51
|
Ma X, Jia X, Gao H, Wen D. Polypyrrole-Dopamine Nanofiber Light-Trapping Coating for Efficient Solar Vapor Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57153-57162. [PMID: 34825819 DOI: 10.1021/acsami.1c17249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar vapor generation (SVG) typically uses a solar absorbing material at the water-air interface to convert solar energy into heat for evaporation. However, the intrinsic solar absorption of the material determines the upper limit of the solar energy capture. By designing a light-trapping surface structure with open pores and channels, we can break this limit and further improve the absorption by enabling multiple reflections within the surface. Polypyrrole (PPy) is emerging as a promising solar thermal material. In this work, we propose an ultrasonic spray coating method to obtain a nanofiber light-trapping coating by copolymerization with dopamine (DA), which can be directly synthesized at room temperature rapidly (30 min). Due to its excellent wettability, this coating can transport water and can be directly coated on the thermal insulating layer, not requiring an additional water transport layer. This nanoscale coating significantly improves solar absorption at different incident angles across the full solar spectrum, achieving the highest solar-to-thermal conversion efficiency of 95.8% at 1.385 kg·m-2·h-1 under 1 sun. When applied on salt water, this solar evaporator achieves self-cleaning in the absence of solar irradiation. Moreover, the surface structure can be further tuned into granular/plane-fibrous/plane-granular structures by using different oxidants or surfactants, and their formation mechanisms are also proposed. This PPy-DA nanofiber coating shows great potential for SVG and other applications based on a PPy material, especially for those requiring a certain surface morphology.
Collapse
Affiliation(s)
- Xiaolong Ma
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Xiaodong Jia
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Hui Gao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Dongsheng Wen
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
- Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
52
|
Mavridi‐Printezi A, Menichetti A, Guernelli M, Montalti M. The Photophysics and Photochemistry of Melanin- Like Nanomaterials Depend on Morphology and Structure. Chemistry 2021; 27:16309-16319. [PMID: 34505731 PMCID: PMC9291563 DOI: 10.1002/chem.202102479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Melanin-like nanomaterials have found application in a large variety of high economic and social impact fields as medicine, energy conversion and storage, photothermal catalysis and environmental remediation. These materials have been used mostly for their optical and electronic properties, but also for their high biocompatibility and simplicity and versatility of preparation. Beside this, their chemistry is complex and it yields structures with different molecular weight and composition ranging from oligomers, to polymers as well as nanoparticles (NP). The comprehension of the correlation of the different compositions and morphologies to the optical properties of melanin is still incomplete and challenging, even if it is fundamental also from a technological point of view. In this minireview we focus on scientific papers, mostly recent ones, that indeed examine the link between composition and structural feature and photophysical and photochemical properties proposing this approach as a general one for future research.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| |
Collapse
|
53
|
Pyne A, Nandi S, Layek S, Ghosh M, Nandi PK, Bera N, Sarkar N. Influence of a Polyneurotransmitter on DNA-Mediated Förster-Based Resonance Energy Transfer: A Path Leading to White Light Generation. J Phys Chem B 2021; 125:12637-12653. [PMID: 34784202 DOI: 10.1021/acs.jpcb.1c06836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiologically important biomolecule, dopamine (DA), shows strong self-oxidation and aggregation behaviors, which have been controlled and modulated to result in fluorescent polydopamine (F-PDA) nanoparticles. On the other hand, the simultaneous binding of two diverse deoxyribonucleic acid (DNA) binding probes, 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and ethidium bromide (EtBr), has been elaborately established to follow the Förster-based resonance energy transfer (FRET) pathway. The comparative understanding of this DNA-mediated FRET in three media, phosphate buffer saline (PBS) of pH 7.4, DA, and F-PDA, has concluded that the FRET efficiency in the three media follows the order: PBS > DA > F-PDA. This controlled FRET in the fluorescent F-PDA matrix serves a pivotal role for efficient white light (WL) generation with excellent Commission Internationale de l'Eclairage (CIE) parameters that match well with that of pure WL emission. The obtained WL emission has been shown to be very specific with respect to concentrations of different participating components and the excitation wavelength of the illuminating source. Furthermore, the optical properties of the WL emitting solution have been observed to be retained excellently inside the well-known agarose gel matrix. Finally, the mechanistic pathway behind such a FRET-based WL generation has been established in detail, and to the best of our knowledge, the current study offers the first and only report that discloses the influence of a fluorescent polyneurotransmitter matrix for successful generation of WL emission.
Collapse
Affiliation(s)
- Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
54
|
Xing Z, Wu S, Zhao C, Bai Y, Jin D, Yin M, Liu H, Fan Y. Vascular transplantation with dual-biofunctional ePTFE vascular grafts in a porcine model. J Mater Chem B 2021; 9:7409-7422. [PMID: 34551061 DOI: 10.1039/d1tb01398j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular disease (CVD) poses serious health concerns worldwide. The lack of transplantable vascular grafts is an unmet clinical need in the surgical treatment of CVD. Although expanded polytetrafluoroethylene (ePTFE) vascular grafts have been used in clinical practice, a low long-term patency rate in small-diameter transplantation application is still the biggest challenge. Thus, surface modification of ePTFE is sought after. In this study, polydopamine (PDA) was used to improve the hydrophilia and provide immobilization sites in ePTFE. Bivalirudin (BVLD), a direct thrombin inhibitor, was used to enhance the anti-thrombotic activity of ePTFE. The peptides derived from extracellular matrix proteins were used to elevate the bioactivity of ePTFE. The morphology, chemical composition, peptide modified strength, wettability, and hemocompatibility of modified ePTFE vascular grafts were investigated. Then, an endothelial cell proliferation assay was used to evaluate the best co-modification strategy of the ePTFE vascular graft in vitro. Since a large animal could relatively better mimic human physiology, we chose a porcine carotid artery replacement model in the current study. The results showed that the BVLD/REDV co-modified ePTFE vascular grafts had a satisfactory patency rate (66.7%) and a higher endothelial cell coverage ratio (70%) at 12 weeks after implantation. This may offer an opportunity to produce a multi-biofunctional ePTFE vascular graft, thereby yielding a potent product to meet the clinical needs.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P. R. China.
