCID: PMC9051080 DOI: 10.3389/fpsyt.2022.835816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Emergent harms presented by the co-use of opioids and methamphetamine highlight the broader public health challenge of preventing and treating opioid and stimulant co-use. Development of effective therapeutics requires an understanding of the physiological mechanisms that may be driving co-use patterns, specifically the underlying neurobiology of co-use and how they may facilitate (or be leveraged to prevent) continued use patterns. This narrative review summarizes largely preclinical data that demonstrate clinically-meaningful relationships between the dopamine and opioid systems with direct implications for opioid and stimulant co-use. Synthesized conclusions of this body of research include evidence that changes in the dopamine system occur only once physical dependence to opioids develops, that the chronicity of opioid exposure is associated with the severity of changes, and that withdrawal leaves the organism in a state of substantive dopamine deficit that persists long after the somatic or observed signs of opioid withdrawal appear to have resolved. Evidence also suggests that dopamine supersensitivity develops soon after opioid abstinence and results in increased response to dopamine agonists that increases in magnitude as the abstinence period continues and is evident several weeks into protracted withdrawal. Mechanistically, this supersensitivity appears to be mediated by changes in the sensitivity, not quantity, of dopamine D2 receptors. Here we propose a neural circuit mechanism unique to withdrawal from opioid use with implications for increased stimulant sensitivity in previously stimulant-naïve or inexperienced populations. These hypothesized effects collectively delineate a mechanism by which stimulants would be uniquely reinforcing to persons with opioid physical dependence, would contribute to the acute opioid withdrawal syndrome, and could manifest subjectively as craving and/or motivation to use that could prompt opioid relapse during acute and protracted withdrawal. Preclinical research is needed to directly test these hypothesized mechanisms. Human laboratory and clinical trial research is needed to explore these clinical predictions and to advance the goal of developing treatments for opioid-stimulant co-use and/or opioid relapse prevention and withdrawal remediation.
Collapse
Affiliation(s)
- Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
80
|
Fujiwara H, Tsurumi K, Shibata M, Kobayashi K, Miyagi T, Ueno T, Oishi N, Murai T. Life Habits and Mental Health: Behavioural Addiction, Health Benefits of Daily Habits, and the Reward System. Front Psychiatry 2022; 13:813507. [PMID: 35153878 PMCID: PMC8829329 DOI: 10.3389/fpsyt.2022.813507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
In this review, the underlying mechanisms of health benefits and the risk of habitual behaviours such as internet use and media multitasking were explored, considering their associations with the reward/motivation system. The review highlights that several routines that are beneficial when undertaken normally may evolve into excessive behaviour and have a negative impact, as represented by "the inverted U-curve model". This is especially critical in the current era, where technology like the internet has become mainstream despite the enormous addictive risk. The understanding of underlying mechanisms of behavioural addiction and optimal level of habitual behaviours for mental health benefits are deepened by shedding light on some findings of neuroimaging studies to have hints to facilitate better management and prevention strategies of addictive problems. With the evolution of the world, and the inevitable use of some technologies that carry the risk of addiction, more effective strategies for preventing and managing addiction are in more demand than before, and the insights of this study are also valuable foundations for future research.
Collapse
Affiliation(s)
- Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan.,Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan.,The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan
| | - Kosuke Tsurumi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Mami Shibata
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Kei Kobayashi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Takashi Miyagi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Tsukasa Ueno
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan.,Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| |
Collapse
|
81
|
Kohno M, Dennis LE, McCready H, Hoffman WF. Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment. Mol Psychiatry 2022; 27:220-229. [PMID: 34117366 PMCID: PMC8664889 DOI: 10.1038/s41380-021-01180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Dopamine system deficiencies and associated behavioral phenotypes may be a critical barrier to success in treating stimulant use disorders. Similarities in dopamine dysfunction between cocaine and methamphetamine use disorder but also key differences may impact treatment efficacy and outcome. This review will first compare the epidemiology of cocaine and methamphetamine use disorder. A detailed account of the pharmacokinetic and pharmacodynamic properties associated with each drug will then be discussed, with an emphasis on effects on the dopamine system and associated signaling pathways. Lastly, treatment results from pharmacological clinical trials will be summarized along with a more comprehensive review of the involvement of the trace amine-associated receptor on dopamine signaling dysfunction among stimulants and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA. .,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA. .,Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA. .,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| | - Laura E. Dennis
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Holly McCready
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - William F. Hoffman
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Mental Health Division, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
82
|
Sørensen G, Rickhag M, Leo D, Lycas MD, Ridderstrøm PH, Weikop P, Lilja JH, Rifes P, Herborg F, Woldbye D, Wörtwein G, Gainetdinov RR, Fink-Jensen A, Gether U. Disruption of the PDZ domain-binding motif of the dopamine transporter uniquely alters nanoscale distribution, dopamine homeostasis, and reward motivation. J Biol Chem 2021; 297:101361. [PMID: 34756883 PMCID: PMC8648841 DOI: 10.1016/j.jbc.2021.101361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022] Open
Abstract
The dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain-binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals. In parallel, we observe mesostriatal DA adaptations and changes in DA-related behaviors distinct from those seen in other genetic DAT mouse models. DA levels in the striatum are reduced to ∼45% of that of WT, accompanied by elevated DA turnover. Nonetheless, fast-scan cyclic voltammetry recordings on striatal slices reveal a larger amplitude and prolonged clearance rate of evoked DA release in DAT-AAA mice compared with WT mice. Autoradiography and radioligand binding show reduced DA D2 receptor levels, whereas immunohistochemistry and autoradiography show unchanged DA D1 receptor levels. In behavioral experiments, we observe enhanced self-administration of liquid food under both a fixed ratio of one and progressive ratio schedule of reinforcement but a reduction compared with WT when using cocaine as reinforcer. In summary, our data demonstrate how disruption of PDZ domain interactions causes changes in DAT expression and its nanoscopic distribution that in turn alter DA clearance dynamics and related behaviors.
