51
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|
52
|
Cox L, Croxford A, Drinkwater BW. Dynamic patterning of microparticles with acoustic impulse control. Sci Rep 2022; 12:14549. [PMID: 36008430 PMCID: PMC9411184 DOI: 10.1038/s41598-022-18554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
This paper describes the use of impulse control of an acoustic field to create complex and precise particle patterns and then dynamically manipulate them. We first demonstrate that the motion of a particle in an acoustic field depends on the applied impulse and three distinct regimes can be identified. The high impulse regime is the well established mode where particles travel to the force minima of an applied continuous acoustic field. In contrast acoustic field switching in the low impulse regime results in a force field experienced by the particle equal to the time weighted average of the constituent force fields. We demonstrate via simulation and experiment that operating in the low impulse regime facilitates an intuitive and modular route to forming complex patterns of particles. The intermediate impulse regime is shown to enable more localised manipulation of particles. In addition to patterning, we demonstrate a set of impulse control tools to clear away undesired particles to further increase the contrast of the pattern against background. We combine these tools to create high contrast patterns as well as moving and re-configuring them. These techniques have applications in areas such as tissue engineering where they will enable complex, high fidelity cell patterns.
Collapse
Affiliation(s)
- Luke Cox
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK.
| | - Anthony Croxford
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| | - Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
| |
Collapse
|
53
|
Theoretical Zero-Thickness Broadband Holograms Based on Acoustic Sieve Metasurfaces. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acoustic holography is an essential tool for controlling sound waves, generating highly complex and customizable sound fields, and enabling the visualization of sound fields. Based on acoustic sieve metasurfaces (ASMs), this paper proposes a theoretical design approach for zero-thickness broadband holograms. The ASM is a zero-thickness rigid screen with a large number of small holes that allow sound waves to pass through and produce the desired real image in the target plane. The hole arrangement rules are determined using a genetic algorithm and the Rayleigh–Sommerfeld theory. Because the wave from a hole has no extra phase or amplitude modulation, the intractable modulation dispersion can be physically avoided, allowing the proposed ASM-based hologram to potentially function in any frequency band as long as the condition of paraxial approximation is satisfied. Using a numerical simulation based on the combination of the finite element method (FEM) and the boundary element method (BEM), this research achieves broadband holographic imaging with a good effect. The proposed theoretical zero-thickness broadband hologram may provide new possibilities for acoustic holography applications.
Collapse
|
54
|
Goyal R, Athanassiadis AG, Ma Z, Fischer P. Amplification of Acoustic Forces Using Microbubble Arrays Enables Manipulation of Centimeter-Scale Objects. PHYSICAL REVIEW LETTERS 2022; 128:254502. [PMID: 35802439 DOI: 10.1103/physrevlett.128.254502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Manipulation of macroscale objects by sound is fundamentally limited by the wavelength and object size. Resonant subwavelength scatterers such as bubbles can decouple these requirements, but typically the forces are weak. Here we show that patterning bubbles into arrays leads to geometric amplification of the scattering forces, enabling the precise assembly and manipulation of cm-scale objects. We rotate a 1 cm object continuously or position it with 15 μm accuracy, using sound with a 50 cm wavelength. The results are described well by a theoretical model. Our results lay the foundation for using secondary Bjerknes forces in the controlled organization and manipulation of macroscale structures.
Collapse
Affiliation(s)
- Rahul Goyal
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | | - Zhichao Ma
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
55
|
A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat Commun 2022; 13:3459. [PMID: 35710904 PMCID: PMC9200942 DOI: 10.1038/s41467-022-31014-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
Newly developed acoustic technologies are playing a transformational role in life science and biomedical applications ranging from the activation and inactivation of mechanosensitive ion channels for fundamental physiological processes to the development of contact-free, precise biofabrication protocols for tissue engineering and large-scale manufacturing of organoids. Here, we provide our perspective on the development of future acoustic technologies and their promise in addressing critical challenges in biomedicine.
Collapse
|
56
|
Han J, Saravanapavanantham M, Chua MR, Lang JH, Bulović V. A versatile acoustically active surface based on piezoelectric microstructures. MICROSYSTEMS & NANOENGINEERING 2022; 8:55. [PMID: 35646386 PMCID: PMC9135689 DOI: 10.1038/s41378-022-00384-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate a versatile acoustically active surface consisting of an ensemble of piezoelectric microstructures that are capable of radiating and sensing acoustic waves. A freestanding microstructure array embossed in a single step on a flexible piezoelectric sheet of polyvinylidene fluoride (PVDF) leads to high-quality acoustic performance, which can be tuned by the design of the embossed microstructures. The high sensitivity and large bandwidth for sound generation demonstrated by this acoustically active surface outperform previously reported thin-film loudspeakers using PVDF, PVDF copolymers, or voided charged polymers without microstructures. We further explore the directivity of this device and its use on a curved surface. In addition, high-fidelity sound perception is demonstrated by the surface, enabling its microphonic application for voice recording and speaker recognition. The versatility, high-quality acoustic performance, minimal form factor, and scalability of future production of this acoustically active surface can lead to broad industrial and commercial adoption for this technology.
