51
|
Vitamin C-related nutrient–nutrient and nutrient–gene interactions that modify folate status. Eur J Nutr 2012; 52:569-82. [DOI: 10.1007/s00394-012-0359-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 04/04/2012] [Indexed: 11/27/2022]
|
52
|
Dutta S, Shaw J, Chatterjee A, Sarkar K, Usha R, Chatterjee A, Sinha S, Mukhopadhyay K. Importance of gene variants and co-factors of folate metabolic pathway in the etiology of idiopathic intellectual disability. Nutr Neurosci 2011; 14:202-9. [PMID: 22005284 DOI: 10.1179/1476830511y.0000000016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Different components of the folate metabolic cycle are crucial for maintaining integrity of DNA. The present study was aimed at exploring the role of some important constituents of the folate cycle in the etiology of idiopathic intellectual disability (IID). Nuclear families with IID probands (n=226) and ethnically matched controls (n=181) were recruited for micronucleus, karyotype, genetic polymorphism (MTR rs1805087, MTRR rs1801394, and DHFR rs70991108), folate, vitamin B6, vitamin B12, and cysteine analysis. Significant difference in genotype frequencies in IID probands and their parents were observed for rs1805087 (P=0.03, 0.02), rs1801394 (P=0.03, 0.001), and rs70991108 ((P=0.03, 0.02) as compared to controls. IID probands showed significantly higher micronucleus frequency (P=0.01) and decreased vitamin B6 level (P=0.002). A strong correlation between rs1801394 'G' allele and micronucleus was also noticed. From the present investigation, a role of genetic polymorphisms and vitamin B6 levels could be hypothesized in the etiology of IID.
Collapse
Affiliation(s)
- Samikshan Dutta
- Manovikas Biomedical Research and Diagnostic Centre, E.M. Bypass, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Jokić M, Brčić-Kostić K, Stefulj J, Ivković TC, Božo L, Gamulin M, Kapitanović S. Association of MTHFR, MTR, MTRR, RFC1, and DHFR Gene Polymorphisms with Susceptibility to Sporadic Colon Cancer. DNA Cell Biol 2011; 30:771-6. [DOI: 10.1089/dna.2010.1189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mladen Jokić
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Jasminka Stefulj
- Laboratorie of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tina Catela Ivković
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lončar Božo
- Department of Surgery, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marija Gamulin
- Department of Oncology, Clinical Hospital Center Zagreb, Zagreb, Croatia
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
54
|
Wilffert B, Altena J, Tijink L, van Gelder MMHJ, de Jong-van den Berg LTW. Pharmacogenetics of drug-induced birth defects: what is known so far? Pharmacogenomics 2011; 12:547-58. [PMID: 21521026 DOI: 10.2217/pgs.10.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A literature review was performed to collect information on the role of pharmacogenetics in six proposed teratogenic mechanisms associated with drug use during pregnancy: folate antagonism, oxidative stress, angiotensin-converting enzyme inhibition and angiotensin II receptor antagonism, cyclooxygenase-1 and -2 inhibition, 5-hydroxytryptamine-reuptake inhibition and drug transporters in the placenta. Data on the direct relationship between pharmacogenetics and drug-induced birth defects were found for folate metabolism, oxidative stress caused by phenytoin exposure and drug transporters in the placenta. Although no specific data to support pharmacogenetic-related birth defects were found for the NSAIDs, paroxetine and fluoxetine, it might be expected that polymorphisms modify their teratogenic effects. The usually low prevalence of drug-induced malformations impedes the demonstration of the contribution of pharmacogenetics. Large-scale studies, preferably case-control studies, are needed.
Collapse
Affiliation(s)
- Bob Wilffert
- Unit of Pharmacoepidemiology & Pharmacoeconomics, Department of Pharmacy, University of Groningen, Groningen 9713AV, The Netherlands.
| | | | | | | | | |
Collapse
|
55
|
Askari BS, Krajinovic M. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics 2011; 11:578-83. [PMID: 21629435 PMCID: PMC3078682 DOI: 10.2174/138920210793360925] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/25/2010] [Accepted: 09/07/2010] [Indexed: 01/07/2023] Open
Abstract
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate (THF). THF is needed for the action of folate-dependent enzymes and is thus essential for DNA synthesis and methylation. The importance of this reaction is demonstrated by the effectiveness of antifolate medications used to treat cancer by inhibiting DHFR, thereby depleting THF and slowing DNA synthesis and cell proliferation. Due to the pivotal role that DHFR plays in folate metabolism and cancer treatment, changes in the level of DHFR expression can affect susceptibility to a variety of diseases dependent on folate status such as spina bifida and cancer. Likewise, variability in DHFR expression can affect sensitivity to anti-cancer drugs such as the folate antagonist methotrexate. Alterations in DHFR expression can be due to polymorphisms in the DHFR gene. Several variations have recently been described in DHFR, including promoter polymorphisms, the 19-bp deletion allele and variations in 3’UTR. These polymorphisms seem to be functional, affecting mRNA levels through various interesting mechanisms, including regulation through RNA interference. Several groups have assessed the association of these polymorphisms with folate levels, risk of cancer and spina bifida as well as the outcome of diseases treated with MTX. The latter may lead to different treatment schedules, improving treatment efficacy and/or allowing for a reduction in drug side effects. This review will summarize present knowledge regarding the predictive potential of DHFR polymorphisms in disease and treatment.
Collapse
|
56
|
Yang L, Liu L, Wang J, Qiu L, Mi Y, Ma X, Xiao Z. Polymorphisms in folate-related genes: impact on risk of adult acute lymphoblastic leukemia rather than pediatric in Han Chinese. Leuk Lymphoma 2011; 52:1770-6. [PMID: 21657963 DOI: 10.3109/10428194.2011.578186] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Folate metabolism plays an essential role in the processes of DNA synthesis and methylation. An aberrant folate metabolism caused by a genetic polymorphism may lead to genomic instability and affect the susceptibility to malignancies including acute lymphoblastic leukemia (ALL). This study was designed to explore the correlation between the polymorphisms in folate-related genes and the risk of ALL in Han Chinese. The DNA was isolated from 231 patients with pediatric ALL, 130 patients with adult ALL, and 367 healthy subjects (as controls). Polymorphisms were examined for RFC1 80G > A, DHFR 19 bp del/ins and 317A > G, SHMT1 1420C > T, MTHFR 677C > T and 1298A > C, MTR 2756A > G, MTRR 66A > G, TYMS 3R/2R, MTHFD1 1958G > A, and ABCG2 421G > T using real-time polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism (RFLP). The risk of adult ALL was increased by the RFC1 80AA variant (odds ratio [OR] = 2.09; 95% confidence interval [CI] 1.19-3.67) and MTRR 66GG variant (OR = 2.15; 95% CI 1.06-4.39) but reduced by the MTHFR 677TT variant (OR = 0.47; 95% CI 0.25-0.88), ABCG2 421GT variant (OR = 0.62; 95% CI 0.41-0.96), and ABCG2 421GT + TT variant (OR = 0.60; 95% CI 0.40-0.90). The increase in risk of adult ALL with the RFC1 80AA associated with the MTRR 66GG variant was even more significant (OR = 8.92; 95% CI 1.97-40.42). Furthermore, the MTHFR 677TT associated with the ABCG2 421GT + TT variant more significantly reduced the risk of adult ALL (OR = 0.32; 95% CI 0.12-0.85). However, all gene polymorphisms tested in this study failed to affect the pediatric ALL risk. Our study clearly demonstrates that polymorphisms in folate-related genes only modulate the susceptibility to adult ALL, but not to pediatric ALL, in Han Chinese.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Experiment Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Summers CM, Mitchell LE, Stanislawska-Sachadyn A, Baido SF, Blair IA, Von Feldt JM, Whitehead AS. Genetic and lifestyle variables associated with homocysteine concentrations and the distribution of folate derivatives in healthy premenopausal women. ACTA ACUST UNITED AC 2010; 88:679-88. [PMID: 20544798 DOI: 10.1002/bdra.20683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Low folate and high homocysteine (Hcy) concentrations are associated with pregnancy-related pathologies such as spina bifida. Polymorphisms in folate/Hcy metabolic enzymes may contribute to this potentially pathogenic biochemical phenotype. METHODS The study comprised 26 Caucasian and 23 African-American premenopausal women. Subjects gave fasting blood samples for biochemical phenotyping and genotyping. Total Hcy (tHcy) and both plasma and red blood cell (RBC) folate derivatives (i.e. tetrahydrofolate [THF], 5-methylTHF [5-MTHF], and 5,10-methenylTHF [5,10-MTHF]) were measured using stable isotope dilution liquid chromatography, multiple reaction monitoring, and mass spectrometry. Eleven polymorphisms from nine folate/Hcy pathway genes were genotyped. Tests of association between genetic, lifestyle, and biochemical variables were applied. RESULTS In African American women, tHcy concentrations were associated (p < 0.05) with total RBC folate, RBC 5-MTHF, B(12), and polymorphisms in methionine synthase (MTR) and thymidylate synthase (TYMS). In Caucasian women, tHcy concentrations were not associated with total folate levels, but were associated (p < 0.05) with RBC THF, ratios of RBC 5-MTHF:THF, and polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) and MTR. In African Americans, folate derivative levels were associated with smoking, B(12), and polymorphisms in MTR, TYMS, methionine synthase reductase (MTRR), and reduced folate carrier1 (RFC1). In Caucasians, folate derivative levels were associated with vitamin use, B(12), and polymorphisms in MTHFR, TYMS, and RFC1. CONCLUSIONS Polymorphisms in the folate/Hcy pathway are associated with tHcy and folate derivative levels. In African American and Caucasian women, different factors are associated with folate/Hcy phenotypes and may contribute to race-specific differences in the risks of a range of pregnancy-related pathologies.