Collapse
Affiliation(s)
- Gunnar Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Mattias Rickhag
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Damiana Leo
- Neuroscience and Brain Technologies Department, Italian Institute of Technology, Genoa, Italy
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Herrstedt Ridderstrøm
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Jamila H Lilja
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Rifes
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freja Herborg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Woldbye
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Center & University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
83
|
Oxidative Stress and Cocaine Intoxication as Start Points in the Pathology of Cocaine-Induced Cardiotoxicity. TOXICS 2021; 9:toxics9120317. [PMID: 34941752 PMCID: PMC8705810 DOI: 10.3390/toxics9120317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Psychomotor stimulants are the most commonly used prohibited substances after cannabis. Globally, their use reaches epidemiological proportions and is one of the most common causes of death in many countries. The use of illicit drugs has negative effects on the cardiovascular system and is one of the causes of serious cardiovascular pathologies, ranging from abnormal heart rhythms to heart attacks and sudden cardiac death. The reactive oxygen species generation, toxic metabolites formation, and oxidative stress play a significant role in cocaine-induced cardiotoxicity. The aim of the present review is to assess acute and chronic cocaine toxicity by focusing on the published literature regarding oxidative stress levels. Hypothetically, this study can serve as a basis for developing a rapid and effective method for determining oxidative stress levels by monitoring changes in the redox status of patients with cocaine intoxication.
Collapse
|
84
|
Sahoo H, Kumari S, Naik UC. Characterization of multi-metal-resistant Serratia sp. GP01 for treatment of effluent from fertilizer industries. Arch Microbiol 2021; 203:5425-5435. [PMID: 34405261 DOI: 10.1007/s00203-021-02523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
The effluent generated from fertilizer plants in Paradeep in the coast of the Bay of Bengal is the major pollutant causing health hazard in the vicinity of the area with respect to plants, animals and microbes. Samples of effluent were found to contain heavy metals (mg L-1): Cr (100), Ni (36.975), Mn (68.673), Pb (20.133), Cu (74.44), Zn (176.716), Hg (5.358) and As (24.287) as analyzed by XRF. Indigenous bacterial strains were screened for chromate and multi-metal resistance to remediate the toxic pollutants. The isolated strain G1 was identified as Serratia sp. through 16S-rDNA sequence homology. The potent strain Serratia sp. GP01 treated with 100 mg L-1 of K2Cr2O7 has shown the efficacy of reducing 69.05 mg L-1 of Cr over 48 h of incubation. Further, presence of chromate reductase gene (ChR) in Serratia sp. confirmed the enzymatic reduction of Cr(VI). SEM-EDX and SEM mapping analysis revealed substantial biosorption of Cr and other heavy metals present in effluent by Serratia sp. GP01. Antioxidant enzymes such as catalase (72.15 U mL-1), SOD (57.14 U mL-1) and peroxidase (62.49 U mL-1) were found to be higher as compared to the control condition. FTIR study also revealed the role of N-H, O-H, C = C, C-H, C-O, C-N, and C = O functional groups of the cell surface of Serratia sp. treated with K2Cr2O7 and effluent from the fertilizer industry. Isolated strain Serratia sp. could be used for the detoxification of Cr(VI) and other heavy metals in fertilizer plant effluent.