Collapse
Affiliation(s)
- Jinchi Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mayuran Saravanapavanantham
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Matthew R. Chua
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Jeffrey H. Lang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
57
|
Liu P, Tian Z, Yang K, Naquin TD, Hao N, Huang H, Chen J, Ma Q, Bachman H, Zhang P, Xu X, Hu J, Huang TJ. Acoustofluidic black holes for multifunctional in-droplet particle manipulation. SCIENCE ADVANCES 2022; 8:eabm2592. [PMID: 35363512 PMCID: PMC10938576 DOI: 10.1126/sciadv.abm2592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Acoustic black holes offer superior capabilities for slowing down and trapping acoustic waves for various applications such as metastructures, energy harvesting, and vibration and noise control. However, no studies have considered the linear and nonlinear effects of acoustic black holes on micro/nanoparticles in fluids. This study presents acoustofluidic black holes (AFBHs) that leverage controlled interactions between AFBH-trapped acoustic wave energy and particles in droplets to enable versatile particle manipulation functionalities, such as translation, concentration, and patterning of particles. We investigated the AFBH-enabled wave energy trapping and wavelength shrinking effects, as well as the trapped wave energy-induced acoustic radiation forces on particles and acoustic streaming in droplets. This study not only fills the gap between the emerging fields of acoustofluidics and acoustic black holes but also leads to a class of AFBH-based in-droplet particle manipulation toolsets with great potential for many applications, such as biosensing, point-of-care testing, and drug screening.
Collapse
Affiliation(s)
- Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Ty Downing Naquin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nanjing Hao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Huiyu Huang
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinyan Chen
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qiuxia Ma
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hunter Bachman
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Peiran Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junhui Hu
- State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
58
|
Wang Y, Pan H, Mei D, Xu C, Weng W. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers. LAB ON A CHIP 2022; 22:1149-1161. [PMID: 35134105 DOI: 10.1039/d2lc00046f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acoustic tweezers based on travelling surface acoustic waves (TSAWs) have the potential for contactless trajectory manipulation and motion-parameter regulation of microparticles in biological and microfluidic applications. Here, we present a novel design of a tri-directional symmetrical acoustic tweezers device that enables the precise manipulation of linear, clockwise, and anticlockwise trajectories of microparticles. By switching the excitation combinations of interdigital electrodes (IDTs), various shape patterns of acoustic pressure fields can be formed to capture and steer microparticles accurately according to pre-defined trajectories. Numerical simulations and experimental tests were conducted in this study. By adjusting the input electric signals and the fluid's viscosity, the device is able to manipulate microparticles of various forms as well as brine shrimp egg cells with the accurate modulation of motion parameters. The results show that the proposed programmable design possesses low-cost, compact, non-contact, and high biocompatibility benefits, with the capacity to accurately manage microparticles in a range of motion trajectories, independent of their physical and/or chemical characteristics. Thus, our design has strong potential applications in chemical composition analysis, drug delivery, and cell assembly.
Collapse
Affiliation(s)
- Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hemin Pan
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chengyao Xu
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wanyu Weng
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
59
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
60
|
Ma Z, Joh H, Fan DE, Fischer P. Dynamic Ultrasound Projector Controlled by Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104401. [PMID: 35072361 PMCID: PMC8948597 DOI: 10.1002/advs.202104401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Dynamic acoustic wavefront control is essential for many acoustic applications, including biomedical imaging and particle manipulation. Conventional methods are either static or in the case of phased transducer arrays are limited to a few elements and hence limited control. Here, a dynamic acoustic wavefront control method based on light patterns that locally trigger the generation of microbubbles is introduced. As a small gas bubble can effectively stop ultrasound transmission in a liquid, the optical images are used to drive a short electrolysis and form microbubble patterns. The generation of microbubbles is controlled by structured light projection at a low intensity of 65 mW cm-2 and only requires about 100 ms. The bubble pattern is thus able to modify the wavefront of acoustic waves from a single transducer. The method is employed to realize an acoustic projector that can generate various acoustic images and patterns, including multiple foci and acoustic phase gradients. Hydrophone scans show that the acoustic field after the modulation by the microbubble pattern forms according to the prediction. It is believed that combining a versatile optical projector to realize an ultrasound projector is a general scheme, which can benefit a multitude of applications based on dynamic acoustic fields.
Collapse
Affiliation(s)
- Zhichao Ma
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 3Stuttgart70569Germany
| | - Hyungmok Joh
- Materials Science and Engineering ProgramTexas Materials InstituteThe University of Texas at AustinAustinTX78712USA
| | - Donglei Emma Fan
- Materials Science and Engineering ProgramTexas Materials InstituteThe University of Texas at AustinAustinTX78712USA
- Walker Department of Mechanical EngineeringThe University of Texas at AustinAustinTX78712USA
| | - Peer Fischer
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 3Stuttgart70569Germany
- Institute of Physical ChemistryUniversity of StuttgartPfaffenwaldring 55Stuttgart70569Germany
| |
Collapse
|
61
|
Synthetic developmental biology: Engineering approaches to guide multicellular organization. Stem Cell Reports 2022; 17:715-733. [PMID: 35276092 PMCID: PMC9023767 DOI: 10.1016/j.stemcr.2022.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Multicellular organisms of various complexities self-organize in nature. Organoids are in vitro 3D structures that display important aspects of the anatomy and physiology of their in vivo counterparts and that develop from pluripotent or tissue-specific stem cells through a self-organization process. In this review, we describe the multidisciplinary concept of “synthetic developmental biology” where engineering approaches are employed to guide multicellular organization in an experimental setting. We introduce a novel classification of engineering approaches based on the extent of microenvironmental manipulation applied to organoids. In the final section, we discuss how engineering tools might help overcome current limitations in organoid construction.