Collapse
Affiliation(s)
- Carolyn M Summers
- Centers for Cancer Pharmacology, Pharmacogenetics, and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Naumovski N, Veysey M, Ng X, Boyd L, Dufficy L, Blades B, Travers C, Lewis P, Sturm J, Townley-Jones M, Yates Z, Roach P, Lucock M. The folic acid endophenotype and depression in an elderly population. J Nutr Health Aging 2010; 14:829-33. [PMID: 21125200 DOI: 10.1007/s12603-010-0135-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Folate status and/or genes have been linked to depression in a number of studies. This may be via a direct action (or actions) on neuronal membranes or indirect effects through the metabolism of methyl groups involved in neurotransmitter synthesis. This study examines folate and related thiol metabolism that might underpin either phenomenon. DESIGN Cohort study describing the relationship between several genetic and nutritional aspects of folic acid homeostasis and depression assessed by the HADS psychometric index in an elderly cohort. SETTING New South Wales (Australia) retirement village. PARTICIPANTS 118 elderly participants (age 65-90 years). RESULTS Stepwise multiple regression was used to determine the best statistical model to predict depression; C677T-MTHFR (p=0.0103) was found to be positively associated with depression, while the thiol dipeptide Cys-Gly was negatively associated (p=0.0403). The statistical models used accounted for the major folate related indices (genetic and biochemical) that are most often evaluated in the context of health and disease. When only genetic data were examined for interactions, C677T-MTHFR was found to be negatively associated with the HADS Depression Index Score (p=0.0191). CONCLUSION The potential influence of Cys-Gly on this phenotype is novel, and of considerable interest given that it has been linked to altered spontaneous activity and sedation in an animal model. Cys-Gly is a recognised ligand at the N-methyl-D-aspartatic acid (NMDA) subclass of glutamate receptor, a system associated with depression. In addition, the C677T-MTHFR association adds further support to existing findings underscoring the potential role of folate in depression.
Collapse
Affiliation(s)
- N Naumovski
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Mendes CC, Biselli JM, Zampieri BL, Goloni-Bertollo EM, Eberlin MN, Haddad R, Riccio MF, Vannucchi H, Carvalho VM, Pavarino-Bertelli EC. 19-base pair deletion polymorphism of the dihydrofolate reductase (DHFR) gene: maternal risk of Down syndrome and folate metabolism. SAO PAULO MED J 2010; 128:215-8. [PMID: 21120433 PMCID: PMC10938985 DOI: 10.1590/s1516-31802010000400008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/08/2010] [Accepted: 06/21/2010] [Indexed: 12/22/2022] Open
Abstract
CONTEXT AND OBJECTIVE Polymorphisms in genes involved in folate metabolism may modulate the maternal risk of Down syndrome (DS). This study evaluated the influence of a 19-base pair (bp) deletion polymorphism in intron-1 of the dihydrofolate reductase (DHFR) gene on the maternal risk of DS, and investigated the association between this polymorphism and variations in the concentrations of serum folate and plasma homocysteine (Hcy) and plasma methylmalonic acid (MMA). DESIGN AND SETTING Analytical cross-sectional study carried out at Faculdade de Medicina de São José do Rio Preto (Famerp). METHODS 105 mothers of individuals with free trisomy of chromosome 21, and 184 control mothers were evaluated. Molecular analysis on the polymorphism was performed using the polymerase chain reaction (PCR) through differences in the sizes of fragments. Folate was quantified by means of chemiluminescence, and Hcy and MMA by means of liquid chromatography and sequential mass spectrometry. RESULTS There was no difference between the groups in relation to allele and genotype frequencies (P = 0.44; P = 0.69, respectively). The folate, Hcy and MMA concentrations did not differ significantly between the groups, in relation to genotypes (P > 0.05). CONCLUSIONS The 19-bp deletion polymorphism of DHFR gene was not a maternal risk factor for DS and was not related to variations in the concentrations of serum folate and plasma Hcy and MMA in the study population.
Collapse
Affiliation(s)
- Cristiani Cortez Mendes
- Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Kurzwelly D, Knop S, Guenther M, Loeffler J, Korfel A, Thiel E, Hebart H, Simon M, Weller M, Linnebank M, Herrlinger U. Genetic variants of folate and methionine metabolism and PCNSL incidence in a German patient population. J Neurooncol 2010; 100:187-92. [PMID: 20237949 DOI: 10.1007/s11060-010-0154-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Functional genetic polymorphisms involved in folate and methionine metabolism play an important role in both DNA synthesis and methylation, and affect the risk of various malignancies including lymphoproliferative disorders such as systemic non-Hodgkin's lymphoma. In a retrospective analysis of 185 immunocompetent patients with primary central nervous system lymphoma (PCNSL) and 212 population controls we therefore investigated eight genetic polymorphisms affecting methionine metabolism for potential association with the development of PCNSL. We observed underrepresentation of the G-allele of the methyltetrahydrofolate homocysteine S-methyltransferase (MTR) c.2756A > G (D919G) missense polymorphism among PCNSL patients (P = 0.045; odds ratio (OR) = 0.65; 0.43-0.99). Furthermore, for the methylenetetrahydrofolate reductase (MTHFR) c.1298A > C (E429A) polymorphism the mutated C-allele was found more frequently among PCNSL patients than among population controls (P = 0.026; OR = 1.57; 1.05-2.34). There were no associations of the other polymorphisms investigated (MTHFR c.677C > T, transcobalamin 2 (Tc2) c.776C > G, cystathionin beta-synthase (CBS) c.844_855ins68, reduced folate carrier-1 (RFC-1) c.80G > A, thymidylate synthase (TYMS) 28-bp repeat, and dihydrofolate reductase (DHFR) c.594 + 59del19 bp) and the presence of PCNSL. This analysis is the largest to date to evaluate associations between genetic variants of folate and methionine metabolism and PCNSL. Our results suggest the hypothesis that folate and methionine metabolism is relevant to susceptibility to PCNSL.
Collapse
Affiliation(s)
- Delia Kurzwelly
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Alfirevic A, Alfirevic Z, Pirmohamed M. Pharmacogenetics in reproductive and perinatal medicine. Pharmacogenomics 2010; 11:65-79. [DOI: 10.2217/pgs.09.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The clinical application of pharmacogenetics has been well accepted by some medical specialties, but not all. The aim of this review is to discuss the current use of pharmacogenetics in reproductive and perinatal medicine and to highlight areas where pharmacogenetics may be able to help in the future to predict response to medicines in terms of efficacy and safety. This applies to drugs that are specific to pregnancy and reproduction, as well as drugs prescribed for the treatment of medical disorders in pregnancy. Our review points out the need for well-designed clinical studies on the efficacy and safety of medicines used in women of childbearing age in order to define the additional utility provided by pharmacogenetic testing.