Collapse
Affiliation(s)
- Hrudananda Sahoo
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Sushama Kumari
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Umesh Chandra Naik
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India. .,Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
85
|
Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp Neurol 2021; 344:113795. [PMID: 34186102 PMCID: PMC8338805 DOI: 10.1016/j.expneurol.2021.113795] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is abused throughout the world. METH addiction is also a major public health concern and the abuse of large doses of the drug is often associated with serious neuropsychiatric consequences that may include agitation, anxiety, hallucinations, paranoia, and psychosis. Some human methamphetamine users can also suffer from attention, memory, and executive deficits. METH-associated neurological and psychiatric complications might be related, in part, to METH-induced neurotoxic effects. Those include altered dopaminergic and serotonergic functions, neuronal apoptosis, astrocytosis, and microgliosis. Here we have endeavored to discuss some of the main effects of the drug and have presented the evidence supporting certain of the molecular and cellular bases of METH neurotoxicity. The accumulated evidence suggests the involvement of transcription factors, activation of dealth pathways that emanate from mitochondria and endoplasmic reticulum (ER), and a role for neuroinflammatory mechanisms. Understanding the molecular processes involved in METH induced neurotoxicity should help in developing better therapeutic approaches that might also serve to attenuate or block the biological consequences of use of large doses of the drug by some humans who meet criteria for METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America.
| |
Collapse
|
86
|
Synergistic Impairment of the Neurovascular Unit by HIV-1 Infection and Methamphetamine Use: Implications for HIV-1-Associated Neurocognitive Disorders. Viruses 2021; 13:v13091883. [PMID: 34578464 PMCID: PMC8473422 DOI: 10.3390/v13091883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The neurovascular units (NVU) are the minimal functional units of the blood-brain barrier (BBB), composed of endothelial cells, pericytes, astrocytes, microglia, neurons, and the basement membrane. The BBB serves as an important interface for immune communication between the brain and peripheral circulation. Disruption of the NVU by the human immunodeficiency virus-1 (HIV-1) induces dysfunction of the BBB and triggers inflammatory responses, which can lead to the development of neurocognitive impairments collectively known as HIV-1-associated neurocognitive disorders (HAND). Methamphetamine (METH) use disorder is a frequent comorbidity among individuals infected with HIV-1. METH use may be associated not only with rapid HIV-1 disease progression but also with accelerated onset and increased severity of HAND. However, the molecular mechanisms of METH-induced neuronal injury and cognitive impairment in the context of HIV-1 infection are poorly understood. In this review, we summarize recent progress in the signaling pathways mediating synergistic impairment of the BBB and neuronal injury induced by METH and HIV-1, potentially accelerating the onset or severity of HAND in HIV-1-positive METH abusers. We also discuss potential therapies to limit neuroinflammation and NVU damage in HIV-1-infected METH abusers.
Collapse
|
87
|
Influence of DAT1 Promotor Methylation on Sports Performance. Genes (Basel) 2021; 12:genes12091425. [PMID: 34573407 PMCID: PMC8464919 DOI: 10.3390/genes12091425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factors (TFs) to DNA. As there are still many questions concerning the role of methylation in creating personality, we concentrated on searching for such associations. The research group was 100 sports male subjects (mean age = 22.88, SD = 6.35), whereas the control group included 239 healthy male volunteers matched for age (mean age = 21.69, SD = 3.39), both of European origin. The methods used in our research were as follows: DNA isolation, methylation-specific PCR, sequencing chromatophores, all conducted according to the manufacturer’s procedure. To evaluate personality traits, the NEO Five-Factor Personality Inventory (NEO-FFI) and STAI Inventory were used. We observed the existence of a statistically significant correlation for all the aspects of personality covered and CpG islands’ methylation. Nonetheless, we think that the tested group and the number of tested promotor islands in the DAT1 gene are still too small to make explicit conclusions, so it needs further profound analysis.
