51
|
Okada R, Yamato K, Kawakami M, Kodama J, Kushioka J, Tateiwa D, Ukon Y, Zeynep B, Ishimoto T, Nakano T, Yoshikawa H, Kaito T. Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells. Bone Rep 2021; 14:100757. [PMID: 33681430 PMCID: PMC7910497 DOI: 10.1016/j.bonr.2021.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 11/01/2022] Open
Abstract
Effects of high magnetic fields [MFs, ≥ 1 T (T)] on osteoblastic differentiation and the orientation of cells or matrix proteins have been reported. However, the effect of low MFs (< 1 T) on the orientation of bone formation is not well known. This study was performed to verify the effects of low MFs on osteoblastic differentiation, bone formation, and orientation of both cells and newly formed bone. An apparatus was prepared with two magnets (190 mT) aligned in parallel to generate a parallel MF. In vitro, bone marrow-derived stromal cells of rats were used to assess the effects of low MFs on cell orientation, osteoblastic differentiation, and mineralization. A bone morphogenetic protein (BMP)-2-induced ectopic bone model was used to elucidate the effect of low MFs on microstructural indices, trabecula orientation, and the apatite c-axis orientation of newly formed bone. Low MFs resulted in an increased ratio of cells oriented perpendicular to the direction of the MF and promoted osteoblastic differentiation in vitro. Moreover, in vivo analysis demonstrated that low MFs promoted bone formation and changed the orientation of trabeculae and apatite crystal in a direction perpendicular to the MF. These changes led to an increase in the mechanical strength of rhBMP-2-induced bone. These results suggest that the application of low MFs has potential to facilitate the regeneration of bone with sufficient mechanical strength by controlling the orientation of newly formed bone.
Collapse
Key Words
- ALP, alkaline phosphatase
- BMD, bone mineral density
- BMDCs, bone marrow derived stromal cells
- BV, bone volume
- Bone marrow-derived stromal cells
- COL1a1, collagen type1 a1
- FFT, fast Fourier transform
- GFP, green fluorescent protein
- MF, magnetic field
- Magnetic field
- Mechanical strength
- OCN, osteocalcin
- OPN, osteopontin
- OSX, osterix
- Orientation intensity
- Osteoblastic differentiation
- PBS, phosphate-buffered saline
- PEMF, pulsed electromagnetic field
- ROI, region of interest
- RT-PCR, reverse transcription polymerase chain reaction
- RUNX2, runt-related transcription factor 2
- micro-CT, micro-computed tomography
- rhBMP, recombinant human bone morphogenetic protein
- μXRD, microbeam X-ray diffractometer
Collapse
Affiliation(s)
- Rintaro Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kai Yamato
- Department of Research Institute, PIP Corporation, Ibaraki, Osaka, Japan
| | - Minoru Kawakami
- Department of Research Institute, PIP Corporation, Ibaraki, Osaka, Japan
| | - Joe Kodama
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Junichi Kushioka
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Bal Zeynep
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
52
|
Li CH, Ma ZZ, Jian LL, Wang XY, Sun L, Liu XY, Yao ZQ, Zhao JX. Iguratimod inhibits osteoclastogenesis by modulating the RANKL and TNF-α signaling pathways. Int Immunopharmacol 2021; 90:107219. [PMID: 33307512 DOI: 10.1016/j.intimp.2020.107219] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Iguratimod, a small molecular drug, has been proven to have effective bone protection for treatment of patients with bone loss-related diseases, such as rheumatoid arthritis (RA). However, the exact bone protective mechanism of iguratimod remains to be determined. The purpose of this study was to better explore the underlying mechanism of bone protection of iguratimod. METHODS Bone marrow monocytes from C57/BL6 mice were stimulated with either RANKL or TNF-α plus M-CSF. The effects of iguratimod on morphology and function of osteoclasts were confirmed by TRAP staining and bone resorption assay, respectively. The expression of osteoclast related genes was detected by RT-PCR and the activation of signal pathway was detected by Western blotting. We used rodent models of osteoporosis (ovariectomy) and of arthritis (modified TNF-α-induced osteoclastogenesis) to evaluate the osteoprotective effect of iguratimod in vivo. RESULTS Iguratimod potently inhibited osteoclast formation in a dose-dependent manner at the early stage of RANKL-induced osteoclastogenesis, whereas iguratimod had no effect on M-CSF-induced proliferation and RANK expression in bone marrow monocytes. Bone resorption was significantly reduced by both early and late addition of iguratimod. Administration of iguratimod prevented bone loss in ovariectomized mice. The blockage of osteoclastogenesis elicited by iguratimod results from abrogation of the p38、ERK and NF-κB pathways induced by RANKL. Importantly, Iguratimod also dampened TNF-α-induced osteoclastogenesis in vitro and attenuated osteoclasts generation in vivo through disrupting NF-κB late nuclear translocation without interfering with IκBα degradation. CONCLUSIONS Iguratimod not only suppresses osteoclastogenesis by interfering with RANKL and TNF-α signals, but also inhibits the bone resorption of mature osteoclasts. These results provided promising evidence for the therapeutic application of iguratimod as a unique treatment option against RA and especially in prevention of bone loss.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cells, Cultured
- Chromones/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Humans
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/drug effects
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy
- RANK Ligand/pharmacology
- Rats, Wistar
- Signal Transduction
- Sulfonamides/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Chang-Hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhen-Zhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lei-Lei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xin-Yu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xiang-Yuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhong-Qiang Yao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China.
| | - Jin-Xia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
53
|
Takayanagi H. RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab 2021; 39:13-18. [PMID: 33385253 DOI: 10.1007/s00774-020-01191-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022]
Abstract
RANKL, the essential cue for osteoclast differentiation, is the membrane-bound factor expressed by osteoclastogenesis-supporting cells such as osteoblasts and osteocytes. In vivo evidence indicates that RANKL functions as the indispensable and irreplaceable in the program of osteoclast differentiation. The reason why RANKL plays a critical role in osteoclastogenesis is discussed from the viewpoint of the distinct signaling pathways mediated by co-stimulatory receptors and the key transcription factor NFATc1.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
54
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
55
|
Cao W, Helder MN, Bravenboer N, Wu G, Jin J, Ten Bruggenkate CM, Klein-Nulend J, Schulten EAJM. Is There a Governing Role of Osteocytes in Bone Tissue Regeneration? Curr Osteoporos Rep 2020; 18:541-550. [PMID: 32676786 PMCID: PMC7532966 DOI: 10.1007/s11914-020-00610-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Bone regeneration plays an important role in contemporary clinical treatment. Bone tissue engineering should result in successful bone regeneration to restore congenital or acquired bone defects in the human skeleton. Osteocytes are thought to have a governing role in bone remodeling by regulating osteoclast and osteoblast activity, and thus bone loss and formation. In this review, we address the so far largely unknown role osteocytes may play in bone tissue regeneration. RECENT FINDINGS Osteocytes release biochemical signaling molecules involved in bone remodeling such as prostaglandins, nitric oxide, Wnts, and insulin-like growth factor-1 (IGF-1). Treatment of mesenchymal stem cells in bone tissue engineering with prostaglandins (e.g., PGE2, PGI2, PGF2α), nitric oxide, IGF-1, or Wnts (e.g., Wnt3a) improves osteogenesis. This review provides an overview of the functions of osteocytes in bone tissue, their interaction with other bone cells, and their role in bone remodeling. We postulate that osteocytes may have a pivotal role in bone regeneration as well, and consequently that the bone regeneration process may be improved effectively and rapidly if osteocytes are optimally used and stimulated.
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Christiaan M Ten Bruggenkate
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Engelbert A J M Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
56
|
Multitasking by the OC Lineage during Bone Infection: Bone Resorption, Immune Modulation, and Microbial Niche. Cells 2020; 9:cells9102157. [PMID: 32987689 PMCID: PMC7598711 DOI: 10.3390/cells9102157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Bone infections, also known as infectious osteomyelitis, are accompanied by significant inflammation, osteolysis, and necrosis. Osteoclasts (OCs) are the bone-resorbing cells that work in concert with osteoblasts and osteocytes to properly maintain skeletal health and are well known to respond to inflammation by increasing their resorptive activity. OCs have typically been viewed merely as effectors of pathologic bone resorption, but recent evidence suggests they may play an active role in the progression of infections through direct effects on pathogens and via the immune system. This review discusses the host- and pathogen-derived factors involved in the in generation of OCs during infection, the crosstalk between OCs and immune cells, and the role of OC lineage cells in the growth and survival of pathogens, and highlights unanswered questions in the field.
Collapse
|
57
|
de Clauser L, Santana-Varela S, Wood JN, Sikandar S. Physiologic osteoclasts are not sufficient to induce skeletal pain in mice. Eur J Pain 2020; 25:199-212. [PMID: 32955748 PMCID: PMC8436750 DOI: 10.1002/ejp.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/18/2022]
Abstract
Background Increased bone resorption is driven by augmented osteoclast activity in pathological states of the bone, including osteoporosis, fracture and metastatic bone cancer. Pain is a frequent co‐morbidity in bone pathologies and adequate pain management is necessary for symptomatic relief. Bone cancer is associated with severe skeletal pain and dysregulated bone remodelling, while increased osteoclast activity and bone pain are also observed in osteoporosis and during fracture repair. However, the effects of altered osteoclast activity and bone resorption on nociceptive processing of bone afferents remain unclear. Methods This study investigates whether physiologic osteoclasts and resulting changes in bone resorption can induce skeletal pain. We first assessed correlation between changes in bone microarchitecture (through µCT) and skeletal pain using standardized behavioural phenotyping assays in a mouse model of metastatic bone cancer. We then investigated whether increased activity of physiologic osteoclasts, and the associated bone resorption, is sufficient to induce skeletal pain using mouse models of localized and widespread bone resorption following administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL). Results Our data demonstrates that mice with bone cancer exhibit progressive pain behaviours that correlate with increased bone resorption at the tumour site. Systemic RANKL injections enhance osteoclast activity and associated bone resorption, without producing any changes in motor function or pain behaviours at both early and late timepoints. Conclusion These findings suggest that activation of homeostatic osteoclasts alone is not sufficient to induce skeletal pain in mice. Significance statement The role of osteoclasts in peripheral sensitization of sensory neurones is not fully understood. This study reports on the direct link between oestrogen‐independent osteoclast activation and skeletal pain. Administration of exogenous receptor activator of nuclear factor kappa‐B ligand (RANKL) increases bone resorption, but does not produce pro‐nociceptive changes in behavioural pain thresholds. Our data demonstrates that physiologic osteoclasts are not essential for skeletal pain behaviours.