Collapse
Affiliation(s)
- Ana Alfirevic
- Department of Pharmacology & Therapeutics, Sherrington Building, Ashton Street, University of Liverpool, Liverpool, Merseyside, L69 3GE, UK
| | | | - Munir Pirmohamed
- Department of Pharmacology & Therapeutics, Sherrington Building, Ashton Street, University of Liverpool, Liverpool, Merseyside, L69 3GE, UK
| |
Collapse
|
62
|
Hayashi H, Horino M, Morishita M, Tazoe Y, Tsuboi S, Matsuyama T, Kosuge K, Yamada H, Tsuji D, Inoue K, Itoh K. Dihydrofolate Reductase Gene Intronic 19-bp Deletion Polymorphisms in a Japanese Population. Drug Metab Pharmacokinet 2010; 25:516-8. [DOI: 10.2133/dmpk.dmpk-10-sc-036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Abstract
Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene-gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect 'private' and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis.
Collapse
|
64
|
Martinez CA, Northrup H, Lin JI, Morrison AC, Fletcher JM, Tyerman GH, Au KS. Genetic association study of putative functional single nucleotide polymorphisms of genes in folate metabolism and spina bifida. Am J Obstet Gynecol 2009; 201:394.e1-11. [PMID: 19683694 PMCID: PMC2790326 DOI: 10.1016/j.ajog.2009.06.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/08/2009] [Accepted: 06/16/2009] [Indexed: 01/15/2023]
Abstract
OBJECTIVE We tested putative functional single nucleotide polymorphisms (SNPs) in genes that regulate the folate/homocysteine metabolism pathway for their contribution to spina bifida (SB) susceptibility. STUDY DESIGN The study consisted of 610 unrelated simplex SB patient families. Genotypes of 46 SNPs located in the coding sequence or promoter region of 11 genes were investigated. Associations between transmission of alleles and SB in the offspring were examined using the reconstruction combined transmission disequilibrium test. RESULTS Significant association of SNP rs5742905 in cystathionine-beta-synthase, rs1643649 in dihydrofolate reductase, rs2853533 in thymidylate synthetase, and rs3737965 in methylenetetrahydrofolate reductase was found (P = .015, .041, .021, and .007 respectively). CONCLUSION Transmission disequilibrium of SNP alleles in cystathionine-beta-synthase, dihydrofolate reductase, methylenetetrahydrofolate reductase, and thymidylate synthetase confers an increased susceptibility to SB.
Collapse
Affiliation(s)
- Carla A. Martinez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jone-Ing Lin
- Human Genetics Center, University of Texas School of Public Health, Houston, Texas
| | - Alanna C. Morrison
- Human Genetics Center, University of Texas School of Public Health, Houston, Texas
| | - Jack M. Fletcher
- Department of Psychology, University of Houston-Texas Medical Center Annex, Houston, Texas
| | | | - Kit Sing Au
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
65
|
Doudney K, Grinham J, Whittaker J, Lynch SA, Thompson D, Moore GE, Copp AJ, Greene NDE, Stanier P. Evaluation of folate metabolism gene polymorphisms as risk factors for open and closed neural tube defects. Am J Med Genet A 2009; 149A:1585-9. [PMID: 19533788 DOI: 10.1002/ajmg.a.32937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
66
|
The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A 2009; 106:15424-9. [PMID: 19706381 DOI: 10.1073/pnas.0902072106] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Numerous clinical trials using folic acid for prevention of cardiovascular disease, stroke, cognitive decline, and neural tube defects have been completed or are underway. Yet, all functions of folate are performed by tetrahydrofolate and its one-carbon derivatives. Folic acid is a synthetic oxidized form not significantly found in fresh natural foods; to be used it must be converted to tetrahydrofolate by dihydrofolate reductase (DHFR). Increasing evidence suggests that this process may be slow in humans. Here we show, using a sensitive assay we developed, that the reduction of folic acid by DHFR per gram of human liver (n = 6) obtained from organ donors or directly from surgery is, on average, less than 2% of that in rat liver at physiological pH. Moreover, in contrast to rats, there was almost a 5-fold variation of DHFR activity among the human samples. This limited ability to activate the synthetic vitamer raises issues about clinical trials using high levels of folic acid. The extremely low rate of conversion of folic acid suggests that the benefit of its use in high doses will be limited by saturation of DHFR, especially in individuals possessing lower than average activity. These results are also consistent with the reports of unmetabolized folic acid in plasma and urine.
Collapse
|
67
|
Gemmati D, De Mattei M, Catozzi L, Della Porta M, Serino ML, Ambrosio C, Cuneo A, Friso S, Krampera M, Orioli E, Zeri G, Ongaro A. DHFR 19-bp insertion/deletion polymorphism and MTHFR C677T in adult acute lymphoblastic leukaemia: is the risk reduction due to intracellular folate unbalancing? Am J Hematol 2009; 84:526-9. [PMID: 19536847 DOI: 10.1002/ajh.21451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
68
|
Ongaro A, De Mattei M, Della Porta MG, Rigolin G, Ambrosio C, Di Raimondo F, Pellati A, Masieri FF, Caruso A, Catozzi L, Gemmati D. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica 2009; 94:1391-8. [PMID: 19648163 DOI: 10.3324/haematol.2009.008326] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The antifolate agent methotrexate is an important component of maintenance therapy in acute lymphoblastic leukemia, although methotrexate-related toxicity is often a reason for interruption of chemotherapy. Prediction of toxicity is difficult because of inter-individual variability susceptibility to antileukemic agents. Methotrexate interferes with folate metabolism leading to depletion of reduced folates. DESIGN AND METHODS The aim of this study was to investigate the influence of polymorphisms for folate metabolizing enzymes with respect to toxicity and survival in adult patients with acute lymphoblastic leukemia treated with methotrexate maintenance therapy. To this purpose, we evaluated possible associations between genotype and hematologic and non-hematologic toxicity and effects on survival at 2 years of follow-up in patients with acute lymphoblastic leukemia. RESULTS Polymorphisms in the genes encoding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and in dihydrofolate reductase (DHFR 19 bp deletion) significantly increased the risk of hepatotoxicity in single (odds ratio 5.23, 95% confidence interval 1.13-21.95 and odds ratio 4.57, 95% confidence interval 1.01-20.77, respectively) and in combined analysis (odds ratio 6.82, 95% confidence interval 1.38-33.59). MTHFR 677C>T also increased the risk of leukopenia and gastrointestinal toxicity, whilst thymidylate synthase 28 bp repeat polymorphism increased the risk of anemia (odds ratio 8.48, 95% confidence interval 2.00-36.09). Finally, patients with MTHFR 677TT had a decreased overall survival rate (hazard ratio 2.37, 95% confidence interval 1.46-8.45). CONCLUSIONS Genotyping of folate polymorphisms might be useful in adult acute lymphoblastic leukemia to optimize methotrexate therapy, reducing the associated toxicity with possible effects on survival.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology and Embryology, Section of Histology, University of Ferrara, Via Fossato di Mortara 64/B, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Carr DF, Whiteley G, Alfirevic A, Pirmohamed M. Investigation of inter-individual variability of the one-carbon folate pathway: a bioinformatic and genetic review. THE PHARMACOGENOMICS JOURNAL 2009; 9:291-305. [PMID: 19581920 DOI: 10.1038/tpj.2009.29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic polymorphisms in the one-carbon folate pathway have been widely studied in association with a number of conditions. Most of the research has focused on the 677C>T polymorphism in the coding region of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. However, there are a total of 25 genes in this pathway coding for enzymes, transporters and receptors, which can be investigated using 267 tagging single nucleotide polymorphisms (SNPs); using SNP database (dbSNP), 38 non-synonymous SNPs with a minor allele frequency of >5% are present in these genes. Most of these variants have not been investigated in relation to disease or drug response phenotypes. In addition, their functional consequences are largely unknown. Prediction of the functional effect using six publicly available programs (PolyPhen, SIFT BLink, PMut, SNPs3D, I-Mutant2.0 and LS-SNP) was limited to functionally well-characterized SNPs such as MTHFR c.677C>T and c.1298A>C ranking low. Epigenetic modifications may also be important with some of these genes. In summary, to date, investigation of the one-carbon folate pathway genes has been limited. Future studies should aim for a more comprehensive assessment of this pathway, while further research is also required in determining the functional effects of these genetic variants.
