51
|
Rawale DG, Thakur K, Sreekumar P, T K S, A R, Adusumalli SR, Mishra RK, Rai V. Linchpins empower promiscuous electrophiles to enable site-selective modification of histidine and aspartic acid in proteins. Chem Sci 2021; 12:6732-6736. [PMID: 34040749 PMCID: PMC8133000 DOI: 10.1039/d1sc00335f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
The conservation of chemoselectivity becomes invalid for multiple electrophilic warheads during protein bioconjugation. Consequently, it leads to unpredictable heterogeneous labeling of proteins. Here, we report that a linchpin can create a unique chemical space to enable site-selectivity for histidine and aspartic acid modifications overcoming the pre-requisite of chemoselectivity.
Collapse
Affiliation(s)
- Dattatraya Gautam Rawale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Kalyani Thakur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Pranav Sreekumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Sajeev T K
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Ramesh A
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Srinivasa Rao Adusumalli
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Ram Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| |
Collapse
|
52
|
Wang Y, Chen X, Cai W, Tan L, Yu Y, Han B, Li Y, Xie Y, Su Y, Luo X, Liu T. Expanding the Structural Diversity of Protein Building Blocks with Noncanonical Amino Acids Biosynthesized from Aromatic Thiols. Angew Chem Int Ed Engl 2021; 60:10040-10048. [PMID: 33570250 DOI: 10.1002/anie.202014540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 11/07/2022]
Abstract
Incorporation of structurally novel noncanonical amino acids (ncAAs) into proteins is valuable for both scientific and biomedical applications. To expand the structural diversity of available ncAAs and to reduce the burden of chemically synthesizing them, we have developed a general and simple biosynthetic method for genetically encoding novel ncAAs into recombinant proteins by feeding cells with economical commercially available or synthetically accessible aromatic thiols. We demonstrate that nearly 50 ncAAs with a diverse array of structures can be biosynthesized from these simple small-molecule precursors by hijacking the cysteine biosynthetic enzymes, and the resulting ncAAs can subsequently be incorporated into proteins via an expanded genetic code. Moreover, we demonstrate that bioorthogonal reactive groups such as aromatic azides and aromatic ketones can be incorporated into green fluorescent protein or a therapeutic antibody with high yields, allowing for subsequent chemical conjugation.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiaoxu Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenkang Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Linzhi Tan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yutong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Boyang Han
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yuxuan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yuanzhe Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiaozhou Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
53
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
54
|
Covalent peptides and proteins for therapeutics. Bioorg Med Chem 2021; 29:115896. [DOI: 10.1016/j.bmc.2020.115896] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
|
55
|
|
56
|
Jia F, Wang J, Zhao Y, Zhang Y, Luo Q, Qi L, Hou Y, Du J, Wang F. In Situ Visualization of Proteins in Single Cells by Time-of-Flight-Secondary Ion Mass Spectrometry Coupled with Genetically Encoded Chemical Tags. Anal Chem 2020; 92:15517-15525. [PMID: 33203209 DOI: 10.1021/acs.analchem.0c03448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In situ visualization of proteins of interest in single cells is attractive in cell biology, molecular biology, and biomedicine fields. Time-of-flight-secondary ion mass spectrometry (ToF-SIMS) is a powerful tool for imaging small organic molecules in single cells, yet difficult to image biomacromolecules such as proteins and DNA. Herein, a universal strategy is reported to image specific proteins in single cells by ToF-SIMS following genetic incorporation of fluorine-containing unnatural amino acids as a chemical tag into the proteins via a genetic code expansion technique. The method was developed and validated by imaging a green fluorescence protein (GFP) in Escherichia coli (E. coli) and human HeLa cancer cells and then utilized to visualize the characteristic polar distribution of chemotaxis protein CheA in E. coli cells and the interaction between high-mobility group box 1 protein and cisplatin-damaged DNA in HeLa cells. The present work highlights the power of ToF-SIMS imaging combined with genetically encoded chemical tags for in situ visualization of specific proteins as well as the interactions between proteins and drugs or drug-damaged DNA in single cells.
Collapse
Affiliation(s)
- Feifei Jia
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jie Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun Du
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Basic Medical College, Shandong University of Chinese Traditional Medicine, Jinan 250355, People's Republic of China
| |
Collapse
|
57
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
58
|
Li S, Yang B, Kobayashi T, Yu B, Liu J, Wang L. Genetically encoding thyronine for fluorescent detection of peroxynitrite. Bioorg Med Chem 2020; 28:115665. [PMID: 32828428 DOI: 10.1016/j.bmc.2020.115665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
Peroxynitrite is a highly reactive oxidant effecting cell signaling and cell death. Here we report a fluorescent protein probe to selectively detect peroxynitrite. A novel unnatural amino acid, thyronine (Thy), was genetically encoded in E. coli and mammalian cells by evolving an orthogonal tRNAPyl/ThyRS pair. Incorporation of Thy into the chromophore of sfGFP or cpsGFP afforded a virtually non-fluorescent reporter. Upon treatment with peroxynitrite, Thy was converted into tyrosine via O-dearylation, regenerating GFP fluorescence in a time- and concentration-dependent manner. Genetically encoded thyronine may also be valuable for other redox applications.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States.
| |
Collapse
|
59
|
Developing Covalent Protein Drugs via Proximity-Enabled Reactive Therapeutics. Cell 2020; 182:85-97.e16. [DOI: 10.1016/j.cell.2020.05.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023]
|
60
|
Anderson SE, Fahey NS, Park J, O'Kane PT, Mirkin CA, Mrksich M. A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1. Analyst 2020; 145:3899-3908. [PMID: 32297889 PMCID: PMC7440924 DOI: 10.1039/d0an00174k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enzyme isocitrate dehydrogenase 1 (IDH1) catalyzes the conversion of isocitrate to alpha-ketoglutarate (αKG) and has emerged as an important therapeutic target for glioblastoma multiforme (GBM). Current methods for assaying IDH1 remain poorly suited for high-throughput screening of IDH1 antagonists. This paper describes a high-throughput and quantitative assay for IDH1 that is based on the self-assembled monolayers for matrix-assisted laser desorption/ionization-mass spectrometry (SAMDI-MS) method. The assay uses a self-assembled monolayer presenting a hydrazide group that covalently captures the αKG product of IDH1, where it can then be detected by MALDI-TOF mass spectrometry. Co-capture of an isotopically-labeled αKG internal standard allows the αKG concentration to be quantitated. The assay was used to analyze a series of standard αKG solutions and produced minimal error in measured αKG concentration values. The suitability of the assay for high-throughput analysis was evaluated in a 384-sample biochemical IDH1 screen. Cells expressing IDH1 were lysed and the lysate was applied to the monolayer to capture αKG, which was then quantitated using the SAMDI-MS assay. Cells in which IDH1 expression was reduced by small-interfering RNA exhibited a corresponding decrease in αKG concentration as measured by the assay. Application of the assay toward the high-throughput screening of IDH1 inhibitors or knockdown agents may facilitate the discovery of treatments for GBM.