Collapse
Affiliation(s)
- Larissa de Clauser
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK.,William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Mary University of London, London, UK
| |
Collapse
|
58
|
Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau ASY, Lee BK, Azlan A, Choi SB, Azzam G, Liong MT. The molecular mechanisms of probiotic strains in improving ageing bone and muscle of d-galactose-induced ageing rats. J Appl Microbiol 2020; 130:1307-1322. [PMID: 32638482 DOI: 10.1111/jam.14776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system. METHODS AND RESULTS The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P < 0·05). Strain L. fermentum DR9 demonstrated improved expression of SOD in bone and muscle compared to the aged rats (P < 0·05). In the evaluation of myogenesis-related genes, L. paracasei OFS 0291 and L. fermentum DR9 increased the mRNA expression of IGF-1; L. helveticus OFS 1515 and L. fermentum DR9 reduced the expression of MyoD, in contrast to the aged controls (P < 0·05). Protective effects of L. fermentum DR9 on ageing muscle were believed to be contributed by increased AMPK-α2 expression. Among the osteoclastogenesis genes studied, TNF-α expression was highly elevated in tibia of aged rats, while all three probiotics strains ameliorated the expression. Lactobacillus fermentum DR9 also reduced the expression of IL-6 and TRAP in tibia when compared to the aged rats (P < 0·05). All probiotics treatment resulted in declined proinflammatory cytokines IL-1β in muscle and bone. CONCLUSIONS Lactobacillus fermentum DR9 appeared to be the strongest strain in modulation of musculoskeletal health during ageing. SIGNIFICANCE AND IMPACT OF THE STUDY The study demonstrated the protective effects of the bacteria on muscle and bone through antioxidative and anti-inflammatory actions. Therefore, L. fermentum DR9 may serve as a promising targeted anti-ageing therapy.
Collapse
Affiliation(s)
- Y-Y Hor
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - C-H Ooi
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - L-C Lew
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - M H Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - A S-Y Lau
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - B-K Lee
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - A Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - S-B Choi
- School of Data Sciences, Perdana University, Selangor, Malaysia
| | - G Azzam
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - M-T Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
59
|
Mensah KA, Chen JW, Schickel JN, Isnardi I, Yamakawa N, Vega-Loza A, Anolik JH, Gatti RA, Gelfand EW, Montgomery RR, Horowitz MC, Craft JE, Meffre E. Impaired ATM activation in B cells is associated with bone resorption in rheumatoid arthritis. Sci Transl Med 2020; 11:11/519/eaaw4626. [PMID: 31748230 DOI: 10.1126/scitranslmed.aaw4626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Patients with rheumatoid arthritis (RA) may display atypical CD21-/lo B cells in their blood, but the implication of this observation remains unclear. We report here that the group of patients with RA and elevated frequencies of CD21-/lo B cells shows decreased ataxia telangiectasia-mutated (ATM) expression and activation in B cells compared with other patients with RA and healthy donor controls. In agreement with ATM involvement in the regulation of V(D)J recombination, patients with RA who show defective ATM function displayed a skewed B cell receptor (BCR) Igκ repertoire, which resembled that of patients with ataxia telangiectasia (AT). This repertoire was characterized by increased Jκ1 and decreased upstream Vκ gene segment usage, suggesting improper secondary recombination processes and selection. In addition, altered ATM function in B cells was associated with decreased osteoprotegerin and increased receptor activator of nuclear factor κB ligand (RANKL) production. These changes favor bone loss and correlated with a higher prevalence of erosive disease in patients with RA who show impaired ATM function. Using a humanized mouse model, we also show that ATM inhibition in vivo induces an altered Igκ repertoire and RANKL production by immature B cells in the bone marrow, leading to decreased bone density. We conclude that dysregulated ATM function in B cells promotes bone erosion and the emergence of circulating CD21-/lo B cells, thereby contributing to RA pathophysiology.
Collapse
Affiliation(s)
- Kofi A Mensah
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jeff W Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Natsuko Yamakawa
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrea Vega-Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer H Anolik
- Division of Rheumatology, Allergy, and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Richard A Gatti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erwin W Gelfand
- Department of Pediatrics, National Jewish Health, University of Colorado, Denver, CO 80113, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joe E Craft
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Eric Meffre
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT 06511, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
60
|
Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model. Proc Natl Acad Sci U S A 2020; 117:19276-19286. [PMID: 32719141 PMCID: PMC7431079 DOI: 10.1073/pnas.2006093117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone remodeling requires a balanced interplay of osteoblasts and osteoclasts. While the intercellular signaling that triggers bone cell differentiation is well understood, it remains unclear how bone progenitor cells are recruited to remodeling sites. Various chemokines are upregulated under osteoporotic conditions. However, whether they are involved in progenitor recruitment or instead have inflammatory roles is unknown. Here we used a medaka fish osteoporosis model to identify the chemokine ligand Cxcl9l and receptor Cxcr3.2 as essential to control osteoclast progenitor recruitment and differentiation at bone resorption sites. Cxcr3.2 activity can be blocked by small-molecule inhibitors that protect bone from osteoporotic insult. Our study demonstrates the potential of fish for osteoporosis drug discovery and opens avenues for future osteoporosis therapy. Bone homeostasis requires continuous remodeling of bone matrix to maintain structural integrity. This involves extensive communication between bone-forming osteoblasts and bone-resorbing osteoclasts to orchestrate balanced progenitor cell recruitment and activation. Only a few mediators controlling progenitor activation are known to date and have been targeted for intervention of bone disorders such as osteoporosis. To identify druggable pathways, we generated a medaka (Oryzias latipes) osteoporosis model, where inducible expression of receptor-activator of nuclear factor kappa-Β ligand (Rankl) leads to ectopic formation of osteoclasts and excessive bone resorption, which can be assessed by live imaging. Here we show that upon Rankl induction, osteoblast progenitors up-regulate expression of the chemokine ligand Cxcl9l. Ectopic expression of Cxcl9l recruits mpeg1-positive macrophages to bone matrix and triggers their differentiation into osteoclasts. We also demonstrate that the chemokine receptor Cxcr3.2 is expressed in a distinct subset of macrophages in the aorta-gonad-mesonephros (AGM). Live imaging revealed that upon Rankl induction, Cxcr3.2-positive macrophages get activated, migrate to bone matrix, and differentiate into osteoclasts. Importantly, mutations in cxcr3.2 prevent macrophage recruitment and osteoclast differentiation. Furthermore, Cxcr3.2 inhibition by the chemical antagonists AMG487 and NBI-74330 also reduced osteoclast recruitment and protected bone integrity against osteoporotic insult. Our data identify a mechanism for progenitor recruitment to bone resorption sites and Cxcl9l and Cxcr3.2 as potential druggable regulators of bone homeostasis and osteoporosis.
Collapse
|
61
|
Prada D, López G, Solleiro-Villavicencio H, Garcia-Cuellar C, Baccarelli AA. Molecular and cellular mechanisms linking air pollution and bone damage. ENVIRONMENTAL RESEARCH 2020; 185:109465. [PMID: 32305664 PMCID: PMC7430176 DOI: 10.1016/j.envres.2020.109465] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 05/04/2023]
Abstract
Air pollution is the second most important risk factor associated with noncommunicable diseases after smoking. The effects of pollution on health are commonly attributable to particulate matter (PM), a complex mixture of particles suspended in the air. PM can penetrate the lower respiratory tract and has harmful direct and indirect effects on different organs and tissues. Direct effects are caused by the ability of PM components to cross the respiratory membrane and enter the bloodstream; indirect effects are systemic consequences of the local airway response. Recent work suggests that PM is an independent risk factor for low bone mineral density and osteoporosis-related fractures. Osteoporosis is a common age-related disease closely linked to bone fractures, with severe clinical consequences affecting quality of life, morbidity, and mortality. In this review, we discuss potential mechanisms behind the association between outdoor air pollution, especially PM, and bone damage. The discussion features four main mechanisms: 1) several different atmospheric pollutants can induce low-grade systemic inflammation, which affects bone metabolism through a specific effect of cytokines such as TNFα, IL-1β, IL-6, and IL-17 on osteoblast and osteoclast differentiation and function; 2) some pollutants, particularly certain gas and metal compounds, can cause oxidative damage in the airway and bone cells; 3) different groups of pollutants can act as endocrine disruptors when binding to the receptors in bone cells, changing their functioning; and 4) air pollution can directly and indirectly cause vitamin D deficiency. Characterizing these mechanisms will better define the physiopathology of bone damage, and recognizing air pollution as a modifiable risk factor for osteoporosis will inform environmental policies. Such knowledge will also guide the prevention of fractures due to fragility and help reduce health-related costs.