Collapse
Affiliation(s)
- D F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, Merseyside L69 3GE, UK
| | | | | | | | | |
Collapse
|
70
|
Molloy AM, Brody LC, Mills JL, Scott JM, Kirke PN. The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. ACTA ACUST UNITED AC 2009; 85:285-94. [PMID: 19235830 DOI: 10.1002/bdra.20566] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this paper, we trace the history of current research into the genetic and biochemical mechanisms that underlie folate-preventable neural tube defects (NTDs). The inspired suggestion by Smithells that common vitamins might prevent NTDs ignited a decade of biochemical investigations-first exploring the nutritional and metabolic factors related to NTDs, then onto the hunt for NTD genes. Although NTDs were known to have a strong genetic component, the concept of common genetic variance being linked to disease risk was relatively novel in 1995, when the first folate-related polymorphism associated with NTDs was discovered. The realization that more genes must be involved started a rush to find polymorphic needles in genetic haystacks. Early efforts entailed the intellectually challenging and time-consuming task of identifying and analyzing candidate single nucleotide polymorphisms (SNPs) in folate pathway genes. Luckily, human genome research has developed rapidly, and the search for the genetic factors that contribute to the etiology of human NTDs has evolved to mirror the increased level of knowledge and data available on the human genome. Large-scale candidate gene analysis and genome-wide association studies are now readily available. With the technical hurdles removed, the remaining challenge is to gather a sample large enough to uncover the polymorphisms that contribute to NTD risk. In some respects the real work is beginning. Although moving forward is exciting, it is humbling that the most important result-prevention of NTDs by maternal folic acid supplementation-was achieved years ago, the direct result of Smithells' groundbreaking studies.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
71
|
Abstract
This review provides a brief description of folate use and folic acid metabolism in relation to neural tube defect (NTD) risk. First, a meta-analysis of reduction in NTD recurrence and occurrence risk with periconceptional folic acid supplementation is presented. Second, an overview of the complex folate metabolism is given. Third, SNPs for genes involved in folate and homocysteine metabolism that have been studied in relation to NTD riskare discussed. Fourth, the questions whether folate receptor autoantibodies or hampered methylation are mechanisms underlying NTDs are briefly discussed.
Collapse
Affiliation(s)
- Henk J Blom
- Metabolic Unit, Department of Clinical Chemistry, Free University Medical Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
72
|
Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. ACTA ACUST UNITED AC 2009; 85:274-84. [PMID: 19180567 DOI: 10.1002/bdra.20553] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis.
Collapse
Affiliation(s)
- Anna E Beaudin
- Cornell University, Division of Nutritional Sciences, Ithaca, NY 14850, USA
| | | |
Collapse
|
73
|
One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genomics 2009; 36:203-14. [PMID: 19376481 DOI: 10.1016/s1673-8527(08)60108-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/12/2008] [Accepted: 01/08/2009] [Indexed: 12/21/2022]
Abstract
One-carbon metabolism is a network of biological reactions that plays critical role in DNA methylation and DNA synthesis, and in turn, facilitates the cross-talk between genetic and epigenetic processes. Genetic polymorphisms and supplies of cofactors (e.g. folate, vitamins B) involved in this pathway have been shown to influence cancer risk and even survival. In this review, we summarized the epidemiological evidence for one-carbon metabolism, from both genetics and lifestyle aspects, in relation to breast cancer risk. We also discussed this pathway in relation to breast cancer survival and the modulation of one-carbon polymorphism in chemotherapy. Emerging evidence on modulation of DNA methylation by one-carbon metabolism suggests that disruption of epigenome might have been the underlying mechanism. More results are expected and will be translated to guidance to the general population for disease prevention as well as to clinicians for treatment and management of the disease.
Collapse
|
74
|
Shaw GM, Lu W, Zhu H, Yang W, Briggs FBS, Carmichael SL, Barcellos LF, Lammer EJ, Finnell RH. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC MEDICAL GENETICS 2009; 10:49. [PMID: 19493349 PMCID: PMC2700092 DOI: 10.1186/1471-2350-10-49] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 06/03/2009] [Indexed: 12/18/2022]
Abstract
Background Folic acid taken in early pregnancy reduces risks for delivering offspring with several congenital anomalies. The mechanism by which folic acid reduces risk is unknown. Investigations into genetic variation that influences transport and metabolism of folate will help fill this data gap. We focused on 118 SNPs involved in folate transport and metabolism. Methods Using data from a California population-based registry, we investigated whether risks of spina bifida or conotruncal heart defects were influenced by 118 single nucleotide polymorphisms (SNPs) associated with the complex folate pathway. This case-control study included 259 infants with spina bifida and a random sample of 359 nonmalformed control infants born during 1983–86 or 1994–95. It also included 214 infants with conotruncal heart defects born during 1983–86. Infant genotyping was performed blinded to case or control status using a designed SNPlex assay. We examined single SNP effects for each of the 118 SNPs, as well as haplotypes, for each of the two outcomes. Results Few odds ratios (ORs) revealed sizable departures from 1.0. With respect to spina bifida, we observed ORs with 95% confidence intervals that did not include 1.0 for the following SNPs (heterozygous or homozygous) relative to the reference genotype: BHMT (rs3733890) OR = 1.8 (1.1–3.1), CBS (rs2851391) OR = 2.0 (1.2–3.1); CBS (rs234713) OR = 2.9 (1.3–6.7); MTHFD1 (rs2236224) OR = 1.7 (1.1–2.7); MTHFD1 (hcv11462908) OR = 0.2 (0–0.9); MTHFD2 (rs702465) OR = 0.6 (0.4–0.9); MTHFD2 (rs7571842) OR = 0.6 (0.4–0.9); MTHFR (rs1801133) OR = 2.0 (1.2–3.1); MTRR (rs162036) OR = 3.0 (1.5–5.9); MTRR (rs10380) OR = 3.4 (1.6–7.1); MTRR (rs1801394) OR = 0.7 (0.5–0.9); MTRR (rs9332) OR = 2.7 (1.3–5.3); TYMS (rs2847149) OR = 2.2 (1.4–3.5); TYMS (rs1001761) OR = 2.4 (1.5–3.8); and TYMS (rs502396) OR = 2.1 (1.3–3.3). However, multiple SNPs observed for a given gene showed evidence of linkage disequilibrium indicating that the observed SNPs were not individually contributing to risk. We did not observe any ORs with confidence intervals that did not include 1.0 for any of the studied SNPs with conotruncal heart defects. Haplotype reconstruction showed statistical evidence of nonrandom associations with TYMS, MTHFR, BHMT and MTR for spina bifida. Conclusion Our observations do not implicate a particular folate transport or metabolism gene to be strongly associated with risks for spina bifida or conotruncal defects.
Collapse
Affiliation(s)
- Gary M Shaw
- Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Joó JG. Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 2009; 9:281-93. [PMID: 19379086 DOI: 10.1586/erm.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iniencephaly is a rare and mostly lethal type of neural tube defect. The pattern of inheritance of this group of malformations is multifactorial, rendering the identification of the underlying causes. Numerous studies have been conducted to elucidate the genetic basis of human neurulation. Essential signaling pathways of the development of the CNS include the planar cell polarity pathway, which is important for the initiation of neural tube closure, as well as the sonic hedgehog pathway, which regulates the neural plate bending. Genes influencing the different stages of neurulation have been investigated for their eventual role in the development of these malformations. Among the environmental factors, folic acid seems to be the most important modifier of the risk of human neural tube defects. Genes of the folate metabolism pathways have also been investigated to identify mutations resulting in increased risk of neural tube defects. In this review we have attempted to summarize the knowledge on iniencephaly and neural tube defects, with special regard to genetic factors of the etiology.
