51
|
Tao SF, Gu WH, Gu JC, Zhu ML, Wang Q, Zheng LZ. A Retrospective Case Series Of High-Intensity Focused Ultrasound (HIFU) In Combination With Gemcitabine And Oxaliplatin (Gemox) On Treating Elderly Middle And Advanced Pancreatic Cancer. Onco Targets Ther 2019; 12:9735-9745. [PMID: 31814733 PMCID: PMC6863124 DOI: 10.2147/ott.s220299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This retrospective study was conducted to evaluate the safety and efficacy of high-intensity focused ultrasound (HIFU) ablation combined with Gemcitabine and Oxaliplatin (Gemox) for the treatment of middle and advanced pancreatic cancer in elderly patients. Methods Forty-seven patients with pancreatic cancer treated with HIFU and Gemox were evaluated for inclusion, and 38 cases were finally included. The primary endpoint was safety. Secondary endpoints included the response rate, the clinical benefit response (CBR), overall survival (OS), progression-free survival (PFS). Results After combination therapy of HIFU and Gemox, severe complications were rarely reported, and no treatment-related death occurred. The rate of three or four-degree myelosuppression was low, and no obvious impairment of hepatorenal function was observed. Pancreatitis and gastrointestinal injury did not occurred. The disease control rate (DCR) was estimated to be 76.3%, including complete remission (CR), partial remission (PR), stable disease (SD) in 1, 6, 22 cases, respectively. And the objective response rate (ORR) was 18.4%. The clinical benefit rate (CBR) was 68.4%, with the pain significantly relieved (P<0.01). The serum level of CA19-9 showed significant changes after HIFU treatment. The median overall survival (OS) was 12.5 months, with a 6-month and 12-month OS rate of 82.13% and 59.34%, respectively. Stratified analyses did not reveal any significant difference between patients in different stages. Conclusion Elderly patients (≥ 60 years old) with pancreatic cancer would experience tolerable toxicity and obtain good clinical benefits from the combination therapy of HIFU ablation and Gemox.
Collapse
Affiliation(s)
- Shuang-Fen Tao
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Wen-Hua Gu
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jian-Chun Gu
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Mei-Ling Zhu
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Qing Wang
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Lei-Zhen Zheng
- Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
52
|
Use of Perfluorocarbon based Blood Substitute Perftoran in Correction of Hypoxia During Acute Anemia in Animals. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The cause of acute and severe hypoxia of the organism is acute posthemorrhagic anemia. To eliminate posthemorrhagic anemia in animals, the perfluorocarbon blood substitute Perftoran (Russia) with a gas-transporting function was used. The aim of this study was to determine the clinical effectiveness of the perfluorocarbon based blood substitute Perftoran with a gas-carrying function in acute posthemorrhagic anemia in animals and reveal possible side effect of the blood substitute and remove them. In the study conducted in the Clinic of Veterinary Medicine of Pushchino Research Center (Russia) participated 20 cats of both sexes, who were admitted with internal bleeding as a result of injuries. The animals were divided into two groups: the control and the treatment groups (10 per group). All animals with anemia were examined according to the standard scheme: anamnesis vitae and anamnesis morbi, physical examination (basic methods of research were used), additional methods that were used: complete blood count (CBC) and biochemical analysis of blood (BA), microscopy of blood smears, abdominal ultrasonography. Based on the obtained results, we can conclude that the use of the gas-carrying substitute for donor blood Perftoran in the treatment group of animals with posthemorrhagic anemia, which resulted from polytrauma, eliminated tissue hypoxia; the treatment of the animals in the control group with standard solutions (by infusing Stabisol) without gas transport correction led to the development of persistent hypoxia, which persisted to the stage of reticulocyte crisis.
Collapse
|
53
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
54
|
Cheng CA, Chen W, Zhang L, Wu HH, Zink JI. A Responsive Mesoporous Silica Nanoparticle Platform for Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound-Stimulated Cargo Delivery with Controllable Location, Time, and Dose. J Am Chem Soc 2019; 141:17670-17684. [PMID: 31604010 DOI: 10.1021/jacs.9b07591] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Magnetic resonance imaging (MRI) is an essential modality for clinical diagnosis, and MRI-guided high-intensity focused ultrasound (MRgHIFU) is a powerful technology for targeted therapy. Clinical applications of MRgHIFU primarily utilize hyperthermia and ablation to treat cancerous tissue, but for drug delivery applications thermal damage is undesirable. A biofriendly MRgHIFU-responsive mesoporous silica nanoparticle (MSN) platform that is stimulated within a physiological safe temperature range has been developed, reducing the possibility of thermal damage to the surrounding healthy tissues. Biocompatible polyethylene glycol (PEG) was employed to cap the pores of MSNs, and the release of cargo molecules by HIFU occurs without substantial temperature increase (∼4 °C). To visualize by MRI and measure the stimulated delivery in situ, a U.S. Food and Drug Administration (FDA)-approved gadolinium-based contrast agent, gadopentetate dimeglumine (Gd(DTPA)2-), was used as the imageable cargo. Taking advantage of the three-dimensional (3-D) imaging and targeting capabilities of MRgHIFU, the release of Gd(DTPA)2- stimulated by HIFU was pinpointed at the HIFU focal point in 3-D space in a tissue-mimicking gel phantom. The amount of Gd(DTPA)2- released was controlled by HIFU stimulation times and power levels. A positive correlation between the amount of Gd(DTPA)2- released and T1 was found. The MRgHIFU-stimulated cargo release was further imaged in a sample of ex vivo animal tissue. With this technology, the biodistribution of the nanocarriers can be tracked and the MRgHIFU-stimulated cargo release can be pinpointed, opening up an opportunity for future image-guided theranostic applications.
Collapse
Affiliation(s)
- Chi-An Cheng
- Department of Bioengineering , University of California Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California Los Angeles , Los Angeles 90095 , California , United States
| | - Wei Chen
- Department of Chemistry & Biochemistry , University of California Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California Los Angeles , Los Angeles 90095 , California , United States
| | - Le Zhang
- Department of Radiological Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Holden H Wu
- Department of Bioengineering , University of California Los Angeles , Los Angeles , California 90095 , United States.,Department of Radiological Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry , University of California Los Angeles , Los Angeles , California 90095 , United States.,California NanoSystems Institute , University of California Los Angeles , Los Angeles 90095 , California , United States
| |
Collapse
|
55
|
Abstract
Gas-involving cancer theranostics have attracted considerable attention in recent years due to their high therapeutic efficacy and biosafety. We have reviewed the recent significant advances in the development of stimuli-responsive gas releasing molecules (GRMs) and gas nanogenerators for cancer bioimaging, targeted and controlled gas therapy, and gas-sensitized synergistic therapy. We have focused on gases with known anticancer effects, such as oxygen (O2), carbon monoxide (CO), nitric oxide (NO), hydrogen sulfide (H2S), hydrogen (H2), sulfur dioxide (SO2), carbon dioxide (CO2), and heavy gases that act via the gas-generating process. The GRMs and gas nanogenerators for each gas have been described in terms of the stimulation method, followed by their applications in ultrasound and multimodal imaging, and finally their primary and synergistic actions with other cancer therapeutic modalities. The current challenges and future possibilities of gas therapy and imaging vis-à-vis clinical translation have also been discussed.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| |
Collapse
|
56
|
Choi H, Choi W, Kim J, Kong WH, Kim KS, Kim C, Hahn SK. Multifunctional Nanodroplets Encapsulating Naphthalocyanine and Perfluorohexane for Bimodal Image-Guided Therapy. Biomacromolecules 2019; 20:3767-3777. [PMID: 31483619 DOI: 10.1021/acs.biomac.9b00842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although nanocarriers containing perfluorocarbon (PFC) have been widely investigated as an ultrasound (US) imaging agent and a high intensity focused ultrasound (HIFU) agent, these carriers have suffered from low stability and biocompatibility limiting their further biomedical applications. Here, we developed surface cross-linked polymer nanodroplets as a HIFU therapeutic agent guided by bimodal photoacoustic (PA) and US imaging. Pluronic F127 was reacted with 4-nitrophenyl chloroformate (NPC) and mixed with naphthalocyanine (Nc) in dichloromethane, which was added into the aqueous solution of amine-functionalized six-arm-branched poly(ethylene glycol) (PEG) to form an oil-in-water emulsion for the cross-linking reaction between the terminal NPC of Pluronic F127 and the primary amine of six-arm PEG. The resulting solution was sonicated with liquid perfluorohexane (PFH) to prepare PEG cross-linked Pluronic F127 nanoparticles encapsulating Nc and PFH (Nc/PFH@PCPN). Nc/PFH@PCPN appeared to be stable without any coalescence or vaporization in the physiological condition. Upon the application of HIFU, Nc/PFH@PCPN was vaporized and showed increased US intensity for 180 min. The Nc dye in the nanodroplets enabled the stable encapsulation of PFH and the bimodal US/PA imaging. In vivo PA/US image-guided HIFU ablation therapy confirmed that the nanodroplets increased the cavitation effect, induced necrosis and apoptosis of tumor cells, and reduced tumor growth significantly for 12 days. Taken together, the multifunctional Nc/PFH@PCPN was successfully developed as a new platform for PA/US image-guided HIFU therapy.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Wonseok Choi
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Jeesu Kim
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Won Ho Kong
- Pohang Technopark , 394 Jigok-ro, Nam-gu , Pohang , Gyeongbuk 37668 , Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering , Pusan National University , 2 Busandaehak-ro 63 beon-gil, Gumjeong-gu , Busan 46241 , Korea.,PHI Biomed Co. , #613, 12 Gangnam-daero 65-gil, Seocho-gu , Seoul 066 12 , Korea
| | - Chulhong Kim
- Department of Creative IT Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang , Gyeongbuk 37673 , Korea.,PHI Biomed Co. , #613, 12 Gangnam-daero 65-gil, Seocho-gu , Seoul 066 12 , Korea
| |
Collapse
|
57
|
Loskutova K, Grishenkov D, Ghorbani M. Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9480193. [PMID: 31392217 PMCID: PMC6662494 DOI: 10.1155/2019/9480193] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Acoustic droplet vaporization (ADV) is the physical process in which liquid undergoes phase transition to gas after exposure to a pressure amplitude above a certain threshold. In recent years, new techniques in ultrasound diagnostics and therapeutics have been developed which utilize microformulations with various physical and chemical properties. The purpose of this review is to give the reader a general idea on how ADV can be implemented for the existing biomedical applications of droplet vaporization. In this regard, the recent developments in ultrasound therapy which shed light on the ADV are considered. Modern designs of capsules and nanodroplets (NDs) are shown, and the material choices and their implications for function are discussed. The influence of the physical properties of the induced acoustic field, the surrounding medium, and thermophysical effects on the vaporization are presented. Lastly, current challenges and potential future applications towards the implementation of the therapeutic droplets are discussed.