Collapse
Affiliation(s)
- Sarah E Anderson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Tsuji T, Tanaka T, Tanaka T, Yazaki R, Ohshima T. Catalytic Aerobic Cross-Dehydrogenative Coupling of Azlactones en Route to α,α-Disubstituted α-Amino Acids. Org Lett 2020; 22:4164-4170. [PMID: 32396012 DOI: 10.1021/acs.orglett.0c01248] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We developed a catalytic aerobic method to synthesize α,α-disubstituted α-amino acids through cross-dehydrogenative coupling of azlactones. Combining an iron catalyst with a bisoxazolidine ligand resulted in high catalytic performance, and cross-coupling with an indole proceeded smoothly under aerobic conditions. A wide variety of α-aryl and aliphatic amino acid derived azlactones were applied to the present catalysis. In addition, a quaternary carbon could be constructed using oxindole and benzofuranone under aerobic conditions.
Collapse
Affiliation(s)
- Taro Tsuji
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takafumi Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tsukushi Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
62
|
Proulx C. Catching up to nature's ribosomes. Science 2020; 368:941. [PMID: 32467378 DOI: 10.1126/science.abb9711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
63
|
Wang N, Wang L. Acid-brightening fluorescent protein (abFP) for imaging acidic vesicles and organelles. Methods Enzymol 2020; 639:167-189. [PMID: 32475400 DOI: 10.1016/bs.mie.2020.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acidic organelles and vesicles, such as endosomes, lysosomes, autophagosomes, trans-Golgi network, and synaptic vesicles, are known to play important roles in a broad range of cellular events. To facilitate studying these multifunctional systems, we describe here an acid-brightening fluorescent protein (abFP), which fluoresces strongly at acidic pH, but is almost nonfluorescent at or above physiological pH, making it well suited for imaging molecules residing in acidic microenvironment in live cells. Specifically, a quinoline-containing unnatural amino acid Qui is incorporated into the chromophore of EGFP via genetic code expansion to generate the abFP. When being exposed to acidic environment, protonation of Qui results in a cationic chromophore and fluorescence increase. Protocols are presented to express abFP in E. coli and mammalian cells, and to fluorescently image the endocytosis of δ opioid receptor-abFP fusion protein in mammalian cells. This strategy may be similarly applicable to other fluorescent proteins to enable acidic imaging.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
64
|
Matsumoto Y, Sawamura J, Murata Y, Nishikata T, Yazaki R, Ohshima T. Amino Acid Schiff Base Bearing Benzophenone Imine As a Platform for Highly Congested Unnatural α-Amino Acid Synthesis. J Am Chem Soc 2020; 142:8498-8505. [PMID: 32316721 DOI: 10.1021/jacs.0c02707] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unnatural α-amino acids are invaluable building blocks in synthetic organic chemistry and could upgrade the function of peptides. We developed a new mode for catalytic activation of amino acid Schiff bases, serving as a platform for highly congested unnatural α-amino acid synthesis. The redox active copper catalyst enabled efficient cross-coupling to construct contiguous tetrasubstituted carbon centers. The broad functional group compatibility highlights the mildness of the present catalysis. Notably, we achieved successive β-functionalization and oxidation of amino acid Schiff bases to afford dehydroalanine derivatives bearing tetrasubstituted carbon. A three-component cross-coupling reaction of an amino acid Schiff base, alkyl bromides, and styrene derivatives demonstrated the high utility of the present method. The diastereoselective reaction was also achieved using menthol derivatives as a chiral auxiliary, delivering enantiomerically enriched α-amino acid bearing α,β-continuous tetrasubstituted carbon. The synthesized highly congested unnatural α-amino acid could be derivatized and incorporated into peptide synthesis.
Collapse
Affiliation(s)
- Yohei Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Sawamura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yumi Murata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
65
|
Zhang L, Zhu R, Feng A, Zhao C, Chen L, Feng G, Liu L. Redox deracemization of β,γ-alkynyl α-amino esters. Chem Sci 2020; 11:4444-4449. [PMID: 34122901 PMCID: PMC8159540 DOI: 10.1039/d0sc00944j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The first non-enzymatic redox deracemization method using molecular oxygen as the terminal oxidant has been described. The one-pot deracemization of β,γ-alkynyl α-amino esters consisted of a copper-catalyzed aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation with excellent functional group compatibility. By using benzothiazoline as the reducing reagent, an exclusive chemoselectivity at the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N bond over the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond was achieved, allowing for efficient deracemization of a series of α-amino esters bearing diverse α-alkynyl substituent patterns. The origins of chemo- and enantio-selectivities were elucidated by experimental and computational mechanistic investigation. The generality of the strategy is further demonstrated by efficient deracemization of β,γ-alkenyl α-amino esters. A one-pot deracemization of β,γ-alkynyl α-amino esters consisting of an aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation has been described.![]()
Collapse
Affiliation(s)
- Lu Zhang
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Aili Feng
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Changyin Zhao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Lei Chen
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Guidong Feng
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China .,School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|
66
|
Wang T, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Nie L. Incorporation of nonstandard amino acids into proteins: principles and applications. World J Microbiol Biotechnol 2020; 36:60. [PMID: 32266578 DOI: 10.1007/s11274-020-02837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
The cellular ribosome shows a naturally evolved strong preference for the synthesis of proteins with standard amino acids. An in-depth understanding of the translation process enables scientists to go beyond this natural limitation and engineer translating systems capable of synthesizing proteins with artificially designed and synthesized non-standard amino acids (nsAA) featuring more bulky sidechains. The sidechains can be functional groups, with chosen biophysical or chemical activities, that enable the direct application of these proteins. Alternatively, the sidechains can be designed to contain highly reactive groups: enabling the ready formation of conjugates via a covalent bond between the sidechain and other chemicals or biomolecules. This co-translational incorporation of nsAAs into proteins allows for a vast number of possible applications. In this paper, we first systematically summarized the advances in the engineering of the translation system. Subsequently, we reviewed the extensive applications of these nsAA-containing proteins (after chemical modification) by discussing representative reports on how they can be utilized for different purposes. Finally, we discussed the direction of further studies which could be undertaken to improve the current technology utilized in incorporating nsAAs in order to use them to their full potential and improve accessibility across disciplines.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yafei An
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Sha Xiao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Mengyuan Zheng
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lu Liu
- College of International Education, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lei Nie
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China.
| |
Collapse
|
67
|
Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 2020; 72:380-413. [PMID: 32107274 PMCID: PMC7047443 DOI: 10.1124/pr.118.015651] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.