Collapse
Affiliation(s)
- József Gábor Joó
- 1st Department of Obstetrics and Gynecology, Faculty of General Medicine, Semmelweis University, 1088 Budapest, Baross utca 27, Hungary.
| |
Collapse
|
76
|
Kalmbach RD, Choumenkovitch SF, Troen AP, Jacques PF, D'Agostino R, Selhub J. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate. J Nutr 2008; 138:2323-7. [PMID: 19022952 PMCID: PMC2855991 DOI: 10.3945/jn.108.096404] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dihydrofolate reductase (DHFR) catalyzes the reduction of folic acid to tetrahydrofolate (THF). A 19-bp noncoding deletion allele maps to intron 1, beginning 60 bases from the splice donor site, and has been implicated in neural tube defects and cancer, presumably by influencing folate metabolism. The functional impact of this polymorphism has not yet been demonstrated. The objective of this research was to determine the effects of the DHFR mutation with respect to folate status and assess influence of folic acid intake on these relations. The relationship between DHFR genotype and plasma concentrations of circulating folic acid, total folate, total homocysteine, and concentrations of RBC folate was determined in 1215 subjects from the Framingham Offspring Study. There was a significant interaction between DHFR genotype and folic acid intake with respect to the prevalence of high circulating unmetabolized folic acid (defined as >85th percentile). Folic acid intake of >or=500 microg/d increased the prevalence of high circulating unmetabolized folic acid in subjects with the deletion (del/del genotype (47.0%) compared with the wild type (WT)/del (21.4%) and wild type (WT)/WT genotypes (24.4%) (P for interaction = 0.03). Interaction between the DHFR polymorphism and folic acid intake was also seen with respect to RBC folate (P for interaction = 0.01). When folic acid intake was <250 microg/d, the del/del genotype was associated with significantly lower RBC folate (732.3 nmol/L) compared with the WT/WT genotype (844.4 nmol/L). Our results suggest the del/del polymorphism in DHFR is a functional polymorphism, because it limits assimilation of folic acid into cellular folate stores at high and low folic acid intakes.
Collapse
Affiliation(s)
- Renee D. Kalmbach
- Vitamin Metabolism and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; and Framingham Heart Study, Boston University School of Medicine, Framingham, MA 01701
| | - Silvina F. Choumenkovitch
- Vitamin Metabolism and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; and Framingham Heart Study, Boston University School of Medicine, Framingham, MA 01701
| | - Aron P. Troen
- Vitamin Metabolism and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; and Framingham Heart Study, Boston University School of Medicine, Framingham, MA 01701
| | - Paul F. Jacques
- Vitamin Metabolism and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; and Framingham Heart Study, Boston University School of Medicine, Framingham, MA 01701
| | - Ralph D'Agostino
- Vitamin Metabolism and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; and Framingham Heart Study, Boston University School of Medicine, Framingham, MA 01701
| | - Jacob Selhub
- Vitamin Metabolism and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; and Framingham Heart Study, Boston University School of Medicine, Framingham, MA 01701,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
77
|
Linnebank M, Moskau S, Jürgens A, Simon M, Semmler A, Orlopp K, Glasmacher A, Bangard C, Vogt-Schaden M, Urbach H, Schmidt-Wolf IGH, Pels H, Schlegel U. Association of genetic variants of methionine metabolism with methotrexate-induced CNS white matter changes in patients with primary CNS lymphoma. Neuro Oncol 2008; 11:2-8. [PMID: 18806228 DOI: 10.1215/15228517-2008-082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Methotrexate (MTX) is an important anticancer drug and the most efficient chemotherapy component in primary CNS lymphoma (PCNSL). A typical side effect of intravenous high-dose MTX is the occurrence of confluent CNS white matter changes (WMC). Because MTX directly interferes with methionine metabolism, we analyzed the impact of genetic variants of methionine metabolism on the occurrence of WMC as a model of MTX toxicity. In a retrospective analysis of 68 PCNSL patients treated with MTX-based polychemotherapy with (n = 42) or without (n = 26) intraventricular treatment, 10 genetic variants influencing methionine metabolism were analyzed. Pearson's chi(2) test and multinominal regression analysis were used to define the relevance of these genetic variants for the occurrence of WMC. In this patient sample, the occurrence of WMC was significantly predicted by the TT genotype of methylenetetrahydrofolate reductase c.677C>T (chi(2) = 8.67; p = 0.013; df = 2), the AA genotype of methylenetetrahydrofolate reductase c.1298A>C (chi(2) = 13.5; p = 0.001; df = 2), and the GG genotype of transcobalamin 2 c.776C>G (chi(2) = 19.73; p < 0.001), in addition to male gender (chi(2) = 11.95; p = 0.001). These data strengthen the hypothesis that MTX effects are influenced by methionine metabolism, which may offer new strategies to improve MTX-based therapies.
Collapse
|
78
|
Koç YL, Akar N. Single Nucleotide Polymorphisms That Affect Homocysteine Levels in Turkish Population. Clin Appl Thromb Hemost 2008; 15:701-4. [DOI: 10.1177/1076029608320719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, single nucleotide polymorphisms (SNPs) involved in homocysteine metabolism such as CT replacement in the 677th nucleotide in 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme; 68-bp insertion in the 844th nucleotide of cystathionine β-synthase (CBS) enzyme; 6-bp insertion/deletion in the region of 3′UTR in thymidylate synthase (TYMS) enzyme and 19-bp deletion in dihydrofolate reductase (DHFR) enzyme were investigated. The effects of these mutations on homocysteine levels were studied. As a result; we found that TT genotype of MTHFR 677 CT is an influencing factor on homocysteine levels in Turkish population. Furthermore, there seems to be another MTHFR 677 TT haplotype, which does not have an effect on homocysteine levels .Our data revealed that other SNPs did not have any influence on homocysteine levels.
Collapse
Affiliation(s)
- Yasemin L. Koç
- Pediatric Molecular Genetic Department, Ankara University Medical School, Ankara, Turkey
| | - Nejat Akar
- Pediatric Molecular Genetic Department, Ankara University Medical School, Ankara, Turkey,
| |
Collapse
|
79
|
Eroglu A, Egin Y, Çam R, Akar N. The 19-bp deletion of dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR) C677T, Factor V Leiden, prothrombin G20210A polymorphisms in cancer patients with and without thrombosis. Ann Hematol 2008; 88:73-6. [DOI: 10.1007/s00277-008-0569-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/18/2008] [Indexed: 11/30/2022]
|
80
|
Syndromes, Disorders and Maternal Risk Factors Associated with Neural Tube Defects (IV). Taiwan J Obstet Gynecol 2008; 47:141-50. [DOI: 10.1016/s1028-4559(08)60071-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
81
|
Dihydrofolate reductase (DHRF) 19-bp intron-1 deletion and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms in breast cancer. Breast Cancer Res Treat 2008; 115:431-2. [PMID: 18498051 DOI: 10.1007/s10549-008-0054-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 10/22/2022]
|
82
|
Stanisławska-Sachadyn A, Brown KS, Mitchell LE, Woodside JV, Young IS, Scott JM, Murray L, Boreham CA, McNulty H, Strain JJ, Whitehead AS. An insertion/deletion polymorphism of the dihydrofolate reductase (DHFR) gene is associated with serum and red blood cell folate concentrations in women. Hum Genet 2008; 123:289-95. [PMID: 18247058 DOI: 10.1007/s00439-008-0475-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
A low serum folate and high homocysteine phenotype is associated with an increased risk of neural tube defects (NTDs), cardiovascular diseases and other pathologies. Thus defining both genetic and non-genetic factors that may impact folate/homocysteine metabolism will enhance our understanding of the etiologic mechanisms underlying these conditions and facilitate risk assessment. Dihydrofolate reductase catalyzes the reduction of folic acid to dihydrofolate and thereafter to tetrahydrofolate. The impact of the dihydrofolate reductase (DHFR) c.86 + 60_78 insertion/deletion (ins/del) polymorphism on folate and homocysteine concentrations was analyzed using data from healthy young adults from Northern Ireland, collected as part of visit three of the Young Hearts Project. Among men the DHFR c.86 + 60_78 polymorphism was not significantly associated with serum or red blood cell folate concentrations, or with homocysteine concentrations. Among women the DHFR c.86 + 60_78 polymorphism explained 2% of the variation in RBC folate levels and 5% of the variation in serum folate levels, but did not appear to have an independent effect on homocysteine. Relative to women with the DHFR c.86 + 60_78 ins/ins and ins/del genotypes, del/del homozygotes had increased serum and red blood cell folate concentrations and may therefore be at decreased risk of having offspring affected by NTDs and of other adverse reproductive and health outcomes attributable to low folate.