Collapse
|
62
|
Bomkamp C, Skaalure SC, Fernando GF, Ben‐Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102908. [PMID: 34786874 PMCID: PMC8787436 DOI: 10.1002/advs.202102908] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Indexed: 05/03/2023]
Abstract
Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.
Collapse
Affiliation(s)
- Claire Bomkamp
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | | | | - Tom Ben‐Arye
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | - Elliot W. Swartz
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | |
Collapse
|
63
|
Hu Q, Ma T, Zhang Q, Wang J, Yang Y, Cai F, Zheng H. 3-D Acoustic Tweezers Using a 2-D Matrix Array With Time-Multiplexed Traps. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3646-3653. [PMID: 34280096 DOI: 10.1109/tuffc.2021.3098191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of acoustic tweezers for precise manipulation of microparticles in the aqueous environment is essential and challenging for biomechanical applications in vivo. A 3-D acoustic tweezer is developed in this study for 3-D manipulation by using a two-dimensional (2-D) phased array consisting of 256 elements operating at 1.04 MHz. The emission phases of each element are iteratively determined by a backpropagation algorithm to generate multiple acoustic traps. Different traps are multiplexed in time, thus forming synthesized acoustic fields. We demonstrate the 3-D levitation and translation of positive acoustic contrast particles, a major class of bioparticles, in water by different acoustic traps, and compare the positional deviation along the intended path via experimentally measured trajectories. Improved manipulating stability was achieved by multiplexed acoustic traps. The 3-D acoustic tweezers proposed in this study provide a versatile approach of contactless bioparticle trapping and translation, paving the way toward future application of nanodroplet and microbubble manipulations.
Collapse
|
64
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
65
|
Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104730. [PMID: 34596923 PMCID: PMC8971140 DOI: 10.1002/adma.202104730] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Indexed: 05/09/2023]
Abstract
Bioprinting, within the emerging field of biofabrication, aims at the fabrication of functional biomimetic constructs. Different 3D bioprinting techniques have been adapted to bioprint cell-laden bioinks. However, single-material bioprinting techniques oftentimes fail to reproduce the complex compositions and diversity of native tissues. Multi-material bioprinting as an emerging approach enables the fabrication of heterogeneous multi-cellular constructs that replicate their host microenvironments better than single-material approaches. Here, bioprinting modalities are reviewed, their being adapted to multi-material bioprinting is discussed, and their advantages and challenges, encompassing both custom-designed and commercially available technologies are analyzed. A perspective of how multi-material bioprinting opens up new opportunities for tissue engineering, tissue model engineering, therapeutics development, and personalized medicine is offered.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Vahid Karamzadeh
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
66
|
Akkoyun F, Gucluer S, Ozcelik A. Potential of the acoustic micromanipulation technologies for biomedical research. BIOMICROFLUIDICS 2021; 15:061301. [PMID: 34849184 PMCID: PMC8616630 DOI: 10.1063/5.0073596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 05/04/2023]
Abstract
Acoustic micromanipulation technologies are a set of versatile tools enabling unparalleled micromanipulation capabilities. Several characteristics put the acoustic micromanipulation technologies ahead of most of the other tweezing methods. For example, acoustic tweezers can be adapted as non-invasive platforms to handle single cells gently or as probes to stimulate or damage tissues. Besides, the nature of the interactions of acoustic waves with solids and liquids eliminates labeling requirements. Considering the importance of highly functional tools in biomedical research for empowering important discoveries, acoustic micromanipulation can be valuable for researchers in biology and medicine. Herein, we discuss the potential of acoustic micromanipulation technologies from technical and application points of view in biomedical research.
Collapse
Affiliation(s)
| | | | - Adem Ozcelik
- Author to whom correspondence should be addressed:
| |
Collapse
|
67
|
Serna JA, Rueda-Gensini L, Céspedes-Valenzuela DN, Cifuentes J, Cruz JC, Muñoz-Camargo C. Recent Advances on Stimuli-Responsive Hydrogels Based on Tissue-Derived ECMs and Their Components: Towards Improving Functionality for Tissue Engineering and Controlled Drug Delivery. Polymers (Basel) 2021; 13:3263. [PMID: 34641079 PMCID: PMC8512780 DOI: 10.3390/polym13193263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Due to their highly hydrophilic nature and compositional versatility, hydrogels have assumed a protagonic role in the development of physiologically relevant tissues for several biomedical applications, such as in vivo tissue replacement or regeneration and in vitro disease modeling. By forming interconnected polymeric networks, hydrogels can be loaded with therapeutic agents, small molecules, or cells to deliver them locally to specific tissues or act as scaffolds for hosting cellular development. Hydrogels derived from decellularized extracellular matrices (dECMs), in particular, have gained significant attention in the fields of tissue engineering and regenerative medicine due to their inherently high biomimetic capabilities and endowment of a wide variety of bioactive cues capable of directing cellular behavior. However, these hydrogels often exhibit poor mechanical stability, and their biological properties alone are not enough to direct the development of tissue constructs with functional phenotypes. This review highlights the different ways in which external stimuli (e.g., light, thermal, mechanical, electric, magnetic, and acoustic) have been employed to improve the performance of dECM-based hydrogels for tissue engineering and regenerative medicine applications. Specifically, we outline how these stimuli have been implemented to improve their mechanical stability, tune their microarchitectural characteristics, facilitate tissue morphogenesis and enable precise control of drug release profiles. The strategic coupling of the bioactive features of dECM-based hydrogels with these stimulation schemes grants considerable advances in the development of functional hydrogels for a wide variety of applications within these fields.