Collapse
Affiliation(s)
- Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
| | - Morteza Ghorbani
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
- Mechatronics Engineering Program, Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
58
|
Wu D, Jin X, Wang X, Ma B, Lou C, Qu H, Zheng J, Zhang B, Yan X, Wang Y, Jing L. Engineering temperature-sensitive plateletsomes as a tailored chemotherapy platform in combination with HIFU ablation for cancer treatment. Theranostics 2019; 9:3966-3979. [PMID: 31281525 PMCID: PMC6587342 DOI: 10.7150/thno.32172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is widely used in combination with high-intensity focused ultrasound (HIFU) ablation for cancer therapy; however, the spatial and temporal integration of chemotherapy and HIFU ablation remains a challenge. Here, temperature-sensitive plateletsomes (TSPs) composed of platelet (PLT) membrane, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine were developed to adequately integrate chemotherapy with HIFU tumor ablation in vivo. Methods: The thermosensitive permeability of TSPs was evaluated under both water bath heating and HIFU hyperthermia. The targeting performance, pharmacokinetic behavior and therapeutic potential of TSPs in combination with HIFU ablation were evaluated using HeLa cells and a HeLa cell tumor-bearing nude mouse model in comparison with temperature-sensitive liposomes (TSLs). Results: TSPs showed high drug loading efficiency and temperature-sensitive permeability. When applied in vivo, TSPs showed a circulation lifetime comparable to that of TSLs and exhibited PLT-specific cancer cell affinity and a vascular damage response. Upon HIFU hyperthermia, TSPs displayed ultrafast drug release and enhanced tumor uptake, providing high drug availability in the tumor site to cooperate with HIFU ablation. After HIFU ablation, TSPs rapidly targeted the postoperative tumor site by adhesion to the damaged tumor vasculature, leading to targeted and localized postoperative chemotherapy. Conclusion: Due to effective integration at both intraoperative and postoperative stages, TSPs could be a promising chemotherapy nanoplatform in combination with HIFU ablation for cancer therapy.
Collapse
|
59
|
Li Y, Luo J, Lin MT, Zhi P, Guo WW, Han M, You J, Gao JQ. Co-Delivery of Metformin Enhances the Antimultidrug Resistant Tumor Effect of Doxorubicin by Improving Hypoxic Tumor Microenvironment. Mol Pharm 2019; 16:2966-2979. [PMID: 31095914 DOI: 10.1021/acs.molpharmaceut.9b00199] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is a first-line chemo drug for cancer therapy, yet it fails to treat multi-drug-resistant tumors. Hypoxia is a major causative factor leading to chemotherapy failure. Particularly, hypoxia up-regulates its responsive transcription factor-hypoxia-inducible factors (HIF)-to induce the overexpression of drug resistant genes. Metformin (MET) is recently found to cooperate with DOX against multiple tumors. As a mitochondrial inhibitor, MET could suppress tumor oxygen consumption, and thereby modulate the hypoxic tumor microenvironment. In this study, we used cationic liposomes to codeliver both DOX and MET for treating multi-drug-resistant breast cancer cells-MCF7/ADR. Faster release of MET enhanced the cytotoxicity of DOX through attenuating hypoxic stress both in vivo and in vitro. MET diminished the cellular oxygen consumption and inhibited HIF1α and P-glycoprotein (Pgp) expression in vitro. In addition, the dual-drug-loaded liposomes increased tumor targeting and intratumoral blood oxygen saturation, which suggested that the tumor reoxygenation effect of MET facilitated the exertion of its synergistic activity with DOX against MCF7/ADR xenografts. In general, our study represents a feasible strategy to boost the therapeutic effect in treating multi-drug-resistant cancer by improving the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jing Luo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Meng-Ting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Pei Zhi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Wang-Wei Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|
60
|
Chen W, Zhang H, Zeng X, Chen L, Fang G, Cai H, Zhong X. Phase‐shifted pentafluorobutane nanoparticles for ultrasound imaging and ultrasound‐mediated hypoxia modulation. J Cell Biochem 2019; 120:16543-16552. [PMID: 31099025 DOI: 10.1002/jcb.28914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Wei‐Jian Chen
- Department of Ultrasonography The First Affiliated Hospital of Jinan University Guangzhou China
| | - Hua Zhang
- The First Affiliated Hospital, Biomedical Translation Research Institute and School of Pharmacy Jinan University Guangzhou China
| | - Xue‐Yi Zeng
- Department of Chemistry, College of Chemistry and Materials Science Jinan University Guangzhou China
| | - Long Chen
- Department of Ultrasonography, Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Gui‐Ting Fang
- Department of Ultrasonography The First Affiliated Hospital of Jinan University Guangzhou China
| | - Huai‐Hong Cai
- Department of Chemistry, College of Chemistry and Materials Science Jinan University Guangzhou China
| | - Xing Zhong
- Department of Ultrasonography The First Affiliated Hospital of Jinan University Guangzhou China
| |
Collapse
|
61
|
Liu T, Wan Q, Luo Y, Chen M, Zou C, Ma M, Liu X, Chen H. On-Demand Detaching Nanosystem for the Spatiotemporal Control of Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16285-16295. [PMID: 30986025 DOI: 10.1021/acsami.9b02062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering multiple theranostic modalities into a single nanoscale entity holds great potential to rejuvenate cancer treatments; however, enabling the sophisticated spatiotemporal control of each component for maximizing theranostic improvement and minimizing side effects concurrently remains a challenge. Herein, an intelligent detachable "nanorocket" is developed to sequentially manipulate and optimize multitheranostic processes for magnetic resonance-assisted ultrasound-drug combined therapy (MR-HIFU-Drug). The "nanorocket" is constructed by integrating multicomponent (MnCO3, doxorubicin, silica) on the pH-sensitive CaCO3 nanoparticles step by step via cation exchange and controlled heterogeneous nucleation, in which doxorubicin is encapsulated in both carbonates and silica component. The "nanorocket" can initiate sequential detachment in the acidic tumor microenvironment. Specifically, carbonates decompose instantly, releasing Mn2+ as the MR contrast agent and leaving hollow silica nanostructure behind as the HIFU synergistic agent. Consequently, burst release of drug is also triggered, further triggering the degradation of silica, which in turn regulates the slow release of drug from the silica matrix. Thus, efficient tumor inhibition is achieved by enhanced HIFU ablation and biphase release of doxorubicin with a stepwise clearance of Mn and Si. This work establishes a system for the systematic spatiotemporal dispatch of diverse theranostic components for the balance of efficacy and safety in cancer theranostics.