Collapse
Affiliation(s)
- Anna Stanisławska-Sachadyn
- Department of Pharmacology and Center for Pharmacogenetics, University of Pennsylvania School of Medicine, 153 Johnson Pavilion, 3620 Hamilton Walk, Philadelphia, PA, 19104-6084, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Regulation of human dihydrofolate reductase activity and expression. VITAMINS AND HORMONES 2008; 79:267-92. [PMID: 18804698 DOI: 10.1016/s0083-6729(08)00409-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dihydrofolate reductase (DHFR) enzyme catalyzes tetrahydrofolate regeneration by reduction of dihydrofolate using NADPH as a cofactor. Tetrahydrofolate and its one carbon adducts are required for de novo synthesis of purines and thymidylate, as well as glycine, methionine and serine. DHFR inhibition causes disruption of purine and thymidylate biosynthesis and DNA replication, leading to cell death. Therefore, DHFR has been an attractive target for chemotherapy of many diseases including cancer. Over the following years, in order to develop better antifolates, a detailed understanding of DHFR at every level has been undertaken such as structure-functional analysis, mechanisms of action, transcriptional and translation regulation of DHFR using a wide range of technologies. Because of this wealth of information created, DHFR has been used extensively as a model system for enzyme catalysis, investigating the relations between structure in-silico structure-based drug design, transcription from TATA-less promoters, regulation of transcription through the cell cycle, and translational autoregulation. In this review, the current understanding of human DHFR in terms of structure, function and regulation is summarized.
Collapse
|
84
|
Abstract
Dihydrofolate reductase (DHFR) is the major target of methotrexate (MTX), a key component in childhood acute lymphoblastic leukemia (ALL) treatment. A total of 15 polymorphisms in DHFR promoter were analyzed, and 3 sites (C-1610G/T, C-680A, and A-317G) were identified as sufficient to define observed haplotypes (tag single nucleotide polymorphisms [tagSNPs]). These polymorphisms were investigated for association with treatment response in 277 children with ALL. Lower event-free survival (EFS) was associated with homozygosity for the allele A-317 and C-1610 (P=.03 and .02), and with the haplotype *1, defined by both C-1610 and A-317 alleles (P=.03). The haplotype *1 conferred higher transcriptional activity (P<.01 compared with haplotypes generating minimal luciferase expression). Quantitative mRNA analysis showed higher DHFR levels for particular haplotype *1 carriers (P<.01). The analysis combining haplotype *1 with thymidylate synthase (TS) and cyclin D1 (CCND1) genotypes previously shown to affect ALL outcome showed that the number of event-predisposing genotypes was associated with increasingly lower EFS (P<.001). In conclusion, DHFR promoter polymorphisms are associated with worse ALL outcome, likely due to a higher DHFR expression. Combined effects among genes of the folate cycle can further accentuate differences in the response to the treatment.
Collapse
|
85
|
Beaudin AE, Stover PJ. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. ACTA ACUST UNITED AC 2007; 81:183-203. [PMID: 17963270 DOI: 10.1002/bdrc.20100] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neural tube defects (NTDs) refer to a cluster of neurodevelopmental conditions associated with failure of neural tube closure during embryonic development. Worldwide prevalence of NTDs ranges from approximately 0.5 to 60 per 10,000 births, with regional and population-specific variation in prevalence. Numerous environmental and genetic influences contribute to NTD etiology; accumulating evidence from population-based studies has demonstrated that folate status is a significant determinant of NTD risk. Folate-mediated one-carbon metabolism (OCM) is essential for de novo nucleotide biosynthesis, methionine biosynthesis, and cellular methylation reactions. Periconceptional maternal supplementation with folic acid can prevent occurrence of NTDs in the general population by up to 70%; currently several countries fortify their food supply with folic acid for the prevention of NTDs. Despite the unambiguous impact of folate status on NTD risk, the mechanism by which folic acid protects against NTDs remains unknown. Identification of the mechanism by which folate status affects neural tube closure will assist in developing more efficacious and better targeted preventative measures. In this review, we summarize current research on the relationship between folate status and NTDs, with an emphasis on linking genetic variation, folate nutriture, and specific metabolic and/or genomic pathways that intersect to determine NTD outcomes.
Collapse
Affiliation(s)
- Anna E Beaudin
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
86
|
Parle-McDermott A, Pangilinan F, Mills JL, Kirke PN, Gibney ER, Troendle J, O'Leary VB, Molloy AM, Conley M, Scott JM, Brody LC. The 19-bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR) may decrease rather than increase risk for spina bifida in the Irish population. Am J Med Genet A 2007; 143A:1174-80. [PMID: 17486595 DOI: 10.1002/ajmg.a.31725] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Periconceptional maternal folic acid supplementation can prevent up to 70% of pregnancies affected with neural tube defects (NTDs), including spina bifida. This has focused attention on folate-related genes such as dihydrofolate reductase (DHFR) in a bid to identify the genetic factors that influence NTD risk through either the fetal or maternal genotype. We considered a novel intronic 19-bp deletion polymorphism and two polymorphisms within the 3' untranslated region (721A>T and 829C>T) of the DHFR gene as candidates for NTD risk. We studied NTD cases (n=283), mothers of cases (n=280), fathers of cases (n=279), and controls (n=256). We did not find the DHFR 829C>T polymorphism to be variable within the Irish population. The 19-bp intron deletion and the 721A>T polymorphisms were found to be in linkage disequilibrium. In contrast to a previous study, the 19-bp intron deletion allele did show a significant protective effect in mothers of NTD cases when present in one (relative risk 0.59 [95%CI: 0.39-0.89], P=0.01) or two copies (relative risk 0.52 [95%CI: 0.32-0.86], P=0.01). Analysis of mRNA levels revealed a small increase in expression ( approximately 1.5-fold) associated with the 19-bp intron deletion polymorphism, but this was not significant. In conclusion, the DHFR intron 19-bp deletion allele may be a protective NTD genetic factor by increasing DHFR mRNA levels in pregnant women.
Collapse
|
87
|
Adams M, Lucock M, Stuart J, Fardell S, Baker K, Ng X. Preliminary evidence for involvement of the folate gene polymorphism 19bp deletion-DHFR in occurrence of autism. Neurosci Lett 2007; 422:24-9. [PMID: 17597297 DOI: 10.1016/j.neulet.2007.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 11/20/2022]
Abstract
Folate has long been implicated in both the metabolism of neurotransmitter molecules, and as an agonist with a direct effect upon neuronal tissue. Folates mediate transfer of one-carbon units into major biosynthetic pathways. From a developmental perspective, the most important reactions are de novo methionine and thymine synthesis, critical for DNA expression and elaboration, respectively. Dihydrofolate reductase (DHFR) is the sole enzyme responsible for maintaining the reduced state of the vitamin needed for these two pathways. Here, we report that the 19bp-deletion polymorphism of DHFR acts independently (OR 2.69, 95% CI; 1.00-7.28, p<0.05) and in concert with related folate polymorphisms as a significant risk factor for autism. Possible consequences of this are discussed in the context of the interaction between folate and the glutamatergic nervous system, an area of promising candidate genes for contributing to autism.