Collapse
Affiliation(s)
| | | | | | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (J.A.S.); (L.R.-G.); (D.N.C.-V.); (J.C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (J.A.S.); (L.R.-G.); (D.N.C.-V.); (J.C.)
| |
Collapse
|
68
|
Kolesnik K, Xu M, Lee PVS, Rajagopal V, Collins DJ. Unconventional acoustic approaches for localized and designed micromanipulation. LAB ON A CHIP 2021; 21:2837-2856. [PMID: 34268539 DOI: 10.1039/d1lc00378j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acoustic fields are ideal for micromanipulation, being biocompatible and with force gradients approaching the scale of single cells. They have accordingly found use in a variety of microfluidic devices, including for microscale patterning, separation, and mixing. The bulk of work in acoustofluidics has been predicated on the formation of standing waves that form periodic nodal positions along which suspended particles and cells are aligned. An evolving range of applications, however, requires more targeted micromanipulation to create unique patterns and effects. To this end, recent work has made important advances in improving the flexibility with which acoustic fields can be applied, impressively demonstrating generating arbitrary arrangements of pressure fields, spatially localizing acoustic fields and selectively translating individual particles in ways that are not achievable via traditional approaches. In this critical review we categorize and examine these advances, each of which open the door to a wide range of applications in which single-cell fidelity and flexible micromanipulation are advantageous, including for tissue engineering, diagnostic devices, high-throughput sorting and microfabrication.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
69
|
Measurement of the Thermal Effect of Standing Surface Acoustic Waves in Microchannel by Fluoresence Intensity. MICROMACHINES 2021; 12:mi12080934. [PMID: 34442556 PMCID: PMC8401515 DOI: 10.3390/mi12080934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/10/2023]
Abstract
Temperature is an important parameter for many medical and biological applications. It is key to measuring the temperature of acoustofluidics devices for controlling the device’s temperature. In this paper, Rhodamine B was used to measure the temperature change of the microchannel induced by the SSAWs’ thermal effect in microfluidics. A thermocouple was integrated into the microfluidics device to calibrate the relationship between the fluorescent intensity ratios of Rhodamine B and the temperature. Then, the fluid temperature in the microchannel heated by the SSAWs was measured by the fluorescent signal intensity ratio in the acoustofluidics device. The fluid temperature with different input voltages and different flow rates was measured. The results show that SSAWs can heat the still fluid rapidly to 80 °c, and the flow rates will influence the temperature of the fluid. The results will be useful for precisely controlling the temperature of acoustofluidics devices.
Collapse
|
70
|
Lu X, Twiefel J, Ma Z, Yu T, Wallaschek J, Fischer P. Dynamic Acoustic Levitator Based On Subwavelength Aperture Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100888. [PMID: 34105900 PMCID: PMC8336493 DOI: 10.1002/advs.202100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Acoustic levitation provides a means to achieve contactless manipulation of fragile materials and biological samples. Most acoustic levitators rely on complex electronic hardware and software to shape the acoustic field and realize their dynamic operation. Here, the authors introduce a dynamic acoustic levitator that is based on mechanically controlling the opening and (partial) closing of subwavelength apertures. This simple approach relies on the use of a single ultrasonic transducer and is shown to permit the facile and reliable manipulation of a variety targets ranging from solid particles, to fluid and ferrofluidic drops. Experimental observations agree well with numerical simulations of the Gor'kov potential. Remarkably, this system even enables the generation of time-varying potentials and induces oscillatory and rotational motion in the levitated objects via a feedback mechanism between the trapped object and the trapping potential. This is shown to result in long distance translation, in-situ rotation and self-modulated oscillation of the trapped particles. In addition, dense ferrofluidic droplets are levitated and transformed inside the levitator. Controlling subwavelength apertures opens the possibility to realize simple powerful levitators that nevertheless allow for the versatile dynamic manipulation of levitated matter.
Collapse
Affiliation(s)
- Xiaolong Lu
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 3Stuttgart70569Germany
- State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingJiangsu210016China
| | - Jens Twiefel
- Institute of Dynamics and Vibration ResearchLeibniz Universität HannoverAn der Universität 1Garbsen30823Germany
| | - Zhichao Ma
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 3Stuttgart70569Germany
| | - Tingting Yu
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 3Stuttgart70569Germany
- Institute of Physical ChemistryUniversity of StuttgartPfaffenwaldring 55Stuttgart70569Germany
| | - Jörg Wallaschek
- Institute of Dynamics and Vibration ResearchLeibniz Universität HannoverAn der Universität 1Garbsen30823Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent SystemsHeisenbergstr. 3Stuttgart70569Germany
- Institute of Physical ChemistryUniversity of StuttgartPfaffenwaldring 55Stuttgart70569Germany
| |
Collapse
|
71
|
Tang T, Dong B, Huang L. Agglomeration of particles by a converging ultrasound field and their quantitative assessments. ULTRASONICS SONOCHEMISTRY 2021; 75:105590. [PMID: 34023590 PMCID: PMC8165450 DOI: 10.1016/j.ultsonch.2021.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 05/07/2023]
Abstract
The acoustic radiation force resulting from acoustic waves have been extensively studied for the contact-free generation of organized patterning arrays. The precise arrangement of microscopic objects clustered at the pressure nodes is critical to the development of functional structures and patterned surfaces. However, the size of the clusters is restricted by the saturation limit of the acoustic nodes. Here, we present a bulk acoustic wave (BAW) platform, which employs a two-dimensional acoustic wave to propel particles of various sizes. Experimentally, when particles are large, significant acoustic energy is scattered and partly absorbed by the matched layers in front of the sensors. The acoustic radiation force from a convergent acoustic pressure field agglomerates the large polystyrene (PS) particles towards the central region instead of the pressure nodes. The parametric analysis has been performed to assess the transition in the particles from clustering at the organized nodal arrays to agglomerating in the central region, which is a function of particle size, particle concentration, and load voltage. Statistically, the particles can agglomerate with a cluster ratio greater than 70%, and this ratio can be improved by increasing the load power/voltage supplied to the transducers. With its ability to perform biocompatible, label-free, and contact-free self-assembly, this concept offers a new possibility in the fabrication of colloidal layers, the recreation of tissue microstructure, the development of organoid spheroid cultures, the migration of microorganisms, and the assembly of bioprinting materials.
