51
|
Fu J, Dong H, Wu J, Jin Y. Emerging Progress of RNA-Based Antitumor Therapeutics. Int J Biol Sci 2023; 19:3159-3183. [PMID: 37416764 PMCID: PMC10321292 DOI: 10.7150/ijbs.83732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
RNA-based therapeutics (e.g., mRNAs, siRNAs, microRNAs, ASOs, and saRNAs) have considerable potential for tumor treatment. The development and optimization of RNA modifications and delivery systems enable the stable and efficient delivery of RNA cargos in vivo to elicit an antitumor response. Targeted RNA-based therapeutics with multiple specificities and high efficacies are now available. In this review, we discuss progress in RNA-based antitumor therapeutics, including mRNAs, siRNAs, miRNAs, ASOs, saRNAs, RNA aptamers, and CRISPR-based gene editing. We focus on the immunogenicity, stability, translation efficiency, and delivery of RNA drugs, and summarize their optimization and the development of delivery systems. In addition, we describe the mechanisms by which RNA-based therapeutics induce antitumor responses. Furthermore, we review the merits and limitations of RNA cargos and their therapeutic potential for cancers.
Collapse
Affiliation(s)
- Jiayan Fu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Haiyang Dong
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Yongfeng Jin
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China
| |
Collapse
|
52
|
Baker A, Lorch J, VanderWeele D, Zhang B. Smart Nanocarriers for the Targeted Delivery of Therapeutic Nucleic Acid for Cancer Immunotherapy. Pharmaceutics 2023; 15:1743. [PMID: 37376190 DOI: 10.3390/pharmaceutics15061743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of therapeutic approaches and technologies for delivering therapeutic agents have been investigated for treating cancer. Recently, immunotherapy has achieved success in cancer treatment. Successful clinical results of immunotherapeutic approaches for cancer treatment were led by antibodies targeting immune checkpoints, and many have advanced through clinical trials and obtained FDA approval. A major opportunity remains for the development of nucleic acid technology for cancer immunotherapy in the form of cancer vaccines, adoptive T-cell therapies, and gene regulation. However, these therapeutic approaches face many challenges related to their delivery to target cells, including their in vivo decay, the limited uptake by target cells, the requirements for nuclear penetration (in some cases), and the damage caused to healthy cells. These barriers can be avoided and resolved by utilizing advanced smart nanocarriers (e.g., lipids, polymers, spherical nucleic acids, metallic nanoparticles) that enable the efficient and selective delivery of nucleic acids to the target cells and/or tissues. Here, we review studies that have developed nanoparticle-mediated cancer immunotherapy as a technology for cancer patients. Moreover, we also investigate the crosstalk between the function of nucleic acid therapeutics in cancer immunotherapy, and we discuss how nanoparticles can be functionalized and designed to target the delivery and thus improve the efficacy, toxicity, and stability of these therapeutics.
Collapse
Affiliation(s)
- Abu Baker
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jochen Lorch
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David VanderWeele
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bin Zhang
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
53
|
Touray BJ, Hanafy M, Phanse Y, Hildebrand R, Talaat AM. Protective RNA nanovaccines against Mycobacterium avium subspecies hominissuis. Front Immunol 2023; 14:1188754. [PMID: 37359562 PMCID: PMC10286238 DOI: 10.3389/fimmu.2023.1188754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The induction of an effective immune response is critical for the success of mRNA-based therapeutics. Here, we developed a nanoadjuvant system compromised of Quil-A and DOTAP (dioleoyl 3 trimethylammonium propane), hence named QTAP, for the efficient delivery of mRNA vaccine constructs into cells. Electron microscopy indicated that the complexation of mRNA with QTAP forms nanoparticles with an average size of 75 nm and which have ~90% encapsulation efficiency. The incorporation of pseudouridine-modified mRNA resulted in higher transfection efficiency and protein translation with low cytotoxicity than unmodified mRNA. When QTAP-mRNA or QTAP alone transfected macrophages, pro-inflammatory pathways (e.g., NLRP3, NF-kb, and MyD88) were upregulated, an indication of macrophage activation. In C57Bl/6 mice, QTAP nanovaccines encoding Ag85B and Hsp70 transcripts (QTAP-85B+H70) were able to elicit robust IgG antibody and IFN- ɣ, TNF-α, IL-2, and IL-17 cytokines responses. Following aerosol challenge with a clinical isolate of M. avium ss. hominissuis (M.ah), a significant reduction of mycobacterial counts was observed in lungs and spleens of only immunized animals at both 4- and 8-weeks post-challenge. As expected, reduced levels of M. ah were associated with diminished histological lesions and robust cell-mediated immunity. Interestingly, polyfunctional T-cells expressing IFN- ɣ, IL-2, and TNF- α were detected at 8 but not 4 weeks post-challenge. Overall, our analysis indicated that QTAP is a highly efficient transfection agent and could improve the immunogenicity of mRNA vaccines against pulmonary M. ah, an infection of significant public health importance, especially to the elderly and to those who are immune compromised.
Collapse
Affiliation(s)
- Bubacarr J.B. Touray
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Mostafa Hanafy
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Rachel Hildebrand
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Adel M. Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- Pan Genome Systems, Madison, WI, United States
- Vireo Vaccines International, LLC, Madison, Wisconsin, United States
| |
Collapse
|
54
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
55
|
Ma Y, Fenton OS. An Efficacy and Mechanism Driven Study on the Impact of Hypoxia on Lipid Nanoparticle Mediated mRNA Delivery. J Am Chem Soc 2023; 145:11375-11386. [PMID: 37184377 DOI: 10.1021/jacs.3c02584] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hypoxia is a common hallmark of human disease that is characterized by abnormally low oxygen levels in the body. While the effects of hypoxia on many small molecule-based drugs are known, its effects on several classes of next-generation medications including messenger RNA therapies warrant further study. Here, we provide an efficacy- and mechanism-driven study that details how hypoxia impacts the cellular response to mRNA therapies delivered using 4 different chemistries of lipid nanoparticles (LNPs, the frontrunner class of drug delivery vehicles for translational mRNA therapy utilized in the Moderna and Pfizer/BioNTech COVID-19 vaccines). Specifically, our work provides a comparative analysis as to how various states of oxygenation impact LNP-delivered mRNA expression, cellular association, endosomal escape, and intracellular ATP concentrations following treatment with 4 different LNPs across 3 different cell lines. In brief, we first identify that hypoxic cells express less LNP-delivered mRNA into protein than normoxic cells. Next, we identify generalizable cellular reoxygenation protocols that can reverse the negative effects that hypoxia imparts on LNP-delivered mRNA expression. Finally, mechanistic studies that utilize fluorescence-activated cell sorting, confocal microscopy, and enzyme inhibition reveal that decreases in mRNA expression correlate with decreases in intracellular ATP (rather than with differences in mRNA LNP uptake pathways). In presenting this data, we hope that our work provides a comprehensive efficacy and mechanism-driven study that explores the impact of differential oxygenation on LNP-delivered mRNA expression while simultaneously establishing fundamental criteria that may one day be useful for the development of mRNA drugs to treat hypoxia-associated disease.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
56
|