Collapse
Affiliation(s)
- Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen , 518055 , People's Republic of China
| | - Yu Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
| | - Mengjie Chen
- Department of Ultrasonography , The Eighth Affiliated Hospital of Sun Yat-Sen University , Shenzhen 518033 , People's Republic of China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen , 518055 , People's Republic of China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen , 518055 , People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
| |
Collapse
|
62
|
Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 2019; 9:2572-2594. [PMID: 31131054 PMCID: PMC6525987 DOI: 10.7150/thno.32424] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
This review focuses on different materials and contrast agents that sensitize imaging and therapy with Focused Ultrasound (FUS). At high intensities, FUS is capable of selectively ablating tissue with focus on the millimeter scale, presenting an alternative to surgical intervention or management of malignant growth. At low intensities, FUS can be also used for other medical applications such as local delivery of drugs and blood brain barrier opening (BBBO). Contrast agents offer an opportunity to increase selective acoustic absorption or facilitate destructive cavitation processes by converting incident acoustic energy into thermal and mechanical energy. First, we review the history of FUS and its effects on living tissue. Next, we present different colloidal or nanoparticulate approaches to sensitizing FUS, for example using microbubbles, phase-shift emulsions, hollow-shelled nanoparticles, or hydrophobic silica surfaces. Exploring the science behind these interactions, we also discuss ways to make stimulus-responsive, or "turn-on" contrast agents for improved selectivity. Finally, we discuss acoustically-active hydrogels and membranes. This review will be of interest to those working in materials who wish to explore new applications in acoustics and those in acoustics who are seeking new agents to improve the efficacy of their approaches.
Collapse
Affiliation(s)
- Adem Yildirim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303 USA
- Present address: CEDAR, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239 USA
| | - Nicholas T. Blum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303 USA
| |
Collapse
|
63
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
64
|
Castillo RR, Lozano D, González B, Manzano M, Izquierdo-Barba I, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv 2019; 16:415-439. [PMID: 30897978 PMCID: PMC6667337 DOI: 10.1080/17425247.2019.1598375] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNs) are outstanding nanoplatforms for drug delivery. Herein, the most recent advances to turn MSN-based carriers into minimal side effect drug delivery agents are covered. AREAS COVERED This review summarizes the scientific advances dealing with MSNs for targeted and stimuli-responsive drug delivery since 2015. Delivery aspects to diseased tissues together with approaches to obtain smart MSNs able to respond to internal or external stimuli and their applications are here described. Special emphasis is done on the combination of two or more stimuli on the same nanoplatform and on combined drug therapy. EXPERT OPINION The use of MSNs in nanomedicine is a promising research field because they are outstanding platforms for treating different pathologies. This is possible thanks to their structural, chemical, physical and biological properties. However, there are certain issues that should be overcome to improve the suitability of MSNs for clinical applications. All materials must be properly characterized prior to their in vivo evaluation; furthermore, preclinical in vivo studies need to be standardized to demonstrate the MSNs clinical translation potential.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
65
|
Wang R, Liu Z, Wan G, Jia T, Zhang C, Wang X, Zhang M, Qian D, de Andrade MJ, Jiang N, Yin S, Zhang R, Feng D, Wang W, Zhang H, Chen H, Wang Y, Ovalle-Robles R, Inoue K, Lu H, Fang S, Baughman RH, Liu Z. Controllable Preparation of Ordered and Hierarchically Buckled Structures for Inflatable Tumor Ablation, Volumetric Strain Sensor, and Communication via Inflatable Antenna. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10862-10873. [PMID: 30735351 DOI: 10.1021/acsami.8b19241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inflatable conducting devices providing improved properties and functionalities are needed for diverse applications. However, the difficult part in making high-performance inflatable devices is the enabling of two-dimensional (2D) buckles with controlled structures on inflatable catheters. Here, we report the fabrication of highly inflatable devices with controllable structures by wrapping the super-aligned carbon nanotube sheet (SACNS) on the pre-inflated catheter. The resulting structure exhibits unique 2D buckled structures including quasi-parallel buckles, crisscrossed buckles, and hierarchically buckled structures, which enables reversible structural changes of 7470% volumetric strain. The 2D SACNS buckled structures show stable electrical conductance and surface wettability during large strain inflation/deflation cycles. Inflatable devices including inflatable tumor ablation, capacitive volumetric strain sensor, and communication via inflatable radio frequency antenna based on these structures are demonstrated.
Collapse
Affiliation(s)
- Run Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Electronic Information and Optics Engineering, and College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Zhongsheng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Electronic Information and Optics Engineering, and College of Pharmacy , Nankai University , Tianjin 300071 , China
- School of Materials Science and Energy Engineering , Foshan University , Foshan , Guangdong 528000 , China
| | - Guoyun Wan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Tianjiao Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Electronic Information and Optics Engineering, and College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , China
| | - Xuemin Wang
- Department of Mechanical Engineering , University of Texas at Dallas , Richardson , Texas 75080 , United States
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Mei Zhang
- High-Performance Materials Institute , Florida State University , Tallahassee , Florida 32306 , United States
| | - Dong Qian
- Department of Mechanical Engineering , University of Texas at Dallas , Richardson , Texas 75080 , United States
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Monica Jung de Andrade
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Nan Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Electronic Information and Optics Engineering, and College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Rui Zhang
- Department of Mechanical Engineering , University of Texas at Dallas , Richardson , Texas 75080 , United States
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Deqiang Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Electronic Information and Optics Engineering, and College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Weichao Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Electronic Information and Optics Engineering, and College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Hui Zhang
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Hong Chen
- School of Materials Science and Energy Engineering , Foshan University , Foshan , Guangdong 528000 , China
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Raquel Ovalle-Robles
- Nano-Science and Technology Center , Lintec of America, Inc. , Richardson , Texas 75081 , United States
| | - Kanzan Inoue
- Nano-Science and Technology Center , Lintec of America, Inc. , Richardson , Texas 75081 , United States
| | - Hongbing Lu
- Department of Mechanical Engineering , University of Texas at Dallas , Richardson , Texas 75080 , United States
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Electronic Information and Optics Engineering, and College of Pharmacy , Nankai University , Tianjin 300071 , China
| |
Collapse
|
66
|
Xiang H, Chen Y. Energy-Converting Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805339. [PMID: 30773837 DOI: 10.1002/smll.201805339] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/22/2019] [Indexed: 05/12/2023]
Abstract
Serious side effects to surrounding normal tissues and unsatisfactory therapeutic efficacy hamper the further clinic applications of conventional cancer-therapeutic strategies, such as chemotherapy and surgery. The fast development of nanotechnology provides unprecedented superiorities for cancer therapeutics. Externally activatable therapeutic modalities mediated by nanomaterials, relying on highly effective energy transformation to release therapeutic elements/effects (cytotoxic reactive oxygen species, thermal effect, photoelectric effect, Compton effect, cavitation effect, mechanical effect or chemotherapeutic drug) for cancer therapies, categorized and termed as "energy-converting nanomedicine," have arouse considerable concern due to their noninvasiveness, desirable tissue-penetration depth, and accurate modulation of therapeutic dose. This review summarizes the recent advances in the engineering of intelligent functional nanotherapeutics for energy-converting nanomedicine, including photo-based, radiation-based, ultrasound-based, magnetic field-based, microwave-based, electric field-based, and radiofrequency-based nanomedicines, which are enabled by external stimuli (light, radiation, ultrasound, magnetic field, microwave, electric field, and radiofrequency). Furthermore, biosafety issues of energy-converting nanomedicine related to future clinical translation are also addressed. Finally, the potential challenges and prospects of energy-converting nanomedicine for future clinical translation are discussed.
Collapse
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
67
|
Manzano M, Vallet-Regí M. Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chem Commun (Camb) 2019; 55:2731-2740. [PMID: 30694270 PMCID: PMC6667338 DOI: 10.1039/c8cc09389j] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology, which has already revolutionised many technological areas, is expected to transform life sciences. In this sense, nanomedicine could address some of the most important limitations of conventional medicine. In general, nanomedicine includes three major objectives: (1) trap and protect a great amount of therapeutic agents; (2) carry them to the specific site of disease avoiding any leakage; and (3) release on-demand high local concentrations of therapeutic agents. This feature article will make special emphasis on mesoporous silica nanoparticles that release their therapeutic cargo in response to ultrasound.