Collapse
Affiliation(s)
- Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico; Department of Biomedical Informatics, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Gerard López
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Helena Solleiro-Villavicencio
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Claudia Garcia-Cuellar
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA.
| |
Collapse
|
62
|
Mizutani K, Isono K, Matsushima Y, Okada K, Umaoka A, Iida S, Habe K, Hagimori K, Yamazaki H, Yamanaka K. Inflammatory Skin-Derived Cytokines Accelerate Osteoporosis in Mice with Persistent Skin Inflammation. Int J Mol Sci 2020; 21:ijms21103620. [PMID: 32443893 PMCID: PMC7279417 DOI: 10.3390/ijms21103620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Secondary osteoporosis can also be caused by chronic inflammatory skin disease as well as rheumatoid arthritis or inflammatory bowel disease. However, the exact role of osteoporosis in inflammatory skin conditions has not been elucidated. Using a mouse model of dermatitis, we investigated the pathophysiology of osteoporosis in inflammatory skin conditions and the therapeutic impact of osteoporosis medication on inflammatory skin disease. We employed model mice of spontaneous skin inflammation, specifically overexpressing human caspase-1 in the epidermis. Bone density and the expression of various mRNAs in the femur were examined by micro CT and RT-PCR. The effects of minodronate and anti-RANKL antibody on bone structure, histology, and femur blood flow were studied. The mouse model of skin inflammation showed a marked decrease in bone density compared to wild-type littermates with abnormalities in both bone resorption and formation. Minodronate improved bone density by decreasing osteoclasts, but anti-RANKL antibody did not improve. In the dermatitis model, the blood flow in the bone marrow was decreased, and minodronate restored this parameter. A model of persistent dermatitis exhibited marked osteoporosis, but the impact of chronic dermatitis on osteoporosis has not been thoroughly investigated. We should explore the pathogenesis of osteoporosis in skin inflammatory diseases.
Collapse
Affiliation(s)
- Kento Mizutani
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.M.); (Y.M.); (K.O.); (A.U.); (S.I.); (K.H.)
| | - Kana Isono
- Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.I.); (H.Y.)
| | - Yoshiaki Matsushima
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.M.); (Y.M.); (K.O.); (A.U.); (S.I.); (K.H.)
| | - Karin Okada
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.M.); (Y.M.); (K.O.); (A.U.); (S.I.); (K.H.)
| | - Ai Umaoka
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.M.); (Y.M.); (K.O.); (A.U.); (S.I.); (K.H.)
| | - Shohei Iida
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.M.); (Y.M.); (K.O.); (A.U.); (S.I.); (K.H.)
| | - Koji Habe
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.M.); (Y.M.); (K.O.); (A.U.); (S.I.); (K.H.)
| | - Kohei Hagimori
- Medicines Development Unit Japan, Eli Lilly Japan K.K., 5-1-28 Isogamidori, Chuo-ku, Kobe, Hyogo 651-0086, Japan;
| | - Hidetoshi Yamazaki
- Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.I.); (H.Y.)
| | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.M.); (Y.M.); (K.O.); (A.U.); (S.I.); (K.H.)
- Correspondence: ; Tel.: +81-59-231-5025; Fax: +81-59-231-5206
| |
Collapse
|
63
|
Xie Y, Hu C, Feng Y, Li D, Ai T, Huang Y, Chen X, Huang L, Tan J. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater 2020; 7:233-245. [PMID: 32523726 PMCID: PMC7266668 DOI: 10.1093/rb/rbaa006] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Biomaterials as bone substitutes are always considered as foreign bodies that can trigger host immune responses. Traditional designing principles have been always aimed at minimizing the immune reactions by fabricating inert biomaterials. However, clinical evidence revealed that those methods still have limitations and many of which were only feasible in the laboratory. Currently, osteoimmunology, the very pioneering concept is drawing more and more attention-it does not simply regard the immune response as an obstacle during bone healing but emphasizes the intimate relationship of the immune and skeletal system, which includes diverse cells, cytokines, and signaling pathways. Properties of biomaterials like topography, wettability, surface charge, the release of cytokines, mediators, ions and other bioactive molecules can impose effects on immune responses to interfere with the skeletal system. Based on the bone formation mechanisms, the designing methods of the biomaterials change from immune evasive to immune reprogramming. Here, we discuss the osteoimmunomodulatory effects of the new modification strategies-adjusting properties of bone biomaterials to induce a favorable osteoimmune environment. Such strategies showed potential to benefit the development of bone materials and lay a solid foundation for the future clinical application.
Collapse
Affiliation(s)
- Yajuan Xie
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Cheng Hu
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Yi Feng
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Danfeng Li
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Tingting Ai
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Yulei Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Lijia Huang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| | - Jiali Tan
- Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, P. R. China
| |
Collapse
|
64
|
Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, Wang W, Zhu Q, Lu Z, Cao X. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis 2020; 11:330. [PMID: 32382069 PMCID: PMC7205892 DOI: 10.1038/s41419-020-2548-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/20/2022]
Abstract
Quaking (QKI), an RNA-binding protein, has been reported to exhibit numerous biological functions, such as mRNA regulation, cancer suppression, and anti-inflammation. However, little known about the effects of QKI on bone metabolism. In this study, we used a monocyte/macrophage-specific QKI knockout transgenic mouse model to investigate the effects of QKI deficiency on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. The loss of QKI promoted the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts (OCs) from bone marrow macrophages, and upregulated the expression of OC-specific markers, including TRAP (Acp5) and cathepsin K (Ctsk). The pro-osteoclastogenesis effect of QKI deficiency was achieved by amplifying the signaling cascades of the NF-κB and mitogen-activated protein kinase (MAPK) pathways; then, signaling upregulated the activation of nuclear factor of activated T cells c1 (NFATc1), which is considered to be the core transcription factor that regulates OC differentiation. In addition, QKI deficiency could inhibit osteoblast (OB) formation through the inflammatory microenvironment. Taken together, our data suggest that QKI deficiency promoted OC differentiation and disrupted bone metabolic balance, and eventually led to osteopenia under physiological conditions and aggravated the degree of osteoporosis under pathological conditions.
Collapse
Affiliation(s)
- Tianshu Du
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zhao Yan
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Shu Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zichen Ye
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Wenwen Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Qingsheng Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Xiaorui Cao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
65
|
Wei K, Korsunsky I, Marshall JL, Gao A, Watts GFM, Major T, Croft AP, Watts J, Blazar PE, Lange JK, Thornhill TS, Filer A, Raza K, Donlin LT, Siebel CW, Buckley CD, Raychaudhuri S, Brenner MB. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 2020; 582:259-264. [PMID: 32499639 PMCID: PMC7841716 DOI: 10.1038/s41586-020-2222-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
The synovium is a mesenchymal tissue composed mainly of fibroblasts with a lining and sublining that surrounds the joints. In rheumatoid arthritis (RA), the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive and destroys the joint1,2. Recently, we and others found that a subset of fibroblasts located in the sublining undergoes major expansion in RA and is linked to disease activity3,4,5. However, the molecular mechanism by which these fibroblasts differentiate and expand in RA remains unknown. Here, we identified a critical role for NOTCH3 signaling in the differentiation of perivascular and sublining CD90(THY1)+ fibroblasts. Using single cell RNA-sequencing and synovial tissue organoids, we found that NOTCH3 signaling drives both transcriptional and spatial gradients in fibroblasts emanating from vascular endothelial cells outward. In active RA, NOTCH3 and NOTCH target genes are markedly upregulated in synovial fibroblasts. Importantly, genetic deletion of Notch3 or monoclonal antibody-blockade of NOTCH3 signaling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit positional identity regulated by endothelium-derived Notch signaling and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.
Collapse
Affiliation(s)
- Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilya Korsunsky
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer L Marshall
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Anqi Gao
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Triin Major
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Adam P Croft
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Jordan Watts
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip E Blazar
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey K Lange
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas S Thornhill
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Karim Raza
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Laura T Donlin
- Arthritis and Tissue Degeneration, Hospital for Special Surgery, New York, NY, USA
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Christopher D Buckley
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK.,The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA. .,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. .,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
66
|
Kittaka M, Yoshimoto T, Hoffman H, Levitan ME, Ueki Y. RANKL-independent osteoclastogenesis in the SH3BP2 cherubism mice. Bone Rep 2020; 12:100258. [PMID: 32258251 PMCID: PMC7118294 DOI: 10.1016/j.bonr.2020.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
Even though the receptor activator of the nuclear factor-κB ligand (RANKL) and its receptor RANK have an exclusive role in osteoclastogenesis, the possibility of RANKL/RANK-independent osteoclastogenesis has been the subject of a long-standing debate in bone biology. In contrast, it has been reported that calvarial injection of TNF-ɑ elicits significant osteoclastogenesis in the absence of RANKL/RANK in NF-κB2- and RBP-J-deficient mice, suggesting that inflammatory challenges and secondary gene manipulation are the prerequisites for RANKL/RANK-deficient mice to develop osteoclasts in vivo. Here we report that, even in the absence of RANKL (Rankl−/−), cherubism mice (Sh3bp2KI/KI) harboring the homozygous gain-of-function mutation in SH3-domain binding protein 2 (SH3BP2) develop tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts spontaneously. The Sh3bp2KI/KIRankl−/− mice exhibit an increase in tooth exposure and a decrease in bone volume/total volume compared to Sh3bp2+/+Rankl−/− mice. The multinucleated cells were stained positively for cathepsin K. Osteoclastic marker gene expression in bone and serum TRAP5b levels were elevated in Sh3bp2KI/KIRankl−/− mice. Elevation of the serum TNF-ɑ levels suggested that TNF-ɑ is a driver for the RANKL-independent osteoclast formation in Sh3bp2KI/KI mice. Our results provide a novel mutant model that develops osteoclasts independent of RANKL and establish that the gain-of-function of SH3BP2 promotes osteoclastogenesis not only in the presence of RANKL but also in the absence of RANKL. Cherubism mutation improves osteopetrosis in RANKL-deficient mice. RANKL-deficient cherubism mice develop functional osteoclasts. Gain-of-function of SH3BP2 and TNF-ɑ are involved in the mechanism of RANKL-independent osteoclastogenesis.