Wang J, Ghosh D, Maniruzzaman M. Using bugs as drugs: administration of bacteria-related microbes to fight cancer. Adv Drug Deliv Rev 2023; 197:114825. [PMID: 37075953 DOI: 10.1016/j.addr.2023.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Driven by the advancement of microbiology and cancer biology, bioengineering of bacteria-related microbes has demonstrated great potential in targeted cancer therapy. Presently, the major administration routes of bacteria-related microbes for cancer treatment include intravenous injection, intratumoral injection, intraperitoneal injection, and oral delivery. Administration routes of bacteria play a key role in anticancer therapeutic efficacy since different delivery approaches might exert an anticancer effect through diverse mechanisms. Herein, we provide an overview of the primary routes of bacteria administration as well as their advantages and limitations. Furthermore, we discuss that microencapsulation can overcome the current challenges of direct administration of free bacteria. We also review the latest advancements in combining functional particles with engineered bacteria to fight against cancer, which can be further coupled with conventional anticancer therapies to improve the therapeutic effect. Eventually, we highlight the application prospect of bioprinting in cancer bacteriotherapy, which enables the long-term sustained delivery and individualized dose regimen, representing a new paradigm for personalized cancer treatment.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
57
|
Hajiaghapour Asr M, Dayani F, Saedi Segherloo F, Kamedi A, Neill AO, MacLoughlin R, Doroudian M. Lipid Nanoparticles as Promising Carriers for mRNA Vaccines for Viral Lung Infections. Pharmaceutics 2023; 15:1127. [PMID: 37111613 PMCID: PMC10146241 DOI: 10.3390/pharmaceutics15041127] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, there has been an increase in deaths due to infectious diseases, most notably in the context of viral respiratory pathogens. Consequently, the focus has shifted in the search for new therapies, with attention being drawn to the use of nanoparticles in mRNA vaccines for targeted delivery to improve the efficacy of these vaccines. Notably, mRNA vaccine technologies denote as a new era in vaccination due to their rapid, potentially inexpensive, and scalable development. Although they do not pose a risk of integration into the genome and are not produced from infectious elements, they do pose challenges, including exposing naked mRNAs to extracellular endonucleases. Therefore, with the development of nanotechnology, we can further improve their efficacy. Nanoparticles, with their nanometer dimensions, move more freely in the body and, due to their small size, have unique physical and chemical properties. The best candidates for vaccine mRNA transfer are lipid nanoparticles (LNPs), which are stable and biocompatible and contain four components: cationic lipids, ionizable lipids, polyethylene glycols (PEGs), and cholesterol, which are used to facilitate cytoplasmic mRNA delivery. In this article, the components and delivery system of mRNA-LNP vaccines against viral lung infections such as influenza, coronavirus, and respiratory syncytial virus are reviewed. Moreover, we provide a succinct overview of current challenges and potential future directions in the field.
Collapse
Affiliation(s)
- Mena Hajiaghapour Asr
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Dayani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Fatemeh Saedi Segherloo
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Ali Kamedi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Andrew O’ Neill
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
- Department of Clinical Medicine, Tallaght University Hospital, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
58
|
Wang F, Cai R, Tan W. Self-Powered Biosensor for a Highly Efficient and Ultrasensitive Dual-Biomarker Assay. Anal Chem 2023; 95:6046-6052. [PMID: 36976790 DOI: 10.1021/acs.analchem.3c00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A dual-biomarker, self-powered biosensor was fabricated for the ultrasensitive detection of microRNA-21 (miRNA-21) and miRNA-155 based on enzymatic biofuel cells (EBFCs), catalytic hairpin assembly (CHA), and DNA hybridization chain reaction (HCR), with a capacitor and digital multimeter (DMM). In the presence of miRNA-21, the CHA and HCR are triggered and lead to the generation of a double-helix chain, which stimulates [Ru(NH3)6]3+ to move to the biocathode surface due to electrostatic interaction. Subsequently, the biocathode obtains electrons from the bioanode and reduces [Ru(NH3)6]3+ to [Ru(NH3)6]2+, which significantly increases the open-circuit voltage (E1OCV). When miRNA-155 is present, CHA and HCR cannot be completed, resulting in a low E2OCV. The self-powered biosensor allows for the simultaneous ultrasensitive detection of miRNA-21 and miRNA-155 with detection limits of 0.15 and 0.66 fM, respectively. Moreover, this self-powered biosensor exhibits the highly sensitive detection for miRNA-21 and miRNA-155 assay in human serum samples.
Collapse
Affiliation(s)
- Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
59
|
Khan MS, Baskoy SA, Yang C, Hong J, Chae J, Ha H, Lee S, Tanaka M, Choi Y, Choi J. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. NANOSCALE ADVANCES 2023; 5:1853-1869. [PMID: 36998671 PMCID: PMC10044484 DOI: 10.1039/d2na00795a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Bioactive molecules and their effects have been influenced by their solubility and administration route. In many therapeutic reagents, the performance of therapeutics is dependent on physiological barriers in the human body and delivery efficacy. Therefore, an effective and stable therapeutic delivery promotes pharmaceutical advancement and suitable biological usage of drugs. In the biological and pharmacological industries, lipid nanoparticles (LNPs) have emerged as a potential carrier to deliver therapeutics. Since studies reported doxorubicin-loaded liposomes (Doxil®), LNPs have been applied to numerous clinical trials. Lipid-based nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanoparticles, have also been developed to deliver active ingredients in vaccines. In this review, we present the type of LNPs used to develop vaccines with attractive advantages. We then discuss messenger RNA (mRNA) delivery for the clinical application of mRNA therapeutic-loaded LNPs and recent research trend of LNP-based vaccine development.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Sila Appak Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Faculty of Science 350 Victoria Street Toronto M5B2K3 ON Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Heejin Ha
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Sungjun Lee
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama-shi 226-8503 Kanagawa Japan
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| |
Collapse
|
60
|
Zhang Q, Wang M, Han C, Wen Z, Meng X, Qi D, Wang N, Du H, Wang J, Lu L, Ge X. Intraduodenal Delivery of Exosome-Loaded SARS-CoV-2 RBD mRNA Induces a Neutralizing Antibody Response in Mice. Vaccines (Basel) 2023; 11:vaccines11030673. [PMID: 36992256 DOI: 10.3390/vaccines11030673] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has presented numerous challenges to global health. Vaccines, including lipid—based nanoparticle mRNA, inactivated virus, and recombined protein, have been used to prevent SARS-CoV-2 infections in clinics and have been immensely helpful in controlling the pandemic. Here, we present and assess an oral mRNA vaccine based on bovine-milk-derived exosomes (milk-exos), which encodes the SARS-CoV-2 receptor-binding domain (RBD) as an immunogen. The results indicate that RBD mRNA delivered by milk-derived exosomes can produce secreted RBD peptides in 293 cells in vitro and stimulates neutralizing antibodies against RBD in mice. These results indicate that SARS-CoV-2 RBD mRNA vaccine loading with bovine-milk-derived exosomes is an easy, cheap, and novel way to introduce immunity against SARS-CoV-2 in vivo. Additionally, it also can work as a new oral delivery system for mRNA.