Collapse
Affiliation(s)
- Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | | |
Collapse
|
68
|
Zhang Q, Wang N, Ma M, Luo Y, Chen H. Transferrin Receptor‐Mediated Sequential Intercellular Nanoparticles Relay for Tumor Deep Penetration and Sonodynamic Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiuhong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ning Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Yu Luo
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
69
|
Inozemtseva OA, Voronin DV, Petrov AV, Petrov VV, Lapin SA, Kozlova AA, Bratashov DN, Zakharevich AM, Gorin DA. Disruption of Polymer and Composite Microcapsule Shells under High-Intensity Focused Ultrasound. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Li H, Yu C, Zhang J, Li Q, Qiao H, Wang Z, Zeng D. pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. Int J Pharm 2019; 556:226-235. [DOI: 10.1016/j.ijpharm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
|
71
|
Qi S, Zhang P, Ma M, Yao M, Wu J, Mäkilä E, Salonen J, Ruskoaho H, Xu Y, Santos HA, Zhang H. Cellular Internalization-Induced Aggregation of Porous Silicon Nanoparticles for Ultrasound Imaging and Protein-Mediated Protection of Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804332. [PMID: 30488562 DOI: 10.1002/smll.201804332] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/14/2018] [Indexed: 05/19/2023]
Abstract
Nanotechnology employs multifunctional engineered materials in the nanoscale range that provides many opportunities for translational stem cell research and therapy. Here, a cell-penetrating peptide (virus-1 transactivator of transcription)-conjugated, porous silicon nanoparticle (TPSi NP) loaded with the Wnt3a protein to increase both the cell survival rate and the delivery precision of stem cell transplantation via a combinational theranostic strategy is presented. The TPSi NP with a pore size of 10.7 nm and inorganic framework enables high-efficiency loading of Wnt3a, prolongs Wnt3a release, and increases antioxidative stress activity in the labeled mesenchymal stem cells (MSCs), which are highly beneficial properties for cell protection in stem cell therapy for myocardial infarction. It is confirmed that the intracellular aggregation of TPSi NPs can highly amplify the acoustic scattering of the labeled MSCs, resulting in a 2.3-fold increase in the ultrasound (US) signal compared with that of unlabeled MSCs. The translational potential of the designed nanoagent for real-time US imaging-guided stem cell transplantation is confirmed via intramyocardial injection of labeled MSCs in a nude mouse model. It is proposed that the intracellular aggregation of protein drug-loaded TPSi NPs could be a simple but robust strategy for improving the therapeutic effect of stem cell therapy.
Collapse
Affiliation(s)
- Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Pengfei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research of Chinese Ministry of Education, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Minghua Yao
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Jinjin Wu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ermei Mäkilä
- Department of Physics and Astronomy, University of Turku, Turku, 20014, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, Turku, 20014, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hélder A Santos
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hongbo Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
72
|
Zhang R, Yan F, Chen Y. Exogenous Physical Irradiation on Titania Semiconductors: Materials Chemistry and Tumor-Specific Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801175. [PMID: 30581710 PMCID: PMC6299725 DOI: 10.1002/advs.201801175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Titania semiconductors can be activated by external physical triggers to produce electrons (e-) and holes (h+) pairs from the energy-band structure and subsequently induce the generation of reactive oxygen species for killing cancer cells, but the traditional ultraviolet light with potential phototoxicity and low-tissue-penetrating depth as the irradiation source significantly hinders the further in vivo broad biomedical applications. Here, the very-recent development of novel exogenous physical irradiation of titania semiconductors for tumor-specific therapies based on their unique physiochemical properties, including near infrared (NIR)-triggered photothermal hyperthermia and photodynamic therapy, X-ray/Cerenkov radiation-activated deep-seated photodynamic therapy, ultrasound-triggered sonodynamic therapy, and the intriguing synergistic therapeutic paradigms by combined exogenous physical irradiations are in focus. Most of these promising therapeutic modalities are based on the semiconductor nature of titania nanoplatforms, together with their defect modulation for photothermal hyperthermia. The biocompatibility and biosafety of these titania semiconductors are also highlighted for guaranteeing their further clinical translation. Challenges and future developments of titania-based therapeutic nanoplatforms and the corresponding developed therapeutic modalities for potential clinical translation of tumor-specific therapy are also discussed and outlooked.
Collapse
Affiliation(s)
- Ruifang Zhang
- Department of UltrasoundThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan Province450052P. R. China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| |
Collapse
|
73
|
Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
74
|
Wei Z, Wu M, Li Z, Lin Z, Zeng J, Sun H, Liu X, Liu J, Li B, Zeng Y. Gadolinium-doped hollow CeO 2-ZrO 2 nanoplatform as multifunctional MRI/CT dual-modal imaging agent and drug delivery vehicle. Drug Deliv 2018; 25:353-363. [PMID: 29366349 PMCID: PMC6058605 DOI: 10.1080/10717544.2018.1428241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
Abstract
Developing multifunctional nanoparticle-based theranostic platform for cancer diagnosis and treatment is highly desirable, however, most of the present theranostic platforms are fabricated via complicated structure/composition design and time-consuming synthesis procedures. Herein, the multifunctional Gd/CeO2-ZrO2/DOX-PEG nanoplatform with single nano-structure was fabricated through a facile route, which possessed MR/CT dual-model imaging and chemotherapy ability. The nanoplatform not only exhibited well-defined shapes, tunable compositions and narrow size distributions, but also presented a well anti-cancer effect and MR/CT imaging ability. Therefore, the Gd/CeO2-ZrO2/DOX-PEG nanoplatform could be applied for chemotherapy as well as dual-model MR/CT imaging.
Collapse
Affiliation(s)
- Zuwu Wei
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Zhan Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Jinhua Zeng
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital Capital Medical University, Beijing, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Jingfeng Liu
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, P. R. China
| | - Yongyi Zeng
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
75
|
Liu J, Xu F, Huang J, Xu J, Liu Y, Yao Y, Ao M, Li A, Hao L, Cao Y, Hu Z, Ran H, Wang Z, Li P. Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery. Biomater Sci 2018; 6:2838-2849. [PMID: 30229771 DOI: 10.1039/c8bm00726h] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Theranostics is a new trend in the tumor research field, which involves the integration of diagnostic and therapeutic functions using imageable nanoparticles coupled with therapeutic drugs. Imaging-guided targeted delivery of therapeutics and diagnostics using nanocarriers hold great promise to minimize the side effects of conventional chemotherapy. Ultrasound microbubbles have been employed as theranostic agents over the last decade, which provide both real-time dynamic imaging for diagnosis and precise control for targeted tumor therapy. However, the intrinsic defects of microbubbles such as poor tissue penetration, short circulation time and instability hinder microbubble-based theranostic applications. In recent years, liquid-to-gas transitional perfluorocarbon nanoparticles have been developed as promising diagnostic and therapeutic nanoagents to solve the abovementioned problems. In this study, phase-changeable, folate-targeted perfluoropentane nanodroplets loaded with 10-hydroxycamptothecin (HCPT) and superparamagnetic Fe3O4 (denoted as FA-HCPT-Fe3O4-PFP NDs) are prepared and investigated for multimodal tumor imaging and targeted therapy. After intravenous administration into nude mice bearing SKOV3 ovarian cancer, FA-HCPT-Fe3O4-PFP NDs exhibit the ability to enhance MR and PA imaging. Furthermore, after the phase transition activated by low-intensity focused ultrasound (LIFU) sonication, FA-HCPT-Fe3O4-PFP NDs remarkably enhance US imaging at the tumor location. Meanwhile, the HCPT released from FA-HCPT-Fe3O4-PFP NDs during the liquid-to-gas transition provides a therapeutic effect on tumor cells with relatively low side effects to normal tissue. Therefore, the combination of LIFU and FA-HCPT-Fe3O4-PFPNDs presents an ideal modality for tumor-targeted theranostics.
Collapse
Affiliation(s)
- Jianxin Liu
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China. and Department of Ultrasound, Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science&technology, Wuhan, 430014, P.R. China
| | - Fenfen Xu
- Department of Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
| | - Ju Huang
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Jinshun Xu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Yang Liu
- Department of Ultrasound, Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science&technology, Wuhan, 430014, P.R. China
| | - Yuanzhi Yao
- Department of Ultrasound, Chongqing Cancer Institute & Hospital & Cancer, Chongqing 400030, P.R. China
| | - Meng Ao
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Ao Li
- Department of Ultrasound, the First Affiliated Hospitalof Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Lan Hao
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Yang Cao
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, Southeast University, Nanjing 210009, P.R. China
| | - Haitao Ran
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Zhigang Wang
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| | - Pan Li
- Second Affiliated Hospital, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, P.R. China.