Collapse
Affiliation(s)
- Tianquan Tang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Lab for Aerodynamics and Acoustics, HKU Zhejiang Institute of Research and Innovation, 1623 Dayuan Road, Lin An District, Hangzhou, China.
| | - Bin Dong
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Lab for Aerodynamics and Acoustics, HKU Zhejiang Institute of Research and Innovation, 1623 Dayuan Road, Lin An District, Hangzhou, China
| | - Lixi Huang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Lab for Aerodynamics and Acoustics, HKU Zhejiang Institute of Research and Innovation, 1623 Dayuan Road, Lin An District, Hangzhou, China
| |
Collapse
|
72
|
Fushimi T, Yamamoto K, Ochiai Y. Acoustic hologram optimisation using automatic differentiation. Sci Rep 2021; 11:12678. [PMID: 34135364 PMCID: PMC8209099 DOI: 10.1038/s41598-021-91880-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Acoustic holograms are the keystone of modern acoustics. They encode three-dimensional acoustic fields in two dimensions, and their quality determines the performance of acoustic systems. Optimisation methods that control only the phase of an acoustic wave are considered inferior to methods that control both the amplitude and phase of the wave. In this paper, we present Diff-PAT, an acoustic hologram optimisation platform with automatic differentiation. We show that in the most fundamental case of optimizing the output amplitude to match the target amplitude; our method with only phase modulation achieves better performance than conventional algorithm with both amplitude and phase modulation. The performance of Diff-PAT was evaluated by randomly generating 1000 sets of up to 32 control points for single-sided arrays and single-axis arrays. This optimisation platform for acoustic hologram can be used in a wide range of applications of PATs without introducing any changes to existing systems that control the PATs. In addition, we applied Diff-PAT to a phase plate and achieved an increase of > 8 dB in the peak noise-to-signal ratio of the acoustic hologram.
Collapse
Affiliation(s)
- Tatsuki Fushimi
- R&D Center for Digital Nature, University of Tsukuba, Tsukuba, 305-8550, Japan. .,Faculty of Library, Information and Media Science, University of Tsukuba, Tsukuba, 305-8550, Japan.
| | - Kenta Yamamoto
- R&D Center for Digital Nature, University of Tsukuba, Tsukuba, 305-8550, Japan.,Graduate School of Library, Information and Media Studies, University of Tsukuba, Tsukuba, 305-8550, Japan
| | - Yoichi Ochiai
- R&D Center for Digital Nature, University of Tsukuba, Tsukuba, 305-8550, Japan.,Faculty of Library, Information and Media Science, University of Tsukuba, Tsukuba, 305-8550, Japan.,Pixie Dust Technologies, Inc, Tokyo, 101-0061, Japan
| |
Collapse
|
73
|
Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, Fischer H. Multiscale 3D Bioprinting by Nozzle-Free Acoustic Droplet Ejection. SMALL METHODS 2021; 5:e2000971. [PMID: 34927902 DOI: 10.1002/smtd.202000971] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Indexed: 06/14/2023]
Abstract
Bioprinting allows the manufacture of complex cell-laden hydrogel constructs that can mature into tissue replacements in subsequent cell culture processes. The nozzles used in currently available bioprinters limit the print resolution and at dimensions below 100 µm clogging is expected. Most critically, the reduction of nozzle diameter also increases shear stress during printing. At critical shear stress, mechanical damage to printed cells triggers cell death. To overcome these limitations, a novel 3D bioprinting method based on the principle of acoustic droplet ejection (ADE) is introduced here. The absence of a nozzle in this method minimizes critical shear stress. A numerical simulation reveals that maximum shear stress during the ADE process is 2.7 times lower than with a Ø150 µm microvalve nozzle. Printing of cell clusters contained in droplets at the millimeter length scale, as well as in droplets the size of a single cell, is feasible. The precise 3D build-up of cell-laden structures is demonstrated and evidence is provided that there are no negative effects on stem cell morphology, proliferation, or differentiation capacities. This multiscale acoustic bioprinting technique thus holds promise for cell-preserving creation of complex and individualized cell-laden 3D hydrogel structures.
Collapse
Affiliation(s)
- Stefan Jentsch
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Kuckelkorn
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Benedikt Gundert
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
74
|
Barad HN, Kwon H, Alarcón-Correa M, Fischer P. Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects. ACS NANO 2021; 15:5861-5875. [PMID: 33830726 PMCID: PMC8155328 DOI: 10.1021/acsnano.0c09999] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/02/2021] [Indexed: 05/05/2023]
Abstract
Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.