Collapse
Affiliation(s)
- Quan Zhang
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Miao Wang
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Chunle Han
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Zhijun Wen
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Xiaozhu Meng
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Dongli Qi
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Na Wang
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Huanqing Du
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Jianhong Wang
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Lu Lu
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
| | - Xiaohu Ge
- Tingo Exosomes Technology Co., Ltd., Tianjin 300301, China
- Tingo Regenerative Medicine Technology Co., Ltd., Tianjin 300301, China
| |
Collapse
|
61
|
Lantern-shaped flexible RNA origami for Smad4 mRNA delivery and growth suppression of colorectal cancer. Nat Commun 2023; 14:1307. [PMID: 36894556 PMCID: PMC9998469 DOI: 10.1038/s41467-023-37020-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
mRNA delivery has shown high application value in the treatment of various diseases, but its effective delivery is still a major challenge at present. Herein, we propose a lantern-shaped flexible RNA origami for mRNA delivery. The origami is composed of a target mRNA scaffold and only two customized RGD-modified circular RNA staples, which can compress the mRNA into nanoscale and facilitate its endocytosis by cells. In parallel, the flexible structure of the lantern-shaped origami allows large regions of the mRNA to be exposed and translated, exhibiting a good balance between endocytosis and translation efficiency. The application of lantern-shaped flexible RNA origami in the context of the tumor suppressor gene, Smad4 in colorectal cancer models demonstrates promising potential for accurate manipulation of protein levels in in vitro and in vivo settings. This flexible origami strategy provides a competitive delivery method for mRNA-based therapies.
Collapse
|
62
|
Zhong Y, Du S, Dong Y. mRNA delivery in cancer immunotherapy. Acta Pharm Sin B 2023; 13:1348-1357. [PMID: 37139419 PMCID: PMC10150179 DOI: 10.1016/j.apsb.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Messenger RNA (mRNA) has drawn much attention in the medical field. Through various treatment approaches including protein replacement therapies, gene editing, and cell engineering, mRNA is becoming a potential therapeutic strategy for cancers. However, delivery of mRNA into targeted organs and cells can be challenging due to the unstable nature of its naked form and the low cellular uptake. Therefore, in addition to mRNA modification, efforts have been devoted to developing nanoparticles for mRNA delivery. In this review, we introduce four categories of nanoparticle platform systems: lipid, polymer, lipid-polymer hybrid, and protein/peptide-mediated nanoparticles, together with their roles in facilitating mRNA-based cancer immunotherapies. We also highlight promising treatment regimens and their clinical translation.
Collapse
Affiliation(s)
- Yichen Zhong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Department of Biomedical Engineering, Center for Clinical and Translational Science, Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism, Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author.
| |
Collapse
|
63
|
Xian H, Zhang Y, Yu C, Wang Y. Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics 2023; 15:pharmaceutics15020620. [PMID: 36839942 PMCID: PMC9965532 DOI: 10.3390/pharmaceutics15020620] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
mRNA technology has attracted enormous interest due to its great therapeutic potential. Strategies that can stabilize fragile mRNA molecules are crucial for their widespread applications. There are numerous reviews on mRNA delivery, but few focus on the underlying causes of mRNA instability and how to tackle the instability issues. Herein, the recent progress in nanobiotechnology-enabled strategies for stabilizing mRNA and better delivery is reviewed. First, factors that destabilize mRNA are introduced. Second, nanobiotechnology-enabled strategies to stabilize mRNA molecules are reviewed, including molecular and nanotechnology approaches. The impact of formulation processing on mRNA stability and shelf-life, including freezing and lyophilization, are also briefly discussed. Lastly, our perspectives on challenges and future directions are presented. This review may provide useful guidelines for understanding the structure-function relationship and the rational design of nanobiotechnology for mRNA stability enhancement and mRNA technology development.
Collapse
|
64
|
Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws. Cell Tissue Res 2023; 392:413-430. [PMID: 36737519 DOI: 10.1007/s00441-023-03743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Osteoradionecrosis of the jaws (ORNJ) is a severe complication that occurs after radiotherapy of head and neck malignancies. Clinically, conservative treatments and surgeries for ORNJ exhibited certain therapeutic effects, whereas the regenerative disorder of the post-radiation jaw remains a pending problem to be solved. In recent years, the recognition of the role of the immune microenvironment has led to a shift from an osteoblasts (OBs) or bone marrow mesenchymal stromal cells (BMSCs)-centered view of bone regeneration to the concept of a complicated microecosystem that supports bone regeneration. Current advances in osteoimmunology have uncovered novel targets within the immune microenvironment to help improve various regeneration therapies, notably therapies potentiating the interaction between BMSCs and immune cells. However, these researches lack a thorough understanding of the immune microenvironment and the interaction network of immune cells in the course of bone regeneration, especially for the post-operative defect of ORNJ. This review summarized the composition of the immune microenvironment during bone regeneration, how the immune microenvironment interacts with the skeletal system, and discussed existing and potential strategies aimed at targeting cellular and molecular immune microenvironment components.
Collapse
|
65
|
A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023; 24:ijms24032700. [PMID: 36769023 PMCID: PMC9917162 DOI: 10.3390/ijms24032700] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.
Collapse
|
66
|
Aziz T, Nadeem AA, Sarwar A, Perveen I, Hussain N, Khan AA, Daudzai Z, Cui H, Lin L. Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines 2023; 11:354. [PMID: 36830891 PMCID: PMC9953552 DOI: 10.3390/biomedicines11020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Aging is a multifunctional physiological manifestation. The nasal cavity is considered a major site for easy and cost-effective drug and vaccine administration, due to high permeability, low enzymatic activity, and the presence of a high number of immunocompetent cells. This review article primarily focuses on aging genetics, physical parameters, and the use of nanoparticles as delivery systems of drugs and vaccines via the nasal cavity. Studies have identified various genes involved in centenarian and average-aged people. VEGF is a key mediator involved in angiogenesis. Different therapeutic approaches induce vascular function and angiogenesis. FOLR1 gene codes for folate receptor alpha protein that helps in regulating the transport of vitamin B folate, 5-methyltetrahydrofolate and folate analogs inside the cell. This gene also aids in slowing the aging process down by cellular regeneration and promotes healthy aging by reducing aging symptoms. It has been found through the literature that GATA 6, Yamanaka factors, and FOLR1 work in synchronization to induce healthy and delayed aging. The role and applications of genes including CBS, CISD, SIRT 1, and SIRT 6 play a significant role in aging.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abad Ali Nadeem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Nageen Hussain
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Zubaida Daudzai
- Department of Bioresources and Biotechnology, King Mongkut University of Technology, Bangkok 10140, Thailand
| | - Haiying Cui
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Lin
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
67
|
Puhl DL, Funnell JL, Fink TD, Swaminathan A, Oudega M, Zha RH, Gilbert RJ. Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications. Acta Biomater 2023; 155:370-385. [PMID: 36423820 DOI: 10.1016/j.actbio.2022.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Aligned electrospun fibers provide topographical cues and local therapeutic delivery to facilitate robust peripheral nerve regeneration. mRNA delivery enables transient expression of desired proteins that promote axonal regeneration. However, no prior work delivers mRNA from electrospun fibers for peripheral nerve regeneration applications. Here, we developed the first aligned electrospun fibers to deliver pseudouridine-modified (Ψ) neurotrophin-3 (NT-3) mRNA (ΨNT-3mRNA) to primary Schwann cells and assessed NT-3 secretion and bioactivity. We first electrospun aligned poly(L-lactic acid) (PLLA) fibers and coated them with the anionic substrates dextran sulfate sodium salt (DSS) or poly(3,4-dihydroxy-L-phenylalanine) (pDOPA). Cationic lipoplexes containing ΨNT-3mRNA complexed to JetMESSENGER® were then immobilized to the fibers, resulting in detectable ΨNT-3mRNA release for 28 days from all fiber groups investigated (PLLA+mRNA, 0.5DSS4h+mRNA, and 2pDOPA4h+mRNA). The 2pDOPA4h+mRNA group significantly increased Schwann cell secretion of NT-3 for 21 days compared to control PLLA fibers (p < 0.001-0.05) and, on average, increased Schwann cell secretion of NT-3 by ≥ 2-fold compared to bolus mRNA delivery from the 1µgBolus+mRNA and 3µgBolus+mRNA groups. The 2pDOPA4h+mRNA fibers supported Schwann cell secretion of NT-3 at levels that significantly increased dorsal root ganglia (DRG) neurite extension by 44% (p < 0.0001) and neurite area by 64% (p < 0.001) compared to control PLLA fibers. The data show that the 2pDOPA4h+mRNA fibers enhance the ability of Schwann cells to promote neurite growth from DRG, demonstrating this platform's potential capability to improve peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers enhance axonal regeneration by providing structural support and guidance cues, but further therapeutic stimulation is necessary to improve functional outcomes. mRNA delivery enables the transient expression of therapeutic proteins, yet achieving local, sustained delivery remains challenging. Previous work shows that genetic material delivery from electrospun fibers improves regeneration; however, mRNA delivery has not been explored. Here, we examine mRNA delivery from aligned electrospun fibers to enhance neurite outgrowth. We show that immobilization of NT-3mRNA/JetMESSENGER® lipoplexes to aligned electrospun fibers functionalized with pDOPA enables local, sustained NT-3mRNA delivery to Schwann cells, increasing Schwann cell secretion of NT-3 and enhancing DRG neurite outgrowth. This study displays the potential benefits of electrospun fiber-mediated mRNA delivery platforms for neural tissue engineering.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tanner D Fink