| |
Collapse
|
76
|
Wang J, Jiao Y, Shao Y. Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2041. [PMID: 30347751 PMCID: PMC6212853 DOI: 10.3390/ma11102041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/20/2023]
Abstract
Low-energy ultrasound (LEUS), exhibiting obvious advantages as a safe therapeutic strategy, would be promising for cancer therapy. We had synthesized a LEUS-responsive targeted drug delivery system based on functional mesoporous silica nanoparticle for cancer therapy. Paclitaxel (PTX) was loaded in mesoporous silica nanoparticles with a hydrophobic internal channel, and folic acid (FA) functionalized β-Cyclodextrin (β-CD) was capped on the surface of the nanoparticles (DESN), which acted as a cancer-targeting moiety and solubilizer. The existence of a hydrophobic internal channel in the DESN was beneficial to the storage of hydrophobic PTX, along with the enhancement of the cavitation effect produced by mild low-energy ultrasound (LEUS, ≤1.0 W/cm², 1 MHz). The DESN showed significantly enhanced cavitation effect, selective targeting, and achieved a rapid drug release under mild LEUS. To investigate the in vivo antitumor efficacy of the DESN upon LEUS irradiation, we established a 4T1 mammary tumor model. The DESN were confirmed to be of great biodegradability/biocompatibility. The tumor growth was significantly inhibited when the mice were treated with DESN (10 mg/kg) + LEUS with the relative tumor volume reduced to 4.72 ± 0.70 compared with the control group (V/V₀ = 17.12 ± 2.75). The DESN with LEUS represented excellent inhibiting effect on tumor cell in vivo. This work demonstrated that DESN mediating dual mode chemo-sonodynamic therapy could be triggered by extracorporeal remote control, may suggest a promising clinical application in cancer therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yajing Jiao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yiran Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
77
|
Vallet-Regi M, Manzano M, Baeza A. Controlled Release With Emphasis on Ultrasound-Induced Release. Enzymes 2018; 43:101-122. [PMID: 30244803 DOI: 10.1016/bs.enz.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) represent a promising approach to be used as nanocarriers because they fulfill some basic criteria: biocompatibility, high loading capacity and possibility of easy surface modifications. As a consequence, MSNs have been employed to design sophisticated stimuli-responsive nanocarriers able to release the entrapped cargo on demand. Among those stimuli ultrasound (US) is considered as one of the most promising triggers for drug delivery systems due to the high tissue-penetrating capability and non-invasiveness. Recently, we employed US as a stimulus to control the drug release from MSNs for the first time, and found that acoustic cavitation played a key role in triggering the release. Those US-responsive MSNs were transported using cellular vehicles toward disease areas where they demonstrated their capacity to kill cancer cells when exposed to US. Light is also an excellent trigger because of the high biocompatibility and the capacity to focus to very small regions. However, its poor penetration in living tissues compromises its use in a clinical scenario. An alternative could be the use of near infrared (NIR) as trigger, as it would be described in this chapter. Other option could be the use of magnetic fields as stimulus because it can reach deep areas into the living tissue without damaging the surrounding tissues. MSNs have been combined with magnetic fields in a many different approaches and a quick overview is here provided. This chapter will show how some of these external stimuli represent a valuable tool for fighting complex diseases such as cancer.
Collapse
Affiliation(s)
- Maria Vallet-Regi
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - Miguel Manzano
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Alejandro Baeza
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
78
|
Besford QA, Ju Y, Wang TY, Yun G, Cherepanov P, Hagemeyer CE, Cavalieri F, Caruso F. Self-Assembled Metal-Phenolic Networks on Emulsions as Low-Fouling and pH-Responsive Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802342. [PMID: 30156378 DOI: 10.1002/smll.201802342] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Interfacial self-assembly is a powerful organizational force for fabricating functional nanomaterials, including nanocarriers, for imaging and drug delivery. Herein, the interfacial self-assembly of pH-responsive metal-phenolic networks (MPNs) on the liquid-liquid interface of oil-in-water emulsions is reported. Oleic acid emulsions of 100-250 nm in diameter are generated by ultrasonication, to which poly(ethylene glycol) (PEG)-based polyphenolic ligands are assembled with simultaneous crosslinking by metal ions, thus forming an interfacial MPN. PEG provides a protective barrier on the emulsion phase and renders the emulsion low fouling. The MPN-coated emulsions have a similar size and dispersity, but an enhanced stability when compared with the uncoated emulsions, and exhibit a low cell association in vitro, a blood circulation half-life of ≈50 min in vivo, and are nontoxic to healthy mice. Furthermore, a model anticancer drug, doxorubicin, can be encapsulated within the emulsion phase at a high loading capacity (≈5 fg of doxorubicin per emulsion particle). The MPN coating imparts pH-responsiveness to the drug-loaded emulsions, leading to drug release at cell internalization pH and a potent cell cytotoxicity. The results highlight a straightforward strategy for the interfacial nanofabrication of pH-responsive emulsion-MPN systems with potential use in biomedical applications.
Collapse
Affiliation(s)
- Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Victoria, 3004, Australia
| | - Gyeongwon Yun
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - PavelV Cherepanov
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Victoria, 3004, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
79
|
Xie Y, Wang J, Wang Z, Krug KA, Rinehart JD. Perfluorocarbon-loaded polydopamine nanoparticles as ultrasound contrast agents. NANOSCALE 2018; 10:12813-12819. [PMID: 29947626 PMCID: PMC6319376 DOI: 10.1039/c8nr02605j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A versatile platform for the development of new ultrasound contrast agents is demonstrated through a one-pot synthesis and fluorination of submicron polydopamine (PDA-F) nanoparticles. The fluorophilicity of these particles allows loading with perfluoropentane (PFP) droplets that display strong and persistent ultrasound contrast in aqueous suspension and ex vivo tissue samples. Contrast under continuous imaging by color Doppler persists for 1 h in 135 nm PDA-F samples, even at maximum clinical imaging power (MI = 1.9). Additionally, use of a Cadence Contrast Pulse Sequence (CPS) results in a non-linear response suitable for imaging at 0.5 mg mL-1. Despite the PFP volatility and the lack of a hollow core, PDA-F particles display minimal signal loss after storage for over a week. The ability to tune size, metal-chelation, and add covalently-bound organic functionality offers myriad possibilities for extending this work to multimodal imaging, targeted delivery, and therapeutic functionality.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhao Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kelsey A. Krug
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
| | - Jeffrey D. Rinehart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
80
|
Tang H, Guo Y, Peng L, Fang H, Wang Z, Zheng Y, Ran H, Chen Y. In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15428-15441. [PMID: 29652130 DOI: 10.1021/acsami.8b01967] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As one of the most representative noninvasive therapeutic modalities, high-intensity focused ultrasound (HIFU) has shown great promise for cancer therapy, but its low therapeutic efficacy and biosafety significantly hinder further extensive clinical translation and application. In this work, we report on the construction of a multifunctional theranostic nanoplatform to synergistically enhance the HIFU-therapeutic efficacy based on nanomedicine. A targeted and temperature-responsive theranostic nanoplatform (PFH/DOX@PLGA/Fe3O4-FA) has been designed and fabricated for efficient ultrasound/magnetic resonance dual-modality imaging-guided HIFU/chemo synergistic therapy. Especially, the folate was conjugated onto the surface of the nanoplatform for achieving active targeting to hepatoma cells by receptor-ligand interaction, which facilitates accumulation of the nanoplatforms into the tumor site. The integrated superparamagnetic iron oxide nanoparticles could generate the contrast enhancement in T2-weighted magnetic resonance imaging. By virtue of the thermal effect as generated by HIFU, liquid-gas phase transition of perfluorohexane (PFH) in nanocomposites was induced to generate PFH microbubbles, which achieved the contrast-enhanced ultrasound imaging and significantly improved the HIFU ablation efficacy. The loaded anticancer drugs could be released from the nanocomposites in a controllable manner (both pH and HIFU responsiveness). These multifunctional nanocomposites have been demonstrated to efficiently suppress the tumor growth based on the enhanced and synergistic chemotherapy and HIFU ablation, providing an efficient theranostic nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Hailin Tang
- Department of Ultrasound , Tongde Hospital of Zhejiang Province , Hangzhou 310012 , P. R. China
| | - Yuan Guo
- Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , P. R. China
| | - Li Peng
- Department of Ultrasound , Tongde Hospital of Zhejiang Province , Hangzhou 310012 , P. R. China
| | - Hui Fang
- Department of Ultrasound , Tongde Hospital of Zhejiang Province , Hangzhou 310012 , P. R. China
| | - Zhigang Wang
- Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Shanghai Sixth People's Hospital , Shanghai 200233 , P. R. China
| | - Haitao Ran
- Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| |
Collapse
|
81
|
Zhang L, Yin T, Li B, Zheng R, Qiu C, Lam KS, Zhang Q, Shuai X. Size-Modulable Nanoprobe for High-Performance Ultrasound Imaging and Drug Delivery against Cancer. ACS NANO 2018; 12:3449-3460. [PMID: 29634240 DOI: 10.1021/acsnano.8b00076] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Among medical imaging modalities available in the clinic, ultrasonography is the most convenient, inexpensive, ionizing-radiation-free, and most common. Micrometer-size perfluorocarbon bubbles have been used as efficient contrast for intravascular ultrasonography, but they are too big for tumor penetration. Nanodroplets (250-1000 nm) encapsulating both perfluorocarbon and drug have been used as an ultrasound-triggered release drug delivery platform against cancer, but they are generally not useful as a tumor imaging agent. The present study aims to develop a type of pH-sensitive, polymersome-based, perfluorocarbon encapsulated ultrasonographic nanoprobe, capable of maintaining at 178 nm during circulation and increasing to 437 nm at the acidic tumor microenvironment. Its small size allowed efficient tumor uptake. At the tumor site, the nanoparticle swells, resulting in lowering of the vaporization threshold for the perfluorocarbon, efficient conversion of nanoprobes to echogenic nano/microbubbles for ultrasonic imaging, and eventual release of doxorubicin from the theranostic nanoprobe for deep tissue chemotherapy, triggered by irradiation with low-frequency ultrasound.