Collapse
Affiliation(s)
- Hannah-Noa Barad
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hyunah Kwon
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Mariana Alarcón-Correa
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
75
|
Fornell A, Pohlit H, Shi Q, Tenje M. Acoustic focusing of beads and cells in hydrogel droplets. Sci Rep 2021; 11:7479. [PMID: 33820916 PMCID: PMC8021569 DOI: 10.1038/s41598-021-86985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
The generation of hydrogel droplets using droplet microfluidics has emerged as a powerful tool with many applications in biology and medicine. Here, a microfluidic system to control the position of particles (beads or astrocyte cells) in hydrogel droplets using bulk acoustic standing waves is presented. The chip consisted of a droplet generator and a 380 µm wide acoustic focusing channel. Droplets comprising hydrogel precursor solution (polyethylene glycol tetraacrylate or a combination of polyethylene glycol tetraacrylate and gelatine methacrylate), photoinitiator and particles were generated. The droplets passed along the acoustic focusing channel where a half wavelength acoustic standing wave field was generated, and the particles were focused to the centre line of the droplets (i.e. the pressure nodal line) by the acoustic force. The droplets were cross-linked by exposure to UV-light, freezing the particles in their positions. With the acoustics applied, 89 ± 19% of the particles (polystyrene beads, 10 µm diameter) were positioned in an area ± 10% from the centre line. As proof-of-principle for biological particles, astrocytes were focused in hydrogel droplets using the same principle. The viability of the astrocytes after 7 days in culture was 72 ± 22% when exposed to the acoustic focusing compared with 70 ± 19% for samples not exposed to the acoustic focusing. This technology provides a platform to control the spatial position of bioparticles in hydrogel droplets, and opens up for the generation of more complex biological hydrogel structures.
Collapse
Affiliation(s)
- Anna Fornell
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden.,MAXIV Laboratory, Lund University, 22484, Lund, Sweden
| | - Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Qian Shi
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
76
|
Guo S, Huang H, Zeng W, Jiang Z, Wang X, Huang W, Wang X. Facile cell patterning induced by combined surface topography and chemistry on polydopamine-defined nanosubstrates. NANOTECHNOLOGY 2021; 32:145303. [PMID: 33361576 DOI: 10.1088/1361-6528/abd6d2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell patterning holds significant implications for cell-based analysis and high-throughput screening. The challenge and key factor for formation of cell patterns is to precisely modulate the interaction between cells and substrate surfaces. Many nanosubstrates have been developed to control cell adhesion and patterning, however, requirements of complicated fabrication procedures, harsh reaction conditions, and delicate manipulation are not routinely feasible. Here, we developed a hierarchical polydimethylsiloxane nanosubstrate (HPNS) coated with mussel-inspired polydopamine (PDA) micropatterns for effective cell patterning, depending on both surface topography and chemistry. HPNSs obtained by facile template-assisted replication brought enhanced topographic interaction between cells and substrates, but they were innately hydrophobic and cell-repellent. The hydrophobic nanosubstrates were converted to be hydrophilic after PDA coatings formed via spontaneous self-polymerization, which greatly facilitated cell adhesion. As such, without resorting to any external forces or physical constraints, cells selectively adhered and spread on spatially defined PDA regions with high efficiency, and well-defined cell microarrays could be formed within 20 min. Therefore, this easy-to-fabricate nanosubstrate with no complex chemical modification will afford a facile yet effective platform for rapid cell patterning.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Haiyan Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Weiwu Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xin Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xinghuan Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
77
|
Soto F, Wang J, Deshmukh S, Demirci U. Reversible Design of Dynamic Assemblies at Small Scales. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 3:2000193. [PMID: 35663639 PMCID: PMC9165726 DOI: 10.1002/aisy.202000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 05/08/2023]
Abstract
Emerging bottom-up fabrication methods have enabled the assembly of synthetic colloids, microrobots, living cells, and organoids to create intricate structures with unique properties that transcend their individual components. This review provides an access point to the latest developments in externally driven assembly of synthetic and biological components. In particular, we emphasize reversibility, which enables the fabrication of multiscale systems that would not be possible under traditional techniques. Magnetic, acoustic, optical, and electric fields are the most promising methods for controlling the reversible assembly of biological and synthetic subunits since they can reprogram their assembly by switching on/off the external field or shaping these fields. We feature capabilities to dynamically actuate the assembly configuration by modulating the properties of the external stimuli, including frequency and amplitude. We describe the design principles which enable the assembly of reconfigurable structures. Finally, we foresee that the high degree of control capabilities offered by externally driven assembly will enable broad access to increasingly robust design principles towards building advanced dynamic intelligent systems.