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Anuj Swaminathan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Department of Neuroscience, Northwestern University, Chicago, IL, USA; Edward Hines Jr VA Hospital, Hines, IL, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
68
|
Subhan MA, Torchilin VP. Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010153. [PMID: 36678782 PMCID: PMC9861964 DOI: 10.3390/pharmaceutics15010153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nanobiopolymers such as chitosan, gelatin, hyaluronic acid, polyglutamic acid, lipids, peptides, exosomes, etc., delivery systems have prospects to help overwhelmed physiological difficulties allied with the delivery of siRNA drugs to solid tumors, including breast cancer cells. Nanobiopolymers have favorable stimuli-responsive properties and therefore can be utilized to improve siRNA delivery platforms to undruggable MDR metastatic cancer cells. These biopolymeric siRNA drugs can shield drugs from pH degradation, extracellular trafficking, and nontargeted binding sites and are consequently suitable for drug internalization in a controlled-release fashion. In this review, the utilization of numerous biopolymeric compounds such as siRNA drug delivery systems for MDR solid tumors, including breast cancers, will be discussed.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Correspondence: (M.A.S.); (V.P.T.)
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
- Correspondence: (M.A.S.); (V.P.T.)
| |
Collapse
|
69
|
Corrêa-Netto C, Strauch MA, Monteiro-Machado M, Teixeira-Araújo R, Fonseca JG, Leitão-Araújo M, Machado-Alves ML, Sanz L, Calvete JJ, Melo PA, Zingali RB. Monoclonal-Based Antivenomics Reveals Conserved Neutralizing Epitopes in Type I PLA 2 Molecules from Coral Snakes. Toxins (Basel) 2022; 15:toxins15010015. [PMID: 36668835 PMCID: PMC9863321 DOI: 10.3390/toxins15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
For over a century, polyclonal antibodies have been used to treat snakebite envenoming and are still considered by the WHO as the only scientifically validated treatment for snakebites. Nevertheless, moderate innovations have been introduced to this immunotherapy. New strategies and approaches to understanding how antibodies recognize and neutralize snake toxins represent a challenge for next-generation antivenoms. The neurotoxic activity of Micrurus venom is mainly due to two distinct protein families, three-finger toxins (3FTx) and phospholipases A2 (PLA2). Structural conservation among protein family members may represent an opportunity to generate neutralizing monoclonal antibodies (mAbs) against family-conserved epitopes. In this work, we sought to produce a set of monoclonal antibodies against the most toxic components of M. altirostris venom. To this end, the crude venom was fractionated, and its major toxic proteins were identified and used to generate a panel of five mAbs. The specificity of these mAbs was characterized by ELISA and antivenomics approaches. Two of the generated mAbs recognized PLA2 epitopes. They inhibited PLA2 catalytic activity and showed paraspecific neutralization against the myotoxicity from the lethal effect of Micrurus and Naja venoms' PLA2s. Epitope conservation among venom PLA2 molecules suggests the possibility of generating pan-PLA2 neutralizing antibodies.
Collapse
Affiliation(s)
- Carlos Corrêa-Netto
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| | - Marcelo A. Strauch
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marcos Monteiro-Machado
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ricardo Teixeira-Araújo
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Paulo A. Melo
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| |
Collapse
|
70
|
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4494. [PMID: 36558344 PMCID: PMC9781272 DOI: 10.3390/nano12244494] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 05/25/2023]
Abstract
Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body. Nanomedicine has rapidly grown to treat certain diseases like brain cancer, lung cancer, breast cancer, cardiovascular diseases, and many others. These nanomedicines can improve drug bioavailability and drug absorption time, reduce release time, eliminate drug aggregation, and enhance drug solubility in the blood. Nanomedicine has introduced a new era for drug carriage by refining the therapeutic directories of the energetic pharmaceutical elements engineered within nanoparticles. In this context, the vital information on engineered nanoparticles was reviewed and conferred towards the role in drug carriage systems to treat many ailments. All these nanocarriers were tested in vitro and in vivo. In the coming years, nanomedicines can improve human health more effectively by adding more advanced techniques into the drug delivery system.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Aqsa Tariq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Naeem Riaz
- Department of Pharmacy, COMSATS University, Abbottabad 22020, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
71
|
Shah S, Famta P, Bagasariya D, Charankumar K, Sikder A, Kashikar R, Kotha AK, Chougule MB, Khatri DK, Asthana A, Raghuvanshi RS, Singh SB, Srivastava S. Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Mol Pharm 2022; 19:4428-4452. [PMID: 36109099 DOI: 10.1021/acs.molpharmaceut.2c00374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global menace of cancer has led to an increased death toll in recent years. The constant evolution of cancer therapeutics with novel delivery systems has paved the way for translation of innovative therapeutics from bench to bedside. This review explains the significance of mesoporous silica nanoparticles (MSNs) as delivery vehicles with particular emphasis on cancer therapy, including novel opportunities for biomimetic therapeutics and vaccine delivery. Parameters governing MSN synthesis, therapeutic agent loading characteristics, along with tuning of MSN toward cancer cell specificity have been explained. The advent of MSN in nanotheranostics and its potential in forming nanocomposites for imaging purposes have been illustrated. Additionally, various hurdles encountered during the bench to bedside translation have been explained along with potential avenues to circumvent them. This also opens up new horizons in drug delivery, which could be useful to researchers in the years to come.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Raj Nagar, Ghaziabad 201002, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
72
|
Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
73
|
Kubo K, Takeda S, Uchida M, Maeda M, Endo N, Sugahara S, Suzuki H, Fukahori H. Lit-LAMP-DNA-vaccine for shrimp allergy prevents anaphylactic symptoms in a murine model. Int Immunopharmacol 2022; 113:109394. [DOI: 10.1016/j.intimp.2022.109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
74
|
Lin Y, Sun B, Jin Z, Zhao K. Enhanced Immune Responses to Mucosa by Functionalized Chitosan-Based Composite Nanoparticles as a Vaccine Adjuvant for Intranasal Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52691-52701. [PMID: 36382954 DOI: 10.1021/acsami.2c17627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nasal administration for vaccine delivery is a novel non-invasive vaccine administration approach that can induce local or systemic immune responses and overcome the disadvantages caused by traditional injectable administration. However, mucosal vaccine and adjuvant delivery systems with sustained-release ability and enhanced immune effects at mucosal sites have still been highly demanded. In this work, N-2-hydroxypropyl trimethyl ammonium chloride chitosan/N,O-carboxymethyl chitosan nanoparticles (N-2-HACC/CMCS NPs) with excellent mucosal absorption, high drug loading capacity, and enhanced immune responses were prepared by the ionic cross-linking method. To evaluate the potential capacity of the N-2-HACC/CMCS NPs as a vaccine adjuvant and the molecular mechanism for the induction of enhanced mucosal and systemic immune responses, bovine serum albumin (BSA) was employed as a general model antigen and loaded into the N-2-HACC/CMCS NPs to prepare a BSA-loaded N-2-HACC/CMCS adjuvant vaccine (N-2-HACC/CMCS/BSA NPs). It was well demonstrated that the N-2-HACC/CMCS/BSA NPs with great biostability and mucosal absorption could effectively promote the proliferation of lymphocytes and the secretion of related pro-inflammatory factors, resulting in the stimulation of specific mucosal and systemic immune responses. This study revealed that the chitosan-based nano-delivery system can act as the mucosal vaccine adjuvant and possesses great promise in viral infectious diseases and immunization therapy.