Collapse
|
88
|
Okita K, Kato K, Shigemoto Y, Sato N, Matsumoto T, Matsuda H. Effects of an Adenosine A 2A Receptor Antagonist on Striatal Dopamine D2-Type Receptor Availability: A Randomized Control Study Using Positron Emission Tomography. Front Neurosci 2021; 15:729153. [PMID: 34588952 PMCID: PMC8475186 DOI: 10.3389/fnins.2021.729153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction: Altered dopaminergic neurotransmission, especially in the functioning of dopamine D2-type receptors, is considered central to the etiology of a variety of neuropsychiatric disorders. In particular, individuals with substance use disorders have been consistently observed to exhibit lower D2-type receptor availability (quantified as binding potential; BPND) using positron emission tomography (PET). Upregulation of D2-type receptor density thus may therefore provide a therapeutic effect for substance use disorders. Importantly, in vitro studies reveal that D2 receptors coexist with adenosine 2A (A2A) receptors to form the highest density of heteromers in the whole striatum, and there is a functional interaction between these two receptors. As such, blockade of A2A receptor's function may prevent D2 receptor downregulation, yet no study has currently examined this hypothesis in humans. Methods and Analysis: This double-blind, randomized controlled trial aims to evaluate the effect of the A2A receptor antagonist istradefylline (compared to placebo) on both dopamine D2-type receptor availability in the human brain and on neuropsychological measurements of impulsivity. It is hypothesized that istradefylline will both increase striatal D2-type BPND and improve control of impulsivity more than placebo. Forty healthy participants, aged 20-65 with no history of psychiatric or neurological disorders, will be recruited and randomized into two groups and will undergo [11C]raclopride PET, once before and once after administration of either 40 mg/day istradefylline or placebo for 2 weeks. Neuropsychological measurements will be administered on the same days of the PET scans. Ethics and Dissemination: The study protocol was approved by the Certified Review Boards (CRB) of National Center of Neurology and Psychiatry (CR18-011) and prospectively registered with the Japan Registry of Clinical Trials (jRCTs031180131; https://jrct.niph.go.jp/latest-detail/jRCTs031180131). The findings of this study will be disseminated through peer reviewed scientific journals and conferences. Clinical Trial Registration:www.ClinicalTrials.gov, identifier jRCTs031180131.
Collapse
Affiliation(s)
- Kyoji Okita
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koichi Kato
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Department of Radiology, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshihiko Matsumoto
- Department of Psychiatry, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Drug Dependence Research, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Radiology, Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Cyclotron and Drug Discovery Research Center, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
89
|
Ztaou S, Oh SJ, Tepler S, Fleury S, Matamales M, Bertran-Gonzalez J, Chuhma N, Rayport S. Single Dose of Amphetamine Induces Delayed Subregional Attenuation of Cholinergic Interneuron Activity in the Striatum. eNeuro 2021; 8:ENEURO.0196-21.2021. [PMID: 34462310 PMCID: PMC8454923 DOI: 10.1523/eneuro.0196-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 01/15/2023] Open
Abstract
Psychostimulants such as amphetamine (AMPH) target dopamine (DA) neuron synapses to engender drug-induced plasticity. While DA neurons modulate the activity of striatal (Str) cholinergic interneurons (ChIs) with regional heterogeneity, how AMPH affects ChI activity has not been elucidated. Here, we applied quantitative fluorescence imaging approaches to map the dose-dependent effects of a single dose of AMPH on ChI activity at 2.5 and 24 h after injection across the mouse Str using the activity-dependent marker phosphorylated ribosomal protein S6 (p-rpS6240/244). AMPH did not affect the distribution or morphology of ChIs in any Str subregion. While AMPH at either dose had no effect on ChI activity after 2.5 h, ChI activity was dose dependently reduced after 24 h specifically in the ventral Str/nucleus accumbens (NAc), a critical site of psychostimulant action. AMPH at either dose did not affect the spontaneous firing of ChIs. Altogether this work demonstrates that a single dose of AMPH has delayed regionally heterogeneous effects on ChI activity, which most likely involves extra-Str synaptic input.
Collapse
Affiliation(s)
- Samira Ztaou
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Soo Jung Oh
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Sophia Tepler
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Sixtine Fleury
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Miriam Matamales
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jesus Bertran-Gonzalez
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
- Department of Psychiatry, Columbia University, New York, NY 10032
| |
Collapse
|
90
|
Nawaratne V, McLaughlin SP, Mayer FP, Gichi Z, Mastriano A, Carvelli L. Prolonged Amphetamine Exposures Increase the Endogenous Human Dopamine Receptors 2 at the Cellular Membrane in Cells Lacking the Dopamine Transporter. Front Cell Neurosci 2021; 15:681539. [PMID: 34512264 PMCID: PMC8427050 DOI: 10.3389/fncel.2021.681539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
The dopamine 2 receptors (D2R) are G-protein coupled receptors expressed both in pre- and post-synaptic terminals that play an important role in mediating the physiological and behavioral effects of amphetamine (Amph). Previous studies have indicated that the effects of Amph at the D2R mainly rely on the ability of Amph to robustly increase extracellular dopamine through the dopamine transporter (DAT). This implies that the effects of Amph on D2R require the neurotransmitter dopamine. However, because of its lipophilic nature, Amph can cross the cellular membrane and thus potentially affect D2R expression independently of dopamine and DAT, e.g., in post-synaptic terminals. Here we used an in vitro system to study whether Amph affects total expression, cellular distribution, and function of the human D2R (hD2R), endogenously expressed in HEK293 cells. By performing Western blot experiments, we found that prolonged treatments with 1 or 50 μM Amph cause a significant decrease of the endogenous hD2R in cells transfected with human DAT (hDAT). On the other hand, in cells lacking expression of DAT, quantification of the hD2R-mediated changes in cAMP, biotinylation assays, Western blots and imaging experiments demonstrated an increase of hD2R at the cellular membrane after 15-h treatments with Amph. Moreover, imaging data suggested that barbadin, a specific inhibitor of the βarrestin-βadaptin interaction, blocked the Amph-induced increase of hD2R. Taken together our data suggest that prolonged exposures to Amph decrease or increase the endogenous hD2R at the cellular membrane in HEK293 cells expressing or lacking hDAT, respectively. Considering that this drug is often consumed for prolonged periods, during which tolerance develops, our data suggest that even in absence of DAT or dopamine, Amph can still alter D2R distribution and function.