| |
Collapse
|
55
|
Li H, Jiang B, Li J. Recent advances in dopamine-based materials constructed via one-pot co-assembly strategy. Adv Colloid Interface Sci 2021; 295:102489. [PMID: 34352605 DOI: 10.1016/j.cis.2021.102489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023]
Abstract
Dopamine-based materials have attracted widespread interest due to the outstanding physicochemical and biological properties. Since the first report on polydopamine (PDA) films, great efforts have been devoted to develop new fabrication strategies for obtaining novel nanostructures and desirable properties. Among them, one-pot co-assembly strategy offers a unique pathway for integrating multiple properties and functions into dopamine-based platform in a single simultaneous co-deposition step. This review focuses on the state of the art development of one-pot multicomponent self-assembly of dopamine-based materials and summarizes various single-step co-deposition approaches, including PDA-assisted adaptive encapsulation, co-assembly of dopamine with other molecules through non-covalent interactions or covalent interactions. Moreover, emerging applications of dopamine-based materials in the fields ranging from sensing, cancer therapy, catalysis, oil/water separation to antifouling are outlined. In addition, some critical remaining challenges and opportunities are discussed to pave the way towards the rational design and applications of dopamine-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Bo Jiang
- Department of Neuro-oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
56
|
Lei H, Ma Q, Li W, Wen J, Ma H, Qin M, Wang W, Cao Y. An ester bond underlies the mechanical strength of a pathogen surface protein. Nat Commun 2021; 12:5082. [PMID: 34426584 PMCID: PMC8382745 DOI: 10.1038/s41467-021-25425-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacteria can resist large mechanical perturbations during their invasion and colonization by secreting various surface proteins with intramolecular isopeptide or ester bonds. Compared to isopeptide bonds, ester bonds are prone to hydrolysis. It remains elusive whether ester bonds can completely block mechanical extension similarly to isopeptide bonds, or whether ester bonds dissipate mechanical energy by bond rupture. Here, we show that an ester-bond containing stalk domain of Cpe0147 is inextensible even at forces > 2 nN. The ester bond locks the structure to a partially unfolded conformation, in which the ester bond remains largely water inaccessible. This allows the ester bond to withstand considerable mechanical forces and in turn prevent complete protein unfolding. However, the protecting effect might be reduced at non-physiological basic pHs or low calcium concentrations due to destabilizing the protein structures. Inspired by this design principle, we engineer a disulfide mutant resistant to mechanical unfolding under reducing conditions. Bacterial surface adhesion proteins are characterized by unusual mechanical properties. Here, the authors use atomic force microscopy-based technique to study a surface-anchoring protein Cpe0147 from Clostridium perfringens and show that an ester bond can withstand considerable mechanical forces and prevent complete protein unfolding.
Collapse
Affiliation(s)
- Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Quan Ma
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Jing Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| |
Collapse
|
57
|
Pang H, Ma C, Shen Y, Sun Y, Li J, Zhang S, Cai L, Huang Z. Novel Bionic Soy Protein-Based Adhesive with Excellent Prepressing Adhesion, Flame Retardancy, and Mildew Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38732-38744. [PMID: 34369140 DOI: 10.1021/acsami.1c11004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soy protein (SP)-based adhesives can replace traditional aldehyde-based adhesives for the manufacturing of wood-based panels. However, developing a SP-based adhesive with excellent prepressing bonding strength, flame retardancy, and mildew resistance remains a challenge. Herein, an inorganic crystal cross-linked hybrid SP adhesive was developed inspired by the "secreting-hardening" process of the mussel adhesive protein and the organic-inorganic hybrid adhesive system of the oyster. Calcium sulfoaluminate (CSA) was introduced into the adhesive mixture of SP and acrylic acid to induce the in situ polymerization of acrylic acid to achieve adhesive gelation. The generation of the inorganic crystals by hydration of CSA not only contributed to the formation of a stable cross-linked hybrid adhesive system for strong cohesion but also provided strong interfacial adhesion between the adhesive layers and the plywood veneers. As anticipated, the prepared plywood sample bonded with the hybrid adhesive gel had an excellent prepressing bonding strength of 544 kPa, representing a significant increase compared to that of the pure SP adhesive (19 kPa). Moreover, the generated inorganic crystals endowed the adhesive with excellent mildew resistance and flame retardancy. This study provides a novel and effective strategy for the preparation of high-performance SP-based adhesives.
Collapse
Affiliation(s)
- Huiwen Pang
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Chao Ma
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yulin Shen
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yi Sun
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Liping Cai
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
58
|
Spiller S, Clauder F, Bellmann-Sickert K, Beck-Sickinger AG. Improvement of wound healing by the development of ECM-inspired biomaterial coatings and controlled protein release. Biol Chem 2021; 402:1271-1288. [PMID: 34392636 DOI: 10.1515/hsz-2021-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Implant design has evolved from biochemically inert substrates, minimizing cell and protein interaction, towards sophisticated bioactive substrates, modulating the host response and supporting the regeneration of the injured tissue. Important aspects to consider are the control of cell adhesion, the discrimination of bacteria and non-local cells from the desired tissue cell type, and the stimulation of implant integration and wound healing. Here, the extracellular matrix acts as a role model providing us with inspiration for sophisticated designs. Within this scope, small bioactive peptides have proven to be miscellaneously deployable for the mediation of surface, cell and matrix interactions. Combinations of adhesion ligands, proteoglycans, and modulatory proteins should guide multiple aspects of the regeneration process and cooperativity between the different extracellular matrix components, which bears the chance to maximize the therapeutic efficiency and simultaneously lower the doses. Hence, efforts to include multiple of these factors in biomaterial design are well worth. In the following, multifunctional implant coatings based on bioactive peptides are reviewed and concepts to implement strong surface anchoring for stable cell adhesion and a dynamic delivery of modulator proteins are discussed.
Collapse
Affiliation(s)
- Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Franziska Clauder
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
59
|
Physicochemical and Electrochemical Characterization of Electropolymerized Polydopamine Films: Influence of the Deposition Process. NANOMATERIALS 2021; 11:nano11081964. [PMID: 34443798 PMCID: PMC8400158 DOI: 10.3390/nano11081964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022]
Abstract
Polydopamine (PDA) is a synthetic eumelanin polymer which is, to date, mostly obtained by dip coating processes. In this contribution, we evaluate the physical and electrochemical properties of electrochemically deposited PDA films obtained by cyclic voltammetry or pulsed deposition. The obtained PDA thin films are investigated with respect to their electrochemical properties, i.e., electron transfer (ET) kinetics and charge transfer resistance using scanning electrochemical microscopy and electrochemical impedance spectroscopy, and their nanomechanical properties, i.e., Young’s modulus and adhesion forces at varying experimental conditions, such as applied potential or pH value of the medium using atomic force microscopy. In particular, the ET behavior at different pH values has not to date been investigated in detail for electrodeposited PDA thin films, which is of particular interest for a multitude of applications. Adhesion forces strongly depend on applied potential and surrounding pH value. Moreover, force spectroscopic measurements reveal a significantly higher percentage of polymeric character compared to films obtained by dip coating. Additionally, distinct differences between the two depositions methods are observed, which indicate that the pulse deposition process leads to denser, more cross-linked films.