Collapse
Affiliation(s)
- Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangdong, Guangzhou510631, China
| | - Zheng Jin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Zhejiang, Taizhou318000, China
| |
Collapse
|
75
|
Li Z, Zhang XQ, Ho W, Li F, Gao M, Bai X, Xu X. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines. ACS NANO 2022; 16:18936-18950. [PMID: 36269150 PMCID: PMC9589590 DOI: 10.1021/acsnano.2c07822] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 06/01/2023]
Abstract
Ionizable cationic lipid-containing lipid nanoparticles (LNPs) are the most clinically advanced non-viral gene delivery platforms, holding great potential for gene therapeutics. This is exemplified by the two COVID-19 vaccines employing mRNA-LNP technology from Pfizer/BioNTech and Moderna. Herein, we develop a chemical library of ionizable cationic lipids through a one-step chemical-biological enzyme-catalyzed esterification method, and the synthesized ionizable lipids were further prepared to be LNPs for mRNA delivery. Through orthogonal design of experiment methodology screening, the top-performing AA3-DLin LNPs show outstanding mRNA delivery efficacy and long-term storage capability. Furthermore, the AA3-DLin LNP COVID-19 vaccines encapsulating SARS-CoV-2 spike mRNAs successfully induced strong immunogenicity in a BALB/c mouse model demonstrated by the antibody titers, virus challenge, and T cell immune response studies. The developed AA3-DLin LNPs are an excellent mRNA delivery platform, and this study provides an overall perspective of the ionizable cationic lipids, from aspects of lipid design, synthesis, screening, optimization, fabrication, characterization, and application.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Chemical and Materials Engineering,
New Jersey Institute of Technology, Newark, New Jersey07102,
United States
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic
Antibody Ministry of Education, School of Pharmacy, Shanghai Jiao Tong
University, 800 Dongchuan Road, Shanghai200240, P. R.
China
| | - William Ho
- Department of Chemical and Materials Engineering,
New Jersey Institute of Technology, Newark, New Jersey07102,
United States
| | - Fengqiao Li
- Department of Chemical and Materials Engineering,
New Jersey Institute of Technology, Newark, New Jersey07102,
United States
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic
Antibody Ministry of Education, School of Pharmacy, Shanghai Jiao Tong
University, 800 Dongchuan Road, Shanghai200240, P. R.
China
| | - Xin Bai
- Engineering Research Center of Cell & Therapeutic
Antibody Ministry of Education, School of Pharmacy, Shanghai Jiao Tong
University, 800 Dongchuan Road, Shanghai200240, P. R.
China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering,
New Jersey Institute of Technology, Newark, New Jersey07102,
United States
- Department of Biomedical Engineering, New
Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark,
New Jersey07102, United States
| |
Collapse
|
76
|
Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel) 2022; 10:1946. [PMID: 36423041 PMCID: PMC9694785 DOI: 10.3390/vaccines10111946] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccination is still the most cost-effective way to combat infectious illnesses. Conventional vaccinations may have low immunogenicity and, in most situations, only provide partial protection. A new class of nanoparticle-based vaccinations has shown considerable promise in addressing the majority of the shortcomings of traditional and subunit vaccines. This is due to recent breakthroughs in chemical and biological engineering, which allow for the exact regulation of nanoparticle size, shape, functionality, and surface characteristics, resulting in improved antigen presentation and robust immunogenicity. A blend of physicochemical, immunological, and toxicological experiments can be used to accurately characterize nanovaccines. This narrative review will provide an overview of the current scenario of the nanovaccine.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Guwahati 781017, Assam, India
| | - Farak Ali
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | | |
Collapse
|
77
|
Wang J, Heshmati Aghda N, Jiang J, Mridula Habib A, Ouyang D, Maniruzzaman M. 3D bioprinted microparticles: Optimizing loading efficiency using advanced DoE technique and machine learning modeling. Int J Pharm 2022; 628:122302. [DOI: 10.1016/j.ijpharm.2022.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022]
|
78
|
Xu G, Mao Y, Jiang T, Gao B, He B. Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. J Control Release 2022; 351:907-922. [DOI: 10.1016/j.jconrel.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
|
79
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
80
|
Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices. Future Med Chem 2022; 14:1561-1581. [DOI: 10.4155/fmc-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Advancements in nanotechnology have resulted in the introduction of several nonviral delivery vectors for the nontoxic, efficient delivery of encapsulated mRNA-based vaccines. Lipid- and polymer-based nanoparticles (NP) have proven to be the most potent delivery systems, providing increased delivery efficiency and protection of mRNA molecules from degradation. Here, the authors provide an overview of the recent studies carried out using lipid NPs and their functionalized forms, polymeric and lipid-polymer hybrid nanocarriers utilized mainly for the encapsulation of mRNAs for gene and immune therapeutic applications. A microfluidic system as a prevalent methodology for the preparation of NPs with continuous flow enables NP size tuning, rapid mixing and production reproducibility. Continuous-flow microfluidic devices for lipid and polymeric encapsulated RNA NP production are specifically reviewed.