Collapse
Affiliation(s)
- Vindhya Nawaratne
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Sean P. McLaughlin
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Felix P. Mayer
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Zayna Gichi
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Alyssa Mastriano
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Lucia Carvelli
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
91
|
Syn3 Gene Knockout Negatively Impacts Aspects of Reversal Learning Performance. eNeuro 2021; 8:ENEURO.0251-21.2021. [PMID: 34413083 PMCID: PMC8431823 DOI: 10.1523/eneuro.0251-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Behavioral flexibility enables the ability to adaptively respond to changes in contingency requirements to maintain access to desired outcomes, and deficits in behavioral flexibility have been documented in many psychiatric disorders. Previous research has shown a correlation between behavioral flexibility measured in a reversal learning test and Syn3, the gene encoding synapsin III, which negatively regulates phasic dopamine release. Syn3 expression in the hippocampus, striatum, and neocortex is reported to be negatively correlated with reversal learning performance, so here, we used a global knock-out line to investigate reversal learning in mice homozygous wild type, heterozygous null, and homozygous null for the Syn3 gene. Compared with wild-type animals, we found a reversal-specific effect of genetic Syn3 deficiency that resulted in a greater proportional increase in trials required to reach a preset performance criterion during contingency reversal, despite no observed genotype effects on the ability to acquire the initial discrimination. Behavioral flexibility scores, which quantified the likelihood of switching subsequent choice behavior following positive or negative feedback, became significantly more negative in reversal only for Syn3 homozygous-null mice, suggesting a substantial increase in perseverative behavior in the reversal phase. Syn3 ablation reduced the number of anticipatory responses made per trial, often interpreted as a measure of waiting impulsivity. Overall, Syn3 expression negatively affected behavioral flexibility in a reversal-specific manner but may have reduced waiting impulsivity.
Collapse
|
92
|
Sequeira-Cordero A, Brenes JC. Time-dependent changes in striatal monoamine levels and gene expression following single and repeated amphetamine administration in rats. Eur J Pharmacol 2021; 904:174148. [PMID: 33961872 DOI: 10.1016/j.ejphar.2021.174148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
As drug addiction may result from pathological usurpations of learning and memory's neural mechanisms, we focused on the amphetamine-induced time-dependent neurochemical changes associated with neural plasticity. We used juvenile rats as the risk for drug abuse is higher during adolescence. Experiment 1 served to define the appropriate amphetamine dose and the neurochemical effects of a single administration. In experiment 2, rats received seven amphetamine or saline injections in the open-field test throughout a twelve-day period. We measured the mRNA levels of the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and monoamines and amino-acids contents in the nucleus accumbens and the dorsal striatum 45, 90, and 180 min after the last injection. We found that amphetamine changed gene expression only at certain time points and in a dose and region-dependent manner. Repeated but not single administrations upregulated accumbal and striatal BDNF (180 min) and striatal pri-miR-132 (90 min) expression, while downregulated accumbal CREB levels (90 min). As only some drug users develop addiction, we compared brain parameters between low and high amphetamine responders. Prone subjects characterized by having reduced striatal 5-HT metabolism, higher accumbal BDNF and TrkB expression, and lower levels of CREB in the dorsal striatum and p250GAP in both regions. Thus, individual differences in drug-induced changes in neurotransmission and gene expression in nigrostriatal and mesolimbic dopaminergic pathways may underlie the plasticity adaptations associated with behavioral sensitization to amphetamine.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
93
|
Ogeil RP, Arunogiri S, Grigg J. Methamphetamine addiction: do biological rhythms matter, and could they play a role in treatment? Sleep 2021; 44:6167706. [PMID: 33693834 DOI: 10.1093/sleep/zsab052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rowan P Ogeil
- Turning Point, Eastern Health, Melbourne, Australia.,Eastern Health Clinical School and Monash Addiction Research Centre Monash University, Melbourne, Australia
| | - Shalini Arunogiri
- Turning Point, Eastern Health, Melbourne, Australia.,Monash Alfred Psychiatry Research Centre (MAPrc), Central Clinical School, Monash University, Melbourne, Australia