Collapse
|
60
|
Kaya K, Jockusch S, Yagci Y. Mussel-Inspired Coatings by Photoinduced Electron-Transfer Reactions: Photopolymerization of Dopamine under UV, Visible, and Daylight under Oxygen-Free Conditions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kerem Kaya
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Steffen Jockusch
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Centre of Excellence for Advanced Materials Research (CEAMR) and Chemistry Dept., Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
61
|
|
62
|
El Yakhlifi S, Alfieri ML, Arntz Y, Eredia M, Ciesielski A, Samorì P, d’Ischia M, Ball V. Oxidant-dependent antioxidant activity of polydopamine films: The chemistry-morphology interplay. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Lampel A, McPhee SA, Kassem S, Sementa D, Massarano T, Aramini JM, He Y, Ulijn RV. Melanin-Inspired Chromophoric Microparticles Composed of Polymeric Peptide Pigments. Angew Chem Int Ed Engl 2021; 60:7564-7569. [PMID: 33432673 DOI: 10.1002/anie.202015170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 01/12/2023]
Abstract
Melanin and related polyphenolic pigments are versatile functional polymers that serve diverse aesthetic and protective roles across the living world. These polymeric pigments continue to inspire the development of adhesive, photonic, electronic and radiation-protective materials and coatings. The properties of these structures are dictated by covalent and non-covalent interactions in ways that, despite progress, are not fully understood. It remains a major challenge to direct oxidative polymerization of their precursors (amino acids, (poly-)phenols, thiols) toward specific structures. By taking advantage of supramolecular pre-organization of tyrosine-tripeptides and reactive sequestering of selected amino acids during enzymatic oxidation, we demonstrate the spontaneous formation of distinct new chromophores with optical properties that are far beyond the range of those found in biological melanins, in terms of color, UV absorbance and fluorescent emission.
Collapse
Affiliation(s)
- Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA.,The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,The Center for Nanoscience and Nanotechnology Tel Aviv University, Tel Aviv, 69978, Israel.,Sagol Center for Regenerative Biotechnology Tel Aviv University, Tel Aviv, 69978, Israel
| | - Scott A McPhee
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Salma Kassem
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Tlalit Massarano
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - James M Aramini
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Ye He
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA.,Ph.D. programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
64
|
Lampel A, McPhee SA, Kassem S, Sementa D, Massarano T, Aramini JM, He Y, Ulijn RV. Melanin‐Inspired Chromophoric Microparticles Composed of Polymeric Peptide Pigments. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
- The Shmunis School of Biomedicine and Cancer Research George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel
- The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel
- Sagol Center for Regenerative Biotechnology Tel Aviv University Tel Aviv 69978 Israel
| | - Scott A. McPhee
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Salma Kassem
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Tlalit Massarano
- The Shmunis School of Biomedicine and Cancer Research George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - James M. Aramini
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Ye He
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
| | - Rein V. Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York (CUNY) 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry Hunter College City University of New York 695 Park Avenue New York NY 10065 USA
- Ph.D. programs in Biochemistry and Chemistry The Graduate Center of the City University of New York New York NY 10016 USA
| |
Collapse
|
65
|
Hertault A, Chai F, Maton M, Sobocinski J, Woisel P, Maurel B, Lyskawa J, Blanchemain N. In vivo evaluation of a pro-healing polydopamine coated stent through an in-stent restenosis rat model. Biomater Sci 2021; 9:212-220. [PMID: 33179639 DOI: 10.1039/d0bm01204a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug-eluting stents have demonstrated efficiency in in-stent restenosis (ISR) but induced a risk of late acute thrombosis by delaying strut re-endothelialization. Polydopamine (PDA), a biocompatible polymer inspired from adhesive proteins of mussels, has been reported to promote endothelial cell (EC) proliferation while limiting SMC proliferation in vitro, thus suggesting the pro-healing potential. This study aimed at evaluating in vivo the impact of the pro-healing PDA-coated stent on ISR and on the quality of the strut re-endothelialization in a rat model. PDA-coated stents demonstrated a significant reduction in ISR in vivo compared to bare metal stents (ratio neointima/media = 0.48 (±0.26) versus 0.83 (±0.42), p < 0.001). Western blot analyses identified a trend towards an increased activation of p38 MAPK phosphorylation and its anti-proliferative effects on vascular SMC that could explain the results observed in morphological analyses. This bioinspired and biocompatible polydopamine layer could intrinsically limit ISR. In addition, according to its latent reactivity, PDA offers the possibility to immobilize some relevant drugs on the PDA-functionalized stent to provide potential synergistic effects.
Collapse
Affiliation(s)
- Adrien Hertault
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based smart materials. Chem Soc Rev 2021; 50:8319-8343. [DOI: 10.1039/d1cs00374g] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides in-depth insight into the structural engineering of PDA-based materials to enhance their responsive feature and the use of them in construction of PDA-based stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Zhu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P. R. China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
67
|
Wang T, Li Y, Wang J, Xu Y, Chen Y, Lu Z, Wang W, Xue B, Li Y, Cao Y. Smart Adhesive Peptide Nanofibers for Cell Capture and Release. ACS Biomater Sci Eng 2020; 6:6800-6807. [DOI: 10.1021/acsbiomaterials.0c01485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tiankuo Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Juan Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ying Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yifang Chen
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zilin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
68
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
69
|
Park HK, Park JH, Lee H, Hong S. Material-Selective Polydopamine Coating in Dimethyl Sulfoxide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49146-49154. [PMID: 32985875 DOI: 10.1021/acsami.0c11440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polydopamine coating is known to be performed in a material-independent manner and has become a popular tool when designing a surface-functionalization strategy of a given material. Studies to improve polydopamine coatings have been reported, aiming to reduce the coating time (by transition metals, oxidants, applied voltages, or microwave irradiation), control surface roughness using catechol derivatives, and vary the ad-layer molecules formed on an underlying polydopamine layer. However, none of the techniques have changed the most important intrinsic property of polydopamine, the surface-independent coating. Currently, no method has been reported to modify this property to create a material-selective 'smart' polydopamine coating. Herein, we report a method with polydopamine to differentiate the chemistry of surfaces. We found that the polydopamine coating was largely inhibited on silicon-containing surfaces such as Si wafers and quartz crystals in a dimethyl sulfoxide (DMSO)/phosphate-buffered saline (PBS) cosolvent, while the coating properties on other materials remained mostly unchanged. Among the various interface bonding mechanisms of coordination, namely, cation-π, π-π stacking, and hydrogen-bonding interactions, the DMSO/PBS cosolvent effectively inhibits hydrogen-bond formation between catechol and SiO2, resulting in surface-selective 'smart' polydopamine coatings. The new polydopamine coating is useful for functionalizing patterned surfaces such as Au patterns on SiO2 substrates. Considering that Si wafer is the most widely used substrate, the surface-selective polydopamine coating technique described herein opens up a new direction in surface functionalization and interface chemistry.