Collapse
Affiliation(s)
- Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yien Che Tsai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yiyang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Han Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Tomaya Carpenter
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Allan M Weissman
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Jun Yin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| |
Collapse
|
68
|
Zheng Z, Guo X, Yu M, Wang X, Lu H, Li F, Wang J. Identification of Human IDO1 Enzyme Activity by Using Genetically Encoded Nitrotyrosine. Chembiochem 2020; 21:1593-1596. [DOI: 10.1002/cbic.201900735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaopeng Zheng
- Department of DermatologyThe Affiliated Hospital of Guizhou Medical UniversityDepartment of Immunology, orgDiv/>School of Basic Medical ScienceGuizhou Medical University Beijing Road Yunyan District Guiyang 550005 P.R. China
- Department of OncologyGuizhou People's Hospital Nanming District Guiyang 550005 P.R. China
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Xuzhen Guo
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
- College of Life SciencesUniversity of Chinese Academy of Sciences 19 Yuquan Road Shijingshan District Beijing 100049 P.R. China
| | - Minling Yu
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Xiaoyan Wang
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Hongguang Lu
- Department of DermatologyThe Affiliated Hospital of Guizhou Medical UniversityDepartment of Immunology, orgDiv/>School of Basic Medical ScienceGuizhou Medical University Beijing Road Yunyan District Guiyang 550005 P.R. China
| | - Fahui Li
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Jiangyun Wang
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
- College of Life SciencesUniversity of Chinese Academy of Sciences 19 Yuquan Road Shijingshan District Beijing 100049 P.R. China
| |
Collapse
|
69
|
|
70
|
The 3D Genome Shapes the Regulatory Code of Developmental Genes. J Mol Biol 2020; 432:712-723. [DOI: 10.1016/j.jmb.2019.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
|
71
|
Potts KA, Stieglitz JT, Lei M, Van Deventer JA. Reporter system architecture affects measurements of noncanonical amino acid incorporation efficiency and fidelity. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2020; 5:573-588. [PMID: 33791108 PMCID: PMC8009230 DOI: 10.1039/c9me00107g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to genetically encode noncanonical amino acids (ncAAs) within proteins supports a growing number of applications ranging from fundamental biological studies to enhancing the properties of biological therapeutics. Currently, our quantitative understanding of ncAA incorporation systems is confounded by the diverse set of characterization and analysis approaches used to quantify ncAA incorporation events. While several effective reporter systems support such measurements, it is not clear how quantitative results from different reporters relate to one another, or which details influence measurements most strongly. Here, we evaluate the quantitative performance of single-fluorescent protein reporters, dual-fluorescent protein reporters, and cell surface-displayed protein reporters of ncAA insertion in response to the TAG (amber) codon in yeast. While different reporters support varying levels of apparent readthrough efficiencies, flow cytometry-based evaluations with dual reporters yielded measurements exhibiting consistent quantitative trends and precision across all evaluated conditions. Further investigations of dual-fluorescent protein reporter architecture revealed that quantitative outputs are influenced by stop codon location and N- and C-terminal fluorescent protein identity. Both dual-fluorescent protein reporters and a "drop-in" version of yeast display support quantification of ncAA incorporation in several single-gene knockout strains, revealing strains that enhance ncAA incorporation efficiency without compromising fidelity. Our studies reveal critical details regarding reporter system performance in yeast and how to effectively deploy such reporters. These findings have substantial implications for how to engineer ncAA incorporation systems-and protein translation apparatuses-to better accommodate alternative genetic codes for expanding the chemical diversity of biosynthesized proteins.
Collapse
Affiliation(s)
- K A Potts
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - J T Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - M Lei
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - J A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
72
|
Miwa N, Tanaka C, Ishida S, Hirata G, Song J, Torigoe T, Kuninobu Y, Nishikata T. Copper-Catalyzed Tertiary Alkylative Cyanation for the Synthesis of Cyanated Peptide Building Blocks. J Am Chem Soc 2020; 142:1692-1697. [PMID: 31939289 DOI: 10.1021/jacs.9b11349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper, we report efficient cyanation of various peptides containing the α-bromocarbonyl moiety using a Cu-catalyzed radical-based methodology employing zinc cyanide as the cyanide source. Mechanistic studies revealed that in situ formed CuCN was a key intermediate during the catalytic cycle. Our method could be useful for the synthesis of modified peptides containing quaternary carbons.
Collapse
Affiliation(s)
- Naoki Miwa
- Graduate School of Science and Engineering , Yamaguchi University , 2-16-1 Tokiwadai , Ube , Yamaguchi 755-8611 , Japan
| | - Chihiro Tanaka
- Graduate School of Science and Engineering , Yamaguchi University , 2-16-1 Tokiwadai , Ube , Yamaguchi 755-8611 , Japan
| | - Syo Ishida
- Graduate School of Science and Engineering , Yamaguchi University , 2-16-1 Tokiwadai , Ube , Yamaguchi 755-8611 , Japan
| | - Goki Hirata
- Graduate School of Science and Engineering , Yamaguchi University , 2-16-1 Tokiwadai , Ube , Yamaguchi 755-8611 , Japan
| | - Jizhou Song
- Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga , Fukuoka 816-8580 , Japan
| | - Takeru Torigoe
- Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga , Fukuoka 816-8580 , Japan.,Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasugakoen , Kasuga , Fukuoka 816-8580 , Japan
| | - Yoichiro Kuninobu
- Interdisciplinary Graduate School of Engineering Sciences , Kyushu University , 6-1 Kasugakoen , Kasuga , Fukuoka 816-8580 , Japan.,Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasugakoen , Kasuga , Fukuoka 816-8580 , Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering , Yamaguchi University , 2-16-1 Tokiwadai , Ube , Yamaguchi 755-8611 , Japan
| |
Collapse
|
73
|
Zhou H, Cheung JW, Carpenter T, Jones SK, Luong NH, Tran NC, Jacobs SE, Galbada Liyanage SA, Cropp TA, Yin J. Enhancing the incorporation of lysine derivatives into proteins with methylester forms of unnatural amino acids. Bioorg Med Chem Lett 2020; 30:126876. [PMID: 31836447 PMCID: PMC7644286 DOI: 10.1016/j.bmcl.2019.126876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
We have improved the incorporation of l- and d-forms of unnatural amino acid (UAA) Nε-thiaprolyl-l-lysine (ThzK) into ubiquitin (UB) and green fluorescent protein (GFP) by 2-6 folds with the use of the methylester forms of the UAAs in E coli cell culture. We also improved the yields of UAA-incorporated UB and GFP with the methylester forms of Nε-Boc-l-Lysine (BocK) and Nε-propargyl-l-Lysine (PrK) by 2-5 folds compared to their free acid forms. Our work demonstrated that using methylester-capped UAAs for protein expression is a useful strategy to enhance the yields of UAA-incorporated proteins.