Collapse
Affiliation(s)
- Lu Zhang
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Tinghui Yin
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Bo Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Rongqin Zheng
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Chen Qiu
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Qi Zhang
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | - Xintao Shuai
- Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
82
|
Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov Today 2018; 23:900-911. [DOI: 10.1016/j.drudis.2018.01.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
|
83
|
Yang Q, Chen H, Bai Y, Cao Y, Hu W, Zhang L. Facile Synthesis of Lipid-Perfluorocarbon Nanoemulsion Coated with Silica Shell as an Ultrasound Imaging Agent. Adv Healthc Mater 2018; 7. [PMID: 29266872 DOI: 10.1002/adhm.201700816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/21/2017] [Indexed: 01/03/2023]
Abstract
A novel organic/inorganic hybrid nanovesicle as an ultrasound imaging agent is synthesized via facile emulsion and silica deposition methods. This nanovesicle, hyaluronate (HA)-docetaxel (DTX)/perfluoro-n-pentane (PFP)@SNC, consists of an encapsulated liquid PFP core, loaded DTX, and an HA-decorated silica shell. The HA-DTX/PFP@SNC has a narrow size distribution of 274.5 ± 3.25 nm, a negative zeta potential of -11.6 ± 0.47 mV, and an entrapment efficiency of 86.70% ± 1.42%. HA-DTX/PFP@SNC possesses an ultrasound (US)-triggered drug release and a temperature-dependent size change behavior. Compared with DTX/PFP@soybean phosphatidylcholine (SPC), which has no silica shell, the HA-DTX/PFP@SNC is more stable under various conditions. The MTT assay indicates that the blank HA-PFP@SNC vehicle has no cytotoxicity to A549 cells. Furthermore, due to the HA-mediated tumor-targeting ability, the HA-DTX/PFP@SNC shows obvious cytotoxicity to A549 cells. In vitro and in vivo US imaging results indicate that HA-DTX/PFP@SNC has a stronger and more durable echo signal than DTX/PFP@SPC. Moreover, the in vivo echo signal of HA-DTX/PFP@SNC is stronger than that of DTX/PFP@SNC due to the HA-mediated tumor targeting. Therefore, this novel organic/inorganic hybrid vesicle is a US contrast agent candidate.
Collapse
Affiliation(s)
- Qiang Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Yan Bai
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Institute of Ultrasound Imaging; Chongqing Medical University; Chongqing 400016 P. R. China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital; Chongqing 400030 P. R. China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology; Chongqing Research Center for Pharmaceutical Engineering; School of Pharmacy; Chongqing Medical University; Chongqing 400016 P. R. China
| |
Collapse
|
84
|
Yao M, Ma M, Xu H, Pan X, Xu G, Wu R. Small PLGA nanocapsules Co-encapsulating copper sulfide nanodots and fluorocarbon compound for photoacoustic imaging-guided HIFU synergistic therapy. RSC Adv 2018; 8:4514-4524. [PMID: 35539524 PMCID: PMC9077886 DOI: 10.1039/c7ra12074e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
High intensity focused ultrasound (HIFU), as a promising and minimally invasive therapeutic modality against various solid tumors, has received considerable attention in the biomedical field. However, both the accuracy and efficacy of this technique are currently unsatisfactory. Herein, a nanometer-sized organic/inorganic hybrid enhancement agent for photoacoustic imaging (PAI)-guided HIFU therapy was designed and fabricated by concurrently encapsulating both Cu2−xS nanodots (NDs) and perfluorooctyl bromide (PFOB) into a poly(lactic-co-glycolic acid) PLGA nanocapsule (denoted CPPNs). These nanocapsules assumed a unique core/satellite/shell sandwich structure, and combined the merits of small and uniform particle size (about 120 nm), favorable biosafety, and multifunctional theranostic ability into one system. The high performance of Cu2−xS NDs in the absorption and conversion of near infrared laser confers high PAI contrast capability to the CPPNs, by which the location of the CPPNs within a tumor can be monitored successfully under PAI. Furthermore, our in vitro and in vivo results confirmed that the encapsulated PFOB in CPPNs increased the cavitation effect and thus enhanced the ablation efficacy under HIFU exposure. CPPNs show great potential as an efficient and powerful theranostic agent for future PAI-guided HIFU synergistic therapy. A nanometer-sized inor-ganic/organic hybrid enhancement agent is constructed for photoacoustic imaging-guided high intensity focused ultrasound therapy.![]()
Collapse
Affiliation(s)
- Minghua Yao
- Department of Ultrasound in Medicine
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- People's Republic of China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Huixiong Xu
- Department of Ultrasound in Medicine
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- People's Republic of China
| | - Xiaoxia Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Guang Xu
- Department of Ultrasound in Medicine
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- People's Republic of China
| | - Rong Wu
- Department of Ultrasound in Medicine
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- People's Republic of China
| |
Collapse
|
85
|
Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L, Hao Y, Qian Z. Erythrocyte-Membrane-Coated Prussian Blue/Manganese Dioxide Nanoparticles as H 2O 2-Responsive Oxygen Generators To Enhance Cancer Chemotherapy/Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44410-44422. [PMID: 29210279 DOI: 10.1021/acsami.7b17022] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because of the nontargeting release of anticancer drugs, conventional chemotherapy results in serious side effects and poor therapeutic outcomes. In addition, hypoxia situation in the tumor microenvironment also promotes the growth and metastasis of tumors. Multifunctional nanocarriers with stimuli-activation and hypoxia-relieving properties can help overcome some of these limitations. In this study, we have constructed a nanocarrier which is named PBMn-DOX@RBC. A Prussian blue/manganese dioxide (PBMn) nanoparticle is used as an oxygen precursor or catalyzer for H2O2 activation, and a red blood cell (RBC) membrane is used to increase the loading capacity of doxorubicin (DOX) and prolong the circulation time in vivo. H2O2 is overproduced in tumor tissues and tumor cells. It can be used as a stimulus to activate drug release. In the presence of H2O2, the hypoxia inside the tumors is relieved by the administration of PBMn-DOX@RBC. The generated oxygen disrupts the RBC coated on the surface of PBMn, which accelerates the release of DOX. RBCs also prolong the circulation time of the nanometer system in vivo. By combining the photothermal therapy (PTT) and chemotherapy, the tumor growth inhibition mediated by PBMn-DOX@RBC is further enhanced. PBMn-DOX@RBC fulfills the demands to relieve tumor hypoxia and enhance cancer chemotherapy/PTT.
Collapse
Affiliation(s)
- Jinrong Peng
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Qian Yang
- School of Pharmacy, Chengdu Medical College , No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan, China
| | - Wenting Li
- Department of Pharmacy, West China Second University Hospital , Chengdu, Sichuan, P. R. China
| | - Liwei Tan
- Department of Pharmacy, West China Second University Hospital , Chengdu, Sichuan, P. R. China
| | - Yao Xiao
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Lijuan Chen
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Ying Hao
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Zhiyong Qian
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| |
Collapse
|
86
|
Zhang N, Wang R, Hao J, Yang Y, Zou H, Wang Z. Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors. Int J Nanomedicine 2017; 12:7273-7289. [PMID: 29042775 PMCID: PMC5634388 DOI: 10.2147/ijn.s144058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing
| | - Ronghui Wang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Junnian Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing
| | - Hongmi Zou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing
| |
Collapse
|
87
|
Qian X, Han X, Chen Y. Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials 2017; 142:13-30. [DOI: 10.1016/j.biomaterials.2017.07.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/24/2017] [Accepted: 07/09/2017] [Indexed: 12/11/2022]
|
88
|
Liu T, Zhang N, Wang Z, Wu M, Chen Y, Ma M, Chen H, Shi J. Endogenous Catalytic Generation of O 2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS NANO 2017; 11:9093-9102. [PMID: 28796487 DOI: 10.1021/acsnano.7b03772] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H2O2, facilitating the continuous O2 gas generation in a relatively mild manner even if incubated with 10 μM H2O2, which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H2O2-enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.