Collapse
Affiliation(s)
- Hong K Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seonki Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
70
|
Chen Y, Fan S, Qiu B, Chen J, Qin Y, Wang Y, Xiao Z, Mai Z, Bai K, Liu J. Enhanced Catalytic Performance of a Membrane Microreactor by Immobilizing ZIF-8-Derived Nano-Ag via Ion Exchange. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Boya Qiu
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yangmei Qin
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yilin Wang
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zenghui Mai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Ke Bai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jingyun Liu
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
71
|
Lee K, Park M, Malollari KG, Shin J, Winkler SM, Zheng Y, Park JH, Grigoropoulos CP, Messersmith PB. Laser-induced graphitization of polydopamine leads to enhanced mechanical performance while preserving multifunctionality. Nat Commun 2020; 11:4848. [PMID: 32973166 PMCID: PMC7515926 DOI: 10.1038/s41467-020-18654-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/21/2020] [Indexed: 01/18/2023] Open
Abstract
Polydopamine (PDA) is a simple and versatile conformal coating material that has been proposed for a variety of uses; however in practice its performance is often hindered by poor mechanical properties and high roughness. Here, we show that blue-diode laser annealing dramatically improves mechanical performance and reduces roughness of PDA coatings. Laser-annealed PDA (LAPDA) was shown to be >100-fold more scratch resistant than pristine PDA and even better than hard inorganic substrates, which we attribute to partial graphitization and covalent coupling between PDA subunits during annealing. Moreover, laser annealing provides these benefits while preserving other attractive properties of PDA, as demonstrated by the superior biofouling resistance of antifouling polymer-grafted LAPDA compared to PDA modified with the same polymer. Our work suggests that laser annealing may allow the use of PDA in mechanically demanding applications previously considered inaccessible, without sacrificing the functional versatility that is so characteristic of PDA.
Collapse
Affiliation(s)
- Kyueui Lee
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Minok Park
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Jisoo Shin
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Sally M Winkler
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yuting Zheng
- Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Jung Hwan Park
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Costas P Grigoropoulos
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | - Phillip B Messersmith
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
72
|
Nazi N, Humblot V, Debiemme-Chouvy C. A New Antibacterial N-Halamine Coating Based on Polydopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11005-11014. [PMID: 32830496 DOI: 10.1021/acs.langmuir.0c01856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To prevent the formation of biofilms on material surfaces, the latter must have antibacterial properties. The aim of this study is to investigate the synthesis and the antibacterial effect of a new N-halamine coating based on polydopamine (PDA). The benefits of this coating are multiple, notably the green process used to prepare it and the wide variety of organic or inorganic materials that can be functionalized. First, the formation of the PDA coating by oxidative polymerization of dopamine in weak alkaline aqueous solution was studied and characterized. Then, these PDA films were exposed to a NaOCl solution in order to form chloramine functions into the coating, i.e., to immobilize oxidative chlorine on and into the coating. The PDA film chlorination was notably followed in situ by a quartz crystal microbalance (QCM). The influence of the NaOCl solution pH and concentration on chlorination kinetics and on PDA film degradation was evidenced. Finally, the antibacterial properties of the modified PDA coatings were highlighted by testing their antiadhesion and bactericidal properties toward the Escherichia coli bacterial strain.
Collapse
Affiliation(s)
- Nadia Nazi
- Sorbonne Université, Laboratoire de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, Paris 75005, France
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, UMR CNRS 8235, 4 place Jussieu, Paris 75005, France
| | - Vincent Humblot
- Sorbonne Université, Laboratoire de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, Paris 75005, France
- FEMTO-ST Institute, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, Besançon Cedex 25030, France
| | - Catherine Debiemme-Chouvy
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, UMR CNRS 8235, 4 place Jussieu, Paris 75005, France
| |
Collapse
|
73
|
Ishihara K, Kozaki Y, Inoue Y, Fukazawa K. Biomimetic phospholipid polymers for suppressing adsorption of saliva proteins on dental hydroxyapatite substrate. J Appl Polym Sci 2020. [DOI: 10.1002/app.49812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Yoichiro Kozaki
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering The University of Tokyo Tokyo Japan
| |
Collapse
|
74
|
Li Y, Cheng J, Delparastan P, Wang H, Sigg SJ, DeFrates KG, Cao Y, Messersmith PB. Molecular design principles of Lysine-DOPA wet adhesion. Nat Commun 2020; 11:3895. [PMID: 32753588 PMCID: PMC7403305 DOI: 10.1038/s41467-020-17597-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The mussel byssus has long been a source of inspiration for the adhesion community. Recently, adhesive synergy between flanking lysine (Lys, K) and 3,4-Dihydroxyphenylalanine (DOPA, Y) residues in the mussel foot proteins (Mfps) has been highlighted. However, the complex topological relationship of DOPA and Lys as well as the interfacial adhesive roles of other amino acids have been understudied. Herein, we study adhesion of Lys and DOPA-containing peptides to organic and inorganic substrates using single-molecule force spectroscopy (SMFS). We show that a modest increase in peptide length, from KY to (KY)3, increases adhesion strength to TiO2. Surprisingly, further increase in peptide length offers no additional benefit. Additionally, comparison of adhesion of dipeptides containing Lys and either DOPA (KY) or phenylalanine (KF) shows that DOPA is stronger and more versatile. We furthermore demonstrate that incorporating a nonadhesive spacer between (KY) repeats can mimic the hidden length in the Mfp and act as an effective strategy to dissipate energy.