Collapse
Affiliation(s)
- Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN 46202, USA.,Indiana Center for Musculoskeletal Health, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Tetsuya Yoshimoto
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN 46202, USA.,Indiana Center for Musculoskeletal Health, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Henry Hoffman
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, School of Dentistry, Kansas City, MO 64108, USA
| | - Marcus Evan Levitan
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN 46202, USA.,Indiana Center for Musculoskeletal Health, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN 46202, USA.,Indiana Center for Musculoskeletal Health, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
67
|
Krieger NS, Chen L, Becker J, DeBoyace S, Wang H, Favus MJ, Bushinsky DA. Increased Osteoclast and Decreased Osteoblast Activity Causes Reduced Bone Mineral Density and Quality in Genetic Hypercalciuric Stone-Forming Rats. JBMR Plus 2020; 4:e10350. [PMID: 32258968 PMCID: PMC7117851 DOI: 10.1002/jbm4.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022] Open
Abstract
To study human idiopathic hypercalciuria (IH), we developed an animal model, genetic hypercalciuric stone-forming (GHS) rats, whose pathophysiology parallels that in IH. All GHS rats form kidney stones and have decreased BMD and bone quality compared with the founder Sprague-Dawley (SD) rats. To understand the bone defect, we characterized osteoclast and osteoblast activity in the GHS compared with SD rats. Bone marrow cells were isolated from femurs of GHS and SD rats and cultured to optimize differentiation into osteoclasts or osteoblasts. Osteoclasts were stained for TRAcP (tartrate resistant acid phosphatase), cultured to assess resorptive activity, and analyzed for specific gene expression. Marrow stromal cells or primary neonatal calvarial cells were differentiated to osteoblasts, and osteoblastic gene expression as well as mineralization was analyzed. There was increased osteoclastogenesis and increased resorption pit formation in GHS compared with SD cultures. Osteoclasts had increased expression of cathepsin K, Tracp, and MMP9 in cells from GHS compared with SD rats. Osteoblastic gene expression and mineralization was significantly decreased. Thus, alterations in baseline activity of both osteoclasts and osteoblasts in GHS rats, led to decreased BMD and bone quality, perhaps because of their known increase in vitamin D receptors. Better understanding of the role of GHS bone cells in decreased BMD and quality may provide new strategies to mitigate the low BMD and increased fracture risk found in patients with IH. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Luojing Chen
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Jennifer Becker
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Sean DeBoyace
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Hongwei Wang
- Section of EndocrinologyUniversity of Chicago Pritzker School of MedicineChicagoILUSA
| | - Murray J Favus
- Section of EndocrinologyUniversity of Chicago Pritzker School of MedicineChicagoILUSA
| | - David A Bushinsky
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| |
Collapse
|
68
|
Passos LSA, Lupieri A, Becker-Greene D, Aikawa E. Innate and adaptive immunity in cardiovascular calcification. Atherosclerosis 2020; 306:59-67. [PMID: 32222287 DOI: 10.1016/j.atherosclerosis.2020.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
Despite the focus placed on cardiovascular research, the prevalence of vascular and valvular calcification is increasing and remains a leading contributor of cardiovascular morbidity and mortality. Accumulating studies provide evidence that cardiovascular calcification is an inflammatory disease in which innate immune signaling becomes sustained and/or excessive, shaping a deleterious adaptive response. The triggering immune factors and subsequent inflammatory events surrounding cardiovascular calcification remain poorly understood, despite sustained significant research interest and support in the field. Most studies on cardiovascular calcification focus on innate cells, particularly macrophages' ability to release pro-osteogenic cytokines and calcification-prone extracellular vesicles and apoptotic bodies. Even though substantial evidence demonstrates that macrophages are key components in triggering cardiovascular calcification, the crosstalk between innate and adaptive immune cell components has not been adequately addressed. The only therapeutic options currently used are invasive procedures by surgery or transcatheter intervention. However, no approved drug has shown prophylactic or therapeutic effectiveness. Conventional diagnostic imaging is currently the best method for detecting, measuring, and assisting in the treatment of calcification. However, these common imaging modalities are unable to detect early subclinical stages of disease at the level of microcalcifications; therefore, the vast majority of patients are diagnosed when macrocalcifications are already established. In this review, we unravel the current knowledge of how innate and adaptive immunity regulate cardiovascular calcification; and put forward differences and similarities between vascular and valvular disease. Additionally, we highlight potential immunomodulatory drugs with the potential to target calcification and propose avenues in need of further translational inquiry.
Collapse
Affiliation(s)
- Livia S A Passos
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adrien Lupieri
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dakota Becker-Greene
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Pathology, Sechenov First Moscow State Medical University, Moscow, 119992, Russia.
| |
Collapse
|
69
|
Yang J, Chen S, Zong Z, Yang L, Liu D, Bao Q, Du W. The increase in bone resorption in early-stage type I diabetic mice is induced by RANKL secreted by increased bone marrow adipocytes. Biochem Biophys Res Commun 2020; 525:433-439. [PMID: 32102755 DOI: 10.1016/j.bbrc.2020.02.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Bone marrow adipose tissue (BMAT) has recently been found to induce osteoclastogenesis by secreting RANKL. Although Type 1 diabetes mellitus (T1DM) has been reported to be associated with increased BMAT and bone loss, little is known about the relationship between BMAT and osteoclasts in T1DM. We studied the role of BMAT in the alterations of osteoclast activities in early-stage T1DM, by using a streptozotocin-induced T1DM mouse model. Our results showed that osteoclast activity was enhanced in the long bones of T1DM mice, accompanied by increased protein expression of RANKL. However, RANKL mRNA levels in bone tissues of T1DM mice remained unchanged. Meanwhile, we found that BMAT was significantly increased in the long bones of T1DM mice, and both mRNA and protein levels of RANKL were elevated in the diabetic BMAT. More importantly, RANKL protein was mainly expressed on the cell membranes of the increased adipocytes, most of which were located next to the metaphyseal region. These results suggest that the enhanced bone resorption in early-stage diabetic mice is induced by RANKL derived from BMAT rather than the bone tissue itself.
Collapse
Affiliation(s)
- Jiazhi Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, ChongQing, 400038, PR China; Department of Orthopedics, Xinqiao Hospital, Army Medical University, ChongQing, 400037, PR China
| | - Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, ChongQing, 400038, PR China; Department of Orthopedics, The 906th Hospital of the Chinese People's Liberation Army, Wenzhou, Zhejiang, 325000, PR China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, ChongQing, 400038, PR China; Department of Orthopedics, Xinqiao Hospital, Army Medical University, ChongQing, 400037, PR China.
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, ChongQing, 400038, PR China; Department of Orthopedics, Xinqiao Hospital, Army Medical University, ChongQing, 400037, PR China
| | - Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, ChongQing, 400038, PR China; Department of Orthopedics, Xinqiao Hospital, Army Medical University, ChongQing, 400037, PR China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, ChongQing, 400038, PR China; Department of Emergency, Xinqiao Hospital, Army Medical University, ChongQing, 400037, PR China
| | - Wenqiong Du
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, ChongQing, 400038, PR China
| |
Collapse
|
70
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
71
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
72
|
Saferding V, Blüml S. Innate immunity as the trigger of systemic autoimmune diseases. J Autoimmun 2019; 110:102382. [PMID: 31883831 DOI: 10.1016/j.jaut.2019.102382] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
The innate immune system consists of a variety of elements controlling and participating in virtually all aspects of inflammation and immunity. It is crucial for host defense, but on the other hand its improper activation is also thought to be responsible for the generation of autoimmunity and therefore diseases such as autoimmune arthritides like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS) or inflammatory bowel disease. The innate immune system stands both at the beginning as well as the end of autoimmunity. On one hand, it regulates the activation of the adaptive immune system and the breach of self-tolerance, as antigen presenting cells (APCs), especially dendritic cells, are essential for the activation of naïve antigen specific T cells, a crucial step in the development of autoimmunity. Various factors controlling the function of dendritic cells have been identified that directly regulate lymphocyte homeostasis and in some instances the generation of organ specific autoimmunity. Moreover, microbial cues have been identified that are prerequisites for the generation of several specific autoimmune diseases. On the other hand, the innate immune system is also responsible for mediating the resulting organ damage underlying the clinical symptoms of a given autoimmune disease via production of proinflammatory cytokines that amplify local inflammation and further activate other immune or parenchymal cells in the vicinity, the generation of matrix degrading and proteolytic enzymes or reactive oxygen species directly causing tissue damage. In the last decades, molecular characterization of cell types and their subsets as well as both positive and negative regulators of immunity has led to the generation of various scenarios of how autoimmunity develops, which eventually might lead to the development of targeted interventions for autoimmune diseases. In this review, we try to summarize the elements that are contributing to the initiation and perpetuation of autoimmune responses.
Collapse
Affiliation(s)
| | - Stephan Blüml
- Department of Rheumatology, Medical University Vienna, Austria.
| |
Collapse
|
73
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
74
|
Hasegawa T, Kikuta J, Sudo T, Matsuura Y, Matsui T, Simmons S, Ebina K, Hirao M, Okuzaki D, Yoshida Y, Hirao A, Kalinichenko VV, Yamaoka K, Takeuchi T, Ishii M. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol 2019; 20:1631-1643. [DOI: 10.1038/s41590-019-0526-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
|
75
|
Abdel-Maged AE, Gad AM, Wahdan SA, Azab SS. Efficacy and safety of Ramucirumab and methotrexate co-therapy in rheumatoid arthritis experimental model: Involvement of angiogenic and immunomodulatory signaling. Toxicol Appl Pharmacol 2019; 380:114702. [PMID: 31398424 DOI: 10.1016/j.taap.2019.114702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune inflammatory disease associated with irreversible joint destruction that leads to permanent motor disability and compromised quality of life. However, the main cause of RA is still unknown though stimulation of immune system and cells plays pivotal role in disease development and progression. Ramucirumab (RAM) is the monoclonal antibody against VEGF- receptor. This study aimed to investigate and evaluate the therapeutic effect of RAM with or without Methotrexate (MTX) against adjuvant-induced arthritis in rats. Complete Freund's adjuvant (CFA)-induced arthritic rats were treated for three consecutive weeks with MTX or RAM alone and MTX-RAM co-therapy. Arthritic score, gait score, ankle diameter, paw thickness, angiogenic, inflammatory cytokines, bone erosion markers, and apoptotic markers were assessed to evaluate the anti-arthritic effect. RAM monotherapy exhibited anti-inflammatory, anti-angiogenic and anti-apoptotic effects similar to MTX alone to treat RA in the current study. Furthermore, RAM alone had a protective effect on bone and cartilage health better than standard anti-rheumatic agent MTX. Interestingly, combined therapy of MTX and RAM produced significant differences in comparison with MTX or RAM monotherapy in all tested parameters. Moreover, the current study proved that MTX-RAM co-therapy has a synergistic effect.