Collapse
Affiliation(s)
- Han Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Jenny W Cheung
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Tomaya Carpenter
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Stacey K Jones
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Nhu H Luong
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Nhi C Tran
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Savannah E Jacobs
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | | | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States.
| |
Collapse
|
74
|
Sternisha SM, Whittington AC, Martinez Fiesco JA, Porter C, McCray MM, Logan T, Olivieri C, Veglia G, Steinbach PJ, Miller BG. Nanosecond-Timescale Dynamics and Conformational Heterogeneity in Human GCK Regulation and Disease. Biophys J 2020; 118:1109-1118. [PMID: 32023434 DOI: 10.1016/j.bpj.2019.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022] Open
Abstract
Human glucokinase (GCK) is the prototypic example of an emerging class of proteins with allosteric-like behavior that originates from intrinsic polypeptide dynamics. High-resolution NMR investigations of GCK have elucidated millisecond-timescale dynamics underlying allostery. In contrast, faster motions have remained underexplored, hindering the development of a comprehensive model of cooperativity. Here, we map nanosecond-timescale dynamics and structural heterogeneity in GCK using a combination of unnatural amino acid incorporation, time-resolved fluorescence, and 19F nuclear magnetic resonance spectroscopy. We find that a probe inserted within the enzyme's intrinsically disordered loop samples multiple conformations in the unliganded state. Glucose binding and disease-associated mutations that suppress cooperativity alter the number and/or relative population of these states. Together, the nanosecond kinetics characterized here and the millisecond motions known to be essential for cooperativity provide a dynamical framework with which we address the origins of cooperativity and the mechanism of activated, hyperinsulinemia-associated, noncooperative variants.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - A Carl Whittington
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida; Department of Biological Science, Florida State University, Tallahassee, Florida
| | | | - Carol Porter
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Malcolm M McCray
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Timothy Logan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland.
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida.
| |
Collapse
|
75
|
Ntoukam DHS, Mutlu H, Theato P. Post-polymerization modification of Poly(vinylcyclopropanes): A potential route to periodic copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
76
|
Urbanek A, Elena-Real CA, Popovic M, Morató A, Fournet A, Allemand F, Delbecq S, Sibille N, Bernadó P. Site-Specific Isotopic Labeling (SSIL): Access to High-Resolution Structural and Dynamic Information in Low-Complexity Proteins. Chembiochem 2019; 21:769-775. [PMID: 31697025 DOI: 10.1002/cbic.201900583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Remarkable technical progress in the area of structural biology has paved the way to study previously inaccessible targets. For example, large protein complexes can now be easily investigated by cryo-electron microscopy, and modern high-field NMR magnets have challenged the limits of high-resolution characterization of proteins in solution. However, the structural and dynamic characteristics of certain proteins with important functions still cannot be probed by conventional methods. These proteins in question contain low-complexity regions (LCRs), compositionally biased sequences where only a limited number of amino acids is repeated multiple times, which hamper their characterization. This Concept article describes a site-specific isotopic labeling (SSIL) strategy, which combines nonsense suppression and cell-free protein synthesis to overcome these limitations. An overview on how poly-glutamine tracts were made amenable to high-resolution structural studies is used to illustrate the usefulness of SSIL. Furthermore, we discuss the potential of this methodology to give further insights into the roles of LCRs in human pathologies and liquid-liquid phase separation, as well as the challenges that must be addressed in the future for the popularization of SSIL.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire, (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, 15, Av. Charles Flahault, BP 14491, 34000, Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| |
Collapse
|
77
|
Vuong W, Mosquera-Guagua F, Sanichar R, McDonald TR, Ernst OP, Wang L, Vederas JC. Synthesis of Chiral Spin-Labeled Amino Acids. Org Lett 2019; 21:10149-10153. [DOI: 10.1021/acs.orglett.9b04216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | - Randy Sanichar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Tyler R. McDonald
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Oliver P. Ernst
- Departments of Biochemistry & Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Lei Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
78
|
Calles J, Justice I, Brinkley D, Garcia A, Endy D. Fail-safe genetic codes designed to intrinsically contain engineered organisms. Nucleic Acids Res 2019; 47:10439-10451. [PMID: 31511890 PMCID: PMC6821295 DOI: 10.1093/nar/gkz745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
One challenge in engineering organisms is taking responsibility for their behavior over many generations. Spontaneous mutations arising before or during use can impact heterologous genetic functions, disrupt system integration, or change organism phenotype. Here, we propose restructuring the genetic code itself such that point mutations in protein-coding sequences are selected against. Synthetic genetic systems so-encoded should fail more safely in response to most spontaneous mutations. We designed fail-safe codes and simulated their expected effects on the evolution of so-encoded proteins. We predict fail-safe codes supporting expression of 20 or 15 amino acids could slow protein evolution to ∼30% or 0% the rate of standard-encoded proteins, respectively. We also designed quadruplet-codon codes that should ensure all single point mutations in protein-coding sequences are selected against while maintaining expression of 20 or more amino acids. We demonstrate experimentally that a reduced set of 21 tRNAs is capable of expressing a protein encoded by only 20 sense codons, whereas a standard 64-codon encoding is not expressed. Our work suggests that biological systems using rationally depleted but otherwise natural translation systems should evolve more slowly and that such hypoevolvable organisms may be less likely to invade new niches or outcompete native populations.