Collapse
Affiliation(s)
- Yiran Li
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
- Department of Physics, Nanjing University, 210093, Nanjing, P. R. China
| | - Jing Cheng
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Peyman Delparastan
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Haoqi Wang
- Department of Physics, Nanjing University, 210093, Nanjing, P. R. China
| | - Severin J Sigg
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Kelsey G DeFrates
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Yi Cao
- Department of Physics, Nanjing University, 210093, Nanjing, P. R. China
| | - Phillip B Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
75
|
Tiu BDB, Delparastan P, Ney MR, Gerst M, Messersmith PB. Cooperativity of Catechols and Amines in High‐Performance Dry/Wet Adhesives. Angew Chem Int Ed Engl 2020; 59:16616-16624. [DOI: 10.1002/anie.202005946] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Brylee David B. Tiu
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
| | - Peyman Delparastan
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
| | - Max R. Ney
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
| | - Matthias Gerst
- Polymers for Adhesives BASF SE 67056 Ludwigshafen Germany
| | - Phillip B. Messersmith
- Bioengineering and Materials Science and Engineering University of California, Berkeley Berkeley CA 94720-1760 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
76
|
Tiu BDB, Delparastan P, Ney MR, Gerst M, Messersmith PB. Cooperativity of Catechols and Amines in High‐Performance Dry/Wet Adhesives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Brylee David B. Tiu
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
| | - Peyman Delparastan
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
| | - Max R. Ney
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
| | - Matthias Gerst
- Polymers for AdhesivesBASF SE 67056 Ludwigshafen Germany
| | - Phillip B. Messersmith
- Bioengineering and Materials Science and EngineeringUniversity of California, Berkeley Berkeley CA 94720-1760 USA
- Materials Sciences DivisionLawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
77
|
Zhang Y, Wang L, Xu M, Zhao T, Kuang L, Hua D. Smart Oral Administration of Polydopamine-Coated Nanodrugs for Efficient Attenuation of Radiation-Induced Gastrointestinal Syndrome. Adv Healthc Mater 2020; 9:e1901778. [PMID: 32484315 DOI: 10.1002/adhm.201901778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/12/2020] [Indexed: 01/06/2023]
Abstract
High-dose ionizing radiation can lead to death from the unrecoverable damage of the gastrointestinal tract, especially the small intestine. Until now, the lack of predilection for the small intestine and rapid clearance by digestive fluids limit the effects of conventional radioprotective formulations. Herein, an innovative radioprotective strategy is developed for attenuating gastrointestinal syndrome by smart oral administration nanodrugs. The nanodrug is first engineered by encapsulating thalidomide into chitosan-based nanoparticles, and then coated with polydopamine. The behaviors of gastric acid-resistance, and pH-switchable controlled release in the small intestine enhance the oral bioavailability of the pyroptosis inhibitor thalidomide. In a mouse model, nanodrugs demonstrate prolonged small intestinal residence time and accessibility to the crypt region deep in the mucus. Furthermore, the nanodrugs ameliorate survival rates of C57BL/6J mice irradiated by 14 Gy of subtotal body irradiation and also maintain their epithelial integrity. This work may provide a promising new approach for efficiently attenuating lethal radiation-induced gastrointestinal syndrome and add insights into developing nanodrug-based therapies with improved efficacy and minimum side effects.
Collapse
Affiliation(s)
- Yushuo Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Soochow University Suzhou 215123 China
| | - Lu Wang
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Soochow University Suzhou 215123 China
| | - Meiyun Xu
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Soochow University Suzhou 215123 China
| | - Tongxin Zhao
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Soochow University Suzhou 215123 China
| | - Liangju Kuang
- Schepens Eye Research Institute of Massachusetts Eye and EarHarvard Medical School Boston MA 02114 USA
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Soochow University Suzhou 215123 China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 China
| |
Collapse
|
78
|
Li H, Xi J, Donaghue AG, Keum J, Zhao Y, An K, McKenzie ER, Ren F. Synthesis and catalytic performance of polydopamine supported metal nanoparticles. Sci Rep 2020; 10:10416. [PMID: 32591613 PMCID: PMC7319955 DOI: 10.1038/s41598-020-67458-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/04/2020] [Indexed: 11/12/2022] Open
Abstract
Polydopamine (PDA) is an emerging nature-inspired biopolymer material that possesses many interesting properties including self-assembly and universal adhesion. PDA is also able to form coordination bonds with various metal ions, which can be reduced to metal nanoparticles (NPs) as a result of thermal annealing under protective environment. In this study, PDA has been utilized as a support material to synthesize Pt NPs in an aqueous solution at room temperature. The catalytic performance of the resulting PDA-Pt nanocomposite was evaluated using an electrochemical workstation which showed comparable activity to Pt/C material for hydrogen evolution reaction (HER). Furthermore, Cu, Ni, and Cu-Ni NPs supported on PDA were also obtained using this strategy with assistance of subsequent thermal annealing. The phase evolution of the NPs was studied by in-situ X-ray diffraction while the morphology of the nanoparticles was investigated using electron microscopic techniques. Preliminary results showed the NPs supported on PDA also possessed HER activity. This work demonstrates that PDA can be utilized as a potential support for synthesis of metal NPs that can be exploited in engineering applications such as catalysts.
Collapse
Affiliation(s)
- Haoqi Li
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Jiaxin Xi
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Adrienne G Donaghue
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Jong Keum
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Yao Zhao
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Ke An
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Erica R McKenzie
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Fei Ren
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
79
|
Qi PD, Li N, Liu Y, Qu CB, Li M, Ma JL, Huang GW, Xiao HM. Understanding the Cycling Performance Degradation Mechanism of a Graphene-Based Strain Sensor and an Effective Corresponding Improvement Solution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23272-23283. [PMID: 32343550 DOI: 10.1021/acsami.0c00176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene-based strain sensors have attracted tremendous interest due to their potential application as intelligent wearable sensing devices. However, for graphene-based strain sensors, it is found that the sensing property at the beginning of the tensile cycle is not stable. Concretely, the peak resistance value gradually declines in the first dozens of cycles in every cyclic test. This is a problem that obviously affects the measurement accuracy but is rarely investigated so far. In this paper, this phenomenon is for the first time systematically studied. According to the reliable experimental results, it can be concluded that the decline of resistance is caused by the evolution of wrinkle morphologies in the graphene layer, which is essentially attributed to the temporary slippage of the graphene sheets under external stress. Based on the analyzed mechanism, a targeted improvement solution was proposed and verified. By the combined effects of polydopamine and Ni2+, the slippage among the rGO sheets was suppressed and a strain sensor with excellent sensing stability was obtained as expected. Furthermore, the sensitivity of the modified sensor was six times higher than that of the pristine one due to the change in the crack form, demonstrating it to be an effective method to obtain a graphene-based strain sensor with comprehensively high performance.