Collapse
MESH Headings
- Animals
- Ankle Joint/drug effects
- Ankle Joint/pathology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Drug Therapy, Combination
- Foot/pathology
- Gene Expression/drug effects
- Immunomodulation
- Interleukin-17/genetics
- Male
- Methotrexate/pharmacology
- Methotrexate/therapeutic use
- Neovascularization, Physiologic
- Rats
- STAT3 Transcription Factor/genetics
- Treatment Outcome
- Tumor Necrosis Factor-alpha/blood
- Vascular Endothelial Growth Factor A/blood
- Ramucirumab
Collapse
Affiliation(s)
- Amany E Abdel-Maged
- National Organization for Research and Control of Biologicals (NORCB), Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
76
|
Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol 2019; 41:607-618. [PMID: 31520179 PMCID: PMC6814643 DOI: 10.1007/s00281-019-00753-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
The inflammasomes are intracellular protein complexes that are assembled in response to a variety of perturbations including infections and injuries. Failure of the inflammasomes to rapidly clear the insults or restore tissue homeostasis can result in chronic inflammation. Recurring inflammation is also provoked by mutations that cause the constitutive assembly of the components of these protein platforms. Evidence suggests that chronic inflammation is a shared mechanism in bone loss associated with aging, dysregulated metabolism, autoinflammatory, and autoimmune diseases. Mechanistically, inflammatory mediators promote bone resorption while suppressing bone formation, an imbalance which over time leads to bone loss and increased fracture risk. Thus, while acute inflammation is important for the maintenance of bone integrity, its chronic state damages this tissue. In this review, we discuss the role of the inflammasomes in inflammation-induced osteolysis.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
| |
Collapse
|
77
|
Zaiss MM, Hall C, McGowan NWA, Babb R, Devlia V, Lucas S, Meghji S, Henderson B, Bozec A, Schett G, David JP, Panayi GS, Grigoriadis AE, Corrigall VM. Binding Immunoglobulin Protein (BIP) Inhibits TNF-α-Induced Osteoclast Differentiation and Systemic Bone Loss in an Erosive Arthritis Model. ACR Open Rheumatol 2019; 1:382-393. [PMID: 31777818 PMCID: PMC6857990 DOI: 10.1002/acr2.11060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective The association between inflammation and dysregulated bone remodeling is apparent in rheumatoid arthritis and is recapitulated in the human tumor necrosis factor transgenic (hTNFtg) mouse model. We investigated whether extracellular binding immunoglobulin protein (BiP) would protect the hTNFtg mouse from both inflammatory arthritis as well as extensive systemic bone loss and whether BiP had direct antiosteoclast properties in vitro. Methods hTNFtg mice received a single intraperitoneal administration of BiP at onset of arthritis. Clinical disease parameters were measured weekly. Bone analysis was performed by microcomputed tomography and histomorphometry. Mouse bone marrow macrophage and human peripheral blood monocyte precursors were used to study the direct effect of BiP on osteoclast differentiation and function in vitro. Monocyte and osteoclast signaling was analyzed by Western blotting, flow cytometry, and imaging flow cytometry. Results BiP-treated mice showed reduced inflammation and cartilage destruction, and histomorphometric analysis revealed a decrease in osteoclast number with protection from systemic bone loss. Abrogation of osteoclast function was also observed in an ex vivo murine calvarial model. BiP inhibited differentiation of osteoclast precursors and prevented bone resorption by mature osteoclasts in vitro. BiP also induced downregulation of CD115/c-Fms and Receptor Activator of NF-κB (RANK) messenger RNA and protein, causing reduced phosphorylation of the p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1/2 and p38, with suppression of essential osteoclast transcription factors, c-Fos and NFATc1. BiP directly inhibited TNF-α- or Receptor Activator of NF-κB Ligand (RANKL)-induced NF-κB nuclear translocation in THP-1 monocytic cells and preosteoclasts by the canonical and noncanonical pathways. Conclusion BiP combines an anti-inflammatory function with antiosteoclast activity, which establishes it as a potential novel therapeutic for inflammatory disorders associated with bone loss.
Collapse
Affiliation(s)
- Mario M Zaiss
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | | | | | | | | | - Sébastien Lucas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Sajeda Meghji
- UCL-Eastman Dental Institute University College London London UK
| | - Brian Henderson
- UCL-Eastman Dental Institute University College London London UK
| | - Aline Bozec
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Georg Schett
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen Erlangen Germany
| | - Jean-Pierre David
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany, and Institute of Osteology and Biomechanics (IOBM) University Medical Center Hamburg-Eppendorf Hamburg Germany
| | | | | | | |
Collapse
|
78
|
Peeters JGC, Vastert SJ, van Wijk F, van Loosdregt J. Review: Enhancers in Autoimmune Arthritis: Implications and Therapeutic Potential. Arthritis Rheumatol 2019; 69:1925-1936. [PMID: 28666076 PMCID: PMC5659109 DOI: 10.1002/art.40194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Janneke G C Peeters
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sebastiaan J Vastert
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
79
|
Koehler MI, Hartmann ES, Schluessel S, Beck F, Redeker JI, Schmitt B, Unger M, van Griensven M, Summer B, Fottner A, Mayer-Wagner S. Impact of Periprosthetic Fibroblast-Like Cells on Osteoclastogenesis in Co-Culture with Peripheral Blood Mononuclear Cells Varies Depending on Culture System. Int J Mol Sci 2019; 20:E2583. [PMID: 31130703 PMCID: PMC6567687 DOI: 10.3390/ijms20102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Co-culture studies investigating the role of periprosthetic fibroblasts (PPFs) in inflammatory osteoclastogenesis reveal contrary results, partly showing an osteoprotective function of fibroblasts and high OPG expression in monolayer. These data disagree with molecular analyses of original periosteolytic tissues. In order to find a more reliable model, PPFs were co-cultivated with peripheral blood mononuclear cells (PBMCs) in a transwell system and compared to conventional monolayer cultures. The gene expression of key regulators of osteoclastogenesis (macrophage colony-stimulating factor (MCSF), receptor activator of NF-κB ligand (RANK-L), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)) as well as the ability of bone resorption were analyzed. In monolayer co-cultures, PPFs executed an osteoprotective function with high OPG-expression, low RANK-L/OPG ratios, and a resulting inhibition of osteolysis even in the presence of MCSF and RANK-L. For transwell co-cultures, profound changes in gene expression, with a more than hundredfold decrease of OPG and a significant upregulation of TNFα were observed. In conclusion, we were able to show that a change of culture conditions towards a transwell system resulted in a considerably more osteoclastogenic gene expression profile, being closer to findings in original periosteolytic tissues. This study therefore presents an interesting approach for a more reliable in vitro model to examine the role of fibroblasts in periprosthetic osteoclastogenesis in the future.
Collapse
Affiliation(s)
- Miriam I Koehler
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Eliza S Hartmann
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Sabine Schluessel
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Felicitas Beck
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Julia I Redeker
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Baerbel Schmitt
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Marina Unger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Burkhard Summer
- Department of Dermatology, Ludwig-Maximilians-University, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | - Andreas Fottner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| |
Collapse
|
80
|
Aoki-Nonaka Y, Tabeta K, Yokoji M, Matsugishi A, Matsuda Y, Takahashi N, Sulijaya B, Domon H, Terao Y, Taniguchi M, Yamazaki K. A peptide derived from rice inhibits alveolar bone resorption via suppression of inflammatory cytokine production. J Periodontol 2019; 90:1160-1169. [PMID: 31032912 DOI: 10.1002/jper.18-0630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Periodontitis is an inflammatory disease that results in alveolar bone resorption due to inflammatory cytokine production induced by bacterial antigens such as lipopolysaccharides (LPS). Here, the preventive effect of the Amyl-1-18 peptide derived from rice in an experimental model of periodontitis and the effect on the anti-inflammatory response were assessed. METHODS Alveolar bone resorption, gene transcription of proinflammatory cytokines in the gingiva, and the endotoxin level in the oral cavity were evaluated after oral administration of the Amyl-1-18 peptide for 14 days using a ligature-induced periodontitis model in mice. Additionally, murine macrophages were incubated with LPS of Escherichia coli or Porphyromonas gingivalis in the presence of Amyl-1-18 to analyze the suppressive effects of Amyl-1-18 on the cell signaling pathways associated with proinflammatory cytokine production, including inflammasome activities. RESULTS Oral administration of Amyl-1-18 suppressed alveolar bone resorption and gene transcription of interleukin (il)6 in the gingiva of the periodontitis model, and decreased endotoxin levels in the oral cavity, suggesting modulation of periodontal inflammation by inhibition of endotoxin activities in vivo. Also, Amyl-1-18 suppressed IL-6 production induced by LPS and recombinant IL-1β in macrophages in vitro but had no effect on inflammasome activity. CONCLUSIONS The Amyl-1-18 peptide from rice inhibited alveolar bone destruction in mouse periodontitis model via suppressing inflammatory cytokine production induced by LPS. It was suggested that Amyl-1-18 peptide has anti-inflammatory property against LPS, not only by neutralization of LPS and subsequent inhibition of nuclear factor-κB signaling but also by inhibition of the IL-1R-related signaling cascade.
Collapse
Affiliation(s)
- Yukari Aoki-Nonaka
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mai Yokoji
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yumi Matsuda
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benso Sulijaya
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
81
|
Liang M, Ma Q, Ding N, Luo F, Bai Y, Kang F, Gong X, Dong R, Dai J, Dai Q, Dou C, Dong S. IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis 2019; 10:353. [PMID: 31040267 PMCID: PMC6491651 DOI: 10.1038/s41419-019-1594-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
A variety of osteolytic factors have been identified from breast cancer cells leading to osteolysis, but less is known about which factor plays an essential role in the initiation process prior to the overt vicious osteolytic cycle. Here, we present in vitro and in vivo evidences to clarify the role of interleukin-11 (IL-11) as an essential contributor to breast cancer bone metastasis mediated osteolysis. Animal studies showed that bone specific metastatic BoM-1833 cells induce earlier onset of osteolysis and faster tumor growth compared with MCF7 and parental MDA-MB-231 cells in BALB/c-nu/nu nude mice. IL-11 was further screened and identified as the indispensable factor secreted by BoM-1833 cells inducing osteoclastogenesis independently of receptor activator of nuclear factor κB ligand (RANKL). Mechanistic investigation revealed that the JAK1/STAT3 signaling pathway as a downstream effector of IL-11, STAT3 activation further induces the expression of c-Myc, a necessary factor required for osteoclastogenesis. By inhibiting STAT3 phosphorylation, AG-490 was shown effective in reducing osteolysis and tumor growth in the metastatic niche. Overall, our results revealed the essential role and the underlying molecular mechanism of IL-11 in breast cancer bone metastasis mediated osteolysis. STAT3 targeting through AG-490 is a potential therapeutic strategy for mitigating osteolysis and tumor growth of bone metastatic breast cancer.