Collapse
Affiliation(s)
- Michelle Adams
- School of Environmental & Life Sciences, University of Newcastle, PO Box 127, Brush Rd., Ourimbah, NSW 2258, Australia
| | | | | | | | | | | |
Collapse
|
88
|
van der Linden IJM, Nguyen U, Heil SG, Franke B, Vloet S, Gellekink H, den Heijer M, Blom HJ. Variation and expression of dihydrofolate reductase (DHFR) in relation to spina bifida. Mol Genet Metab 2007; 91:98-103. [PMID: 17336564 DOI: 10.1016/j.ymgme.2007.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 11/20/2022]
Abstract
The dihydrofolate reductase (DHFR) enzyme is important for folate availability, folate turnover and DNA synthesis. The 19-bp deletion in intron-1 of DHFR has been associated with the risk of having spina bifida affected offspring, supposedly by changing DHFR gene expression. A 9-bp repeat in exon 1 of the mutS homolog 3 (MSH3) gene was recently demonstrated to be also located in the 5'UTR of DHFR and may possibly affect DHFR gene expression as well. We examined the association between these DHFR variants and spina bifida risk and investigated their effect on DHFR expression. Our study population, consisting of 121 mothers of a spina bifida affected child, 109 spina bifida patients, 292 control women and 234 pediatric controls was screened for the DHFR 19-bp deletion and the DHFR 9-bp repeat. DHFR gene expression was measured in 66 spina bifida patients, using real-time PCR analysis. In this study population, the DHFR 19-bp del/del genotype was not associated with spina bifida risk in mothers and children (OR: 0.8; 95%CI: 0.4-1.5 and OR: 1.2; 95%CI: 0.6-2.2, respectively) and both the WT/del and the del/del genotype did not affect DHFR expression relative to the WT/WT genotype (relative expression=0.89, p=0.46 and relative expression=1.26, p=0.24, respectively). The DHFR 9-bp repeat was not associated with spina bifida risk in mothers and children. DHFR expression of the 6/6 allele was 73% increased compared to the 3/3 allele, although not significantly (relative expression=1.73, p=0.09). We did not find evidence for an effect of the DHFR 19-bp deletion or 9-bp repeat on spina bifida risk in mothers and children. An effect of the 6/6 repeat genotype on DHFR expression cannot be ruled out.
Collapse
Affiliation(s)
- Ivon J M van der Linden
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Curtin K, Slattery ML, Ulrich CM, Bigler J, Levin TR, Wolff RK, Albertsen H, Potter JD, Samowitz WS. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet. Carcinogenesis 2007; 28:1672-9. [PMID: 17449906 PMCID: PMC2442467 DOI: 10.1093/carcin/bgm089] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case-control study (916 incident colon cancer cases and 1,972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP- or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B(12) and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1,298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3-3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer.
Collapse
Affiliation(s)
- Karen Curtin
- Department of Internal Medicine, University of Utah Health Sciences Center, 375 Chipeta Way, Suite A, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Xu X, Gammon MD, Wetmur JG, Rao M, Gaudet MM, Teitelbaum SL, Britton JA, Neugut AI, Santella RM, Chen J. A functional 19-base pair deletion polymorphism of dihydrofolate reductase (DHFR) and risk of breast cancer in multivitamin users. Am J Clin Nutr 2007; 85:1098-102. [PMID: 17413111 DOI: 10.1093/ajcn/85.4.1098] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) converts dihydrofolate (DHF) into tetrahydrofolate (THF) and plays an essential role in cell metabolism and cellular growth. Folic acid from multivitamins needs to be reduced by DHFR before it participates in cellular reactions. OBJECTIVES We examined the relation of a 19-base pair (bp) deletion polymorphism of the DHFR gene with the risk of breast cancer by using data from the Long Island Breast Cancer Study Project, a population-based case-control study. We also investigated the transcriptional effect of this deletion polymorphism. DESIGN Dietary data and habitual use of multivitamins were assessed from a modified Block food-frequency questionnaire (FFQ). Genotypes of DHFR were ascertained from 1062 case subjects and 1099 control subjects by allele-specific polymerase chain reaction. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% CIs. RESULT Although the DHFR 19-bp deletion polymorphism was not associated with overall breast cancer risk, we observed a borderline significant additive interaction (P = 0.06) between the DHFR genotype and multivitamin use. The -19-bp allele was associated with greater breast cancer risk in multivitamin users (51.2% of the study population) with an OR of 1.26 (95% CI: 0.96, 1.66) and 1.52 (95% CI: 1.08, 2.13) for the +/- and -/- genotypes, respectively (P for trend = 0.02) than in multivatimin nonusers. A dose-dependent relation (P for trend < 0.001) between DHFR expression and the deletion genotype was observed. Compared with the subjects with the 19-bp +/+ genotype, subjects with the -/- genotype had 4.8-fold DHFR mRNA levels. CONCLUSIONS The DHFR 19-bp deletion polymorphism affects the transcription of DHFR gene in humans. Multivitamin supplements may place a subgroup of women (ie, those with the -19-bp allele) at elevated risk of developing breast cancer.
Collapse
Affiliation(s)
- Xinran Xu
- Departments of Community and Preventive Medicine and Epidemiology and Medicine, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Xu X, Gammon MD, Zhang H, Wetmur JG, Rao M, Teitelbaum SL, Britton JA, Neugut AI, Santella RM, Chen J. Polymorphisms of one-carbon-metabolizing genes and risk of breast cancer in a population-based study. Carcinogenesis 2007; 28:1504-9. [PMID: 17372271 DOI: 10.1093/carcin/bgm061] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One-carbon metabolism facilitates the crosstalk between genetic and epigenetic processes and plays critical roles in both DNA methylation and DNA synthesis, making it a good candidate for studying the risk of breast cancer. We previously reported that polymorphisms in methylenetetrahydrofolate reductase (MTHFR) in one-carbon pathway were associated with breast cancer risk in the population-based Long Island Breast Cancer Study Project. Herein, we systematically investigated putatively functional polymorphisms of seven other one-carbon-metabolizing genes in relation to the breast cancer risk in the same population. Except for a slight indication of increased risk of breast cancer associated with the double repeat (2R) allele in the thymidylate synthase (TYMS) 5'-untranslated region (UTR) (P, trend = 0.07), polymorphisms in the other six genes did not substantially modify the risk of breast cancer, or did they modify the risk associated with dietary intakes of folate and related B vitamins. However, we observed a significant multiplicative interaction between the MTHFR 677C>T and the TYMS 5'-UTR polymorphisms (P = 0.02). We used a recursive partitioning method, RTREE, in an attempt to tease out important or rate-limiting genes encoding these intricately related enzymes. Results from RTREE analyses indicate that MTHFR and TYMS are the two leading rate-limiting enzymes in the pathway, consistent with our epidemiological findings. Our findings underscore the importance of one-carbon metabolism in breast cancer etiology. Although the pathway is a network of interrelated enzymes, redundancy exists; evaluating the rate-limiting enzyme and its interaction with environment and other genes within the same pathway is critical in assessing breast cancer risk.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Giotopoulos G, Symonds RP, Foweraker K, Griffin M, Peat I, Osman A, Plumb M. The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br J Cancer 2007; 96:1001-7. [PMID: 17325707 PMCID: PMC2360097 DOI: 10.1038/sj.bjc.6603637] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relationship between late normal tissue radiation injury phenotypes in 167 breast cancer patients treated with radiotherapy and: (i) radiotherapy dose (boost); (ii) an early acute radiation reaction and (iii) genetic background was examined. Patients were genotyped at single nucleotide polymorphisms (SNPs) in eight candidate genes. An early acute reaction to radiation and/or the inheritance of the transforming growth factor-β1 (TGFβ1 −509T) SNP contributed to the risk of fibrosis. In contrast, an additional 15 Gy electron boost and/or the inheritance of X-ray repair cross-complementing 1 (XRCC1) (R399Q) SNP contributed to the risk of telangiectasia. Although fibrosis, telangiectasia and atrophy, all contribute to late radiation injury, the data suggest that they have distinct underlying genetic and radiobiological causes. Fibrosis risk is associated with an inflammatory response (an acute reaction and/or TGFβ1), whereas telangiectasia is associated with vascular endothelial cell damage (boost and/or XRCC1). Atrophy is associated with an acute response, but the genetic predisposing factors that determine the risk of an acute response or atrophy have yet to be identified. A combined analysis of two UK breast cancer patient studies shows that 8% of patients are homozygous (TT) for the TGFβ1 (C-509T) variant allele and have a 15-fold increased risk of fibrosis following radiotherapy (95% confidence interval: 3.76–60.3; P=0.000003) compared with (CC) homozygotes.