Collapse
Affiliation(s)
- Pan-Di Qi
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Liu
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cheng-Bing Qu
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Li
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Li Ma
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-Wen Huang
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Mei Xiao
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
80
|
Daboss S, Lin J, Godejohann M, Kranz C. Redox Switchable Polydopamine-Modified AFM-SECM Probes: A Probe for Electrochemical Force Spectroscopy. Anal Chem 2020; 92:8404-8413. [PMID: 32337984 DOI: 10.1021/acs.analchem.0c00995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polydopamine (PDA) has high potential in biorelevant applications as a versatile thin film material, e.g., as adhesive coating for cell immobilization or for sensing applications due to the plethora of functional groups. In this study we present the modification of conductive colloidal atomic force-scanning electrochemical microscopy (AFM-SECM) probes with electrochemically deposited PDA resulting in functional probes for quantitative electrochemical adhesion studies. Surface functionality of PDA can be altered by oxidation or reduction of functional groups applying an appropriate potential to the PDA-modified AFM-SECM probe, thereby enabling adhesion measurements under potential control. This facilitates probing specific interactions of surface groups present in PDA with various surfaces of different wettabilities. The versatility of such switchable AFM-SECM probes is demonstrated for electrochemical force spectroscopic studies at model samples such as plasma-treated gold substrates, hydrophobic or hydrophilic self-assembled monolayers, and for adhesion measurements of bacteria in dependence of altered surface charges of the colloidal probe. The maximum obtained adhesion force of a positively polarized PDA-modified AFM-SECM probe was 6.2 ± 2.2 nN, and it was about 50% less (i.e., 2.6 ± 1.1 nN) for a negatively polarized probe at a hydrophilic OH-terminated gold surface. In situ control of the active surface groups enabled investigations on the influence of surface charges on adhesion. Furthermore, plateaus of constant force were observed, which are a characteristic of polymer structures. Finally, electrochemical force measurements with switchable probes were used for the first time during adhesion studies of bacterial cells (i.e., Pseudomonas fluorescens). Positively biased PDA-coated colloidal probes revealed adhesion forces of 6.0 ± 1.1 nN, whereas significantly reduced adhesion forces 1.1 ± 0.7 nN were observed for negatively biased PDA-modified colloidal probes.
Collapse
Affiliation(s)
- Sven Daboss
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jing Lin
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Godejohann
- MG Optical Solutions GmbH, Industriestraße 23, 86919 Utting am Ammersee, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
81
|
Development of Polydopamine Forward Osmosis Membranes with Low Reverse Salt Flux. MEMBRANES 2020; 10:membranes10050094. [PMID: 32397645 PMCID: PMC7281488 DOI: 10.3390/membranes10050094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022]
Abstract
Application of forward osmosis (FO) is limited due to membrane fouling and, most importantly, high reverse salt fluxes that deteriorate the concentrated product. Polydopamine (PDA) is a widely used, easily applicable, hydrophilic, adhesive antifouling coating. Among the coating parameters, surprisingly, the effect of PDA coating temperature on the membrane properties has not been well studied. Polyethersulfone (PES) 30 kDa ultrafiltration membranes were PDA-coated with varying dopamine concentrations (0.5-3 g/L) and coating temperatures (4-55 °C). The quality of the applied coating has been determined by surface properties, water permeability and reverse salt flux using a 1.2 M MgSO4 draw solution. The coating thickness increased both with the dopamine concentration and coating temperature, the latter having a remarkably stronger effect resulting in a higher PDA deposition speed and smaller PDA aggregates. In dead‑end stirred cell, the membranes coated at 55 °C with 2.0 g/L dopamine showed NaCl and MgSO4 retentions of 41% and 93%, respectively. In crossflow FO, a low reverse MgSO4 flux (0.34 g/m2·h) was found making a very low specific reverse salt flux (Js/Jw) of 0.08 g/L, which outperformed the commercial CTA FO membranes, showing the strong benefit of high temperature PDA-coated PES membranes to assure high quality products.
Collapse
|
82
|
Arntz Y, Kharouf N, Ball V. One pot protein assisted deposition of pyrocatechol based functional films. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
83
|
Rühs PA, Malollari KG, Binelli MR, Crockett R, Balkenende DWR, Studart AR, Messersmith PB. Conformal Bacterial Cellulose Coatings as Lubricious Surfaces. ACS NANO 2020; 14:3885-3895. [PMID: 32150387 DOI: 10.1021/acsnano.9b09956] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a versatile method to form bacterial cellulose coatings through simple dip-coating of 3D objects in suspensions of cellulose-producing bacteria. The adhesion of cellulose-secreting bacteria on objects was promoted through surface roughness and chemistry. Immobilized bacteria secreted highly porous hydrogels with high water content directly from the surface of a variety of materials. The out-of-plane orientation of cellulose fibers present in this coating leads to high mechanical stability and energy dissipation with minimal cellulose concentration. The conformal, biocompatible, and lubricious nature of the in situ grown cellulose surfaces makes the coated 3D objects attractive for biomedical applications.
Collapse
Affiliation(s)
- Patrick A Rühs
- Complex Materials, Department of Materials, ETH-Zurich/Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1760, United States
| | - Katerina G Malollari
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California 94720-1760, United States
| | - Marco R Binelli
- Complex Materials, Department of Materials, ETH-Zurich/Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Rowena Crockett
- Nanoscale Materials Science, Swiss Federal Laboratories for Materials Science and Technology, Zurich 8600, Switzerland
| | - Diederik W R Balkenende
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1760, United States
| | - André R Studart
- Complex Materials, Department of Materials, ETH-Zurich/Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Phillip B Messersmith
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1760, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720-1760, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1760, United States
| |
Collapse
|
84
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
85
|
Li T, Ding B, Wang J, Qin Z, Fernando JFS, Bando Y, Nanjundan AK, Kaneti YV, Golberg D, Yamauchi Y. Sandwich-Structured Ordered Mesoporous Polydopamine/MXene Hybrids as High-Performance Anodes for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14993-15001. [PMID: 32186368 DOI: 10.1021/acsami.9b18883] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic polymers have attracted significant interest as electrodes for energy storage devices because of their advantages, including molecular flexibility, cost-effectiveness, and environmentally friendly nature. Nevertheless, the real implementation of polymer-based electrodes is restricted by their poor stability, low capacity, and slow electron-transfer/ion diffusion kinetics. In this work, a sandwich-structured composite of ordered mesoporous polydopamine (OMPDA)/Ti3C2Tx has been fabricated by in situ polymerization of dopamine on the surface of Ti3C2Tx via employing the PS-b-PEO block polymer as a soft template. The OMPDA layers with vertically oriented, accessible nanopores (∼20 nm) provide a continuous pore channel for ion diffusion, while the Ti3C2Tx layers guarantee a fast electron-transfer path. The OMPDA/Ti3C2Tx composite anode exhibits high reversible capacity, good rate performance, and excellent cyclability for lithium-ion batteries. The in situ transmission electron microscopy analysis reveals that the OMPDA in the composite only shows a small volume expansion and almost preserves the initial morphology during lithiation. Moreover, these in situ experiments also demonstrate the generation of a stable and ultrathin solid electrolyte interphase layer surrounding the active material, which acts as an electrode protective film during cycling. This study demonstrates the method to develop polymer-based electrodes for high-performance rechargeable batteries.