Collapse
Affiliation(s)
- Jonathan Calles
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Isaac Justice
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Detravious Brinkley
- Department of Mathematics and Computer Science, Claflin University, Orangeburg, SC 29115, USA
| | - Alexa Garcia
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Drew Endy
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
79
|
Maini R, Kimura H, Takatsuji R, Katoh T, Goto Y, Suga H. Ribosomal Formation of Thioamide Bonds in Polypeptide Synthesis. J Am Chem Soc 2019; 141:20004-20008. [DOI: 10.1021/jacs.9b11097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
80
|
Carminati DM, Fasan R. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. ACS Catal 2019; 9:9683-9697. [PMID: 32257582 DOI: 10.1021/acscatal.9b02272] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineered myoglobins and other hemoproteins have recently emerged as promising catalysts for asymmetric olefin cyclopropanation reactions via carbene transfer chemistry. Despite this progress, the transformation of electron-poor alkenes has proven very challenging using these systems. Here, we describe the design of a myoglobin-based carbene transferase incorporating a non-native iron-porphyrin cofactor and axial ligand, as an efficient catalyst for the asymmetric cyclopropanation of electron-deficient alkenes. Using this metalloenzyme, a broad range of both electron-rich and electron-deficient alkenes are cyclopropanated with high efficiency and high diastereo- and enantioselectivity (up to >99% de and ee). Mechanistic studies revealed that the expanded reaction scope of this carbene transferase is dependent upon the acquisition of metallocarbene radical reactivity as a result of the reconfigured coordination environment around the metal center. The radical-based reactivity of this system diverges from the electrophilic reactivity of myoglobin and most of known organometallic carbene transfer catalysts. This work showcases the value of cofactor redesign toward tuning and expanding the reactivity of metalloproteins in abiological reactions and it provides a biocatalytic solution to the asymmetric cyclopropanation of electrodeficient alkenes. The metallocarbene radical reactivity exhibited by this biocatalyst is anticipated to prove useful in the context of a variety of other synthetic transformations.
Collapse
Affiliation(s)
- Daniela M. Carminati
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
81
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
82
|
Thompson RE, Stevens AJ, Muir TW. Protein engineering through tandem transamidation. Nat Chem 2019; 11:737-743. [PMID: 31263208 PMCID: PMC6711197 DOI: 10.1038/s41557-019-0281-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
Abstract
Semisynthetic proteins engineered to contain non-coded elements such as post-translational modifications (PTMs) represent a powerful class of tools for interrogating biological processes. Here, we introduce a one-pot, chemoenzymatic method that allows broad access to chemically modified proteins. The approach involves a tandem transamidation reaction cascade that integrates intein-mediated protein splicing with enzyme-mediated peptide ligation. We show that this approach can be used to introduce PTMs and biochemical probes into a range of proteins including Cas9 nuclease and the transcriptional regulator MeCP2, which causes Rett syndrome when mutated. The versatility of the approach is further illustrated through the chemical tailoring of histone proteins within a native chromatin setting. We expect our approach will extend the scope of semisynthesis in protein engineering.
Collapse
Affiliation(s)
- Robert E Thompson
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Princeton, NJ, USA
| | - Adam J Stevens
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Princeton, NJ, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Princeton, NJ, USA.
| |
Collapse
|
83
|
Hirose H, Tsiamantas C, Katoh T, Suga H. In vitro expression of genetically encoded non-standard peptides consisting of exotic amino acid building blocks. Curr Opin Biotechnol 2019; 58:28-36. [DOI: 10.1016/j.copbio.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
|
84
|
Smolskaya S, Andreev YA. Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement. Biomolecules 2019; 9:biom9070255. [PMID: 31261745 PMCID: PMC6681230 DOI: 10.3390/biom9070255] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichia coli is based on the usage of the desired mutant of Methanocaldococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.
Collapse
Affiliation(s)
- Sviatlana Smolskaya
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia.
| | - Yaroslav A Andreev
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
85
|
Li JC, Nastertorabi F, Xuan W, Han GW, Stevens RC, Schultz PG. A Single Reactive Noncanonical Amino Acid Is Able to Dramatically Stabilize Protein Structure. ACS Chem Biol 2019; 14:1150-1153. [PMID: 31181898 DOI: 10.1021/acschembio.9b00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A p-isothiocyanate phenylalanine mutant of the homodimeric protein homoserine o-succinyltransferase (MetA) was isolated in a temperature dependent selection from a library of metA mutants containing noncanonical amino acids. This mutant protein has a dramatic increase of 24 °C in thermal stability compared to the wild type protein. Peptide mapping experiments revealed that the isothiocyanate group forms a thiourea cross-link to the N terminal proline of the other monomer, despite the two positions being >30 Å apart in the X-ray crystal structure of the wild type protein. These results show that an expanded set of building blocks beyond the canonical 20 amino acids can lead to significant changes in the properties of proteins.
Collapse
Affiliation(s)
- Jack C. Li
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Fariborz Nastertorabi
- Department of Biological Sciences, Bridge Institute, Michaelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Weimin Xuan
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gye Won Han
- Department of Biological Sciences, Bridge Institute, Michaelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Raymond C. Stevens
- Department of Biological Sciences, Bridge Institute, Michaelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Peter G. Schultz
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
86
|
Ko W, Kumar R, Kim S, Lee HS. Construction of Bacterial Cells with an Active Transport System for Unnatural Amino Acids. ACS Synth Biol 2019; 8:1195-1203. [PMID: 30971082 DOI: 10.1021/acssynbio.9b00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Engineered organisms with an expanded genetic code have attracted much attention in chemical and synthetic biology research. In this work, engineered bacterial organisms with enhanced unnatural amino acid (UAA) uptake abilities were developed by screening periplasmic binding protein (PBP) mutants for recognition of UAAs. A FRET-based assay was used to identify a mutant PBP (LBP-AEL) with excellent binding affinity ( Kd ≈ 500 nM) to multiple UAAs from 37 mutants. Bacterial cells expressing LBP-AEL showed up to 5-fold enhanced uptake of UAAs, which was determined by genetic incorporation of UAAs into a green fluorescent protein and measuring UAA concentration in cell lysates. To the best of our knowledge, this work is the first report of engineering cellular uptake of UAAs and could provide an impetus for designing advanced unnatural organisms with an expanded genetic code, which function with the efficiency comparable to that of natural organisms. The system would be useful to increase mutant protein yield from lower concentrations of UAAs for industrial and large-scale applications. In addition, the techniques used in this report such as the sensor design and the measurement of UAA concentration in cell lysates could be useful for other biochemical applications.