Collapse
Affiliation(s)
- Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ning Ding
- Department of promoting osteolysisBlood Purification, General Hospital of Shenyang Military Area Command, Shenyang, 110000, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yun Bai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Rui Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Jingjin Dai
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China. .,Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
82
|
Sobacchi C, Menale C, Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front Immunol 2019; 10:629. [PMID: 30984193 PMCID: PMC6450200 DOI: 10.3389/fimmu.2019.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically changed the scenario of bone biology by providing the functional and biochemical proof that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel, two independent studies reported the identification of mouse RANKL on activated T cells and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line. After these seminal findings, accumulating data indicated RANKL and RANK not only as essential players for the development and activation of osteoclasts, but also for the correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of the central tolerance process by which self-reactive T cells are eliminated while regulatory T cells are generated. In light of the RANKL-RANK multi-task function, an antibody targeting this pathway, denosumab, is now commonly used in the therapy of bone loss diseases including chronic inflammatory bone disorders and osteolytic bone metastases; furthermore, preclinical data support the therapeutic application of denosumab in the framework of a broader spectrum of tumors. Here, we discuss advances in cellular and molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and the extent to which its inhibition or augmentation can be translated in the clinical arena.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Ciro Menale
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
83
|
Jung YK, Kang YM, Han S. Osteoclasts in the Inflammatory Arthritis: Implications for Pathologic Osteolysis. Immune Netw 2019; 19:e2. [PMID: 30838157 PMCID: PMC6399096 DOI: 10.4110/in.2019.19.e2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/31/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023] Open
Abstract
The enhanced differentiation and activation of osteoclasts (OCs) in the inflammatory arthritis such as rheumatoid arthritis (RA) and gout causes not only local bone erosion, but also systemic osteoporosis, leading to functional disabilities and morbidity. The induction and amplification of NFATc1, a master regulator of OC differentiation, is mainly regulated by receptor activator of NF-κB (RANK) ligand-RANK and calcium signaling which are amplified in the inflammatory milieu, as well as by inflammatory cytokines such as TNFα, IL-1β and IL-6. Moreover, the predominance of CD4+ T cell subsets, which varies depending on the condition of inflammatory diseases, can determine the fate of OC differentiation. Anti-citrullinated peptide antibodies which are critical in the pathogenesis of RA can bind to the citrullinated vimentin on the surface of OC precursors, and in turn promote OC differentiation and function via IL-8. In addition to adaptive immunity, the activation of innate immune system including the nucleotide oligomerization domain leucine rich repeat with a pyrin domain 3 inflammasome and TLRs can regulate OC maturation. The emerging perspectives about the diverse and close interactions between the immune cells and OCs in inflammatory milieu can have a significant impact on the future direction of drug development.
Collapse
Affiliation(s)
- Youn-Kwan Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Young-Mo Kang
- Division of Rheumatology, Department of Internal medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Seungwoo Han
- Division of Rheumatology, Department of Internal medicine, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
84
|
Papadaki M, Rinotas V, Violitzi F, Thireou T, Panayotou G, Samiotaki M, Douni E. New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Front Immunol 2019; 10:97. [PMID: 30804932 PMCID: PMC6370657 DOI: 10.3389/fimmu.2019.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL), a member of the Tumor Necrosis Factor (TNF) superfamily, constitutes the master regulator of osteoclast formation and bone resorption, whereas its involvement in inflammatory diseases remains unclear. Here, we used the human TNF transgenic mouse model of erosive inflammatory arthritis to determine if the progression of inflammation is affected by either genetic inactivation or overexpression of RANKL in transgenic mouse models. TNF-mediated inflammatory arthritis was significantly attenuated in the absence of functional RANKL. Notably, TNF overexpression could not compensate for RANKL-mediated osteopetrosis, but promoted osteoclastogenesis between the pannus and bone interface, suggesting RANKL-independent mechanisms of osteoclastogenesis in inflamed joints. On the other hand, simultaneous overexpression of RANKL and TNF in double transgenic mice accelerated disease onset and led to severe arthritis characterized by significantly elevated clinical and histological scores as shown by aggressive pannus formation, extended bone resorption, and massive accumulation of inflammatory cells, mainly of myeloid origin. RANKL and TNF cooperated not only in local bone loss identified in the inflamed calcaneous bone, but also systemically in distal femurs as shown by microCT analysis. Proteomic analysis in inflamed ankles from double transgenic mice overexpressing human TNF and RANKL showed an abundance of proteins involved in osteoclastogenesis, pro-inflammatory processes, gene expression regulation, and cell proliferation, while proteins participating in basic metabolic processes were downregulated compared to TNF and RANKL single transgenic mice. Collectively, these results suggest that RANKL modulates modeled inflammatory arthritis not only as a mediator of osteoclastogenesis and bone resorption but also as a disease modifier affecting inflammation and immune activation.
Collapse
Affiliation(s)
- Maria Papadaki
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Foteini Violitzi
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Trias Thireou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George Panayotou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Martina Samiotaki
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.,Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| |
Collapse
|
85
|
Abstract
Bone is a crucial element of the skeletal-locomotor system, but also functions as an immunological organ that harbors hematopoietic stem cells (HSCs) and immune progenitor cells. Additionally, the skeletal and immune systems share a number of regulatory molecules, including cytokines and signaling molecules. Osteoimmunology was created as an interdisciplinary field to explore the shared molecules and interactions between the skeletal and immune systems. In particular, the importance of an inseparable link between the two systems has been highlighted by studies on the pathogenesis of rheumatoid arthritis (RA), in which pathogenic helper T cells induce the progressive destruction of multiple joints through aberrant expression of receptor activator of nuclear factor (NF)-κB ligand (RANKL). The conceptual bridge of osteoimmunology provides not only a novel framework for understanding these biological systems but also a molecular basis for the development of therapeutic approaches for diseases of bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
86
|
Ohnuma K, Kasagi S, Uto K, Noguchi Y, Nakamachi Y, Saegusa J, Kawano S. MicroRNA-124 inhibits TNF-α- and IL-6-induced osteoclastogenesis. Rheumatol Int 2018; 39:689-695. [DOI: 10.1007/s00296-018-4218-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
|
87
|
Korkosz M, Czepiel M, Guła Z, Stec M, Węglarczyk K, Rutkowska-Zapała M, Gruca A, Lenart M, Baran J, Gąsowski J, Błyszczuk P, Siedlar M. Sera of patients with axial spondyloarthritis (axSpA) enhance osteoclastogenic potential of monocytes isolated from healthy individuals. BMC Musculoskelet Disord 2018; 19:434. [PMID: 30522483 PMCID: PMC6284314 DOI: 10.1186/s12891-018-2356-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Axial spondyloarthritis (axSpA) is characterized by significant bone loss caused by dysregulation of physiological bone turnover, possibly resulting from intensified differentiation of osteoclasts. The aim of this study was to reevaluate the levels of osteoclastogenesis-mediating factors: soluble RANKL, M-CSF, OPG and other cytokines in sera of untreated, with sDMARDs and/or bDMARDs, axSpA patients and to test whether these sera influence differentiation of healthy monocytes towards osteoclast lineage. Methods Bone remodeling molecules (RANKL, M-CSF, OPG, IL-6, OSM, IL-17A, TGFβ, and TNFα) were evaluated in 27 patients with axSpA and 23 age and sex-matched controls. Disease activity (BASDAI, ASDAS) and inflammatory markers (ESR, CRP) were assessed. Monocytes obtained from healthy individuals were cultured in vitro in presence of sera from 11 randomly chosen axSpA patients and 10 controls, with addition of exogenous M-CSF and/or RANKL or without. Osteoclastic differentiation was assessed analyzing osteoclast markers (cathepsin K and RANK at mRNA level) and with osteoclast-specific staining. Results axSpA patients’ sera levels of soluble RANKL were significantly lower and M-CSF, IL-6, OSM, IL-17A and TNFα significantly higher in comparison to controls, whereas of OPG and TGFβ were comparable in both groups. Numbers of generated in vitro osteoclasts and cathepsin K mRNA levels did not differ between cultures supplemented with sera of healthy and axSpA patients, both in the absence and presence of M-CSF. Instead, addition of exogenous RANKL boosted osteoclastogenesis, which was significantly higher in cultures with axSpA sera. Furthermore, sera from axSpA patients induced substantially higher levels of RANK mRNA, independently of M-CSF and RANKL stimulation. Conclusion We show that, paradoxically, serum levels of soluble RANKL observed in axSpA are in fact significantly lower in comparison to healthy blood donors. Our results indicate that sera of axSpA patients - in contrary to healthy subjects - contain circulating, soluble factors (presumably IL-6, OSM, IL-17A, TNFα and others) able to stimulate healthy monocytes responsiveness to even relative low RANKL serum levels, by inducing high RANK mRNA expression and - as a net effect - boosting their osteoclastogenic potential. We suggest also that locally produced RANKL in axSpA may induce overactive osteoclasts from their precursors.