Collapse
Affiliation(s)
- Tao Li
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bing Ding
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jie Wang
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Zongyi Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Joseph F S Fernando
- Centre for Materials Science and School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Yoshio Bando
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, No. 11 Building, No. 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| | - Ashok Kumar Nanjundan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dmitri Golberg
- International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Centre for Materials Science and School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
86
|
Bao Y, Luo Z, Cui S. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem Soc Rev 2020; 49:2799-2827. [PMID: 32236171 DOI: 10.1039/c9cs00855a] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"The Tao begets the One. One begets all things of the world." This quote from Tao Te Ching is still inspiring for scientists in chemistry and materials science: The "One" can refer to a single molecule. A macroscopic material is composed of numerous molecules. Although the relationship between the properties of the single molecule and macroscopic material is not well understood yet, it is expected that a deeper understanding of the single-chain mechanics of macromolecules will certainly facilitate the development of materials science. Atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) has been exploited extensively as a powerful tool to study the single-chain behaviors of macromolecules. In this review, we summarize the recent advances in the emerging field of environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by means of AFM-SMFS. First, the single-chain inherent elasticities of several typical linear macromolecules are introduced, which are also confirmed by one of three polymer models with theoretical elasticities of the corresponding macromolecules obtained from quantum mechanical (QM) calculations. Then, the effects of the external environments on the single-chain mechanics of synthetic polymers and biomacromolecules are reviewed. Finally, the impacts of single-chain mechanics of macromolecules on the development of polymer science especially polymer materials are illustrated.
Collapse
Affiliation(s)
- Yu Bao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | |
Collapse
|
87
|
Figueiredo Macedo de Lima J, Aguiar Jordão Mainardi MDC, Puppin-Rontani RM, Pereira Rodrigues-Filho U, Suzy Liporoni PC, Calegaro ML, Rischka K, Baggio Aguiar FH. Bioinspired catechol chemistry for dentin remineralization: A new approach for the treatment of dentin hypersensitivity. Dent Mater 2020; 36:501-511. [DOI: 10.1016/j.dental.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 11/25/2022]
|
88
|
d'Ischia M, Napolitano A, Pezzella A, Meredith P, Buehler M. Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandro Pezzella
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Paul Meredith
- Department of Physics Swansea University Vivian Building, Singleton Campus SA2 8PP Swansea UK
| | - Markus Buehler
- Laboratory for Atomistic and Molecular Mechanics School of Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
89
|
Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020; 59:11196-11205. [DOI: 10.1002/anie.201914276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/17/2022]
|
90
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
91
|
Long X, Xu H, Zhang D, Li J. Bioinspired by both mussel foot protein and bone sialoprotein: universal adhesive coatings for the promotion of mineralization and osteogenic differentiation. Polym Chem 2020. [DOI: 10.1039/d0py00774a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural protein bioinspired coatings are developed to promote the mineralization and osteogenic differentiation of MC3T3-E1 cells for implant material use.
Collapse
Affiliation(s)
- Xiaoling Long
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| | - Huilin Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| | - Dongyue Zhang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| |
Collapse
|
92
|
Huang S, Zheng J, Zhang Y, Zheng J, Zhuang Z, Yang Q, Wang F, Chen G, Huang S, Ouyang G. Polydopamine decorated ordered mesoporous carbon for efficient removal of bilirubin under albumin-rich conditions. J Mater Chem B 2019; 8:290-297. [PMID: 31803882 DOI: 10.1039/c9tb02147g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excess bilirubin in the body will lead to serious health problems; however, its efficient removal remains a challenge in the clinical field because the available sorbent materials still suffer from serious performance issues, performance declining in a high-content albumin environment. Herein, we prepared a novel polydopamine (PDA) decorated ordered mesoporous carbon (OMC) material for the efficient removal of bilirubin in albumin-rich conditions. OMC was used as the supporting material due to its high specific surface area and its good affinity to hydrophobic analytes. PDA was then decorated on the OMC material through a facile self-assembly process to form a surface-imprinted layer. The obtained PDA-coated OMC material (OMC@PDA) exhibited excellent adsorption performance towards bilirubin in albumin-free conditions, in which its theoretical maximum adsorption amount was calculated to be 513.54 mg g-1. The imprinted PDA layer, for which the association constant towards bilirubin reached 4.51 × 104 M-1, endowed OMC@PDA with a competitive affinity compared to albumin. Therefore the materials showed good adsorption capacity and efficiency even in an albumin-rich environment (the adsorption equilibrated at 122.7 mg g-1 in 30 min). In addition, the good biocompatibility of OMC@PDA was demonstrated by hemolysis assay and protein fouling evaluation, which indicated the feasibility of applying this material in clinical situations.
Collapse
Affiliation(s)
- Shuyao Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Yimin Zhang
- Nephrology Department, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, Guangdong 510000, China
| | - Juan Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Zena Zhuang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Qian Yang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Fuxin Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Guosheng Chen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Siming Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong 510120, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. and Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
93
|
Malollari KG, Delparastan P, Sobek C, Vachhani SJ, Fink TD, Zha RH, Messersmith PB. Mechanical Enhancement of Bioinspired Polydopamine Nanocoatings. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43599-43607. [PMID: 31644269 DOI: 10.1021/acsami.9b15740] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the catechol and amine-rich adhesive proteins of mussels, polydopamine (pDA) has become one of the most widely employed methods for functionalizing material surfaces, powered in part by the versatility and simplicity of pDA film deposition that takes place spontaneously on objects immersed in an alkaline aqueous solution of dopamine monomer. Despite the widespread adoption of pDA as a multifunctional coating for surface modification, it exhibits poor mechanical performance. Attempts to modify the physical properties of pDA by incorporation of oxidizing agents, cross-linkers, or carbonization of the films at ultrahigh temperatures have been reported; however, improving mechanical properties with mild post-treatments without sacrificing the functionality and versatility of pDA remains a challenge. Here, we demonstrate thermal annealing at a moderate temperature (130 °C) as a facile route to enhance mechanical robustness of pDA coatings. Chemical spectroscopy, X-ray scattering, molecular force spectroscopy, and bulk mechanical analyses indicate that monomeric and oligomeric species undergo further polymerization during thermal annealing, leading to fundamental changes in molecular and bulk mechanical behavior of pDA. Considerable improvements in scratch resistance were noted in terms of both penetration depth (32% decrease) and residual depth (74% decrease) for the annealed pDA coating, indicating the enhanced ability of the annealed coating to resist mechanical deformations. Thermal annealing resulted in significant enhancement in the intermolecular and cohesive interactions between the chains in the pDA structure, attributed to cross-linking and increased entanglements, preventing desorption and detachment of the chains from the coating. Importantly, improvements in pDA mechanical performance through thermal annealing did not compromise the ability of pDA to support secondary coating reactions as evidenced by electroless deposition of a metal film adlayer on annealed pDA.