Collapse
Affiliation(s)
- Wooseok Ko
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Rahul Kumar
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
87
|
Yang B, Wang N, Schnier PD, Zheng F, Zhu H, Polizzi NF, Ittuveetil A, Saikam V, DeGrado WF, Wang Q, Wang PG, Wang L. Genetically Introducing Biochemically Reactive Amino Acids Dehydroalanine and Dehydrobutyrine in Proteins. J Am Chem Soc 2019; 141:7698-7703. [PMID: 31038942 DOI: 10.1021/jacs.9b02611] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expansion of the genetic code with unnatural amino acids (Uaas) has significantly increased the chemical space available to proteins for exploitation. Due to the inherent limitation of translational machinery and the required compatibility with biological settings, function groups introduced via Uaas to date are restricted to chemically inert, bioorthogonal, or latent bioreactive groups. To break this barrier, here we report a new strategy enabling the specific incorporation of biochemically reactive amino acids into proteins. A latent bioreactive amino acid is genetically encoded at a position proximal to the target natural amino acid; they react via proximity-enabled reactivity, selectively converting the latter into a reactive residue in situ. Using this Genetically Encoded Chemical COnversion (GECCO) strategy and harnessing the sulfur-fluoride exchange (SuFEx) reaction between fluorosulfate-l-tyrosine and serine or threonine, we site-specifically generated the reactive dehydroalanine and dehydrobutyrine into proteins. GECCO works both inter- and intramolecularly, and is compatible with various proteins. We further labeled the resultant dehydroalanine-containing protein with thiol-saccharide to generate glycoprotein mimetics. GECCO represents a new solution for selectively introducing biochemically reactive amino acids into proteins and is expected to open new avenues for exploiting chemistry in live systems for biological research and engineering.
Collapse
Affiliation(s)
| | | | | | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - He Zhu
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Avinash Ittuveetil
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Varma Saikam
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | |
Collapse
|
88
|
Kwok HS, Vargas-Rodriguez O, Melnikov SV, Söll D. Engineered Aminoacyl-tRNA Synthetases with Improved Selectivity toward Noncanonical Amino Acids. ACS Chem Biol 2019; 14:603-612. [PMID: 30933556 DOI: 10.1021/acschembio.9b00088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A wide range of noncanonical amino acids (ncAAs) can be incorporated into proteins in living cells by using engineered aminoacyl-tRNA synthetase/tRNA pairs. However, most engineered tRNA synthetases are polyspecific; that is, they can recognize multiple rather than one ncAA. Polyspecificity of engineered tRNA synthetases imposes a limit to the use of genetic code expansion because it prevents specific incorporation of a desired ncAA when multiple ncAAs are present in the growth media. In this study, we employed directed evolution to improve substrate selectivity of polyspecific tRNA synthetases by developing substrate-selective readouts for flow-cytometry-based screening with the simultaneous presence of multiple ncAAs. We applied this method to improve the selectivity of two commonly used tRNA synthetases, p-cyano-l-phenylalanyl aminoacyl-tRNA synthetase ( pCNFRS) and Nε-acetyl-lysyl aminoacyl-tRNA synthetase (AcKRS), with broad specificity. Evolved pCNFRS and AcKRS variants exhibit significantly improved selectivity for ncAAs p-azido-l-phenylalanine ( pAzF) and m-iodo-l-phenylalanine ( mIF), respectively. To demonstrate the utility of our approach, we used the newly evolved tRNA synthetase variant to produce highly pure proteins containing the ncAA mIF, in the presence of multiple ncAAs present in the growth media. In summary, our new approach opens up a new avenue for engineering the next generation of tRNA synthetases with improved selectivity toward a desired ncAA.
Collapse
Affiliation(s)
- Hui Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sergey V. Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
89
|
Moore EJ, Fasan R. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin. Tetrahedron 2019; 75:2357-2363. [PMID: 31133770 PMCID: PMC6534480 DOI: 10.1016/j.tet.2019.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineered myoglobins were recently shown to be effective catalysts for abiological carbene and nitrene transfer reactions. Here, we investigated the impact of substituting the conserved heme-coordinating histidine residue with both proteinogenic (Cys, Ser, Tyr, Asp) and non-proteinogenic Lewis basic amino acids (3-(3'-pyridyl)-alanine, p-aminophenylalanine, and β-(3-thienyl)-alanine), on the reactivity of this metalloprotein toward these abiotic transformations. These studies showed that mutation of the proximal histidine residue with both natural and non-natural amino acids result in stable myoglobin variants that can function as both carbene and nitrene transferases. In addition, substitution of the proximal histidine with an aspartate residue led to a myoglobin-based catalyst capable of promoting stereoselective olefin cyclopropanation under nonreducing conditions. Overall, these studies demonstrate that proximal ligand substitution provides a promising strategy to tune the reactivity of myoglobin-based carbene and nitrene transfer catalysts and provide a first, proof-of-principle demonstration of the viability of pyridine-, thiophene-, and aniline-based unnatural amino acids for metalloprotein engineering.
Collapse
Affiliation(s)
- Eric J Moore
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
90
|
Travis CR, Mazur LE, Peairs EM, Gaunt GH, Young DD. Mechanistic investigation and further optimization of the aqueous Glaser-Hay bioconjugation. Org Biomol Chem 2019; 17:3396-3402. [PMID: 30869108 PMCID: PMC6482449 DOI: 10.1039/c9ob00327d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Glaser-Hay bioconjugation has recently emerged as an efficient and attractive method to generate stable, useful bioconjugates with numerous applications, specifically in the field of therapeutics. Herein, we investigate the mechanism of the aqueous Glaser-Hay coupling to better understand optimization strategies. In doing so, it was identified that catalase is able to minimize protein oxidation and improve coupling efficiency, suggesting that hydrogen peroxide is produced during the aqueous Glaser-Hay bioconjugation. Further, several new ligands were investigated to minimize protein oxidation and maximize coupling efficiency. Finally, two novel strategies to streamline the Glaser-Hay bioconjugation and eliminate the need for secondary purification have been developed.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, College of William & Mary, PO Box 8795, Williamsburg, VA, USA 23185.