| | - Jasmin Grigg
- Turning Point, Eastern Health, Melbourne, Australia.,Eastern Health Clinical School and Monash Addiction Research Centre Monash University, Melbourne, Australia
| |
Collapse
|
94
|
Schmitz JM, Suchting R, Green CE, Webber HE, Vincent J, Moeller FG, Lane SD. The effects of combination levodopa-ropinirole on cognitive improvement and treatment outcome in individuals with cocaine use disorder: A bayesian mediation analysis. Drug Alcohol Depend 2021; 225:108800. [PMID: 34102508 DOI: 10.1016/j.drugalcdep.2021.108800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic cocaine users show impairments in cognitive processes associated with dopamine (DA) circuitry. Medications aimed at bolstering cognitive functions via DA modulation might enhance treatment outcome. METHODS The trial used a double-blind, double-dummy, parallel-group design with four treatment arms comparing placebo (PLC) to levodopa/carbidopa 800 mg/200 mg alone (LR0), levodopa plus extended release (XR) ropinirole 2 mg (LR2) or XR ropinirole 4 mg (LR4). Adults (n = 110) with cocaine use disorder attended thrice weekly clinic visits for 10 weeks. Potential cognitive mediators assessed at week 5 consisted of measures of decision-making (Iowa Gambling Task, Risky Decision-Making Task), attention/impulsivity (Immediate Memory Task), motivation (Progressive Ratio task), and cognitive control (Cocaine Stoop task). The primary outcome measure was the treatment effectiveness score (TES) calculated as the number of cocaine-negative urines collected from weeks 6-10. RESULTS Bayesian mediation examined indirect and total effects of the relationships between each active treatment (compared to PLC) and TES. Total (direct) effects were supported for LR0 and LR2, but not for LR4. Indirect effects were tested for each mediator. Notably, 22.3 % and 35.4 % of the total effects of LR0 and LR2 on TES were mediated by changes in attention/impulsivity. CONCLUSIONS The hypothesized mediation effect was strongest for levodopa plus 2 mg ropinirole, indicating that this DA medication combination predicted change (improvement) in attention/impulsivity, which in turn predicted change (reduction) in cocaine use. This finding provides modest support for cognitive enhancement as a target for medications to treat cocaine use disorder.
Collapse
Affiliation(s)
- Joy M Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Charles E Green
- Department of Pediatrics - Center for Clinical Research and Evidence-Based Medicine, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson - UTHealth Graduate School of Biomedical Sciences, Program in Neuroscience, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heather E Webber
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica Vincent
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Scott D Lane
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
95
|
Pujante-Gil S, Manzanedo C, Arenas MC. Sex differences in behavioral traits related with high sensitivity to the reinforcing effects of cocaine. Behav Brain Res 2021; 414:113505. [PMID: 34333071 DOI: 10.1016/j.bbr.2021.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Cocaine is the most prevalent illegal stimulant drug in Europe among the adult population. Its abuse is characterized by a faster substance abuse disorder (SUD) development than other drugs, with high vulnerability to relapse. However, there does not exist an effective treatment for cocaine dependence. Sex differences have been reported in psychological disorders including SUD. For this reason, it is essential to identify risk factors that predict susceptibility or resilience to cocaine addiction for the development of effective prevention strategies considering sex differences. In the present study, the main objective was to determine more sensitive phenotypes to the conditioned reinforcing effects of cocaine in both sexes. Anxiety-like behavior and the locomotor response to novelty were evaluated in the elevated plus maze, and despair in the tail suspension test, as well as vulnerability traits linked with a high sensitivity to the reinforcing effects of a subthreshold dose of cocaine (1 mg/kg) in the conditioned place preference (CPP) paradigm in male and female mice. Our results indicated that only female mice with high anxiety, low locomotor response to novelty or low despair levels acquired CPP induced by cocaine, while male mice with low anxiety, high locomotor response to novelty or high despair levels presented a higher susceptibility to the rewarding effects of cocaine than others. These sex differences in the results reveal an opposite pattern in males and females on the relationship between anxiety- and depressive-like behaviors and cocaine vulnerability, demonstrating the need to include female mice in preclinical studies.