Collapse
Affiliation(s)
- Mariusz Korkosz
- Department of Rheumatology, Jagiellonian University Medical College, 10 Sniadeckich Str., Krakow, Poland
| | - Marcin Czepiel
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Zofia Guła
- Department of Rheumatology, Jagiellonian University Medical College, 10 Sniadeckich Str., Krakow, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Anna Gruca
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Jerzy Gąsowski
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, 10 Sniadeckich Str., Krakow, Poland
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland.
| |
Collapse
|
88
|
Ha YJ, Han DW, Kim JH, Chung SW, Kang EH, Song YW, Lee YJ. Circulating Semaphorin 4D as a Marker for Predicting Radiographic Progression in Patients with Rheumatoid Arthritis. DISEASE MARKERS 2018; 2018:2318386. [PMID: 30538782 PMCID: PMC6261241 DOI: 10.1155/2018/2318386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
Semaphorin 3A (Sema3A) and semaphorin 4D (Sema4D) are molecules which regulate immune responses as well as bone remodeling process. The aim of this study was to evaluate the serum levels of Sema3A and Sema4D and to investigate their clinical significance in rheumatoid arthritis (RA). The serum levels of Sema3A and Sema4D were measured in 130 patients with RA and 65 sex- and age-matched healthy individuals. Circulating levels of biomarkers of RA-related inflammation and bone turnover such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, IL-22, IL-34, osteopontin, Dkk-1, and sclerostin were also measured. Disease activity was determined by the 28-joint disease activity score (DAS28), and radiographic joint damage was assessed by the modified Sharp van der Heijde score (SHS). The serum levels of Sema3A were significantly higher in patients with RA than those in healthy controls (p < 0.001), whereas serum4D levels did not differ between the two groups. The levels of Sema4D showed a positive correlation with C-reactive protein (p = 0.001) and IL-6 (p < 0.001) levels, whereas the levels of Sema3A showed a negative correlation with Dkk-1 (p = 0.007) and TNF-α (p = 0.001). Even though Sema3A and Sema4D levels were comparable between RA patients with DAS28> 3.2 and with DAS28 ≤ 3.2, RA patients with radiographic progression (ΔSHS change/year ≥ 1) had significantly higher baseline levels of Sema4D than those without progression (p = 0.029). Additionally, when RA patients were divided into 3 groups using tertiles of Sema4D levels, the percentage of progressors was significantly increased (p = 0.045). In multivariate logistic regression analysis, serum Sema4D levels were an independent risk factor for radiographic progression. Our results suggest that the baseline levels of Sema4D might be a useful marker to identify RA patients with subsequent radiographic progression and that Sema4D may be an active mediator involved in RA-induced joint damage.
Collapse
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dong Woo Han
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Hyoun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Sang Wan Chung
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yeong Wook Song
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
89
|
Naringenin mitigates titanium dioxide (TiO 2)-induced chronic arthritis in mice: role of oxidative stress, cytokines, and NFκB. Inflamm Res 2018; 67:997-1012. [PMID: 30370484 DOI: 10.1007/s00011-018-1195-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To evaluate the effect and mechanisms of naringenin in TiO2-induced chronic arthritis in mice, a model resembling prosthesis and implant inflammation. TREATMENT Flavonoids are antioxidant and anti-inflammatory molecules with important anti-inflammatory effect. Mice were daily treated with the flavonoid naringenin (16.7-150 mg/kg, orally) for 30 days starting 24 h after intra-articular knee injection of 3 mg of TiO2. METHODS TiO2-induced arthritis resembles cases of aseptic inflammation induced by prosthesis and/or implants. Mice were stimulated with 3 mg of TiO2 and after 24 h mice started to be treated with naringenin. The disease phenotype, treatment toxicity, histopathological damage, oxidative stress, cytokine expression and NFκB were evaluated after 30 days of treatment. RESULTS Naringenin inhibited TiO2-induced mechanical hyperalgesia (96%), edema (77%) and leukocyte recruitment (74%) without inducing toxicity. Naringenin inhibited histopathological index (HE, 49%), cartilage damage (Toluidine blue tibial staining 49%, and proteoglycan 98%), and bone resorption (TRAP-stained 73%). These effects were accompanied by inhibition of oxidative stress (gp91phox 93%, NBT 83%, and TBARS 41%) cytokine mRNA expression (IL-33 82%, TNFα 76%, pro-IL-1β 100%, and IL-6 61%), and NFκB activation (100%). CONCLUSION Naringenin ameliorates TiO2-induced chronic arthritis inducing analgesic and anti-inflammatory responses with improvement in the histopathological index, cartilage damage, and bone resorption.
Collapse
|
90
|
Boyce BF, Li J, Xing L, Yao Z. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption. Front Immunol 2018; 9:2263. [PMID: 30323820 PMCID: PMC6172306 DOI: 10.3389/fimmu.2018.02263] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023] Open
Abstract
Skeletal health is maintained by bone remodeling, a process in which microscopic sites of effete or damaged bone are degraded on bone surfaces by osteoclasts and subsequently replaced by new bone, which is laid down by osteoblasts. This normal process can be disturbed in a variety of pathologic processes, including localized or generalized inflammation, metabolic and endocrine disorders, primary and metastatic cancers, and during aging as a result of low-grade chronic inflammation. Osteoclast formation and activity are promoted by factors, including cytokines, hormones, growth factors, and free radicals, and require expression of macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by accessory cells in the bone marrow, including osteoblastic and immune cells. Expression of TNF receptor-associated factor 6 (TRAF6) is required in osteoclast precursors to mediate RANKL-induced activation of NF-κB, which is also necessary for osteoclast formation and activity. TRAF3, in contrast is not required for osteoclast formation, but it limits RANKL-induced osteoclast formation by promoting proteasomal degradation of NF-κB-inducing kinase in a complex with TRAF2 and cellular inhibitor of apoptosis proteins (cIAP). TRAF3 also limits osteoclast formation induced by TNF, which mediates inflammation and joint destruction in inflammatory diseases, including rheumatoid arthritis. Chloroquine and hydroxychloroquine, anti-inflammatory drugs used to treat rheumatoid arthritis, prevent TRAF3 degradation in osteoclast precursors and inhibit osteoclast formation in vitro. Chloroquine also inhibits bone destruction induced by ovariectomy and parathyroid hormone in mice in vivo. Mice genetically engineered to have TRAF3 deleted in osteoclast precursors and macrophages develop early onset osteoporosis, inflammation in multiple tissues, infections, and tumors, indicating that TRAF3 suppresses inflammation and tumors in myeloid cells. Mice with TRAF3 conditionally deleted in mesenchymal cells also develop early onset osteoporosis due to a combination of increased osteoclast formation and reduced osteoblast formation. TRAF3 protein levels decrease in bone and bone marrow during aging in mice and humans. Development of drugs to prevent TRAF3 degradation in immune and bone cells could be a novel therapeutic approach to prevent or reduce bone loss and the incidence of several common diseases associated with aging.
Collapse
Affiliation(s)
- Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | | |
Collapse
|
91
|
Komatsu N, Takayanagi H. Immune-bone interplay in the structural damage in rheumatoid arthritis. Clin Exp Immunol 2018; 194:1-8. [PMID: 30022480 DOI: 10.1111/cei.13188] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and bone systems maintain homeostasis by interacting closely with each other. Rheumatoid arthritis is a pathological consequence of their interplay, as activated T cell immune responses result in osteoclast-mediated bone erosion. An imbalance between forkhead box protein 3 (Foxp3)+ regulatory T (Treg ) cells and T helper type 17 (Th17) cells is often linked with autoimmune diseases, including arthritis. Th17 cells contribute to the bone destruction in arthritis by up-regulating receptor activator of nuclear factor kappa-Β ligand (RANKL) on synovial fibroblasts as well as inducing local inflammation. Studies on the origin of Th17 cells in inflammation have shed light on the pathogenic conversion of Foxp3+ T cells. Th17 cells converted from Foxp3+ T cells (exFoxp3 Th17 cells) comprise the most potent osteoclastogenic T cell subset in inflammatory bone loss. It has been suggested that osteoclastogenic T cells may have developed originally to stop local infection in periodontitis by inducing tooth loss. In addition, Th17 cells also contribute to the pathogenesis of arthritis by modulating antibody function. Antibodies and immune complexes have attracted considerable attention for their direct role in osteoclastogenesis, and a specific T cell subset in joints was shown to be involved in B cell antibody production. Here we summarize the recent advances in our understanding of the immune-bone interplay in the context of the bone destruction in arthritis.
Collapse
Affiliation(s)
- N Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
92
|
Novack DV. Editorial: Inflammatory Osteoclasts: A Different Breed of Bone Eaters? Arthritis Rheumatol 2018; 68:2834-2836. [PMID: 27575608 DOI: 10.1002/art.39835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
|
93
|
Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci 2018; 75:2519-2528. [PMID: 29670999 PMCID: PMC9809143 DOI: 10.1007/s00018-018-2817-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in bone remodeling. Defects in osteoclasts result in unbalanced bone remodeling and are linked to many bone diseases including osteoporosis, rheumatoid arthritis, primary bone cancer, and skeletal metastases. Receptor activator of NF-kappaB ligand (RANKL) is a classical inducer of osteoclast formation. In the presence of macrophage-colony-stimulating factor, RANKL and co-stimulatory signals synergistically regulate osteoclastogenesis. However, recent discoveries of alternative pathways for RANKL-independent osteoclastogenesis have led to a reassessment of the traditional mechanisms that regulate osteoclast formation. In this review, we provide an overview of signaling pathways and other regulatory elements governing osteoclastogenesis. We also identify how osteoclastogenesis is altered in pathological conditions and discuss therapeutic targets in osteoclasts for the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 East 70th Street, New York, 10021, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, 10065, NY, USA.
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW Bone is constantly being remodeled throughout adult life through constant anabolic and catabolic actions that maintain tissue homeostasis. A number of hormones, cytokines growth factors, and the proximity of various cells to bone surfaces influence this process. Inflammatory changes at the bone microenvironment result in alterations leading to both excessive bone loss and bone formation. Detailed understanding of the physiological and pathological mechanisms that dictate these changes will allow us to harness inflammatory signals in bone regeneration. RECENT FINDINGS Recent reports have suggested that inflammatory signals are able to stimulate transcription factors that regulate osteoblast differentiation from their precursors. SUMMARY In this review, we summarized current understanding of the roles of inflammation in bone resorption and bone formation, which give rise to different disorders and discuss the huge potential of harnessing these inflammatory signals to achieve bone regeneration.