| | | | | | | | | |
Collapse
|
91
|
Zhou M, Zhu S, Zhou Q. Iodine‐Catalyzed Oxidative Rearrangement of Amines to α‐Amino Acetals and α‐Amino Aldehydes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Min‐Jie Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Shou‐Fei Zhu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
92
|
Jun JV, Haney CM, Karpowicz RJ, Giannakoulias S, Lee VMY, Petersson EJ, Chenoweth DM. A "Clickable" Photoconvertible Small Fluorescent Molecule as a Minimalist Probe for Tracking Individual Biomolecule Complexes. J Am Chem Soc 2019; 141:1893-1897. [PMID: 30657670 DOI: 10.1021/jacs.8b13094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photoconvertible fluorophores can enable the visualization and tracking of a specific biomolecules, complexes, and cellular compartments with precise spatiotemporal control. The field of photoconvertible probes is dominated by fluorescent protein variants, which can introduce perturbations to the target biomolecules due to their large size. Here, we present a photoconvertible small molecule, termed CPX, that can be conjugated to any target through azide-alkyne cycloaddition ("click" reaction). To demonstrate its utility, we have applied CPX to study (1) trafficking of biologically relevant synthetic vesicles and (2) intracellular processes involved in transmission of α-synuclein (αS) pathology. Our results demonstrate that CPX can serve as a minimally perturbing probe for tracking the dynamics of biomolecules.
Collapse
Affiliation(s)
- Joomyung V Jun
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Conor M Haney
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Richard J Karpowicz
- Department of Pathology and Laboratory Medicine , Center for Neurodegenerative Disease Research, University of Pennsylvania , 3600 Spruce Street , Philadelphia , Pennsylvania 19104 , United States
| | - Sam Giannakoulias
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine , Center for Neurodegenerative Disease Research, University of Pennsylvania , 3600 Spruce Street , Philadelphia , Pennsylvania 19104 , United States
| | - E James Petersson
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - David M Chenoweth
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
93
|
Yao Z, Wu X, Zhang X, Xiong Q, Jiang S, Yu Z. Synthesis and evaluation of photo-activatable β-diarylsydnone-l-alanines for fluorogenic photo-click cyclization of peptides. Org Biomol Chem 2019; 17:6777-6781. [DOI: 10.1039/c9ob00898e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
β-Diarylsydnone-l-alanines were designed and introduced into peptides allowing photo-cyclization only in phosphate containing buffer with concomitant fluorescence generation in live cells.
Collapse
Affiliation(s)
- Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
94
|
Genetically encoding photoswitchable click amino acids for general optical control of conformation and function of proteins. Methods Enzymol 2019; 624:249-264. [PMID: 31370932 PMCID: PMC6684330 DOI: 10.1016/bs.mie.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the past decade, photoswitchable molecules have been emerging as attractive tools for investigating biological processes with spatiotemporal resolution in a minimally invasive fashion. Photoswitches built on light-sensitive proteins or domains have significantly advanced neuronal and cellular studies. To install photosensitivity to general proteins and to enable high specificity for modulation, photoswitchable click amino acids (PSCaas) based on azobenzene have been developed and recently genetically incorporated into proteins via the expansion of the genetic code. PSCaas allow targeting selected sites in a protein for high specificity and are generally applicable to various proteins. In addition, PSCaas contain a click functional group, which selectively reacts with an appropriately positioned cysteine forming a photocontrollable bridge on the protein in situ. The photocontrollable bridge enables reversible modulation of the secondary structure of the spanned region and thus the function of the protein. In this chapter we describe the design and genetic encoding of PSCaa. Protocols are presented for incorporating PSCaa into a model protein calmodulin to build the bridge followed by photocontrol of calmodulin's conformation and binding function.
Collapse
|
95
|
Genetically Encoding Unnatural Amino Acids in Neurons In Vitro and in the Embryonic Mouse Brain for Optical Control of Neuronal Proteins. Methods Mol Biol 2018; 1728:263-277. [PMID: 29405004 DOI: 10.1007/978-1-4939-7574-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Deciphering neuronal networks governing specific brain functions is a longstanding mission in neuroscience, yet global manipulation of protein functions pharmacologically or genetically lacks sufficient specificity to reveal a neuronal protein's function in a particular neuron or a circuitry. Photostimulation presents a great venue for researchers to control neuronal proteins with high temporal and spatial resolution. Recently, an approach to optically control the function of a neuronal protein directly in neurons has been demonstrated using genetically encoded light-sensitive Unnatural amino acids (Uaas). Here, we describe procedures for genetically incorporating Uaas into target neuronal proteins in neurons in vitro and in embryonic mouse brain. As an example, a photocaged Uaa was incorporated into an inwardly rectifying potassium channel Kir2.1 to render Kir2.1 photo-activatable. This method has the potential to be generally applied to many neuronal proteins to achieve optical regulation of different processes in brains. Uaas with other properties can be similarly incorporated into neuronal proteins in neurons for various applications.
Collapse
|
96
|
Li JC, Liu T, Wang Y, Mehta AP, Schultz PG. Enhancing Protein Stability with Genetically Encoded Noncanonical Amino Acids. J Am Chem Soc 2018; 140:15997-16000. [PMID: 30433771 DOI: 10.1021/jacs.8b07157] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to add noncanonical amino acids to the genetic code may allow one to evolve proteins with new or enhanced properties using a larger set of building blocks. To this end, we have been able to select mutant proteins with enhanced thermal properties from a library of E. coli homoserine O-succinyltransferase ( metA) mutants containing randomly incorporated noncanonical amino acids. Here, we show that substitution of Phe 21 with ( p-benzoylphenyl)alanine (pBzF), increases the melting temperature of E. coli metA by 21 °C. This dramatic increase in thermal stability, arising from a single mutation, likely results from a covalent adduct between Cys 90 and the keto group of pBzF that stabilizes the dimeric form of the enzyme. These experiments show that an expanded genetic code can provide unique solutions to the evolution of proteins with enhanced properties.