Collapse
|
81
|
Jansen EM, Frijlink HW, Hinrichs WLJ, Ruigrok MJR. Are inhaled mRNA vaccines safe and effective? A review of preclinical studies. Expert Opin Drug Deliv 2022; 19:1471-1485. [DOI: 10.1080/17425247.2022.2131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Evalyne M Jansen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter LJ Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Mitchel JR Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
82
|
Lee M, Rice-Boucher PJ, Collins LT, Wagner E, Aulisa L, Hughes J, Curiel DT. A Novel Piggyback Strategy for mRNA Delivery Exploiting Adenovirus Entry Biology. Viruses 2022; 14:2169. [PMID: 36298724 PMCID: PMC9608319 DOI: 10.3390/v14102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Molecular therapies exploiting mRNA vectors embody enormous potential, as evidenced by the utility of this technology for the context of the COVID-19 pandemic. Nonetheless, broad implementation of these promising strategies has been restricted by the limited repertoires of delivery vehicles capable of mRNA transport. On this basis, we explored a strategy based on exploiting the well characterized entry biology of adenovirus. To this end, we studied an adenovirus-polylysine (AdpL) that embodied "piggyback" transport of the mRNA on the capsid exterior of adenovirus. We hypothesized that the efficient steps of Ad binding, receptor-mediated entry, and capsid-mediated endosome escape could provide an effective pathway for transport of mRNA to the cellular cytosol for transgene expression. Our studies confirmed that AdpL could mediate effective gene transfer of mRNA vectors in vitro and in vivo. Facets of this method may offer key utilities to actualize the promise of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Myungeun Lee
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Paul J. Rice-Boucher
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Logan Thrasher Collins
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Lorenzo Aulisa
- GreenLight Biosciences, Inc., 200 Boston Ave. #3100, Medford, MA 02155, USA
| | - Jeffrey Hughes
- GreenLight Biosciences, Inc., 200 Boston Ave. #3100, Medford, MA 02155, USA
| | - David T. Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
83
|
Wang T, Hao B, Xu S, Meng J, Wen T, Liu J, Xu H. Effective RNAi in leukemia cells is enhanced by spermine-modified pullulan combined with desloratadine. Carbohydr Polym 2022; 292:119646. [DOI: 10.1016/j.carbpol.2022.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
|
84
|
The Interaction of Human Papillomavirus Infection and Prostaglandin E2 Signaling in Carcinogenesis: A Focus on Cervical Cancer Therapeutics. Cells 2022; 11:cells11162528. [PMID: 36010605 PMCID: PMC9406919 DOI: 10.3390/cells11162528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.
Collapse
|
85
|
Olivera-Ugarte SM, Bolduc M, Laliberté-Gagné MÈ, Blanchette LJ, Garneau C, Fillion M, Savard P, Dubuc I, Flamand L, Farnòs O, Xu X, Kamen A, Gilbert M, Rabezanahary H, Scarrone M, Couture C, Baz M, Leclerc D. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 44:102584. [PMID: 35850421 PMCID: PMC9287509 DOI: 10.1016/j.nano.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
A vaccine candidate to SARS-CoV-2 was constructed by coupling the viral receptor binding domain (RBD) to the surface of the papaya mosaic virus (PapMV) nanoparticle (nano) to generate the RBD-PapMV vaccine. Immunization of mice with the coupled RBD-PapMV vaccine enhanced the antibody titers and the T-cell mediated immune response directed to the RBD antigen as compared to immunization with the non-coupled vaccine formulation (RBD + PapMV nano). Anti-RBD antibodies, generated in vaccinated animals, neutralized SARS-CoV-2 infection in vitro against the ancestral, Delta and the Omicron variants. At last, immunization of mice susceptible to the infection by SARS-CoV-2 (K18-hACE2 transgenic mice) with the RBD-PapMV vaccine induced protection to the ancestral SARS-CoV-2 infectious challenge. The induction of the broad neutralization against SARS-CoV-2 variants induced by the RBD-PapMV vaccine demonstrate the potential of the PapMV vaccine platform in the development of efficient vaccines against viral respiratory infections.
Collapse
|
86
|
Ye Q, Wu M, Zhou C, Lu X, Huang B, Zhang N, Zhao H, Chi H, Zhang X, Ling D, Zhang RR, Li Z, Luo D, Huang YJ, Qiu HY, Song H, Tan W, Xu K, Ying B, Qin CF. Rational development of a combined mRNA vaccine against COVID-19 and influenza. NPJ Vaccines 2022; 7:84. [PMID: 35882870 PMCID: PMC9315335 DOI: 10.1038/s41541-022-00478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
As the world continues to experience the COVID-19 pandemic, seasonal influenza remain a cause of severe morbidity and mortality globally. Worse yet, coinfection with SARS-CoV-2 and influenza A virus (IAV) leads to more severe clinical outcomes. The development of a combined vaccine against both COVID-19 and influenza is thus of high priority. Based on our established lipid nanoparticle (LNP)-encapsulated mRNA vaccine platform, we developed and characterized a novel mRNA vaccine encoding the HA antigen of influenza A (H1N1) virus, termed ARIAV. Then, ARIAV was combined with our COVID-19 mRNA vaccine ARCoV, which encodes the receptor-binding domain (RBD) of the SARS-CoV-2 S protein, to formulate the final combined vaccine, AR-CoV/IAV. Further characterization demonstrated that immunization with two doses of AR-CoV/IAV elicited robust protective antibodies as well as antigen-specific cellular immune responses against SARS-CoV-2 and IAV. More importantly, AR-CoV/IAV immunization protected mice from coinfection with IAV and the SARS-CoV-2 Alpha and Delta variants. Our results highlight the potential of the LNP-mRNA vaccine platform in preventing COVID-19 and influenza, as well as other respiratory diseases.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xishan Lu
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiaojing Zhang
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Dandan Ling
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhuofan Li
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Dan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yi-Jiao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hong-Ying Qiu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Haifeng Song
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, 215123, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
87
|
Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates. COMPUTATION 2022. [DOI: 10.3390/computation10070117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article is devoted to applying bioinformatics and immunoinformatics approaches for the development of a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. The study’s relevance is dictated by the fact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began its global threat at the end of 2019 and since then has had a devastating impact on the whole world. Measures to reduce threats from the pandemic include social restrictions, restrictions on international travel, and vaccine development. In most cases, vaccine development depends on the spike glycoprotein, which serves as a medium for its entry into host cells. Although several variants of SARS-CoV-2 have emerged from mutations crossing continental boundaries, about 6000 delta variants have been reported along the coast of more than 20 countries in Africa, with South Africa accounting for the highest percentage. This also applies to the omicron variant of the SARS-CoV-2 virus in South Africa. The authors suggest that bioinformatics and immunoinformatics approaches be used to develop a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. Various immunoinformatics tools have been used to predict T- and B-lymphocyte epitopes. The epitopes were further subjected to multiple evaluations to select epitopes that could elicit a sustained immunological response. The candidate vaccine consisted of seven epitopes, a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide, and linkers. The molecular weight (MW) was predicted to be 223.1 kDa, well above the acceptable threshold of 110 kDa on an excellent vaccine candidate. In addition, the results showed that the candidate vaccine was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic. The vaccine candidate has good population coverage, with the highest range in East Africa (80.44%) followed by South Africa (77.23%). West Africa and North Africa have 76.65% and 76.13%, respectively, while Central Africa (75.64%) has minimal coverage. Among seven epitopes, no mutations were observed in 100 randomly selected SARS-CoV-2 spike glycoproteins in the study area. Evaluation of the secondary structure of the vaccine constructs revealed a stabilized structure showing 36.44% alpha-helices, 20.45% drawn filaments, and 33.38% random helices. Molecular docking of the TLR4 vaccine showed that the simulated vaccine has a high binding affinity for TLR-4, reflecting its ability to stimulate the innate and adaptive immune response.