Collapse
Affiliation(s)
- Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Shreya Deshmukh
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
- Department of Bioengineering, School of Engineering, School of Medicine, Stanford University, Stanford, California, 94305-4125, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| |
Collapse
|
78
|
Lin Q, Wang J, Cai F, Zhang R, Zhao D, Xia X, Wang J, Zheng H. A deep learning approach for the fast generation of acoustic holograms. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2312. [PMID: 33940859 DOI: 10.1121/10.0003959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Acoustic holographic techniques are crucial in diverse applications, such as three-dimensional holographic display and particle manipulation. However, conventional methods for computer-generated acoustics holography rely heavily on iterative optimization algorithms, which are time-consuming and particularly hinder their capacity of generating a dynamic hologram in real time. Here, a deep learning approach based on U-Net is proposed to rapidly generate an acoustic hologram with optimal amplitude and phase maps. It is demonstrated that, after being trained with adequate data that are numerically synthesized by the pseudo-inverse method, the proposed deep learning approach can generate both amplitude and phase maps for new target images with an improved overall reconstruction quality. Remarkably, after the offline cost is compensated by a lower online cost for the proposed DL approach, the hologram generation speed is significantly accelerated by the proposed deep learning approach as compared with the pseudo-inverse method, especially for complicated or dynamic images. With the hierarchical feature learning capability and the fast online computational speed, the proposed deep learning approach can serve as a smart platform for rapidly generating complete maps of holograms for the sophisticated or dynamical target images, leading to the new possibility of real-time acoustic-hologram-based applications.
Collapse
Affiliation(s)
- Qin Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaqian Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rujun Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Degang Zhao
- Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangxiang Xia
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinping Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
79
|
Guex AG, Di Marzio N, Eglin D, Alini M, Serra T. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater Today Bio 2021; 10:100110. [PMID: 33997761 PMCID: PMC8094912 DOI: 10.1016/j.mtbio.2021.100110] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Novel approaches, combining technology, biomaterial design, and cutting-edge cell culture, have been increasingly considered to advance the field of tissue engineering and regenerative medicine. Within this context, acoustic manipulation to remotely control spatial cellular organization within a carrier matrix has arisen as a particularly promising method during the last decade. Acoustic or sound-induced manipulation takes advantage of hydrodynamic forces exerted on systems of particles within a liquid medium by standing waves. Inorganic or organic particles, cells, or organoids assemble within the nodes of the standing wave, creating distinct patterns in response to the applied frequency and amplitude. Acoustic manipulation has advanced from micro- or nanoparticle arrangement in 2D to the assembly of multiple cell types or organoids into highly complex in vitro tissues. In this review, we discuss the past research achievements in the field of acoustic manipulation with particular emphasis on biomedical application. We survey microfluidic, open chamber, and high throughput devices for their applicability to arrange non-living and living units in buffer or hydrogels. We also investigate the challenges arising from different methods, and their prospects to gain a deeper understanding of in vitro tissue formation and application in the field of biomedical engineering. Work on sound waves to spatially control particulate systems is reviewed. Classification of surface acoustic waves, bulk acoustic waves, and Faraday waves. Sound can be used to arrange, separate, or filter polymer particles. Sound can pattern cells in 3D to induce morphogenesis. Long-term applied sound induces differentiation and tissue formation.
Collapse
Affiliation(s)
- A G Guex
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - N Di Marzio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.,Department of Health Sciences, Università del Piemonte Orientale (UPO), Novara, Italy
| | - D Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - M Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - T Serra
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
80
|
Wang Z, Wang H, Becker R, Rufo J, Yang S, Mace BE, Wu M, Zou J, Laskowitz DT, Huang TJ. Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. MICROSYSTEMS & NANOENGINEERING 2021; 7:20. [PMID: 34567734 PMCID: PMC8433131 DOI: 10.1038/s41378-021-00244-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/16/2020] [Accepted: 01/10/2021] [Indexed: 05/12/2023]
Abstract
Traumatic brain injury (TBI) is a global cause of morbidity and mortality. Initial management and risk stratification of patients with TBI is made difficult by the relative insensitivity of screening radiographic studies as well as by the absence of a widely available, noninvasive diagnostic biomarker. In particular, a blood-based biomarker assay could provide a quick and minimally invasive process to stratify risk and guide early management strategies in patients with mild TBI (mTBI). Analysis of circulating exosomes allows the potential for rapid and specific identification of tissue injury. By applying acoustofluidic exosome separation-which uses a combination of microfluidics and acoustics to separate bioparticles based on differences in size and acoustic properties-we successfully isolated exosomes from plasma samples obtained from mice after TBI. Acoustofluidic isolation eliminated interference from other blood components, making it possible to detect exosomal biomarkers for TBI via flow cytometry. Flow cytometry analysis indicated that exosomal biomarkers for TBI increase in the first 24 h following head trauma, indicating the potential of using circulating exosomes for the rapid diagnosis of TBI. Elevated levels of TBI biomarkers were only detected in the samples separated via acoustofluidics; no changes were observed in the analysis of the raw plasma sample. This finding demonstrated the necessity of sample purification prior to exosomal biomarker analysis. Since acoustofluidic exosome separation can easily be integrated with downstream analysis methods, it shows great potential for improving early diagnosis and treatment decisions associated with TBI.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Haichen Wang
- Department of Neurology, Duke University, Durham, NC 27708 USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Brian E. Mace
- Department of Neurology, Duke University, Durham, NC 27708 USA
- Department of Geriatrics, Duke University, Durham, NC 27708 USA
| | - Mengxi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Jun Zou
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX 77840 USA
| | | | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
81
|
|
82
|
Zhou Z, Hou Z, Pei Y. Reconfigurable Particle Swarm Robotics Powered by Acoustic Vibration Tweezer. Soft Robot 2020; 8:735-743. [PMID: 33216709 DOI: 10.1089/soro.2020.0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inspired by natural swarms such as bees and ants, various types of swarm robotic systems have been developed to work together to complete tasks that transcend individual capabilities. Autonomous robots controlled by collective algorithm and colloidal swarms energized by external field have been designed in an attempt to emulate collective behaviors in nature. However, either sophisticated hardware designs or active agents with special electromagnetic properties and microstructural designs are needed. Here, for the first time, we create a swarm robotic system that can make any granular materials an active swarm robot by acoustic vibration tweezer. It should be noted that the particles energized by only one vibration generator are ordinary sand without any microstructural design. Therefore, it is the simplest and lowest cost swarm robot. Particles can display a solid-like aggregate, which is capable of robustly carrying and transporting an object that is about 1 million times heavier than a single particle. Moreover, through the cooperation of two swarm robots, we can achieve cooperative transport of a stick with a length of 1000 times the diameter of a single particle. The particle robot can move in a fluid-like amorphous group, which can change its own shape to adapt to the surrounding environment, thus having a strong environmental adaptability. Besides, it can move quickly (about 600 times the particle diameter per second) in a discrete state. Within one certain particle system, the particle swarm robot can emulate diverse biomimetic collective behaviors through navigated locomotion, multimode transformation, and cooperative transport.