Collapse
Affiliation(s)
- Jack C Li
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Tao Liu
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Yan Wang
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Angad P Mehta
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Peter G Schultz
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
97
|
Karmakar A, Basha M, Venkatesh Babu G, Botlagunta M, Malik NA, Rampulla R, Mathur A, Gupta AK. Tertiary-butoxycarbonyl (Boc) – A strategic group for N-protection/deprotection in the synthesis of various natural/unnatural N-unprotected aminoacid cyanomethyl esters. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
98
|
Liu J, Cheng R, Wu H, Li S, Wang PG, DeGrado WF, Rozovsky S, Wang L. Building and Breaking Bonds via a Compact S-Propargyl-Cysteine to Chemically Control Enzymes and Modify Proteins. Angew Chem Int Ed Engl 2018; 57:12702-12706. [PMID: 30118570 PMCID: PMC6169525 DOI: 10.1002/anie.201806197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/30/2018] [Indexed: 02/03/2023]
Abstract
Analogous to reversible post-translational protein modifications, the ability to attach and subsequently remove modifications on proteins would be valuable for protein and biological research. Although bioorthogonal functionalities have been developed to conjugate or cleave protein modifications, they are introduced into proteins on separate residues and often with bulky side chains, limiting their use to one type of control and primarily protein surface. Here we achieved dual control on one residue by genetically encoding S-propargyl-cysteine (SprC), which has bioorthogonal alkyne and propargyl groups in a compact structure, permitting usage in protein interior in addition to surface. We demonstrated its incorporation at the dimer interface of glutathione transferase for in vivo crosslinking via thiol-yne click chemistry, and at the active site of human rhinovirus 3C protease for masking and then turning on enzyme activity via Pd-cleavage of SprC into Cys. In addition, we installed biotin onto EGFP via Sonogashira coupling of SprC and then tracelessly removed it via Pd cleavage. SprC is small in size, commercially available, nontoxic, and allows for bond building and breaking on a single residue. Genetically encoded SprC will be valuable for chemically controlling proteins with an essential Cys and for reversible protein modifications.
Collapse
Affiliation(s)
- Jun Liu
- Dr. J. Liu, Dr. H. Wu, S. Li, Prof. W. F. DeGrado, and Prof. L. Wang University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158
| | - Rujin Cheng
- R. Cheng, and Prof. S. Rozovsky.University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716
| | - Haifan Wu
- Dr. J. Liu, Dr. H. Wu, S. Li, Prof. W. F. DeGrado, and Prof. L. Wang University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158
| | - Shanshan Li
- Dr. J. Liu, Dr. H. Wu, S. Li, Prof. W. F. DeGrado, and Prof. L. Wang University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158
- S. Li, Prof. P.G. Wang Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, Georgia 30302
| | - Peng G. Wang
- S. Li, Prof. P.G. Wang Department of Chemistry and Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, Georgia 30302
| | - William F. DeGrado
- Dr. J. Liu, Dr. H. Wu, S. Li, Prof. W. F. DeGrado, and Prof. L. Wang University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158
| | - Sharon Rozovsky
- R. Cheng, and Prof. S. Rozovsky.University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716
| | - Lei Wang
- Dr. J. Liu, Dr. H. Wu, S. Li, Prof. W. F. DeGrado, and Prof. L. Wang University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA, 94158
| |
Collapse
|
99
|
Fu C, Kobayashi T, Wang N, Hoppmann C, Yang B, Irannejad R, Wang L. Genetically Encoding Quinoline Reverses Chromophore Charge and Enables Fluorescent Protein Brightening in Acidic Vesicles. J Am Chem Soc 2018; 140:11058-11066. [PMID: 30132658 PMCID: PMC6145950 DOI: 10.1021/jacs.8b05814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acidic vesicles and organelles play fundamental roles in a broad range of cellular events such as endocytosis, lysosomal degradation, synaptic transmission, pathogen fate, and drug delivery. Fluorescent reporters will be invaluable for studying these complex and multifunctional systems with spatiotemporal resolution, yet common fluorescent proteins are generally nonfluorescent at acidic conditions due to the decrease of anionic chromophores upon protonation, but are fluorescent at physiological pH, creating interfering fluorescence from nonvesicle regions. Here we developed a novel acid-brightening fluorescent protein (abFP) that fluoresces strongly at acidic pH but is nonfluorescent at or above neutral pH, boasting a pH profile opposite to that of common fluorescent proteins. Through expansion of the genetic code, we incorporated a quinoline-containing amino acid Qui into the chromophore of EGFP to reverse the chromophore charge. Protonation of Qui rendered a cationic chromophore, which resulted in unique fluorescence increase only at acidic pH in vitro, in E. coli cells, and on the mammalian cell surface. We further demonstrated that abFP-tagged δ opioid receptors were fluorescently imaged in lysosome showing distinct features and without background fluorescence from other cellular regions, whereas EGFP-tagged receptors were invisible in lysosome. This Qui-rendered cationic chromophore strategy may be generally applied to other fluorescent proteins to generate a palette of colors for acidic imaging with minimal background, and these abFPs should facilitate the study of molecules in association with various acidic vesicles and organelles in different cells and model organisms.
Collapse
Affiliation(s)
- Caiyun Fu
- Department of Pharmaceutical Chemistry and University of California, San Francisco, San Francisco, California, USA
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and University of California, San Francisco, San Francisco, California, USA
| | - Nanxi Wang
- Department of Pharmaceutical Chemistry and University of California, San Francisco, San Francisco, California, USA
| | - Christian Hoppmann
- Department of Pharmaceutical Chemistry and University of California, San Francisco, San Francisco, California, USA
| | - Bing Yang
- Department of Pharmaceutical Chemistry and University of California, San Francisco, San Francisco, California, USA
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry and University of California, San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
100
|
Liu J, Cheng R, Wu H, Li S, Wang PG, DeGrado WF, Rozovsky S, Wang L. Building and Breaking Bonds via a Compact S‐Propargyl‐Cysteine to Chemically Control Enzymes and Modify Proteins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Liu
- University of California, San Francisco Department of Pharmaceutical Chemistry San Francisco CA 94158 USA
| | - Rujin Cheng
- University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 USA
| | - Haifan Wu
- University of California, San Francisco Department of Pharmaceutical Chemistry San Francisco CA 94158 USA
| | - Shanshan Li
- University of California, San Francisco Department of Pharmaceutical Chemistry San Francisco CA 94158 USA
- Department of Chemistry and Center for Therapeutics and Diagnostics Georgia State University Atlanta GA 30302 USA
| | - Peng G. Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics Georgia State University Atlanta GA 30302 USA
| | - William F. DeGrado
- University of California, San Francisco Department of Pharmaceutical Chemistry San Francisco CA 94158 USA
| | - Sharon Rozovsky
- University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 USA
| | - Lei Wang
- University of California, San Francisco Department of Pharmaceutical Chemistry San Francisco CA 94158 USA
| |
Collapse
|