Collapse
Affiliation(s)
- Katerina G Malollari
- Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| | - Peyman Delparastan
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| | - Caroline Sobek
- College of Chemistry , University of California , Berkeley , California 94720 , United States
| | | | - Tanner D Fink
- Department of Chemical & Biological Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - R Helen Zha
- Department of Chemical & Biological Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Phillip B Messersmith
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- Department of Bioengineering , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
94
|
Degen GD, Stow PR, Lewis RB, Andresen Eguiluz RC, Valois E, Kristiansen K, Butler A, Israelachvili JN. Impact of Molecular Architecture and Adsorption Density on Adhesion of Mussel-Inspired Surface Primers with Catechol-Cation Synergy. J Am Chem Soc 2019; 141:18673-18681. [DOI: 10.1021/jacs.9b04337] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
95
|
Li W, Wang Z, Xiao M, Miyoshi T, Yang X, Hu Z, Liu C, Chuang SSC, Shawkey MD, Gianneschi NC, Dhinojwala A. Mechanism of UVA Degradation of Synthetic Eumelanin. Biomacromolecules 2019; 20:4593-4601. [DOI: 10.1021/acs.biomac.9b01433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Weiyao Li
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Zhao Wang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ming Xiao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Toshikazu Miyoshi
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaozhou Yang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | | | - Cheng Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Steven S. C. Chuang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew D. Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Nathan C. Gianneschi
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
96
|
Nanomechanical properties of steric zipper globular structures. Proc Natl Acad Sci U S A 2019; 116:22478-22484. [PMID: 31636220 DOI: 10.1073/pnas.1908782116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The term amyloid defines a group of proteins that aggregate into plaques or fibers. Amyloid fibers gained their fame mostly due to their relation with neurodegenerative diseases in humans. However, secreted by lower organisms, such as bacteria and fungi, amyloid fibers play a functional role: for example, when they serve as cement in the extracellular matrix of biofilms. Originating either in humans or in microorganisms, the sequence of amyloid proteins is decorated with hexapeptides with high propensity to form fibers, known as steric zippers. We have found that steric zippers form globular structures on route to making fibers and exhibit a characteristic force-distance (F-D) fingerprint when pulled with an atomic force microscope (AFM) tip. Particularly, the F-D pulling curves showed force plateau steps, suggesting that the globular structures were composed of chains that were unwound like a yarn ball. Force plateau analysis showed that the F-D characteristic parameters were sequence sensitive, representing differences in the packing of the hexapeptides within the globules. These unprecedented findings show that steric zippers exhibit a characteristic nanomechanical signature in solution in addition to previously observed characteristic crystallographic structure. Getting to the fundamental interactions that govern the unzipping of full-length amyloid fibers may initiate the development of antiamyloid methods that target the physical in addition to the structural properties of steric zippers.
Collapse
|
97
|
Li Y, Cao Y. The molecular mechanisms underlying mussel adhesion. NANOSCALE ADVANCES 2019; 1:4246-4257. [PMID: 36134404 PMCID: PMC9418609 DOI: 10.1039/c9na00582j] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 06/12/2023]
Abstract
Marine mussels are able to firmly affix on various wet surfaces by the overproduction of special mussel foot proteins (mfps). Abundant fundamental studies have been conducted to understand the molecular basis of mussel adhesion, where the catecholic amino acid, l-3,4-dihydroxyphenylalanine (DOPA) has been found to play the major role. These studies continue to inspire the engineering of novel adhesives and coatings with improved underwater performances. Despite the fact that the recent advances of adhesives and coatings inspired by mussel adhesive proteins have been intensively reviewed in literature, the fundamental biochemical and biophysical studies on the origin of the strong and versatile wet adhesion have not been fully covered. In this review, we show how the force measurements at the molecular level by surface force apparatus (SFA) and single molecule atomic force microscopy (AFM) can be used to reveal the direct link between DOPA and the wet adhesion strength of mussel proteins. We highlight a few important technical details that are critical to the successful experimental design. We also summarize many new insights going beyond DOPA adhesion, such as the surface environment and protein sequence dependent synergistic and cooperative binding. We also provide a perspective on a few uncharted but outstanding questions for future studies. A comprehensive understanding on mussel adhesion will be beneficial to the design of novel synthetic wet adhesives for various biomedical applications.
Collapse
Affiliation(s)
- Yiran Li
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
| | - Yi Cao
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210093 China
| |
Collapse
|
98
|
Lu D, Zhou J, Hou S, Xiong Q, Chen Y, Pu K, Ren J, Duan H. Functional Macromolecule-Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902733. [PMID: 31463987 DOI: 10.1002/adma.201902733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of well-defined inorganic colloidal nanostructures using functional macromolecules is an enabling technology that offers the possibility of fine-tuning the physicochemical properties of nanomaterials and has contributed to a broad range of practical applications. The utilization of functional reactive polymers and their colloidal assemblies leads to a high level of control over structural parameters of inorganic nanoparticles that are not easily accessible by conventional methods based on small-molecule ligands. Recent advances in polymerization techniques for synthetic polymers and newly exploited functions of natural biomacromolecules have opened up new avenues to monodisperse and multifunctional nanostructures consisting of integrated components with distinct chemistries but complementary properties. Here, the evolution of colloidal synthesis of inorganic nanoparticles is revisited. Then, the new developments of colloidal synthesis enabled by functional macromolecules and practical applications associated with the resulting optical, catalytic, and structural properties of colloidal nanostructures are summarized. Finally, a perspective on new and promising pathways to novel colloidal nanostructures built upon the continuous development of polymer chemistry, colloidal science, and nanochemistry is provided.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiajing Zhou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jinghua Ren
- Cancer Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
99
|
Yang C, Huang X, Huang Y, Chen Y, Wang L, Zheng X, Wen H, Dan N, Dan W. Characterization and in vitro experiments of composite membrane materials that polydopamine-loaded on the surface of collagen modified by a novel nanomaterial graphene oxide. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1670396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Changkai Yang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Xuantao Huang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Yanping Huang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Yining Chen
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Lu Wang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Xin Zheng
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Huitao Wen
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
- Fujian Key Laboratory of Green Design and Manufacture of Leather, Xingye Leather Technology Co., Ltd, Jinjiang, China
| | - Nianhua Dan
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Weihua Dan
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
100
|
Awasthi AK, Bhagat SD, Ramakrishnan R, Srivastava A. Chirally Twisted Ultrathin Polydopamine Nanoribbons: Synthesis and Spontaneous Assembly of Silver Nanoparticles on Them. Chemistry 2019; 25:12905-12910. [DOI: 10.1002/chem.201902600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Anand Kumar Awasthi
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| | - Somnath D. Bhagat
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| | - Reshma Ramakrishnan
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| | - Aasheesh Srivastava
- Department of ChemistryIndian Institute of Science Education and Research Bhopal India
| |
Collapse
|