Collapse
Affiliation(s)
- Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Nan Zhang
- Second Affiliated Hospital of Chongqing Medical University , Chongqing 400016, People's Republic of China
| | - Zhigang Wang
- Second Affiliated Hospital of Chongqing Medical University , Chongqing 400016, People's Republic of China
| | - Meiying Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| |
Collapse
|
89
|
Luo Z, Jin K, Pang Q, Shen S, Yan Z, Jiang T, Zhu X, Yu L, Pang Z, Jiang X. On-Demand Drug Release from Dual-Targeting Small Nanoparticles Triggered by High-Intensity Focused Ultrasound Enhanced Glioblastoma-Targeting Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31612-31625. [PMID: 28861994 DOI: 10.1021/acsami.7b10866] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glioblastoma is one of the most challenging and intractable tumors with the difficult treatment and poor prognosis. Unsatisfactory traditional systemic chemotherapies for glioblastoma are mainly attributed to the insufficient and nonspecific drug delivery into the brain tumors as well as the incomplete drug release at the tumor sites. Inspired by the facts that angiopep-2 peptide is an acknowledged dual-targeting moiety for brain tumor-targeting delivery and high-intensity focused ultrasound (HIFU) is an ideal trigger for drug release with an ultrahigh energy and millimeter-sized focus ability, in the present study, a novel HIFU-responsive angiopep-2-modified small poly(lactic-co-glycolic acid) (PLGA) hybrid nanoparticle (NP) drug delivery system holding doxorubicin/perfluorooctyl bromide (ANP-D/P) was designed to increase the intratumoral drug accumulation, further trigger on-demand drug release at the glioblastoma sites, and enhance glioblastoma therapy. It was shown that the ANP-D/P was stable and had a small size of 41 nm. The angiopep-2 modification endowed the ANP-D/P with improved blood-brain barrier transportation and specific accumulation in glioblastoma tissues by 17 folds and 13.4 folds compared with unmodified NPs, respectively. Under HIFU irradiation, the ANP-D/P could release 47% of the drug within 2 min and induce the apoptosis of most tumor cells. HIFU-triggered instantaneous drug release at the glioblastoma sites eventually enabled the ANP-D/P to achieve the strongest antiglioblastoma efficacy with the longest median survival time (56 days) of glioblastoma-bearing mice and the minimum vestiges of tumor cells in the pathological slices among all groups. In conclusion, the HIFU-responsive ANP-D/P in this study provided a new way for glioblastoma therapy with a great potential for clinical applications.
Collapse
Affiliation(s)
- Zimiao Luo
- Biomedical Engineering and Technology Institute, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 N. Zhongshan Rd., Shanghai 200062, PR China
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| | - Kai Jin
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| | - Qiang Pang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| | - Shun Shen
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| | - Zhiqiang Yan
- Biomedical Engineering and Technology Institute, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Ting Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| | - Xiaoyan Zhu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| | - Lei Yu
- Biomedical Engineering and Technology Institute, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| | - Xinguo Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Fudan University , 826 N. Zhangheng Rd., Shanghai 201203, PR China
| |
Collapse
|
90
|
Yildirim A, Chattaraj R, Blum NT, Shi D, Kumar K, Goodwin AP. Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation. Adv Healthc Mater 2017; 6:10.1002/adhm.201700514. [PMID: 28699308 PMCID: PMC5627974 DOI: 10.1002/adhm.201700514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/25/2017] [Indexed: 01/20/2023]
Abstract
The mechanical effects of cavitation can be effective for therapy but difficult to control, thus potentially leading to off-target side effects in patients. While administration of ultrasound active agents such as fluorocarbon microbubbles and nanodroplets can locally enhance the effects of high intensity focused ultrasound (HIFU), it has been challenging to prepare ultrasound active agents that are small and stable enough to accumulate in tumors and internalize into cancer cells. Here, this paper reports the synthesis of 100 nm nanoparticle ultrasound agents based on phospholipid-coated, mesoporous, hydrophobically functionalized silica nanoparticles that can internalize into cancer cells and remain acoustically active. The ultrasound agents produce bubbles when subjected to short HIFU pulses (≈6 µs) with peak negative pressure as low as ≈7 MPa and at particle concentrations down to 12.5 µg mL-1 (7 × 109 particles mL-1 ). Importantly, ultrasound agents are effectively uptaken by cancer cells without cytotoxic effects, but HIFU insonation causes destruction of the cells by the acoustically generated bubbles, as demonstrated by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase assays and flow cytometry. Finally, it is showed that the HIFU dose required to effectively eliminate cancer cells in the presence of ultrasound agents causes only a small temperature increase of ≈3.5 °C.
Collapse
Affiliation(s)
- Adem Yildirim
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Rajarshi Chattaraj
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Nicholas T Blum
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Dennis Shi
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kaushlendra Kumar
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Andrew P Goodwin
- Department of Chemical Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
91
|
Zhou Y, Han X, Jing X, Chen Y. Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28795530 DOI: 10.1002/adhm.201700646] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/24/2017] [Indexed: 12/20/2022]
Abstract
Ultrasound (US)-based biomedicine has been extensively explored for its applications in both diagnostic imaging and disease therapy. The fast development of theranostic nanomedicine significantly promotes the development of US-based biomedicine. This progress report summarizes and discusses the recent developments of rational design and fabrication of silica-based micro/nanoparticles for versatile US-based biomedical applications. The synthetic strategies and surface-engineering approaches of silica-based micro/nanoparticles are initially discussed, followed by detailed introduction on their US-based theranostic applications. They have been extensively explored in contrast-enhanced US imaging, US-based multi-modality imaging, synergistic high-intensity focused US (HIFU) ablation, sonosensitizer-enhanced sonodynamic therapy (SDT), as well as US-triggered chemotherapy. Their biological effects and biosafety have been briefly discussed to guarantee further clinical translation. Based on the high biocompatibility, versatile composition/structure and high performance in US-based theranostic biomedicine, these silica-based theranostic agents are expected to pave a new way for achieving efficient US-based theranostics of disease by taking the specific advantages of material science, nanotechnology and US-based biomedicine.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Ultrasound the Third People's Hospital of Chengdu City the Affiliated Hospital of Southwest Jiaotong University Chengdu 600031 P. R. China
| | - Xiaoxia Han
- Institute of Ultrasound Imaging and Department of Ultrasound Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound Hainan General Hospital Haikou 570311 P. R. China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
92
|
Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J Control Release 2017; 260:111-123. [PMID: 28583444 DOI: 10.1016/j.jconrel.2017.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
Abstract
Prostate cancer (PCa) is a worldwide issue, with burgeoning rise in prevalence, morbidity and mortality. Targeted drug delivery, a long sort solution in this regard using controlled release (CR) - nanocarriers, is still a challenge. There is an emerging criticism that, the challenges are due to less appreciation for the biological barriers and lack of corresponding newer technologies. Over the years, more understanding about the biological barriers has come with the progress in characterization techniques. Correspondingly, there is a change in opinion about approaches in clinical trial that; focus of the end point need to be shifted towards disease stabilization for these explorative technologies. Currently, there is a requirement to overcome these newly identified challenges to develop newer affordable therapeutics. The ongoing clinical protocol for therapy using CR-nanocarriers is intravenous injection followed by local targeting to cancer site. This is the most accepted protocol and new CR-nanocarriers are being developed to suit this protocol. In this review, recent progress in treatment of PCa using CR-nanocarriers is analyzed with respect to newly identified biological barriers and design challenges. Possibilities of exploring nanoemulsion (NE) platform for targeted drug delivery to PCa are examined. Repurposing of drugs and combination therapy using NE platform targeted to PCa can be explored for design and development of affordable nanomedicine. In 20yrs. from now there expected to be numerous affordable nanomedicine technologies available in market exploring these lines.
Collapse
Affiliation(s)
- Aravindsiva Sasikumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India.
| |
Collapse
|
93
|
Gai M, Frueh J, Tao T, Petrov AV, Petrov VV, Shesterikov EV, Tverdokhlebov SI, Sukhorukov GB. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. NANOSCALE 2017; 9:7063-7070. [PMID: 28513733 DOI: 10.1039/c7nr01841j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Long term encapsulation combined with spatiotemporal release for a precisely defined quantity of small hydrophilic molecules on demand remains a challenge in various fields ranging from medical drug delivery, controlled release of catalysts to industrial anti-corrosion systems. Free-standing individually sealed polylactic acid (PLA) nano- and microchamber arrays were produced by one-step dip-coating a PDMS stamp into PLA solution for 5 s followed by drying under ambient conditions. The wall thickness of these hydrophobic nano-microchambers is tunable from 150 nm to 7 μm by varying the PLA solution concentration. Furthermore, small hydrophilic molecules were successfully in situ precipitated within individual microchambers in the course of solvent evaporation after sonicating the PLA@PDMS stamp to remove air-bubbles and to load the active substance containing solvent. The cargo capacity of single chambers was determined to be in the range of several picograms, while it amounts to several micrograms per cm2. Two different methods for sealing chambers were compared: microcontact printing versus dip-coating whereby microcontact printing onto a flat PLA sheet allows for entrapment of micro-air-bubbles enabling microchambers with both ultrasound responsiveness and reduced permeability. Cargo release triggered by external high intensity focused ultrasound (HIFU) stimuli is demonstrated by experiment and compared with numerical simulations.