Collapse
Affiliation(s)
- Sergio Pujante-Gil
- Department of Psychobiology, Faculty of Psychology, University of Valencia, Blasco Ibañez 21, Valencia, 46010, Spain
| | - Carmen Manzanedo
- Department of Psychobiology, Faculty of Psychology, University of Valencia, Blasco Ibañez 21, Valencia, 46010, Spain
| | - M Carmen Arenas
- Department of Psychobiology, Faculty of Psychology, University of Valencia, Blasco Ibañez 21, Valencia, 46010, Spain.
| |
Collapse
|
96
|
Zhang X, Talpos J, Berridge MS, Apana SM, Slikker W, Wang C, Paule MG. MicroPET/CT assessment of neurochemical effects in the brain after long-term methylphenidate treatment in nonhuman primates. Neurotoxicol Teratol 2021; 87:107017. [PMID: 34265415 DOI: 10.1016/j.ntt.2021.107017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023]
Abstract
Methylphenidate (MPH) is a psychostimulant approved by the FDA to treatment Attention-Deficit Hyperactivity Disorder (ADHD). MPH is believed to exert its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. We used a quantitative non-invasive PET imaging technique to study the effects of long-term methylphenidate use on the central nervous system (CNS). We conducted microPET/CT scans on young adult male rhesus monkeys to monitor changes in the dopaminergic system. We used [18F] AV-133, a ligand for the vesicular monoamine transporter 2 (VMAT2), and [18F]FESP a ligand for the D2 and 5HT2 receptors. In this study we evaluated the effects if chronic MPH treatment in the nonhuman primates (NHP). Two-year-old, male rhesus monkeys were orally administered MPH diluted in the electrolyte replenisher, Prang, twice a day, five days per week (M-F) over an 8-year period. The dose of MPH was gradually escalated from 0.15 mg/kg initially to 2.5 mg/kg/dose for the low dose group, and 1.5 mg/kg to 12.5 mg/kg/dose for the high dose group (Rodriguez et al., 2010). Scans were performed on Mondays, about 60 h after their last treatment, to avoid the acute effects of MPH. Tracers were injected intravenously ten minutes before microPET/CT scanning. Sessions lasted about 120 min. The Logan reference tissue model was used to determine the Binding Potential (BP) of each tracer in the striatum with the cerebellar cortex time activity curve as an input function. Both MP treatment groups had a lower [18F] AV-133 BP, although this failed to reach statistical significance. MPH treatment did not have a significant effect on The BP of [18F] FESP in the striatum. Long-term administration of MPH did not significant change any of the marker of monoamine function used here. These data suggest that, despite lingering concerns, long-term use of methylphenidate does not negatively impact monoamine function. This study also demonstrates that microPET imaging can distinguish differences in binding potentials of a variety of radiotracers in the CNS of NHPs. This approach may provide minimally-invasive biomarkers of neurochemical processes associated with chronic exposure to CNS medications. (Supported by NCTR).
Collapse
Affiliation(s)
- X Zhang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States of America.
| | - J Talpos
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States of America
| | - M S Berridge
- 3D Imaging, LLC, Little Rock, AR 72113 and University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - S M Apana
- 3D Imaging, LLC, Little Rock, AR 72113 and University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - W Slikker
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States of America
| | - C Wang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States of America
| | - M G Paule
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States of America
| |
Collapse
|
97
|
Vrajová M, Šlamberová R, Hoschl C, Ovsepian SV. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep 2021; 44:6066541. [PMID: 33406259 DOI: 10.1093/sleep/zsab001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine is a potent and highly addictive psychostimulant, and one of the most widely used illicit drugs. Over recent years, its global usage and seizure have been on a rapid rise, with growing detrimental effects on mental and physical health, and devastating psychosocial impact pressing for intervention. Among the unwanted effects of methamphetamine, acute and long-term sleep impairments are of major concern, posing a significant therapeutic challenge, and a cause of addiction relapse. Unraveling mechanisms and functional correlates of methamphetamine-related sleep and circadian disruption are, therefore, of key relevance to translational and clinical psychiatry. In this article, we review the mounting evidence for the acute and long-term impairements of sleep-wake behavior and circadian activity caused by single or recurring methamphetamine usage and withdrawal. Factors contributing to the severity of sleep loss and related cognitive deficit, with risks of relapse are discussed. Key molecular players mediating methamphetamine-induced dopamine release and neuromodulation are considered, with wake-promoting effects in mesolimbic circuits. The effects on various sleep phases and related changes in dopamine levels in selected subcortical structures are reviewed and compared to other psychostimulants with similar action mechanisms. A critical appraisal is presented of the therapeutic use of modafinil, countering sleep, and circadian rhythm impairments. Finally, emerging knowledge gaps and methodical limitations are highlighted along with the areas for future research and therapeutic translation.