Collapse
Affiliation(s)
- G Giotopoulos
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - R P Symonds
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Level 2, Osborne Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- E-mail:
| | - K Foweraker
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Level 2, Osborne Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - M Griffin
- Department of Oncology, Nottingham University Hospitals NHS Trust, CITY Hospital Campus, ICT Services, Hucknall Road, Nottingham, UK
| | - I Peat
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Level 2, Osborne Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - A Osman
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Level 2, Osborne Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - M Plumb
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
93
|
|
94
|
van der Linden IJM, Afman LA, Heil SG, Blom HJ. Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc 2006; 65:204-15. [PMID: 16672082 DOI: 10.1079/pns2006495] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural-tube defects (NTD) are common congenital malformations that can lead to severe disability or even death. Periconceptional supplementation with the B-vitamin folic acid has been demonstrated to prevent 50-70% of NTD cases. Since the identification of the first genetic risk factor of NTD, the C677T single-nucleotide polymorphism (SNP) in the methylenetetrahydrofolate reductase (MTHFR) gene, and the observation that elevated plasma homocysteine levels are associated with NTD, research has focused on genetic variation in genes encoding for enzymes of folate metabolism and the closely-related homocysteine metabolism. In the present review relevant SNP in genes that code for enzymes involved in folate transport and uptake, the folate cycles and homocysteine metabolism are summarised and the importance of these SNP discussed in relation to NTD risk.
Collapse
Affiliation(s)
- Ivon J M van der Linden
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
95
|
Gellekink H, Blom HJ, van der Linden IJM, den Heijer M. Molecular genetic analysis of the human dihydrofolate reductase gene: relation with plasma total homocysteine, serum and red blood cell folate levels. Eur J Hum Genet 2006; 15:103-9. [PMID: 16969375 DOI: 10.1038/sj.ejhg.5201713] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Disturbances in folate metabolism may increase the risk of certain malignancies, congenital defects and cardiovascular diseases. The gene dihydrofolate reductase (DHFR) is primarily involved in the reduction of dihydrofolate, generated during thymidylate synthesis, to tetrahydrofolate in order to maintain adequate amounts of folate for DNA synthesis and homocysteine remethylation. In order to reveal possible variation that may affect plasma total homocysteine (tHcy), serum folate and red blood cell (RBC) folate levels, we sequenced the DHFR coding region as well as the intron-exon boundaries and DHFR flanking regions from 20 Caucasian individuals. We identified a 9-bp repeat in the 5'-upstream region that partially overlapped with the 5'-untranslated region, and several single-nucleotide polymorphisms, all in non-coding regions. We screened subjects for the 9-bp repeat (n=417), as well as the recently reported 19-bp deletion in intron 1 (n=330), and assessed their associations with plasma tHcy, serum and RBC folate levels. The 19-bp del/del genotype was associated with a lower plasma tHcy (-14.4% [95% confidence interval: -23.5 to -4.5], P=0.006) compared with the wild-type genotype. This may suggest that intracellular folate levels are affected.
Collapse
Affiliation(s)
- Henkjan Gellekink
- Laboratory of Paediatrics and Neurology, Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
96
|
Robien K, Boynton A, Ulrich CM. Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics 2006; 6:673-89. [PMID: 16207145 DOI: 10.2217/14622416.6.7.673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate metabolism is the target of two major drug groups: folate antagonists (for example, methotrexate) and thymidylate synthase inhibitors (for example, 5-fluorouracil). These agents are used in the treatment of cancer, as well as for other conditions, such as rheumatoid arthritis. High-dose cancer treatment protocols can induce a state of acute folate depletion which may lead to significant treatment-related toxicity. Polymorphisms in folate-metabolizing enzymes may modify the therapeutic effectiveness and toxicity of these drugs. This review briefly summarizes the drugs targeting the folate pathway and describes common polymorphisms in folate-metabolizing enzymes and transport proteins. Pharmacogenetic studies investigating folate-related drug targets in the treatment of colorectal cancers and hematologic malignancies will subsequently be discussed. Findings to date illustrate a potential for targeting therapy based on patients' genotypes, in order to improve outcomes and reduce toxicity. However, larger, well-designed studies are needed to confirm these early findings.
Collapse
Affiliation(s)
- Kim Robien
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, 1100 Fairview Ave N, M4-B402, Seattle, WA 98109 1024, USA
| | | | | |
Collapse
|
97
|
Abstract
The influence of folate nutritional status on various pregnancy outcomes has long been recognized. Studies conducted in the 1950s and 1960s led to the recognition of prenatal folic acid supplementation as a means to prevent pregnancy-induced megaloblastic anemia. In the 1990s, the utility of periconceptional folic acid supplementation and folic acid food fortification emerged when they were proven to prevent the occurrence of neural tube defects. These distinctively different uses of folic acid may well be ranked among the most significant public health measures for the prevention of pregnancy-related disorders. Folate is now viewed not only as a nutrient needed to prevent megaloblastic anemia in pregnancy but also as a vitamin essential for reproductive health. This review focuses on the relation between various outcomes of human reproduction (ie, pregnancy, lactation, and male reproduction) and folate nutrition and metabolism, homocysteine metabolism, and polymorphisms of genes that encode folate-related enzymes or proteins, and we identify issues for future research.
Collapse
Affiliation(s)
- Tsunenobu Tamura
- Department of Nutrition Sciences, University of Alabama at Birmingham, AL 35294, USA.
| | | |
Collapse
|
98
|
Troen AM, Mitchell B, Sorensen B, Wener MH, Johnston A, Wood B, Selhub J, McTiernan A, Yasui Y, Oral E, Potter JD, Ulrich CM. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr 2006; 136:189-94. [PMID: 16365081 DOI: 10.1093/jn/136.1.189] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Folic acid (FA) supplements and food fortification are used to prevent neural tube defects and to lower plasma homocysteine. Through exposure to food fortification and vitamin supplement use, large populations in the United States and elsewhere have an unprecedented high FA intake. We evaluated dietary and supplemental intakes of folate and FA in relation to an index of immune function, natural killer cell (NK) cytotoxicity, among 105 healthy, postmenopausal women. Among women with a diet low in folate (<233 microg/d), those who used FA-containing supplements had significantly greater NK cytotoxicity (P = 0.01). However, those who consumed a folate-rich diet and in addition used FA supplements > 400 microg/d had reduced NK cytotoxicity compared with those consuming a low-folate diet and no supplements (P = 0.02). Prompted by this observation, we assessed the presence of unmetabolized FA in plasma as a biochemical marker of excess FA. Unmetabolized folic acid was detected in 78% of plasma samples from fasting participants. We found an inverse relation between the presence of unmetabolized FA in plasma and NK cytotoxicity. NK cytotoxicity was approximately 23% lower among women with detectable folic acid (P = 0.04). This inverse relation was stronger among women >or= 60 y old and more pronounced with increasing unmetabolized FA concentrations (P-trend = 0.002). Because of the increased intake of FA in many countries, our findings highlight the need for further studies on the effect of long-term high FA intake on immune function and health.
Collapse
Affiliation(s)
- Aron M Troen
- Jean Mayer United States Department of Agriculture Huamn Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Brukner I, Paquin B, Belouchi M, Labuda D, Krajinovic M. Self-priming arrest by modified random oligonucleotides facilitates the quality control of whole genome amplification. Anal Biochem 2005; 339:345-7. [PMID: 15797576 DOI: 10.1016/j.ab.2005.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 12/27/2022]
Affiliation(s)
- Ivan Brukner
- Centre de Recherche, Hôpital Sainte-Justine, 3175 Cote Sainte-Catherine, Montréal, Que., Canada H3T 1C5.
| | | | | | | | | |
Collapse
|
100
|
Gregory JF, Quinlivan EP, Davis SR. Integrating the issues of folate bioavailability, intake and metabolism in the era of fortification. Trends Food Sci Technol 2005. [DOI: 10.1016/j.tifs.2005.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|