Collapse
|
88
|
Wang B, Moyano A, Duque JM, Sánchez L, García-Santos G, Flórez LJG, Serrano-Pertierra E, Blanco-López MDC. Nanozyme-Based Lateral Flow Immunoassay (LFIA) for Extracellular Vesicle Detection. BIOSENSORS 2022; 12:bios12070490. [PMID: 35884293 PMCID: PMC9313400 DOI: 10.3390/bios12070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles of great interest as novel sources of biomarkers and as drug delivery systems for personalized therapies. The research in the field and clinical applications require rapid quantification. In this study, we have developed a novel lateral flow immunoassay (LFIA) system based on Fe3O4 nanozymes for extracellular vesicle (EV) detection. Iron oxide superparamagnetic nanoparticles (Fe3O4 MNPs) have been reported as peroxidase-like mimetic systems and competent colorimetric labels. The peroxidase-like capabilities of MNPs coated with fatty acids of different chain lengths (oleic acid, myristic acid, and lauric acid) were evaluated in solution with H2O2 and 3,3,5,5-tetramethylbenzidine (TMB) as well as on strips by biotin–neutravidin affinity assay. As a result, MNPs coated with oleic acid were applied as colorimetric labels and applied to detect plasma-derived EVs in LFIAs via their nanozyme effects. The visual signals of test lines were significantly enhanced, and the limit of detection (LOD) was reduced from 5.73 × 107 EVs/μL to 2.49 × 107 EVs/μL. Our work demonstrated the potential of these MNPs as reporter labels and as nanozyme probes for the development of a simple tool to detect EVs, which have proven to be useful biomarkers in a wide variety of diseases.
Collapse
Affiliation(s)
- Baihui Wang
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
| | - Amanda Moyano
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
| | - José María Duque
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (L.S.)
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis Sánchez
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (L.S.)
| | - Guillermo García-Santos
- Department of General and Digestive Surgery, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (G.G.-S.); (L.J.G.F.)
| | - Luis J. García Flórez
- Department of General and Digestive Surgery, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (G.G.-S.); (L.J.G.F.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
- Correspondence: (E.S.-P.); (M.d.C.B.-L.)
| | - María del Carmen Blanco-López
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
- Correspondence: (E.S.-P.); (M.d.C.B.-L.)
| |
Collapse
|
89
|
Acute Severe Ulcerative Colitis After mRNA Coronavirus Disease 2019 Vaccination: Can mRNA Vaccines Unmask Inflammatory Bowel Diseases? ACG Case Rep J 2022; 9:e00806. [PMID: 35784512 PMCID: PMC9246067 DOI: 10.14309/crj.0000000000000806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
|
90
|
Liu XY, Zhang X, Yang JB, Wu CY, Wang Q, Lu ZL, Tang Q. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies. Colloids Surf B Biointerfaces 2022; 217:112651. [PMID: 35759892 DOI: 10.1016/j.colsurfb.2022.112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
Gene therapy holds great promise for treatment of gene-associated diseases. However, safe and successful clinical application urgently requires further advancement of constructing efficient delivery systems. Herein, three amphiphilic peptide dendrimers (TTC-L-KRR/KKK/KHH), containing the natural amino acid residues (lysine K, arginine R, and histidine H) and AIE-based photosensitizer (tetraphenylethenethiophene modified cyanoacrylate, TTC) modified with alkyl chain (L), have been designed and prepared for improving therapeutic potency via the combination of gene therapy (GT) and photodynamic therapy (PDT). All three compounds possessed typical aggregation-induced emission (AIE) characteristics and ultralow critical micelle concentrations (CMCs). The liposomes consisting of amphiphilic peptide dendrimers and dioleoylphosphatidylethanolamine (DOPE) can effectively bind DNA into nanoparticles with appropriate sizes, regular morphology and good biocompatibility. Among them, liposomes TTC-L-KKK/DOPE exhibited the highest transfection efficiency up to 5.7-fold as compared with Lipo2000 in HeLa cells. Meanwhile, rapid endocytosis, successful endo/lysosomal escape, gene release and rapid nuclear delivery of DNA revealed the superiority of liposomes TTC-L-KKK/DOPE during gene delivery process. More importantly, efficient reactive oxygen species (ROS) generation by TTC-L-KKK/DOPE led to effective PDT, thus improving therapeutic potency via combining with p53 mediated-gene therapy. Our work brought novel insight and direction for the construction of bio-safe and bio-imaging liposome as the multifunctional nonviral gene vectors for the effective combined gene/photodynamic therapies.
Collapse
Affiliation(s)
- Xu-Ying Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing-Bo Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cheng-Yan Wu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qian Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Quan Tang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
91
|
Conforti A, Salvatori E, Lione L, Compagnone M, Pinto E, Shorrock C, Hayward JA, Sun Y, Liang BM, Palombo F, Viscount B, Aurisicchio L. Linear DNA amplicons as a novel cancer vaccine strategy. J Exp Clin Cancer Res 2022; 41:195. [PMID: 35668533 PMCID: PMC9169303 DOI: 10.1186/s13046-022-02402-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND DNA-based vaccines represent a simple, safe and promising strategy for harnessing the immune system to fight infectious diseases as well as various forms of cancer and thus are considered an important tool in the cancer immunotherapy toolbox. Nonetheless, the manufacture of plasmid DNA vaccines has several drawbacks, including long lead times and the need to remove impurities from bacterial cultures. Here we report the development of polymerase chain reaction (PCR)-produced amplicon expression vectors as DNA vaccines and their in vivo application to elicit antigen-specific immune responses in animal cancer models. METHODS Plasmid DNA and amplicon expression was assessed both in vitro, by Hela cells transfection, and in vivo, by evaluating luciferase expression in wild-type mice through optical imaging. Immunogenicity induced by DNA amplicons was assessed by vaccinating wild-type mice against a tumor-associated antigen, whereas the antitumoral effect of DNA amplicons was evaluated in a murine cancer model in combination with immune-checkpoint inhibitors (ICIs). RESULTS Amplicons encoding tumor-associated-antigens, such as telomerase reverse transcriptase or neoantigens expressed by murine tumor cell lines, were able to elicit antigen-specific immune responses and proved to significantly impact tumor growth when administered in combination with ICIs. CONCLUSIONS These results strongly support the further exploration of the use of PCR-based amplicons as an innovative immunotherapeutic approach to cancer treatment.