Collapse
Affiliation(s)
- Zhitao Zhou
- State Key Lab for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| | - Zewei Hou
- State Key Lab for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| | - Yongmao Pei
- State Key Lab for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
83
|
Spatial ultrasound modulation by digitally controlling microbubble arrays. Nat Commun 2020; 11:4537. [PMID: 32913270 PMCID: PMC7484750 DOI: 10.1038/s41467-020-18347-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Acoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wave front shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM), which dynamically reshapes incident plane waves into complex acoustic images. Its transmission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM. The authors introduce a dynamic spatial ultrasound modulator, based on digitally generated patterns of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip. They achieve reshaping of incident plane waves into complex acoustic images and demonstrate dynamic parallel assembly of microparticles.
Collapse
|
84
|
Ma Z, Zhou Y, Cai F, Meng L, Zheng H, Ai Y. Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells. LAB ON A CHIP 2020; 20:2947-2953. [PMID: 32661536 DOI: 10.1039/d0lc00595a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precisely controllable transport and rotation of microparticles and cells has great potential to enable new capabilities for single-cell level analysis. In this work, we present versatile ultrasonic microstreaming based manipulation that enables active and precise control of transport and rotation of individual microscale particles and biological cells in a microfluidic device. Two different types of ultrasonic microstreaming flow patterns can be produced by oscillating embedded microstructures in circular and rectilinear vibration modes, which have been validated by both numerical simulation and experimental observation. We have further showcased the ability to transport individual microparticles along the outlines of complex alphabet letters, demonstrating the versatility and simplicity of single-particle level manipulation with bulk vibration.
Collapse
Affiliation(s)
- Zhichao Ma
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | | | | | | | | | | |
Collapse
|
85
|
Norris EG, Dalecki D, Hocking DC. Using Acoustic Fields to Fabricate ECM-Based Biomaterials for Regenerative Medicine Applications. RECENT PROGRESS IN MATERIALS 2020; 2:1-24. [PMID: 33604591 PMCID: PMC7889011 DOI: 10.21926/rpm.2003018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound is emerging as a promising tool for both characterizing and fabricating engineered biomaterials. Ultrasound-based technologies offer a diverse toolbox with outstanding capacity for optimization and customization within a variety of therapeutic contexts, including improved extracellular matrix-based materials for regenerative medicine applications. Non-invasive ultrasound fabrication tools include the use of thermal and mechanical effects of acoustic waves to modify the structure and function of extracellular matrix scaffolds both directly, and indirectly via biochemical and cellular mediators. Materials derived from components of native extracellular matrix are an essential component of engineered biomaterials designed to stimulate cell and tissue functions and repair or replace injured tissues. Thus, continued investigations into biological and acoustic mechanisms by which ultrasound can be used to manipulate extracellular matrix components within three-dimensional hydrogels hold much potential to enable the production of improved biomaterials for clinical and research applications.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
86
|
Acoustic trapping of microbubbles in complex environments and controlled payload release. Proc Natl Acad Sci U S A 2020; 117:15490-15496. [PMID: 32571936 PMCID: PMC7354944 DOI: 10.1073/pnas.2003569117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Contactless manipulation of microparticles using acoustic waves holds promise for applications ranging from cell sorting to three-dimensional (3D) printing and tissue engineering. However, the unique potential of acoustic trapping to be applied in biomedical settings remains largely untapped. In particular, the main advantage of acoustic trapping over optical trapping, namely the ability of sound to propagate through thick and opaque media, has not yet been exploited in full. Here we demonstrate experimentally the use of the recently developed technique of single-beam acoustical tweezers to trap microbubbles, an important class of biomedically relevant microparticles. We show that the region of vanishing pressure of a propagating vortex beam can confine a microbubble by forcing low-amplitude, nonspherical, shape oscillations, enabling its full 3D positioning. Our interpretation is validated by the absolute calibration of the acoustic trapping force and the direct spatial mapping of isolated bubble echos, for which both find excellent agreement with our theoretical model. Furthermore, we prove the stability of the trap through centimeter-thick layers of bio-mimicking, elastic materials. Finally, we demonstrate the simultaneous trapping of nanoparticle-loaded microbubbles and activation with an independent acoustic field to trigger the release of the nanoparticles. Overall, using exclusively acoustic powering to position and actuate microbubbles paves the way toward controlled delivery of drug payloads in confined, hard-to-reach locations, with potential in vivo applications.
Collapse
|