Collapse
Affiliation(s)
- Meiyu Gai
- Queen Mary University of London, School of Engineering and Materials Science, Mile End, Eng, 215, London E1 4NS, UK.
| | - Johannes Frueh
- Micro/Nano Technology Research Centre, Harbin Institute of Technology, Yikuang Street 2, Harbin 150080, China.
| | - Tianyi Tao
- Queen Mary University of London, School of Engineering and Materials Science, Mile End, Eng, 215, London E1 4NS, UK.
| | - Arseniy V Petrov
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Vladimir V Petrov
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Evgeniy V Shesterikov
- Experimental Physics Department, Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Sergei I Tverdokhlebov
- Experimental Physics Department, Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia
| | - Gleb B Sukhorukov
- Queen Mary University of London, School of Engineering and Materials Science, Mile End, Eng, 215, London E1 4NS, UK. and Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia and RASA center, Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russia
| |
Collapse
|
94
|
Singh RK, Patel KD, Leong KW, Kim HW. Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10309-10337. [PMID: 28274115 DOI: 10.1021/acsami.6b16505] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Theranostics based on nanoparticles (NPs) is a promising paradigm in nanomedicine. Mesoporous silica nanoparticle (MSN)-based systems offer unique characteristics to enable multimodal imaging or simultaneous diagnosis and therapy. They include large surface area and volume, tunable pore size, functionalizable surface, and acceptable biological safety. Hybridization with other NPs and chemical modification can further potentiate the multifunctionality of MSN-based systems toward translation. Here, we update the recent progress on MSN-based systems for theranostic purposes. We discuss various synthetic approaches used to construct the theranostic platforms either via intrinsic chemistry or extrinsic combination. These include defect generation in the silica structure, encapsulation of diagnostic NPs within silica, their assembly on the silica surface, and direct conjugation of dye chemicals. Collectively, in vitro and in vivo results demonstrate that multimodal imaging capacities can be integrated with the therapeutic functions of these MSN systems for therapy. With further improvement in bioimaging sensitivity and targeting specificity, the multifunctional MSN-based theranostic systems will find many clinical applications in the near future.
Collapse
Affiliation(s)
- Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Kam W Leong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University , Cheonan 330-714, South Korea
| |
Collapse
|
95
|
Tang H, Zheng Y, Chen Y. Materials Chemistry of Nanoultrasonic Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604105. [PMID: 27991697 DOI: 10.1002/adma.201604105] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Indexed: 06/06/2023]
Abstract
As a special cross-disciplinary research frontier, nanoultrasonic biomedicine refers to the design and synthesis of nanomaterials to solve some critical issues of ultrasound (US)-based biomedicine. The concept of nanoultrasonic biomedicine can also overcome the drawbacks of traditional microbubbles and promote the generation of novel US-based contrast agents or synergistic agents for US theranostics. Here, we discuss the recent developments of material chemistry in advancing the nanoultrasonic biomedicine for diverse US-based bio-applications. We initially introduce the design principles of novel nanoplatforms for serving the nanoultrasonic biomedicine, from the viewpoint of synthetic material chemistry. Based on these principles and diverse US-based bio-application backgrounds, the representative proof-of-concept paradigms on this topic are clarified in detail, including nanodroplet vaporization for intelligent/responsive US imaging, multifunctional nano-contrast agents for US-based multi-modality imaging, activatable synergistic agents for US-based therapy, US-triggered on-demand drug releasing, US-enhanced gene transfection, US-based synergistic therapy on combating the cancer and potential toxicity issue of screening various nanosystems suitable for nanoultrasonic biomedicine. It is highly expected that this novel nanoultrasonic biomedicine and corresponding high performance in US imaging and therapy can significantly promote the generation of new sub-discipline of US-based biomedicine by rationally integrating material chemistry and theranostic nanomedicine with clinical US-based biomedicine.
Collapse
Affiliation(s)
- Hailin Tang
- Department of Diagnostic Ultrasound, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated, Shanghai Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
96
|
Liu J, Shang T, Wang F, Cao Y, Hao L, Ren J, Ran H, Wang Z, Li P, Du Z. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging. Int J Nanomedicine 2017; 12:911-923. [PMID: 28184161 PMCID: PMC5291457 DOI: 10.2147/ijn.s122667] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1′-dioctadecyl-3,3,3′,3′ -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors.
Collapse
Affiliation(s)
- Jianxin Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Fengjuan Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - JianLi Ren
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging; Department of Ultrasound
| | - Zhiyu Du
- Postgraduate Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
97
|
Shin SH, Park EJ, Min C, Choi SI, Jeon S, Kim YH, Kim D. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation. Am J Cancer Res 2017; 7:562-572. [PMID: 28255351 PMCID: PMC5327634 DOI: 10.7150/thno.16895] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors.
Collapse
|
98
|
Xu J, Chen Y, Deng L, Liu J, Cao Y, Li P, Ran H, Zheng Y, Wang Z. Microwave-activated nanodroplet vaporization for highly efficient tumor ablation with real-time monitoring performance. Biomaterials 2016; 106:264-75. [PMID: 27573134 DOI: 10.1016/j.biomaterials.2016.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
|
99
|
Song X, Feng L, Liang C, Yang K, Liu Z. Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. NANO LETTERS 2016; 16:6145-6153. [PMID: 27622835 DOI: 10.1021/acs.nanolett.6b02365] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tumor hypoxia is known to be one of critical reasons that limit the efficacy of cancer therapies, particularly photodynamic therapy (PDT) and radiotherapy (RT) in which oxygen is needed in the process of cancer cell destruction. Herein, taking advantages of the great biocompatibility and high oxygen dissolving ability of perfluorocarbon (PFC), we develop an innovative strategy to modulate the tumor hypoxic microenvironment using nano-PFC as an oxygen shuttle for ultrasound triggered tumor-specific delivery of oxygen. In our experiment, nanodroplets of PFC stabilized by albumin are intravenously injected into tumor-bearing mice under hyperoxic breathing. With a low-power clinically adapted ultrasound transducer applied on their tumor, PFC nanodroplets that adsorb oxygen in the lung would rapidly release oxygen in the tumor under ultrasound stimulation, and then circulate back into the lung for reoxygenation. Such repeated cycles would result in dramatically enhanced tumor oxygenation and thus remarkably improved therapeutic outcomes in both PDT and RT treatment of tumors. Importantly, our strategy may be applied for different types of tumor models. Hence, this work presents a simple strategy to promote tumor oxygenation with great efficiency using agents and instruments readily available in the clinic, so as to overcome the hypoxia-associated resistance in cancer treatment.
Collapse
Affiliation(s)
- Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Medical College of Soochow University , Suzhou, Jiangsu 21513, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| |
Collapse
|
100
|
Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8097-8129. [PMID: 27384408 DOI: 10.1002/adma.201602012] [Citation(s) in RCA: 504] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/28/2016] [Indexed: 05/08/2023]
Abstract
The fast development of photoactivation for cancer treatment provides an efficient photo-therapeutic strategy for cancer treatment, but traditional photodynamic or photothermal therapy suffers from the critical issue of low in vivo penetration depth of tissues. As a non-invasive therapeutic modality, sonodynamic therapy (SDT) can break the depth barrier of photoactivation because ultrasound has an intrinsically high tissue-penetration performance. Micro/nanoparticles can efficiently augment the SDT efficiency based on nanobiotechnology. The state-of-art of the representative achievements on micro/nanoparticle-enhanced SDT is summarized, and specific functions of micro/nanoparticles for SDT are discussed, from the different viewpoints of ultrasound medicine, material science and nanobiotechnology. Emphasis is put on the relationship of structure/composition-SDT performance of micro/nanoparticle-based sonosensitizers. Three types of micro/nanoparticle-augmented SDT are discussed, including organic and inorganic sonosensitizers and micro/nanoparticle-based but sonosensitizer-free strategies to enhance the SDT outcome. SDT-based synergistic cancer therapy augmented by micro/nanoparticles and their biosafety are also included. Some urgent critical issues and potential developments of micro/nanoparticle-augmented SDT for efficient cancer treatment are addressed. It is highly expected that micro/nanoparticle-augmented SDT will be quickly developed as a new and efficient therapeutic modality which will find practical applications in cancer treatment. At the same time, fundamental disciplines regarding materials science, chemistry, medicine and nanotechnology will be advanced.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, P. R. China
| | - Yuanyi Zheng
- Sixth Affiliated Hospital of Shanghai Jiaotong University & Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, P. R. China.
| | - Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|