Collapse
Affiliation(s)
- Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, California, USA
| |
Collapse
|
95
|
Wang Y, Galli M, Shade Silver A, Lee W, Song Y, Mei Y, Bachus C, Glogauer M, McCulloch CA. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis. J Cell Sci 2018; 131:jcs.213967. [PMID: 29724913 DOI: 10.1242/jcs.213967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adseverin is an actin-binding protein involved in osteoclastogenesis, but its role in inflammation-induced bone loss is not well-defined. Here, we examined whether IL1β and TNFα regulate adseverin expression to control osteoclastogenesis in mouse primary monocytes and RAW264.7 cells. Adseverin was colocalized with subcortical actin filaments and was enriched in the fusopods of fusing cells. In precursor cells, adseverin overexpression boosted the formation of RANKL-induced multinucleated cells. Both IL1β and TNFα enhanced RANKL-dependent TRAcP activity by 1.6-fold and multinucleated cell formation (cells with ≥3 nuclei) by 2.6- and 3.3-fold, respectively. However, IL1β and TNFα did not enhance osteoclast formation in adseverin-knockdown cells. RANKL-dependent adseverin expression in bone marrow cells was increased by both IL1β (5.4-fold) and TNFα (3.3-fold). Luciferase assays demonstrated that this expression involved transcriptional regulation of the adseverin promoter. Activation of the promoter was restricted to a 1118 bp sequence containing an NF-κB binding site, upstream of the transcription start site. TNFα also promoted RANKL-induced osteoclast precursor cell migration. We conclude that IL1β and TNFα enhance RANKL-dependent expression of adseverin, which contributes to fusion processes in osteoclastogenesis.
Collapse
Affiliation(s)
- Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Matthew Galli
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Alexandra Shade Silver
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Wilson Lee
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yushan Song
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yixue Mei
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Carly Bachus
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
96
|
Paine A, Ritchlin C. Altered Bone Remodeling in Psoriatic Disease: New Insights and Future Directions. Calcif Tissue Int 2018; 102:559-574. [PMID: 29330560 PMCID: PMC5906143 DOI: 10.1007/s00223-017-0380-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
Psoriatic arthritis (PsA) is an inflammatory rheumatic disorder that occurs in patients with psoriasis and predominantly affects musculoskeletal structures, skin, and nails. The etiology of PsA is not well understood but evidence supports an interplay of genetic, immunologic, and environmental factors which promote pathological bone remodeling and joint damage in PsA. Localized and systemic bone loss due to increased activity of osteoclasts is well established in PsA based on animal models and translational studies. In contrast, the mechanisms responsible for pathological bone remodeling in PsA remain enigmatic although new candidate molecules and pathways have been identified. Recent reports have revealed novel findings related to bone erosion and pathologic bone formation in PsA. Many associated risk factors and contributing molecular mechanisms have also been identified. In this review, we discuss new developments in the field, point out unresolved questions regarding the pathogenetic origins of the wide array of bone phenotypes in PsA, and discuss new directions for investigation.
Collapse
Affiliation(s)
- Ananta Paine
- Allergy, Immunology & Rheumatology Division, University of Rochester Medical Center, Rochester, NY, 14623, USA.
| | - Christopher Ritchlin
- Allergy, Immunology & Rheumatology Division, University of Rochester Medical Center, Rochester, NY, 14623, USA
| |
Collapse
|
97
|
Fahlgren A, Bratengeier C, Semeins CM, Klein-Nulend J, Bakker AD. Supraphysiological loading induces osteocyte-mediated osteoclastogenesis in a novel in vitro model for bone implant loosening. J Orthop Res 2018; 36:1425-1434. [PMID: 29068483 DOI: 10.1002/jor.23780] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
We aimed to develop an in vitro model for bone implant loosening, allowing analysis of biophysical and biological parameters contributing to mechanical instability-induced osteoclast differentiation and peri-implant bone loss. MLO-Y4-osteocytes were mechanically stimulated for 1 h by fluid shear stress using regimes simulating: (i) supraphysiological loading in the peri-prosthetic interface (2.9 ± 2.9 Pa, 1 Hz, square wave); (ii) physiologic loading in the cortical bone (0.7 ± 0.7 Pa, 5 Hz, sinusoidal wave); and (iii) stress shielding. Cellular morphological parameters, membrane-bound RANKL expression, gene expression influencing osteoclast differentiation, nitric oxide release and caspase 3/7-activity were determined. Either Mouse bone marrow cells were cultured on top of loaded osteocytes or osteocyte-conditioned medium was added to bone marrow cells. Osteoclast differentiation was assessed after 6 days. We found that osteocytes subjected to supraphysiological loading showed similar morphology and caspase 3/7-activity compared to simulated physiological loading or stress shielding. Supraphysiological stimulation of osteocytes enhanced osteoclast differentiation by 1.9-fold compared to physiological loading when cell-to-cell contact was permitted. In addition, it enhanced the number of osteoclasts using conditioned medium by 1.7-fold, membrane-bound RANKL by 3.3-fold, and nitric oxide production by 3.2-fold. The stimulatory effect of supraphysiological loading on membrane-bound RANKL and nitric oxide production was higher than that achieved by stress shielding. In conclusion, the in vitro model developed recapitulated the catabolic biological situation in the peri-prosthetic interface during instability that is associated with osteoclast differentiation and enhanced RANKL expression. The model thus provides a platform for pre-clinical testing of pharmacological interventions with potential to stop instability-induced bone implant loosening. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1425-1434, 2018.
Collapse
Affiliation(s)
- Anna Fahlgren
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Cornelia Bratengeier
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Cornelis M Semeins
- Department of Oral Cell Biology, ACTA-University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, ACTA-University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, ACTA-University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Jensen PT, Lambertsen KL, Frich LH. Assembly, maturation, and degradation of the supraspinatus enthesis. J Shoulder Elbow Surg 2018; 27:739-750. [PMID: 29329904 DOI: 10.1016/j.jse.2017.10.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023]
Abstract
The development of the rotator cuff enthesis is still poorly understood. The processes in the early and late developmental steps are gradually elucidated, but it is still unclear how cell activities are coordinated during development and maturation of the structured enthesis. This review summarizes current knowledge about development and age-related degradation of the supraspinatus enthesis. Healing and repair of an injured and degenerated supraspinatus enthesis also remain a challenge, as the original graded transitional tissue of the fibrocartilaginous insertion is not re-created after the tendon is surgically reattached to bone. Instead, mechanically inferior and disorganized tissue forms at the healing site because of scar tissue formation. Consequently, the enthesis never reaches mechanical properties comparable to those of the native enthesis. So far, no novel biologic healing approach has been successful in enhancing healing of the injured enthesis. The results revealed in this review imply the need for further research to pave the way for better treatment of patients with rotator cuff disorder.
Collapse
Affiliation(s)
- Peter T Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kate L Lambertsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars H Frich
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
99
|
Teitsma XM, Jacobs JWG, Welsing PMJ, Pethö-Schramm A, Borm MEA, van Laar JM, Lafeber FPJG, Bijlsma JWJ. Radiographic joint damage in early rheumatoid arthritis patients: comparing tocilizumab- and methotrexate-based treat-to-target strategies. Rheumatology (Oxford) 2017; 57:309-317. [DOI: 10.1093/rheumatology/kex386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 11/14/2022] Open
|
100
|
Kim JH, Sim JH, Lee S, Seol MA, Ye SK, Shin HM, Lee EB, Lee YJ, Choi YJ, Yoo WH, Kim JH, Kim WU, Lee DS, Kim JH, Kang I, Kang SW, Kim HR. Interleukin-7 Induces Osteoclast Formation via STAT5, Independent of Receptor Activator of NF-kappaB Ligand. Front Immunol 2017; 8:1376. [PMID: 29104576 PMCID: PMC5655015 DOI: 10.3389/fimmu.2017.01376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022] Open
Abstract
Interleukin-7 (IL-7), which is required for the development and survival of T cells in the thymus and periphery, plays a role in joint destruction. However, it remains unclear how IL-7 affects osteoclast formation. Thus, we investigated the mechanism by which IL-7 induced osteoclast formation through IL-7 receptor α (IL-7Rα) in osteoclast precursors. We cultured peripheral blood mononuclear cells or synovial fluid mononuclear cells with IL-7 in the presence or absence of an appropriate inhibitor to analyze osteoclast formation. We also constructed IL-7Rα-expressing RAW264.7 cells to uncover the mechanism(s) by which IL-7 induced osteoclast formation differed from that of receptor activator of nuclear factor κB ligand (RANKL). We found that IL-7 induced osteoclast formation of human monocytes from peripheral blood or synovial fluid in a RANKL-independent and a signal transducer and activator of transcription 5 (STAT5)-dependent manner. IL-7-induced osteoclasts had unique characteristics, such as small, multinucleated tartrate-resistant acid phosphatase positive cells and no alterations even when RANKL was added after IL-7 pretreatment. RAW264.7 cells, if overexpressing IL-7Rα, also were able to differentiate into osteoclasts by IL-7 through a STAT5 signaling pathway. Furthermore, IL-7-induced osteoclast formation was repressed by inhibitors of the IL-7R signaling molecules Janus kinase and STAT5. Our findings demonstrate that IL-7 is a truly osteoclastogenic factor, which may induce osteoclast formation via activation of STAT5, independent of RANKL. We also suggest the possibility that an IL-7R pathway blocker could alleviate joint damage by inhibiting osteoclast formation, especially in inflammatory conditions.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Ji Hyun Sim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunkyung Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Min A Seol
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Mu Shin
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun Bong Lee
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Jong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Jung Choi
- Department of Internal Medicine, Chonbuk National University Medical School and Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, South Korea
| | - Wan-Hee Yoo
- Department of Internal Medicine, Chonbuk National University Medical School and Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, South Korea
| | - Jin Hyun Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Wan-Uk Kim
- Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong-Sup Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Insoo Kang
- Department of Internal Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT, United States
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|