Collapse
Affiliation(s)
- Monika Vrajová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Klecany, Czech Republic
| |
Collapse
|
98
|
Danielsson K, Lagström O, Ericson M, Söderpalm B, Adermark L. Subregion-specific effects on striatal neurotransmission and dopamine-signaling by acute and repeated amphetamine exposure. Neuropharmacology 2021; 194:108638. [PMID: 34116108 DOI: 10.1016/j.neuropharm.2021.108638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Repeated administration of psychostimulants, such as amphetamine, is associated with a progressive increased sensitivity to some of the drug's effects, but tolerance towards others. We hypothesized that these adaptations in part could be linked to differential effects by amphetamine on dopaminergic signaling in striatal subregions. To test this theory, acute and long-lasting changes in dopaminergic neurotransmission were assessed in the nucleus accumbens (nAc) and the dorsomedial striatum (DMS) following amphetamine exposure in Wistar rats. By means of in vivo microdialysis, dopamine release induced by local administration of amphetamine was monitored in nAc and DMS of amphetamine naïve rats, and in rats subjected to five days of systemic amphetamine administration (2.0 mg/kg/day) followed by two weeks of withdrawal. In parallel, ex vivo electrophysiology was conducted to outline the effect of acute and repeated amphetamine exposure on striatal neurotransmission. The data shows that amphetamine increases dopamine in a concentration-dependent and subregion-specific manner. Furthermore, repeated administration of amphetamine followed by abstinence resulted in a selective decrease in baseline dopamine in the nAc, and a potentiation of the relative dopamine elevation after systemic amphetamine in the same area. Ex vivo electrophysiology demonstrated decreased excitatory neurotransmission in brain slices from amphetamine-treated animals, and a nAc selective shift in the responsiveness to the dopamine D2-receptor agonist quinpirole. These selective effects on dopamine signaling seen in striatal subregions after repeated drug exposure may partially explain why tolerance develops to the rewarding effects, but not towards the psychosis inducing properties of amphetamine.
Collapse
Affiliation(s)
- Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Oona Lagström
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Sweden.
| |
Collapse
|
99
|
Positive Effects of Laser Acupuncture in Methamphetamine Users Undergoing Group Cognitive Behavioral Therapy: A Pilot Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5514873. [PMID: 34122593 PMCID: PMC8166487 DOI: 10.1155/2021/5514873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023]
Abstract
Background Methamphetamine (MA) addiction has become a crucial public health concern because of its adverse consequences to individuals and the society. Objective To investigate the clinical efficacy of laser acupuncture combined with group cognitive behavioral therapy for MA addiction treatment. Materials and Methods MA users who participated in group cognitive behavioral therapy and met the inclusion criteria were referred from psychiatrists to participate. The participants received laser acupuncture treatment once a week for 2 months (total eight treatments) on selected acupoints (PC6, HT7, LI4, ST36, SP6, and LR3). Laboratory assessment included urinalysis for MA and liver function tests aspartate aminotransferase, alanine aminotransferase, and γ-glutamyltransferase (AST, ALT, and γ-GT), whereas the objective assessment included visual analog scale (VAS) for MA craving and refusal and Pittsburgh sleep quality index (PSQI), Beck Anxiety Inventory (BAI), and Beck Depression Inventory (BDI) questionnaires. All data were collected before and at 1 and 2 months after treatment. Cognitive behavioral therapy completion rate and rate of relapse to MA use were also determined. Result Fifteen participants were enrolled, of whom seven completed the trial. Urinalysis for MA revealed a decrease in drug use from 57.1% to 28.6%. Compared with those before treatment, PSQI scores were significantly lower at 1 and 2 months after treatment (−3.73 and −4.10, respectively; both p < 0.001), and so were BDI scores (−5.64 and −8.17, respectively; p=0.01 and 0.001, respectively). However, no significant difference was observed in the liver function test, VAS of craving and refusal, and BAI results. A slight improvement in the motivation for drug abstinence and anxiety was observed during the treatment course. Participants reported no adverse events. Conclusion Laser acupuncture combined with group cognitive behavioral therapy may improve sleep quality, alleviate depression, and reduce MA use. Additional large-scale studies confirming the effectiveness of this modality are warranted.
Collapse
|
100
|
Lifetime evolution of ADHD treatment. J Neural Transm (Vienna) 2021; 128:1085-1098. [PMID: 33993352 DOI: 10.1007/s00702-021-02336-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD), has been traditionally considered a neurodevelopmental disorder affecting children and adolescents characterized by inattention, hyperactivity, disruptive behavior, and impulsivity. Although still debated, it is evident that ADHD is also present in adulthood, but this diagnosis is rarely carried out, mainly for the frequent comorbidity with other psychiatric and/or substance abuse disorders. Given the need to shed more light on the pharmacological treatment of ADHD, we performed a naturalistic review to review and comment on the available literature of ADHD treatment across the lifespan. Indeed, stimulants are endowed of a prompt efficacy and safety, whilst non-stimulants, although requiring some weeks to be fully effective, are useful when a substance abuse history is detected. In any case, the pharmacological management of ADHD appears to be still largely influenced by the individual experience of the clinicians. Further longitudinal studies with a careful and detailed characterization of participants across different phases of the lifespan are also required to provide relevant confirmations (or denials) regarding pharmacological treatments amongst the different age groups.
Collapse
|