Collapse
Affiliation(s)
- Antonella Conforti
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Evvivax, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Lucia Lione
- Takis, Via Castel Romano 100, 00128 Rome, Italy
| | | | | | - Clay Shorrock
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - James A. Hayward
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Yuhua Sun
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Ben Minghwa Liang
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Fabio Palombo
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Neomatrix, Via Castel Romano 100, 00128 Rome, Italy
| | - Brian Viscount
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Luigi Aurisicchio
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Evvivax, Via Castel Romano 100, 00128 Rome, Italy
- Neomatrix, Via Castel Romano 100, 00128 Rome, Italy
| |
Collapse
|
92
|
Lim SA, Cox A, Tung M, Chung EJ. Clinical progress of nanomedicine-based RNA therapies. Bioact Mater 2022; 12:203-213. [PMID: 35310381 PMCID: PMC8897211 DOI: 10.1016/j.bioactmat.2021.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
The clinical application of nanoparticles (NPs) to deliver RNA for therapy has progressed rapidly since the FDA approval of Onpattro® in 2018 for the treatment of polyneuropathy associated with hereditary transthyretin amyloidosis. The emergency use authorization or approval and widespread global use of two mRNA-NP based vaccines developed by Moderna Therapeutics Inc. and Pfizer-BioNTech in 2021 has highlighted the translatability of NP technology for RNA delivery. Furthermore, in clinical trials, a wide variety of NP formulations have been found to extend the half-life of RNA molecules such as microRNA, small interfering RNA, and messenger RNA, with limited safety issues. In this review, we discuss the NP formulations that are already used in the clinic to deliver therapeutic RNA and highlight examples of RNA-NPs which are currently under evaluation for human use. We also detail NP formulations that failed to progress through clinical trials, in hopes of guiding future successful translation of nanomedicine-based RNA therapeutics into the clinic.
Collapse
Affiliation(s)
- Siyoung A. Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alysia Cox
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Madelynn Tung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
93
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
94
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
95
|
Yamada Y, Ishizuka S, Arai M, Maruyama M, Harashima H. Recent advances in delivering RNA-based therapeutics to mitochondria. Expert Opin Biol Ther 2022; 22:1209-1219. [PMID: 35543589 DOI: 10.1080/14712598.2022.2070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION After the emergence of lipid nanoparticles (LNP) containing therapeutic mRNA as vaccines for use against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the clinical usefulness of nucleic acid-encapsulated LNPs is now a fact. In addition to the nucleus and cytoplasm, mitochondria, which have their own genome, are a site where nucleic acids function in the cell. Gene therapies targeting mitochondria are expected to pave the way for the next generation of therapies. AREAS COVERED Methods for delivering nucleic acids to mitochondria are needed in order to realize such innovative therapies. However, only a few reports on delivery systems targeting mitochondria have appeared. In this review, we summarize the current state of research on RNA-based therapeutics targeted to mitochondria, with emphasis on mitochondrial RNA delivery therapies and on therapies that involve the use of mitochondrial genome editing devices. EXPERT OPINION We hope that this review article will focus our attention to this area of research, stimulate more interest in this field of research, and lead to the development of mitochondria-targeted nucleic acid medicine. It has the potential to become a major weapon against urgent and unknown diseases, including SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST), Japan
| | - Sen Ishizuka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Manae Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
96
|
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, Chen E, Tao W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022; 12:2206-2223. [PMID: 35013704 PMCID: PMC8730377 DOI: 10.1016/j.apsb.2021.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Looking retrospectively at the development of humanity, vaccination is an unprecedented medical landmark that saves lives by harnessing the human immune system. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, vaccination is still the most effective defense modality. The successful clinical application of the lipid nanoparticle-based Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines highlights promising future of nanotechnology in vaccine development. Compared with conventional vaccines, nanovaccines are supposed to have advantages in lymph node accumulation, antigen assembly, and antigen presentation; they also have, unique pathogen biomimicry properties because of well-organized combination of multiple immune factors. Beyond infectious diseases, vaccine nanotechnology also exhibits considerable potential for cancer treatment. The ultimate goal of cancer vaccines is to fully mobilize the potency of the immune system as a living therapeutic to recognize tumor antigens and eliminate tumor cells, and nanotechnologies have the requisite properties to realize this goal. In this review, we summarize the recent advances in vaccine nanotechnology from infectious disease prevention to cancer immunotherapy and highlight the different types of materials, mechanisms, administration methods, as well as future perspectives.
Collapse
Affiliation(s)
- Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| |
Collapse
|
97
|
An SI-traceable reference material for virus-like particles. iScience 2022; 25:104294. [PMID: 35573192 PMCID: PMC9095743 DOI: 10.1016/j.isci.2022.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
A reference material for virus-like particles traceable to the International System of Units (Système International d'Unités – the SI) is reported. The material addresses the need for developing reference standards to benchmark virus-like gene delivery systems and help harmonize measurement approaches for characterization and testing. The material is a major component of synthetic polypeptide virus-like particles produced by the state-of-the-art synthetic and analytical chemistry methods used to generate gene delivery systems. The purity profile of the material is evaluated to the highest metrological order demonstrating traceability to the SI. The material adds to the emerging toolkit of reference standards for quantitative biology. A reference material for virus-like particles with traceability to the SI The material is a major component of virus-like particles capable of gene delivery Purity profile of the material is evaluated to the highest metrological order The material allows comparability of physicochemical properties of virus-like systems
Collapse
|
98
|
Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022; 345:314-333. [PMID: 35331783 PMCID: PMC8935967 DOI: 10.1016/j.jconrel.2022.03.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nanoparticle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a significant accomplishment. However, widespread production and global availability of mRNA-based vaccinations to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID-19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also highlighted a detailed description of mRNA delivery technologies and the application potential in controlling other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into mRNA therapy for broader audiences.
Collapse
Affiliation(s)
- Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| | - Muhammad Irfan
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China; School of Business Administration, Ilma University, Karachi 75190, Pakistan
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
99
|
Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines (Basel) 2022; 10:608. [PMID: 35455357 PMCID: PMC9025326 DOI: 10.3390/vaccines10040608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), 60121 Ancona, Italy;
| | - Giulia Soraci
- Department of Obstetrics and Gynecology, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | | | - Annalisa Cozza
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, 87100 Cosenza, Italy;
| | - Giovanni Rezza
- Health Prevention Directorate, Italian Ministry of Health, 00144 Rome, Italy;
| |
Collapse
|
100
|
Tai W, Zhang X, Yang Y, Zhu J, Du L. Advances in mRNA and other vaccines against MERS-CoV. Transl Res 2022; 242:20-37. [PMID: 34801748 PMCID: PMC8603276 DOI: 10.1016/j.trsl.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus (CoV). Belonging to the same beta-CoV genus as severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and SARS-CoV-2, MERS-CoV has a significantly higher fatality rate with limited human-to-human transmissibility. MERS-CoV causes sporadic outbreaks, but no vaccines have yet been approved for use in humans, thus calling for continued efforts to develop effective vaccines against this important CoV. Similar to SARS-CoV-1 and SARS-CoV-2, MERS-CoV contains 4 structural proteins, among which the surface spike (S) protein has been used as a core component in the majority of currently developed MERS-CoV vaccines. Here, we illustrate the importance of the MERS-CoV S protein as a key vaccine target and provide an update on the currently developed MERS-CoV vaccines, including those based on DNAs, proteins, virus-like particles or nanoparticles, and viral vectors. Additionally, we describe approaches for designing MERS-CoV mRNA vaccines and explore the role and importance of naturally occurring pseudo-nucleosides in the design of effective MERS-CoV mRNA vaccines. This review also provides useful insights into designing and evaluating mRNA vaccines against other viral pathogens.
Collapse
Affiliation(s)
- Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, Califonia; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|